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Abstract We shall show that the Kodaira dimension of the moduli scheme of stable

sheaves on any Enriques surface is zero when its expected dimension is 7 ormore. A sim-

ilar result holds also for bielliptic surfaces.We prove this by estimating the cup-product

structure of Ext1.

1. Introduction

Let X be a nonsingular projective minimal surface over C, and let H be an

ample line bundle on X . There is a coarse moduli scheme M(H) (resp., M̄(H))

of H-stable (resp., H-semistable) sheaves with fixed Chern classes (r, c1, c2) ∈
Z>0×NS(X)×Z, where we assume r > 1. Gieseker [1] and Maruyama [9] proved

that M̄(H) is projective over C, and M(H) is its open subscheme. Suppose

that X is a minimal surface with κ(X) = 0. In other words, X is an Enriques,

hyperelliptic, K3 or Abelian surface. Then KX is numerically equivalent to zero,

and there is a covering map π : X̃ → X , where X̃ is a nonsingular projective

surface with KX̃ =OX̃ . Let d be the degree of π. The main result of this article

is as follows.

THEOREM 1.1

Let X be a minimal surface with κ(X) = 0. Suppose that

2rc2 − (r− 1)c21 − r2χ(OX)≥ 3d,

that is,

expdimM(H) = ext1(E,E)− ext2(E,E)◦ ≥ 3d+ 1+ pg(X).

Then the moduli scheme M(H) of H-stable sheaves with Chern classes (r, c1, c2)

is locally complete intersection (l.c.i.), normal, 1-Gorenstein, and admits only

canonical singularities.
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We know that some positive multiple of the canonical class of M(H) equals

OM(H) by the Grothendieck–Riemann–Roch theorem, so we have a corollary.

COROLLARY 1.2

If the hypothesis in the theorem above holds and, in addition, the greatest common

divisor of r, c1 · OX(1), and c21/2 − c2 equals 1, then M(H) is known to be

projective by [9, Theorem 6.11], and its Kodaira dimension is zero.

The new point of this article is that we consider stable sheaves on Enriques

surfaces and observe how good singularities of its moduli schemes are. When X is

K3, Abelian, or Fano, M(H) is nonsingular, and its Kodaira dimension has been

studied (see [9, Proposition 6.9.], [10], [13]). However, M(H) has singularities

in general; how good are they? Thus far, the works on formality are known on

this problem. Goldman and Millson [2] discussed deformation of flat bundles; note

that its first and second Chern classes are zero. The author does not know whether

such a result is valid also for general stable (or Hermite–Einstein) bundles or not.

Formality discusses the effect of the degree-two part of the defining ideal of the

moduli space; we would rather estimate the degree-two part itself. As to moduli

of stable sheaves on an Enriques surface, Kim dealt with it in [6] and obtained a

finite birational map from M(H) to a Lagrangian subvariety of the moduli space

of sheaves on K3 surfaces. The singularities of M(H) were not considered.

NOTATION

All schemes are of finite type over C, but it seems that the greater part of

this article holds also for an algebraically closed field k with (r, char(k)) = 1. For

sheaves E and F on a projective scheme over C, hom(E,F ) and exti(E,F ) mean

dimHom(E,F ) and dimExti(E,F ), respectively. For homomorphisms f : F →G

and g : G′ → E, f∗ and f∗ mean natural pullback and pushforward homomor-

phisms of Exts, respectively. For a line bundle L, Exti(E,E ⊗ L)◦ denotes the

kernel of trace map Exti(E,E ⊗L)→Hi(L).

2. Proof of Theorem 1.1

Let X be a nonsingular complex projective surface with arbitrary Kodaira dimen-

sion.

DEFINITION 2.1

For a nonzero torsion-free sheaf F , we denote χ(F (nH))/r(F ) by P (F (n)).

A coherent sheaf E on X is stable if E is torsion-free and for every proper

coherent subsheaf F of E we have

P
(
F (n)

)
<P

(
E(n)

)
(n� 0).

DEFINITION 2.2

A normal variety V has only canonical singularities if it satisfies the following
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two conditions:

(a) the Weil divisor rKV is Cartier for some integer r ≥ 1;

(b) if f :W → V is a resolution of V and {Ei} the family of all exceptional

prime divisors of f , then

KW = f∗(KV ) +
∑

aiEi with ai ≥ 0.

FACT 2.3 ([4], COROLLARY 1.7, [12], [11])

Let (X,x)⊂ (Cn+1,0) be a hypersurface singularity defined by ta0
0 +ta1

1 + · · ·+tan
n .

This singularity is canonical if and only if
∑n

i=0
1
ai

> 1.

As to singularities of M(H), we shall use the following fact in Kuranishi theory.

FACT 2.4 ([8])

Let E be a stable sheaf on an arbitrary nonsingular surface. Denote dimExt1(E,

E) = d + b and dimExt2(E,E)◦ = b, and let f1, . . . , fb be a basis of Hom(E,

E(KX))◦. Then the local ring R of M(H) at E is isomorphic to C[[t1, . . . , td+b]]/

(F1, . . . , Fb), where Fi is a power series starting with a degree-two term, which

comes from

(1) Ff : Ext1(E,E)⊗Ext1(E,E)−→ Ext2(E,E)−→C

defined by Ff (α⊗ β) = tr(f ◦ α ◦ β + f ◦ β ◦ α) and its dual map

(2) F∨
f :C−→ Ext1(E,E)∨ ⊗Ext1(E,E)∨ −→ Sym2

(
Ext1(E,E)∨

)
,

where f equals fi.

From now on, we shall suppose that KX is numerically equivalent to zero and

let E be a stable sheaf on X . If M(H) is singular at E, then ext2(E,E) =

hom(E,E(KX)) = 1 since the stability of E implies that hom(E,E(KX))≤ 1 in

this case, and so Hom(E,E(KX)) is spanned by one element, say, f .

LEMMA 2.5

Let us choose coordinates ti in Fact 2.4 so that F∨
f = t21 + · · · + t2N with some

0≤N ≤ d+ b. If the codimension of

Sing
(
M(H)

)
:=

{
[E]

∣∣ ext2(E,E)◦ 
= 0
}

in M(H) is more than 1 and N ≥ 3, then the singularity of M(H) at E is

canonical.

Proof

The assumption implies that F∨
f 
= 0, and thus M(H) is l.c.i. by Fact 2.4. Since

M(H) is smooth in codimension one, M(H) is normal and 1-Gorenstein. In

order to determine whether the singularity of the l.c.i. ring R at x ∈ Spec(R) is

canonical or not, it is sufficient to look at its completion at x. This is because the

singularities of R are canonical if and only if they are rational singularities (see
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[5, Corollary 5.2.15]), and a variety V has only rational singularities if and only if

V an does so (see [7, Corollary 5.11]). Since the rationality of singularities is stable

under small deformation (see [5, Section 8]), this lemma follows from Fact 2.3. �

As to the covering π : X̃ →X of X , we have a free action of a finite group G

with |G| = d on X̃ such that π equals the quotient map by G. It holds that

π∗(OX̃) =
⊕d−1

i=0 K−i
X .

LEMMA 2.6

If E is an H-stable sheaf on X, then π∗(E) is π∗H-semistable.

Proof

Otherwise, π∗E has a nontrivial Harder–Narasimhan filtration (HNF) with

respect to π∗H . Let F be the first part of HNF. By the uniqueness of HNF,

F has a natural structure of a G-subsheaf of π∗(E), and so F descends to a

subsheaf F0 of E. This F0 breaks the stability of E, since KX is numerically

equivalent to 0. �

LEMMA 2.7

The natural map Ext1X(E,E) → Ext1
X̃
(π∗(E), π∗(E)) induces the isomorphism

Ext1(E,E)� Ext1(π∗(E), π∗(E))G.

Proof

Let E• →E be a locally free resolution of E:

Ext1
(
π∗(E), π∗(E)

)

=H1
(
RΓX̃(π∗(E∨

• ⊗E•))
)

=H1
(
RΓXRπ∗(π

∗(E∨
• ⊗E•))

)
=H1

(
RΓX(E∨

• ⊗E• ⊗ π∗OX̃)
)

=

d−1⊕
i=0

H1
(
RΓX(E∨

• ⊗E• ⊗K−i
X )

)
=

d−1⊕
i=0

Ext1(E,E ⊗K−i
X ).

Since π∗(OX̃)G =OX , this lemma holds. �

Now, let f : E → E(KX) be a nonzero traceless homomorphism. Since KX is

numerically equivalent to zero and E is stable, this f is an isomorphism, and

so det(f) 
= 0. Fix an isomorphism OX̃ � π∗(KX), and let t ∈ Γ(π∗(KX)) be the

image of 1 by this. When we denote the eigenpolynomial of π∗f by Pπ∗f (t), we

can decompose it into eigenvalues

Pπ∗f (t) =
∏
i

(t− ai)
ni ,

where ai are elements in H0(KX̃) which differ from each other, from the fact that

KX̃ =OX̃ . Let us fix a1 and pick any g ∈G. Then det(f) 
= 0 implies a1 
= 0, and

g(π∗(f)) = π∗(f) implies g(a1) = ai with some i.
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LEMMA 2.8

If g 
= e, then g(a1) 
= a1.

Proof

Otherwise, one can indicate the orbit Oa1 as {a1, . . . , am} with some m< |G|= d.

Then a1 · · · · · am lies in Γ(mKX̃)G = Γ(mKX), but we know that Γ(mKX) = 0

for m< d. This contradicts the fact that det(f) 
= 0. �

LEMMA 2.9

We have
∏

g∈G(π
∗f − g(a1)) = 0 in Hom(π∗E,π∗E(dKX)).

Proof

This homomorphism fG lies in Hom(π∗E,π∗E(dKX))G =Hom(E,E(dKX)). If

fG 
= 0, then fG should be injective since E is stable. However, fG is not injective

obviously. �

For g ∈G, denote Ker(π∗f − g(a1))⊂ π∗E by Fg .

LEMMA 2.10

The natural map
⊕

g∈GFg → π∗E is isomorphic.

Proof

Let us consider the map

(3)
∏
g �=e

(
π∗f − g(a1)

)
: Fe ↪→ π∗E → F ′

e := Im
∏
g �=e

(
π∗f − g(a1)

)
.

If α ∈ Fe belongs to the kernel of this map, then 0 =
∏

g �=e(π
∗f − g(a1))(α) =∏

g �=e(a1 − g(a1))(α), and then Lemma 2.8 and KX̃ = OX̃ deduce that α = 0.

Thus the map (3) is injective. Next, the map f−(d−1) : π∗E((d− 1)KX)→ π∗E

induces the map f−(d−1) : F ′
e → Fe by Lemma 2.9. One can check that f−(d−1) ◦∏

g �=e(π
∗f − g(a1)) : Fe → Fe is the multiple map by a nonzero constant and so is

isomorphic by Lemma 2.8. Thereby, the map (3) is bijective, and hence we have

π∗E = Fe ⊕ (π∗E/Fe). Repeating this, we can show this lemma. �

Since Fg 
= 0, P (Fg(n)) = P (π∗E(n)) by Lemmas 2.6 and 2.10. The homomor-

phism π∗f − g(a1) induces exact sequences

0−→ Fg
ig−→ π∗E

pg−→Gg −→ 0(4)

and

0−→Gg
jg−→ π∗E(KX)

qg−→Qg −→ 0.(5)

PROPOSITION 2.11

One can find h ∈ G with h 
= e as follows: the dimension of the image of the
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natural map,

(6) Ext1
(
Qe(−KX), Fh

) ih∗−→ Ext1
(
Qe(−KX), π∗E

) q∗e−→ Ext1(π∗E,π∗E),

which comes from the exact sequences (4) and (5), is − 1
dχ(E,E) or more.

We shall prove this proposition later; we presume it proved for now. From

now on, suppose that the hypothesis in Theorem 1.1 holds, which implies that

−χ(E,E)/d− d2 + 1≥ 3. Hence there is a nonzero element α ∈ Ext1(π∗E,π∗E)

lying in the image of the map (6). For any h ∈G, we have the following commu-

tative diagram:

Ext1
(
Qe(−KX),Fh

)
ih∗

q∗e

Ext1
(
Qe(−KX), π∗E

)

q∗e

Ext1(π∗E,Fh) ih∗
Ext1(π∗E,π∗E)

ph∗

j∗e

Ext1(π∗E,Gh)

jh∗

Ext1
(
Ge(−KX), π∗E

)

p∗
e

Ext1
(
π∗E,π∗E(KX)

)

Ext1
(
π∗E(−KX), π∗E

)

(7)

and it holds that p∗e ◦ j∗e = (π∗f − a1)
∗ and jh∗ ◦ ph∗ = (π∗f − h(a1))∗. Thus

(π∗f − a1)
∗(α) = 0 and (π∗f − h(a1))∗(α) = 0. From the definition of pullback

and pushforward, it implies that

(8) α ◦ π∗f = (π∗f)∗(α) = a1α and π∗f ◦ α= (π∗f)∗(α) = h(a1)α

in Ext1(π∗E,π∗E(KX)). Here we denote
∑

g∈G g(α) ∈ Ext1(π∗(E), π∗(E)) by

αG. If αG = 0, then −α ∈ Ker(π∗f − a1) and
∑

g �=e g(α) should belong to

Ker
(∏

g �=e(π
∗f − g(a1))

)
, but Ker(π∗f − a1) ∩Ker

(∏
g �=e(π

∗f − g(a1))
)
= 0 by

Lemma 2.8. Thus αG 
= 0. From Lemma 2.7, αG descends to a nonzero ele-

ment ᾱ ∈ Ext1(E,E). Since f is isomorphic, by the Serre duality we have some

β ∈ Ext1(E,E) such that

(9) tr(f ◦ ᾱ ◦ β) 
= 0.

LEMMA 2.12

If β satisfies (9), then tr(f ◦ ᾱ ◦ β + f ◦ β ◦ ᾱ) 
= 0.

Proof

From the definition of ᾱ, we have
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tr
(
π∗(f ◦ ᾱ ◦ β)

)
= tr(π∗f ◦ π∗ᾱ ◦ π∗β)

=
∑
g∈G

tr
(
π∗f ◦ g(α) ◦ π∗β

)
=
∑
g

tr
(
gh(a1) · g(α) ◦ π∗(β)

)
,

where one gets the last equation by the action of g on the second at (8). From a

basic property of trace (see [3, p. 257]), it holds that

− tr
(
π∗(f ◦ β ◦ ᾱ)

)
= tr

(
π∗(ᾱ ◦ f ◦ β)

)

=
∑
g

tr
(
g(α) ◦ π∗f ◦ π∗β

)
=
∑
g

tr
(
g(a1) · g(α) ◦ π∗(β)

)
,

where one gets the last equation by the action of g on the first in (8). Since a1 ∈
Γ(π∗KX) = Γ(OX̃) is nowhere vanishing, we can set λ = h(a1)/a1 ∈ Γ(OX̃) �
C� Γ(OX̃)G, and thus gh(a1)/g(a1) = g(h(a1)/a1) = h(a1)/a1 = λ for any g ∈G.

Thereby tr(π∗(f ◦ ᾱ ◦ β)) =−λ tr(π∗(f ◦ β ◦ ᾱ)), and then

π∗ tr(f ◦ ᾱ ◦ β + f ◦ β ◦ ᾱ) =
(
1− 1

λ

)
π∗ tr(f ◦ ᾱ ◦ β) 
= 0,

since λ 
= 0,1 by Lemma 2.8. �

Summing up, we have found ᾱ and β in Ext1(E,E) such that Ff (ᾱ, β) 
= 0 for

Ff at (1) if − 1
dχ(E,E) > 0 by Proposition 2.11, and consequently we can find

t1 ∈ Ext1(E,E) such that Ff (t1, t1) = 1. Then, replacing the argument above

from Ext1(E,E) to KerFf (t1, ·), we can find t2 such that Ff (t1, t2) = 0 and

Ff (t2, t2) = 1, when − 1
dχ(E,E)≥ 2.

LEMMA 2.13

(a) If E belongs to Sing(M(H)) from Lemma 2.5, then E � π∗(Fg) for all

g ∈G.

(b) For any g ∈G, Fg is π∗H-stable.

(c) When − 1
dχ(E,E) ≥ 3, the codimension of Sing(M(H)) in M(H) is

greater than 1.

Proof

Since
⊕

g∈GFg � π∗E, we have an injective map E → π∗(Fe). Applying the

Grothendieck–Riemann–Roch theorem and projection formula to π∗(Fe), we have

d ch(E)≡
∑

g ch(π∗(Fg))) = d ch(π∗(Fe)) in CH(X)Q, since Fg = g∗(Fe) for all g.

Thus the injective map E → π∗(Fe) is isomorphic. Clearly π∗(Fg) = π∗(Fe),

so we get (a). Next, Fe satisfies P (Fe(nπ
∗H)) = P (π∗E(nH)) by Lemma 2.6.

If Fe is not π∗H-stable, then there is a proper subsheaf F ′ ⊂ Fe such that

P (F ′(nπ∗H)) = P (π∗E(nH)). Then
⊕

g∈G g∗(F ′)⊂ π∗(E) descends to a proper

subsheaf of E, which becomes an H-destabilizer of E. This is a contradiction

and gives (b). Next, as to (c), we can assume d ≥ 2, for if d = 1, then KX is

trivial, and then M(H) is nonsingular by [10]. From (a), the moduli number

of Sing(M(H)) is not greater than ext1
X̃
(Fe, Fe) =−χ(Fe, Fe) + 2, which is not

greater than −χ(E,E)/d+2 from equations (10) and (12) below. Thereby when
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− 1
dχ(E,E)≥ 3 we can check that

dimM(H)− dimSing
(
M(H)

)
≥ ext1(E,E)− ext2(E,E)− ext1(Fe, Fe)

≥ −χ(E,E) + 1− 2 +
1

d
χ(E,E)

=
1− d

d
χ(E,E)− 1≥ 3(d− 1)− 1≥ 2,

and this leads to (c). �

In such a way, we can describe F∨
f at (2) as F∨ = t21 + · · ·+ t2N with N ≥ 3 when

− 1
dχ(E,E) ≥ 3. Therefore Theorem 1.1 follows from Lemma 2.5, Lemma 2.13,

and Proposition 2.11.

Proof of Proposition 2.11

From Lemma 2.10,

(10) |G|χ(E,E) = χ(π∗E,π∗E) =
∑
g∈G

∑
g′∈G

χ(Fg′ , Fg) = |G|
∑
g∈G

χ(Fe, Fg),

and so χ(E,E) =
∑

g χ(Fe, Fg). From the Riemann–Roch theorem, we have

χ(Fe, Fg) =
(
r(Fg)c1(Fe)

2 + r(Fe)c1(Fg)
2
)
/2

− r(Fe)c2(Fg)− r(Fg)c2(Fe)− c1(Fe)c1(Fg) + r(Fe)r(Fg)χ(OX̃).(11)

Since Fg = g∗(Fe), it holds that r(Fe) = r(Fg), c1(Fe)
2 = c1(Fg)

2, and c2(Fe) =

c2(Fg). By the Hodge index theorem (c1(Fe) − c1(Fg))
2 = c1(Fe)

2 + c1(Fg)
2 −

2c1(Fe)c1(Fg) = 2(c1(Fe)
2 − c1(Fe)c1(Fg))≤ 0, and hence (11) says that

(12) χ(Fe, Fe)− χ(Fe, Fg) =−c1(Fe)
2 + c1(Fe)c1(Fg)≥ 0.

Then some h 
= e satisfies χ(Fe, Fh) ≤ χ(E,E)/d; otherwise, all g satisfy

χ(Fe, Fg)> χ(E,E)/d, which contradicts the fact that χ(E,E) =
∑

g χ(Fe, Fg).

For such h 
= e, ext1(Fe, Fh) ≥ − 1
dχ(E,E). As to the homomorphism (6), we

remark that Qe = Fe(KX) and that exact sequences (4) and (5) split since

π∗(KX) is trivial. Therefore the following holds:

dimIm
(
Ext1(Qe(−KX), Fh)→ Ext1(π∗E,π∗E)

)

≥ ext1
(
Qe(−KX), Fh

)
= ext1(Fe, Fh)≥−1

d
χ(E,E). �
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