
Strongly symmetric smooth toric varieties

M. Cuntz, Y. Ren, and G. Trautmann

Abstract We investigate toric varieties defined by arrangements of hyperplanes and
call them strongly symmetric. The smoothness of such a toric variety translates to the
fact that the arrangement is crystallographic. As a result, we obtain a complete classifi-
cation of this class of toric varieties. Further, we show that these varieties are projective
and describe associated toric arrangements in these varieties.

1. Introduction

In this paper we investigate toric varieties which are defined by fans of arrange-
ments of hyperplanes, thereby generalizing the definition and construction of
toric varieties which are associated to classical root systems. Toric varieties aris-
ing from root systems had previously been considered, investigated, and used
by De Concini and Procesi [DCP1], Voskresenskij and Klyachko [VK], Procesi
[Pro], Dolgachev and Lunts [DL], Stembridge [Ste], Klyachko [Kly], and Brion
and Joshua [BJ]. Recently Batyrev and Blume [BB2], [BB1] found generalizations
of the Losev–Manin moduli spaces by investigating the functor of toric varieties
associated with Weyl chambers. The so-called crystallographic arrangements are
generalizations of the classical root systems and their Weyl chamber structure.
In this paper we establish a one-to-one correspondence between crystallographic
arrangements and toric varieties which are smooth and projective, and which
have the property of being strongly symmetric (see Definition 3.1), a property
which has not been used in the previous papers mentioned above.

Crystallographic arrangements where originally used in the theory of pointed
Hopf algebras: classical Lie theory leads to the notion of Weyl groups which are
special reflection groups characterized by a certain integrality and which are
therefore also called crystallographic reflection groups. A certain generalization
of the universal enveloping algebras of Lie algebras yields Hopf algebras to which
one can associate root systems and Weyl groupoids (see [Hec], [HS], [AHS]). The
case of finite Weyl groupoids has recently been treated including a complete
classification in a series of papers (see [CH2], [CH1], [CH3], [CH4], [CH5]).

The theorems needed for the classification reveal an astonishing connection.
It turns out that finite Weyl groupoids correspond to certain simplicial arrange-
ments called crystallographic (see [Cu]). Let A be a simplicial arrangement of
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finitely many real hyperplanes in a Euclidean space V , and let R be a set of
nonzero covectors such that A = {α⊥ | α ∈ R}. Assume that Rα ∩ R = {±α} for
all α ∈ R. The pair (A,R) is called crystallographic (see [Cu, Definition 2.3] or
Definition 2.1) if for any chamber K the elements of R are integer linear com-
binations of the covectors defining the walls of K. For example, crystallographic
Coxeter groups give rise to crystallographic arrangements in this sense, but there
are many others.

Thus the main feature of crystallographic arrangements is the integrality. But
integrality is also the fundamental property of a fan in toric geometry. Indeed,
the set of closed chambers of a rational simplicial arrangement is a fan which
is strongly symmetric. A closer look reveals that the property crystallographic
corresponds to the smoothness of the variety. We obtain the following (see The-
orem 4.3).

THEOREM 1.1

There is a one-to-one correspondence between crystallographic arrangements and
strongly symmetric smooth fans.

Thus the classification of finite Weyl groupoids (see [CH5]) gives the following.

COROLLARY 1.2

Any strongly symmetric smooth complete toric variety is isomorphic to a product
of

(1) varieties of dimension two corresponding to triangulations of a convex
n-gon by nonintersecting diagonals (see Section 6),

(2) varieties of dimension r > 2 corresponding to the reflection arrangements
of type Ar, Br, Cr, and Dr, or out of a series of r − 1 further varieties,

(3) 74 further “sporadic” varieties.

To each crystallographic arrangement A, we construct a polytope P such that
the toric variety of P is isomorphic to the toric variety corresponding to A.
Thus we obtain that the variety is projective (see Section 5). Further, the strong
symmetry of the fan Σ associated to A gives rise to a system {Y E }E∈L(A) of
smooth strongly symmetric toric varieties Y E ⊆ XΣ. (Here L(A) is the poset of
intersections of hyperplanes of A.) This system mirrors the arrangement A in
XΣ in a remarkable way (see Section 7.2) and will be called the associated toric
arrangement. The intersections Y H ∩ T with the torus T of XΣ for H ∈ A are
subtori of T and form a toric arrangement.

This note is organized as follows. After recalling the notions of fans and
arrangements of hyperplanes in Section 2, we collect some results on strongly
symmetric fans in Section 3. We then prove the main theorem (the correspon-
dence) in Section 4. In Section 5 we construct a polytope for each crystallographic
arrangement. In Section 6 we compare the well-known classifications of smooth
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complete surfaces (specified for the centrally symmetric case) and the corre-
sponding arrangements of rank two. In the following section we discuss the toric
arrangements associated to the crystallographic arrangements. The last section
consists of further remarks on irreducibility, blowups, and automorphisms.

2. Preliminaries

Let us first recall the notions of hyperplane arrangements and of fans for normal
toric varieties.

For subsets A in a real vector space V of dimension r and a subset B of its
dual V ∗ we set

A⊥ =
{
b ∈ V ∗ ∣∣ b(a) = 0 ∀a ∈ A

}
,

B∨ =
{
a ∈ V

∣∣ b(a) ≥ 0 ∀b ∈ B
}
,

B⊥ =
{
a ∈ V

∣∣ b(a) = 0 ∀b ∈ B
}
.

An open or closed simplicial cone σ is a subset σ ⊆ V such that there exist
linearly independent n1, . . . , nd, d ∈ N, with

σ = 〈n1, . . . , nd〉R>0 := R>0n1 + · · · + R>0nd

or

σ = 〈n1, . . . , nd〉R≥0 := R≥0n1 + · · · + R≥0nd,

respectively.

2.1. Fans and toric varieties
Given a lattice N in V of rank r, its dual lattice M = Hom(N,Z) is viewed
as a lattice in V ∗. A subset σ ⊆ V is called a (closed) strongly convex rational
polyhedral cone if there exist n1, . . . , nd ∈ N such that

σ = 〈n1, . . . , nd〉R≥0 and σ ∩ −σ = {0}.

We say that n1, . . . , nd are generators of σ. By abuse of notation we will call such
a cone simply an “N -cone.”

We call σ simplicial if σ is a closed simplicial cone. If σ is generated by a
subset of a Z-basis of N , then we say that σ is smooth. Let σ be an N -cone. We
write 〈σ〉R := σ +(−σ) for the subspace spanned by σ. The dimension dim(σ) of
σ is the dimension of 〈σ〉R.

Identifying NR = N ⊗Z R with V , we consider fans Σ in NR of strongly convex
rational polyhedral cones as defined in the standard theory of toric varieties (see
[Oda], [CLS]).

A face of σ is the intersection of σ with a supporting hyperplane, σ ∩ m⊥,
m ∈ V ∗, m(a) ≥ 0 for all a ∈ σ. Faces of codimension 1 are called facets.

A fan in N is a nonempty collection of N -cones Σ such that

(1) any face τ of a cone σ ∈ Σ is contained in Σ;
(2) any intersection σ1 ∩ σ2 of two cones σ1, σ2 ∈ Σ is a face of σ1 and σ2.
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For k ∈ N we write Σ(k) = {σ ∈ Σ | dim(σ) = k}. For S ⊆ Σ we write SuppS =⋃
σ∈S σ for the support of S.

The fan Σ and its associated toric variety XΣ (over the ground field C) are
called simplicial if any cone of Σ is simplicial. It is well known that XΣ for finite
Σ is nonsingular (smooth) if and only if each cone σ of Σ is smooth. Moreover,
XΣ is complete (compact) if and only if Σ is finite and SuppΣ = NR.

2.2. Crystallographic arrangements
Let A be a simplicial arrangement in V = Rr; that is, A = {H1, . . . ,Hn} where
H1, . . . ,Hn are distinct linear hyperplanes in V and every component of V �⋃

H∈A H is an open simplicial cone. Let K(A) be the set of connected components
of V �

⋃
H∈A H ; they are called the chambers of A.

For each Hi, i = 1, . . . , n, we choose an element xi ∈ V ∗ such that Hi = x⊥
i .

Let

R = { ±x1, . . . , ±xn} ⊆ V ∗.

For each chamber K ∈ K(A) set

WK =
{
H ∈ A

∣∣ dim(H ∩ K) = r − 1
}
,

BK =
{
α ∈ R

∣∣ α⊥ ∈ WK , {α}∨ ∩ K = K
}

⊆ R.

Here, K denotes the closure of K. The elements of WK are the walls of K and
BK “is” the set of normal vectors of the walls of K pointing to the inside. Note
that

K =
⋂

α∈BK

{α} ∨

and that BK is a basis of V ∗ because A is simplicial. Moreover, if α∨
1 , . . . , α∨

r is
the dual basis to BK = {α1, . . . , αr }, then

(2.1) K =
{ r∑

i=1

aiα
∨
i

∣∣∣ ai > 0 for all i = 1, . . . , r
}

.

DEFINITION 2.1

Let A be a simplicial arrangement, and let R ⊆ V ∗ be a finite set such that
A = {α⊥ | α ∈ R} and Rα ∩ R = { ±α} for all α ∈ R. For K ∈ K(A) set

RK
+ = R ∩

∑
α∈BK

R≥0α.

We call (A,R) a crystallographic arrangement if for all K ∈ K(A),

(I) R ⊆
∑

α∈BK Zα.

REMARK 2.2

Notice that one can in fact prove that if (A,R) is crystallographic, then R ⊆
±

∑
α∈BK N0α (see [Cu]).
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3. Strong symmetry of fans

DEFINITION 3.1

We call a fan Σ in V strongly symmetric if it is complete and if there exist
hyperplanes H1, . . . ,Hn in V such that

SuppΣ(r − 1) = H1 ∪ · · · ∪ Hn.

We write A(Σ) := {H1, . . . ,Hn}. We call a toric variety XΣ strongly symmetric
if Σ is strongly symmetric.

We call a fan Σ centrally symmetric if Σ = −Σ. We call a toric variety XΣ

centrally symmetric if Σ is centrally symmetric.

REMARK 3.2

One could also call a strongly symmetric fan strongly complete because for any
τ ∈ Σ the collection of σ ∩ 〈τ 〉R, σ ∈ Σ, is a complete fan in 〈τ 〉R as a subfan of Σ.

LEMMA 3.3

Let τ be an (r − 1)-dimensional cone in Rr, and let H1, . . . ,Hn be hyperplanes
in Rr. If τ ⊆ H1 ∪ · · · ∪ Hn, then τ ⊆ Hi for some 1 ≤ i ≤ n.

Proof
We construct inductively sets Ti ⊆ τ with i + r − 1 elements such that each
subset B, |B| = r − 1, is linearly independent: let T0 := {n1, . . . , nr−1}, where
n1, . . . , nr−1 ∈ τ are linearly independent and span 〈τ 〉R. Given Ti, let

Ξi :=
{

〈v1, . . . , vr−2〉
∣∣ v1, . . . , vr−2 ∈ Ti

}
be the set of subspaces generated by r − 2 elements of Ti. Since τ has dimen-
sion r − 1,

⋃
U ∈Ξi

U �= 〈τ 〉R. For any w ∈ τ �
⋃

U ∈Ξi
U , Ti+1 := Ti ∪ {w} has the

required property.
Now consider the (r − 1)n elements of T(r−1)(n−1). Let � be the maximal

number of elements in any Hi. Then � ≥ r − 1. Then there is a 1 ≤ i ≤ n such
that r − 1 of these elements lie in Hi. These are linearly independent and belong
to τ , so τ ⊆ 〈τ 〉R ⊆ Hi. �

LEMMA 3.4

Let Σ be an r-dimensional fan. Then the following are equivalent:

(1) Σ is complete, and for all τ ∈ Σ(r − 1), σ ∈ Σ,

σ ∩ 〈τ 〉R ∈ Σ;

(2) the fan Σ is strongly symmetric.

Proof
Assume (1). Let τ ∈ Σ(r − 1). Since Σ is complete, 〈τ 〉R ⊆ SuppΣ. Thus 〈τ 〉R =⋃

σ∈Σ〈τ 〉R ∩ σ. By (1), Σ′ := { 〈τ 〉R ∩ σ | σ ∈ Σ} is a subfan of Σ. Further,
SuppΣ′(r − 1) = SuppΣ′ = 〈τ 〉R because Σ′ is complete in N ∩ 〈τ 〉R and the max-
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imal cones in Σ′ have dimension r − 1. Hence for each τ of codimension 1, 〈τ 〉R

is a union of elements of Σ(r − 1). This implies SuppΣ(r − 1) =
⋃

τ ∈Σ(r−1)〈τ 〉R

(finite union by definition of complete).
Now assume SuppΣ(r − 1) = H1 ∪ · · · ∪ Hn for some hyperplanes H1, . . . ,Hn.

Let τ ∈ Σ(r − 1) and σ ∈ Σ. Then by Lemma 3.3, 〈τ 〉R = Hi for some 1 ≤ i ≤ n,
and there exist η1, . . . , ηk ∈ Σ(r − 1) with Hi = η1 ∪ · · · ∪ ηk. But σ ∩ Hi =

⋃k
j=1 σ ∩

ηj , so
◦
σ ∩ Hi = ∅; that is, Hi is a supporting hyperplane and σ ∩ Hi is a face of

σ and thus an element of Σ. �

LEMMA 3.5

Let Σ be an r-dimensional strongly symmetric fan. Then the set of all intersec-
tions of closed chambers of A(Σ) is Σ. In particular, Σ is centrally symmetric.

Proof
Let σ ∈ Σ(r). Then the facets of σ are in SuppΣ(r − 1) = H1 ∪ · · · ∪ Hn and

◦
σ ⊆ Rr � SuppΣ(r − 1). Since Σ is complete, Σ(r) is the set of closed chambers
of A. �

DEFINITION 3.6

Let Σ be a fan in N , δ ∈ Σ, and write κ : V → V/〈δ〉R for the canonical projection.
Then

Star(δ) =
{
σ = κ(σ) ⊆ V/〈δ〉R

∣∣ δ ⊆ σ ∈ Σ
}

is a fan in N(δ) := κ(N) (cf. [CLS, Example 3.2.7]). Its toric variety is isomorphic
to the orbit closure V (δ) in XΣ.

LEMMA 3.7

Let Σ be an r-dimensional fan. Then the following are equivalent:

(1) the fan Σ is strongly symmetric;
(2) the fan Star(σ) is strongly symmetric for all σ ∈ Σ.

Proof
We use Lemma 3.4. Assume (1). Let σ ∈ Σ, and consider a cone τ ∈ Star(σ) of
codimension one. Then 〈τ 〉R = 〈τ 〉

R
⊆ V/〈σ〉R, and hence for any cone π ∈ Star(σ)

we have π ∩ 〈τ 〉R = π ∩ 〈τ 〉R ∈ Star(σ), because π ∩ 〈τ 〉R is a cone in Σ containing
σ; thus Star(σ) is strongly symmetric.

Since Σ = Star({0}), (1) follows from (2). �

PROPOSITION 3.8

Let Σ be an r-dimensional complete fan. Then the following are equivalent:

(1) the fan Σ is strongly symmetric;
(2) the fan Star(σ) is centrally symmetric for all σ ∈ Σ;
(3) the fan Star(δ) is centrally symmetric for all δ ∈ Σ(r − 2).
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Proof
The implication (1) ⇒ (2) follows from Lemmas 3.5 and 3.7; (2) ⇒ (3) is obvious.

Suppose that Star(δ) is centrally symmetric for any δ ∈ Σ(r − 2). We have
to show that for any τ0 ∈ Σ(r − 1), H := 〈τ0〉R ⊆ S := SuppΣ(r − 1). Suppose
H � S. Let {τ0, . . . , τk } = {τ ∈ Σ(r − 1) | τ ⊆ H}. Then

τ0 ∪ · · · ∪ τk � H.

Let p be a point of the relative border ∂(τ0 ∪ · · · ∪ τk) in H . Then there is an i

with p ∈ ∂τi and a δ ∈ Σ(r − 2), δ ⊆ τi, such that p ∈ δ ⊆ τi ⊆ 〈τi〉R = H . We have
τi ∈ Star(δ), τi ⊆ H , and dimH = 1. Because Star(δ) is centrally symmetric,
−τi ∈ Star(δ). Then −τi = τ ′ for some δ ⊆ τ ′ ∈ Σ(r − 1) with τ ′ ⊆ H . Then
τ ′ ⊆ H , δ ⊆ τi ∩ τ ′, and τ ′ �= τi. Hence δ = τi ∩ τ ′ because dim(δ) = r − 2. But
then p /∈ ∂(τ0 ∪ · · · ∪ τk), contradicting the assumption. �

EXAMPLE 3.9

There are of course fans which are centrally symmetric but not strongly sym-
metric. Here is such an example which is smooth: let R be the standard basis
of R3, and let ΣR be the fan as defined in Lemma 4.1. Blowing up along two
opposite cones σ, −σ ∈ ΣR preserves the central symmetry, but the resulting fan
is not strongly symmetric.

In the case of smooth strongly symmetric fans, we obtain the following.

LEMMA 3.10

Let Σ be a smooth strongly symmetric fan in N , let σ ∈ Σ, and let E := 〈σ〉R.
Then N ∩ E is a lattice of rank dim(σ) and ΣE := {η ∩ E | η ∈ Σ} ⊆ Σ is a smooth
strongly symmetric fan in N ∩ E.

Proof
Using a Z-basis of σ one finds that N ∩ E is a sublattice of N of rank dim(σ)
and that the inclusion N ∩ E ↪→ N is split. Consider first a σ ∈ Σ(r − 1), and let
E := 〈σ〉R. By Lemma 3.4, η ∩ E ∈ Σ for all η ∈ Σ. Thus ΣE is a subfan of Σ,
and it is complete since SuppΣ = V . Write SuppΣ(r − 1) = E ∪ H2 ∪ · · · ∪ Hn for
hyperplanes H2, . . . ,Hn. Then

SuppΣE(r − 2) = (H2 ∪ · · · ∪ Hn) ∩ E = (H2 ∩ E) ∪ · · · ∪ (Hn ∩ E);

that is, ΣE is strongly symmetric. The claim is true for arbitrary σ ∈ Σ by
induction on dim(σ). �

4. The correspondence

LEMMA 4.1

Let (A,R) be a crystallographic arrangement in V . Set

MR :=
∑
α∈R

Zα ∼= Zr,
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and let NR be the dual lattice to MR. Then the set ΣR of all intersections of
closed chambers of A is a strongly symmetric smooth fan in NR.

Proof
It is clear that ΣR is a strongly symmetric fan. Let σ ∈ ΣR be of maximal dimen-
sion; that is, σ = K for a chamber K ∈ K(A). By equation (2.1), σ is generated
by the basis of NR dual to BK ; hence σ is smooth. �

LEMMA 4.2

Let Σ be a strongly symmetric smooth fan in N ⊆ V = Rr. Then there exists a
set R ⊆ V ∗ such that (A,R) is a crystallographic arrangement, where

A = A(Σ) =
{

〈τ 〉R

∣∣ τ ∈ Σ(r − 1)
}
.

Proof
Since Σ is strongly symmetric, A is a finite set of hyperplanes, and by Lemma 3.5,
the set of all intersections of closed chambers of A is Σ. Further,⋃

σ∈Σ(r)

◦
σ = V \

⋃
H∈A

H

since each facet of a σ ∈ Σ(r) is contained in a hyperplane of A and since Σ is
complete. The cones

◦
σ in the above union are open simplicial cones, because σ

is smooth; hence A is a simplicial arrangement.
Let σ ∈ Σ be a cone of maximal dimension. Since σ is smooth, there exists a

unique Z-basis of N generating σ. We will prematurely denote by BKσ its dual
basis, where Kσ is the chamber with Kσ = σ.

Now set R to be the union of all the BKσ for σ ∈ Σ(r). Clearly,

R ⊆
∑

α∈BKσ

Zα,

since each BKσ is a Z-basis of M = Hom(N,Z) and R ⊆ M .
It remains to show that for each hyperplane H = 〈τ 〉R ∈ A, τ ∈ Σ(r − 1),

there is a vector x ∈ R such that R ∩ H⊥ = {±x}.
Let σ ∈ Σ(r) containing τ , and let x be the element with {x} = BKσ ∩ H⊥.

In particular, x is primitive. Assume λx ∈ R for a λ ∈ Z. Then there exists a
σ′ ∈ Σ with λx ∈ BKσ′ . Thus λ = ±1 since BKσ′ is a Z-basis of M . �

THEOREM 4.3

The map (A,R) �→ ΣR from the set of crystallographic arrangements to the set
of strongly symmetric smooth fans is a bijection.

Proof
This is Lemmas 4.1 and 4.2. �
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COROLLARY 4.4

A complete classification of strongly symmetric smooth toric varieties is now
known.

Proof
This is [CH5, Theorem 1.1]. �

DEFINITION 4.5

We denote the toric variety of the fan ΣR by X(A,R) or X(A) and call it the
toric variety of the arrangement (A,R).

REMARK 4.6

For a fixed crystallographic arrangement (A,R), choosing another lattice than
MR may result in a strongly symmetric fan which is not smooth. Further, the cor-
respondence (A,R) �→ ΣR extends by its definition to a correspondence between
rational simplicial arrangements and simplicial strongly symmetric fans. How-
ever, there exist rational simplicial noncrystallographic arrangements; that is,
there is a basis with respect to which all covectors of the hyperplanes have ratio-
nal coordinates, although there is no lattice M for which the corresponding fan
is smooth. The smallest example in dimension three has 12 hyperplanes and is
denoted A(12,1) in [Grü] (cf. the catalogue in [Grü] with the list in [CH4]).

REMARK 4.7

Any smooth complete fan in N can be visualized by a triangulation of the sphere
S = V � {0}/R>0 (see [Oda, Section 1.7]). Such a fan is centrally symmetric if
and only if its triangulation is invariant under the reflection p ↔ −p of S, and the
strong symmetry of the fan ΣR of a crystallographic arrangement (A,R) means
that its triangulation is induced by the hyperplane sections H ∩ S, H ∈ A.

In particular, in dimension 3 Tsuchihashi’s characterization by admissible
N -weights (see [Oda, Corollary 1.32]) for strongly symmetric fans agrees with
the classification in [CH4]. For higher dimensions the correspondence to Weyl
groupoids produces similar conditions if one considers certain products of reflec-
tions.

For a geometric interpretation of the strong symmetry of X(A), see Re-
mark 7.9.

EXAMPLE 4.8

The crystallographic arrangement with the largest number of hyperplanes in
dimension three has 37 hyperplanes. Figure 1 is a projective image of this sporadic
arrangement: The triangles correspond to the maximal cones; one hyperplane is
the line at infinity.

We further obtain a new proof of [BC, Proposition 5.3].
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Figure 1. The largest crystallographic arrangement in dimension three (see Example 4.8)

COROLLARY 4.9

Let A be a crystallographic arrangement, and let E be an intersection of hyper-
planes of A. Then the restriction AE of A to E,

AE := {E ∩ H | H ∈ A,E � H},

is a crystallographic arrangement.

Proof
This follows from Theorem 4.3, the fact that subfans of smooth fans are smooth,
and Lemma 3.10. �

5. Projectivity

Let (A,R) be a crystallographic arrangement, and let N,M,V,V ∗ be as in Sec-
tion 4, Σ := ΣR. We first prove that X(A) = XΣ is projective by constructing a
polytope P such that XP

∼= XΣ.
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PROPOSITION 5.1

Let A be a crystallographic arrangement. For a chamber K let

ρK :=
1
2

∑
α∈RK

+

α.

Then the set {ρK | K ∈ K(A)} is the set of vertices of an integral convex polytope
P in (1/2)M .

Proof
For each chamber K define a simplicial cone by

SK := ρK − 〈α | α ∈ BK 〉R≥0 .

Let P be the polytope

P :=
⋂

K∈K(A)

SK .

Let K be a chamber. We prove that ρK is a vertex of P by showing ρK ∈ P . Let
K ′ be a chamber. Notice first that for α ∈ R we have

α ∈ RK
+ ⇐⇒ −α ∈ R � RK

+ ,

which implies RK′

+ � RK
+ = −RK

+ � RK′

+ . Thus

ρK = ρK′ − 1
2

∑
α∈RK′

+ �RK
+

α +
1
2

∑
α∈RK

+ �RK′
+

α

= ρK′ −
∑

α∈RK′
+ �RK

+

α ∈ SK′
.

�

REMARK 5.2

The set {ρK | K ∈ K(A)} of Proposition 5.1 is the orbit of one fixed ρK under
the action of the Weyl groupoid W (A) since for a simple root α ∈ BK we have
σα(ρK) = ρK − α (see [CH2]).

COROLLARY 5.3

Let A be a crystallographic arrangement. Then XΣ is a projective variety iso-
morphic to XP , where P is the polytope of Proposition 5.1.

Proof
This is Proposition 5.1 and [Oda, Theorem 2.22]. �

We now describe an explicit immersion of XΣ into PR
1

∼= P2n
1 .

DEFINITION 5.4

For any σ ∈ Σ, α ∈ R let
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sα(σ) =

⎧⎪⎪⎨
⎪⎪⎩

+1 if α(σ) = R≥0,

0 if α(σ) = {0},

−1 if α(σ) = R≤0,

and let s(σ) = (sα(σ))α∈R.

DEFINITION 5.5

Let 2n = |R|, let V ′ be a 2n-dimensional vector space over R, and let (eα)α∈R be
a basis of V ′ ∗. Further, let M ′ := Z{eα | α ∈ R} ⊆ V ′ ∗ be the lattice generated by
this basis, and let N ′ be the dual lattice. Then A ′ := {e⊥

α | α ∈ R} is a Boolean
arrangement, and we call the corresponding fan Σ′ := Σ(A ′) a Boolean fan. Notice
that

XΣ′ ∼= P2n
1 .

Consider the homomorphism M ′ → M , eα �→ α for α ∈ R, and consider its dual

ϕ : N → N ′, n �→ (α(n))α∈R.

LEMMA 5.6

Choose a chamber K. Then with respect to the basis BK ∗ of N the map ϕ is
represented by a matrix of the form⎛

⎜⎜⎜⎜⎜⎜⎝

1 0
. . .

0 1
∗ · · · ∗
...

...

⎞
⎟⎟⎟⎟⎟⎟⎠

.

It follows that ϕ is a split monomorphism and in particular N ′/ϕ(N) is torsion
free.

LEMMA 5.7

(1) The map ϕ is a map of fans (N,Σ) → (N ′,Σ′).
(2) For any σ′ ∈ Σ′, ϕ(V ) ∩ σ′ ∈ Σ.

Proof
(1) Let σ ∈ Σ, and let σ′ ∈ Σ′ be the cone with s(σ′) = s(σ). Then ϕ(σ) ⊆ σ′.
(2) If σ′ ∈ Σ′ is maximal, let s(σ′) = (ε1, . . . , ε2n) with εν ∈ {±1}, and let

τ =
⋂
ν

{x ∈ V | εναν(x) ≥ 0}.

Then τ ∈ Σ and τ = ϕ−1(σ′). If σ′ is arbitrary, then σ′ = σ′
1 ∩ · · · ∩ σ′

k for maximal
σ′

i and then ϕ−1(σ′) =
⋂

ϕ−1(σ′
i) ∈ Σ. �
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COROLLARY 5.8

The induced toric morphism f = ϕ∗ : XΣ → XΣ′ is proper, and XΣ � f(XΣ) is
the normalization of the closed (reduced) image.

Proof
See [Oda, Proposition 1.14]. �

PROPOSITION 5.9

The map XΣ → XΣ′ is a closed embedding of nonsingular toric varieties.

Proof
Let σ be a maximal cone, let K be the corresponding chamber, and let BK ⊆ R

be the basis of M . If σ′ ∈ Σ′ is the cone with s(σ) = s(σ′) (σ = ϕ(V ) ∩ σ′), then
the dual cone to σ′ is

σ′ ∨ = 〈eα ∈ R | sα(σ′) = 1〉R≥0 .

The map σ′ ∨ ∩ M ′ → 〈BK 〉Z≥0 is surjective, so C[σ′ ∨ ∩ M ′] → C[〈BK 〉Z≥0 ] is a
surjective homomorphism of C-algebras giving rise to the closed embedding

f |Uσ : Uσ → U ′
σ′ ,

where f = ϕ∗ as in Corollary 5.8. Because Uσ is dense in XΣ, the closure of f(Uσ)
equals f(XΣ); hence f(Uσ) = f(XΣ) ∩ U ′

σ′ . It follows that f(XΣ) is smooth and
that XΣ → f(XΣ) is an isomorphism. The injectivity of f follows from that of
f |Uσ because then f |orb(σ) is an injective map orb(σ) → orb(σ′) for each cone σ

of the orbit decomposition of XΣ. �

6. Remarks on surfaces

For 2-dimensional fans of complete toric surfaces, obviously strongly symmet-
ric is the same as centrally symmetric. The classification of smooth complete
toric surfaces (see [Oda, Corollary 1.29]) can be specialized as follows. It turns
out that this classification coincides with the classification of crystallographic
arrangements of rank two (see [CH1], [CH3]).

Let Σ be the fan of a smooth complete toric surface with rays ρ1, . . . , ρs

ordered counterclockwise with primitive generators n1, . . . , ns. There are integers
a1, . . . , as such that

nj−1 + nj+1 + ajnj = 0

for 1 ≤ j ≤ s where ns+1 := n1, n0 := ns. The integers aj are the self-intersection
numbers of the divisors Dj associated to the rays ρj . The circular weighted graph
Γ(Σ) has as its vertices on S1 the rays ρj with weights aj . These weights satisfy
the identity (

0 −1
1 −as

)
· · ·

(
0 −1
1 −a1

)
=

(
1 0
0 1

)
.
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Figure 2. Triangulation of a t-gon

Conversely, to any circular weighted graph with this identity there is a smooth
complete toric surface with this graph, unique up to toric isomorphisms.

All these surfaces are obtained from the basic surfaces P2, P1 × P1, and the
Hirzebruch surfaces Fa, a ≥ 2, by a finite succession of blowups. If the surface XΣ

is centrally symmetric, then the number s of rays is even, s = 2t, and at+j = aj

for 1 ≤ j ≤ t. In this case(
0 −1
1 −at

)
· · ·

(
0 −1
1 −a1

)
=

(
−1 0
0 −1

)
,

which is “dual” to the formula of the classification of crystallographic arrange-
ments of rank two (see [CH1]).

Note further that sequences a1, . . . , at satisfying this formula are in bijection
with triangulations of a convex t-gon by nonintersecting diagonals. The numbers
in Figure 2 are −a1, . . . , −at; these are certain entries of the Cartan matrices
of the corresponding Weyl groupoid (see [CH3] for more details). Attaching a
triangle to the t-gon corresponds to a double blowup on the variety.

One can subdivide a smooth complete 2-dimensional fan Σ by filling in the
opposite −ρ of each ray ρ in order to get a complete centrally symmetric fan ΣC .
However, ΣC need not be smooth as in Example 6.1. But by inserting further
pairs ρ, −ρ of rays one can desingularize the surface XΣC

in an even succession
of blowups to obtain a smooth complete centrally symmetric surface XΣ̃ with a
surjective toric morphism XΣ̃ → XΣ.

EXAMPLE 6.1

Let Σ be the fan of the Hirzebruch surface Fa, a ≥ 2, with the primitive generators

n1 = (1,0), n2 = (0,1), n3 = (−1, a), n4 = (0, −1).

The fan ΣC is then obtained by adding the rays spanned by (−1,0) and (1, −a).
This fan is no longer smooth. After filling in the rays spanned by (1, −ν) for 1 ≤
ν < a, we obtain a smooth complete centrally symmetric fan Σ̃ with 2a rays. In
the case a = 2 its circular graph has the weights (−1, −2, −1, −2; −1, −2, −1, −2).
(This corresponds to the reflection arrangement of type B and C.)
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EXAMPLE 6.2

In good cases the centrally symmetric fan ΣC may already be smooth. As an
example let Σ be the fan of P2 spanned by (1,0), (0,1), and (−1, −1). Then the
fan ΣC is spanned, in counterclockwise order, by

(1,0), (1,1), (0,1), (−1,0), (−1, −1), (0, −1).

This is the fan of the blowup P̃2 of P2 at the three fixed points of the torus
action. The corresponding arrangement is the reflection arrangement of type A2.
Its circular graph has the weights

(−1, −1, −1; −1, −1, −1).

The same surface can be obtained by blowing up P1 × P1 in two points corre-
sponding to the enlargement of the weighted graph (0,0,0,0) by inserting −1
after the first and third places (see [Oda, Corollary 1.29]).

Notice that P1 × P1 corresponds to the reducible reflection arrangement of
type A1 × A1. One should also note here that P̃2 and P1 × P1 are the only toric
del Pezzo surfaces which are centrally symmetric.

7. Parabolic subgroupoids and toric arrangements

If (A,R) is a crystallographic arrangement in V and E is an intersection of
hyperplanes of A, then by Corollary 4.9 the restriction AE is again crystallo-
graphic. The dual statement is that Star(δ) for δ ∈ ΣR is the fan of a crystallo-
graphic arrangement which corresponds to a parabolic subgroupoid (see below).
Both constructions may be translated to the corresponding toric varieties in a
compatible way. This gives rise to posets of toric varieties which we call toric
arrangements (see Section 7.2).

7.1. Star fans and parabolic subgroupoids
Let (A,R) be a crystallographic arrangement, let ΣR be the corresponding
smooth strongly symmetric fan in Rr, and let δ ∈ Σ, E := 〈δ〉R, and d := dim(E).
Let RE := R ∩ E⊥, let

AE := {α⊥ ⊆ V/E | α ∈ RE },

and notice that α⊥ are hyperplanes in V/E because α ∈ E⊥. Remark also that
AE depends only on E. By [CH4, Corollary 2.5], RE is a set of real roots of
a parabolic subgroupoid of W (A(Σ)) (see [HW, Definition 2.3] for the precise
definition of a parabolic subgroupoid). Here, W (A(Σ)) is the Weyl groupoid of
the Cartan scheme given by the crystallographic arrangement A(Σ) as described
in [Cu, Proposition 4.5]. Thus (AE ,RE) is a crystallographic arrangement. It
corresponds to the fan Star(δ):

PROPOSITION 7.1

Let (A,R) be a crystallographic arrangement, and let δ be a d-dimensional cone
of the fan ΣR. Then the orbit closure V (δ) ⊆ X(A) of orb(δ) corresponds to the
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crystallographic arrangement

AE = {H ⊆ V/E | H ∈ A } =
{

〈τ 〉R

∣∣ τ ∈ Star(δ)(r − d − 1)
}
,

where E = 〈δ〉R as above.

Proof
Let H be in the left set. Then δ ⊆ E ⊆ H ; thus there exists a τ ∈ Σ(r − 1) with
δ ⊆ τ ⊆ H . Hence 〈τ 〉R is in the right-hand set.

Now let 〈τ 〉R be in the right-hand set. Then E ⊆ 〈τ 〉R ⊆ H for an H ∈ A,
and so 〈τ 〉R ⊆ H . But since these have the same dimension, they are equal. �

COROLLARY 7.2

Let Σ be a strongly symmetric fan in Rr, and let δ, δ′ ∈ Σ with 〈δ〉R = 〈δ′ 〉R. Then
Star(δ) = Star(δ′) and V (δ) ∼= V (δ′); even so, V (δ) �= V (δ′).

Proof
As in Proposition 7.1, Star(δ) depends only on 〈δ〉R because Star(δ) is strongly
symmetric. Note that here smoothness is not used. �

COROLLARY 7.3

Let Σ be a smooth strongly symmetric fan in Rr, let W (A(Σ)) be the correspond-
ing Weyl groupoid, and let δ ∈ Σ. Then the Weyl groupoid W (A(Star(δ))) is
equivalent to a connected component of a parabolic subgroupoid of W (A(Σ)).

7.2. Associated toric arrangements
As before let Σ be the fan of a crystallographic arrangement (A,R), and as in
[OT, Definition 2.1] let L(A) be the poset of nonempty intersections of elements
of A. By Lemma 3.10, for any E ∈ L(A) we are given the strongly symmetric
smooth subfan

ΣE = {σ ∩ E | σ ∈ Σ} = {σ ∈ Σ | σ ⊆ E}

of Σ. Let XE denote its toric variety. The inclusion ι : NE = N ∩ E ↪→ N is then a
sublattice and compatible with the fans ΣE and Σ and induces a toric morphism

fE : XE → X(A) = XΣ.

LEMMA 7.4

The map fE is a closed immersion with image Y E ⊆ X(A) of dimension dimE.

Proof
The subspace E is spanned by any cone τ ∈ ΣE of maximal dimension s := dimE.
Using a Z-basis of τ as in the proof of Lemma 3.10 one finds that NE = N ∩ E

is a sublattice of N of rank s and that the inclusion ι : NE ↪→ N is split. The
induced map ιR sends a cone σ to itself and thus gives rise to a proper toric
morphism fE . Let ME be the dual lattice of NE and σ ∈ ΣE . Using the duals of
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bases of NE and N , one finds that the induced dual map ι∗ : M ∩ σ∨ → ME ∩ σ∨

is surjective. Then

fE |UE
σ

: UE
σ → Uσ

is a closed immersion, where UE
σ ⊆ XE and Uσ ⊆ XΣ denote the open affine

spectra defined by ME ∩ σ∨ and M ∩ σ∨, respectively. As in the proof of Propo-
sition 5.9 we conclude that fE is globally a closed immersion. �

REMARK 7.5

Note that Y E is not invariant under the torus action on XΣ but is a strongly
symmetric smooth toric variety on its own with torus TE = NE ⊗ C∗ ⊆ T .

PROPOSITION 7.6

With the above notation the subvarieties Y E ⊆ XΣ have the following properties.

(i) Each Y E , E ∈ L(A), is invariant under the involution of XΣ defined by
the central symmetry of Σ.

(ii) For each cone σ ∈ Σ,

Y E ∩ orb(σ) =

{
orbE(σ) if σ ⊆ E,

∅ if σ �⊆ E,

and

Y E ∩ V (σ) =

{
V E(σ) if σ ⊆ E,

∅ if σ �⊆ E,

where orbE(σ) (resp., V E(σ)) denote the images of the orbit of σ (resp., its
closure in XE).

(iii) When F,E ∈ L(A) with F ⊆ E, then the composition XF ↪→ XE ↪→ XΣ

is the inclusion XF ↪→ XΣ.
(iv) For any E,F ∈ L(A), Y E∩F = Y E ∩ Y F .
(v) The intersections Y E ∩ T of Y E with the torus T of XΣ are the subtori

TE = NE ⊗ C∗ of T of dimension dim(E) and constitute a toric arrangement.

DEFINITION 7.7

We call the system {Y E }E∈L(A) the associated toric arrangement of the strongly
symmetric smooth toric variety X(A).

REMARK 7.8

Proposition 7.6(iv) shows that the assignment E �→ Y E is an isomorphism of
posets.

REMARK 7.9

Proposition 7.6 yields a geometric interpretation of the strong symmetry of X(A)
by its toric arrangement. For any hyperplane H ∈ A the union of the curves V (τ),
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τ ⊆ H , dim(τ) = r − 1, is the set of fixed points of X(A) under the action of the
subtorus TH = NH ⊗ C∗ = Y H ∩ T of T . This union meets the hypersurface Y H

exactly in the set of its fixed points under the action of its torus TH and does
not meet any other Y H′

.
The same holds for any E ∈ L(A) for Y E and the varieties V (τ), τ ⊆ E,

dim(τ) = dimE, inside any other Y F , E ⊆ F ∈ L(A).

Proof of Proposition 7.6
(i) Follows from the fact that fE is induced by the map ι between strongly
symmetric fans.

Assertion (ii) follows from the orbit decompositions of Y E and V (σ) and the
fact that fE maps orbE(σ) into orb(σ), because ιR(σ) = σ for σ ∈ ΣE . If σ �⊆ E,
no orbE(τ), τ ⊆ E, can meet orb(σ). If σ ⊆ E, orbE(σ) = orb(σ) ∩ Y E .

Assertion (iii) follows directly from the definition of the morphisms fE .
Assertion (iv) It is sufficient to assume that F is a hyperplane H ∈ A with

E �⊆ H . Let s = dimE. Then dimY E∩H = s − 1 and Y E∩H ⊆ Y E ∩ Y H . Suppose
that there is a point x ∈ Y E ∩ Y H and x /∈ Y E∩H . Then let σ ∈ Σ be a maximal
cone with x ∈ orb(σ). Then Y E∩H ∩ orb(σ) � Y E ∩ Y H ∩ orb(σ). By property
(ii), σ ⊆ E ∩ H and

Y E∩H ∩ orb(σ) = orbE∩H(σ),

Y E ∩ orb(σ) = orbE(σ),

Y H ∩ orb(σ) = orbH(σ)

are subtori of orb(σ) of dimensions s − 1 − dim(σ), s − dim(σ), r − 1 − dim(σ),
and dim(orb(σ)) = r − dim(σ). It follows that Y E ∩ Y H ∩ orb(σ) is a subtorus
of dimension s − 1 − dim(σ), too. Hence Y E∩H ∩ orb(σ) = Y E ∩ Y H ∩ orb(σ), a
contradiction.

(v) follows from (ii) for the special case T = orb({0}). Then the definition of
a toric arrangement as in [DCP2] is satisfied. �

Property (ii) of Proposition 7.6 also includes that the intersections Y E ∩ V (σ)
are smooth, irreducible, and proper of dimension dimE − dimσ. Moreover, we
have the following.

PROPOSITION 7.10

With the above notation:

(1) For any fixed orbit closure V (τ) ⊆ X(A) the intersections Y E ∩ V (τ),
τ ⊆ E constitute the toric arrangement {Y E/〈τ 〉R } of the variety V (τ) corre-
sponding to the crystallographic arrangement AD, D = 〈τ 〉R with fan Star(τ) as
in Proposition 7.1.

(2) The intersections Y E ∩ orb(τ), τ ⊆ E, form a toric arrangement of
subtori in each orbit orb(τ) of X(A).
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Figure 3. Example 7.11

Proof
Let D = 〈τ 〉R ⊆ E, and let E = E/D. Under the isomorphism XStar(τ)

∼= V (τ) an
orbit orb(σ) ⊆ V (τ), τ ⊆ σ, is identified with the orbit orb(σ) with σ ⊆ V/D the
image of σ. Likewise, an orbit orbE(σ) in XE with τ ⊆ σ ⊆ E can be identified
with the orbit orbE(σ) in the variety XStar(τ)E

∼= V E(τ) in XE . It follows that
the embeddings XE ↪→ X(A) and XStar(τ)E ↪→ XStar(τ) = V (τ) are compatible
and thus that Y E ∩ V (τ) is the image of the latter.

Assertion (2) follows from Proposition 7.6(v) since orb(τ) is the torus of V (τ).
�

EXAMPLE 7.11

The system {Y E }E∈L(A) for strongly symmetric toric surfaces has the following
special features (see Figure 3). Here each E is a line of A:

(1) for ρ ⊆ E, Y E ∩ Dρ = orbE(ρ) is a point pρ ∈ orb(ρ);
(2) Y E � (Dρ ∪ D−ρ) is the torus TE ∼= k∗ of Y E ;
(3) Y E ∩ Dρ′ = ∅ for ρ′ �⊆ E;
(4) Y E ∩ Y F = {1} ⊆ T for any E,F ∈ L(A).

Notice here that all the divisors Dρ and Y E are isomorphic to P1 and that the
intersections are transversal.

There is an interesting formula for the divisor classes of the curves Y E in terms of
the toric divisors Dρ as follows. Keeping the notation of Section 6, let a1, . . . , a2t

be a chosen order of the weights of the circular graph of the surface X(A) with
corresponding divisors D1, . . . ,D2t, and let Y1 = Y E in the case E := 〈n1〉R.
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Then the standard sequence 0 → M → ZΣ(1) → PicX(A) → 0 can be repre-
sented by the exact sequence

0 −→ Z2 (Q,−Q)−→ Zt ⊕ Zt
(A I

0 I )
−→ Zt−2 ⊕ Zt −→ 0,

where Q∨ = (n1, . . . , nt) is the matrix of the first t primitive elements and A∨ is
the matrix

A∨ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1 1 −1

1 a2
. . .

. . . . . . . . .
. . . . . . 1

−1 1 at

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

of rank t − 2 expressing the relations nj−1 + ajnj + nj+1 = 0. To deduce the
formula for Y1 we choose n1, nt as the basis of the lattice N . Then

Q∨ =
(

1 x2 · · · xt−1 0
0 y2 · · · yt−1 1

)
,

and y2 = 1 since A · Q = 0.

PROPOSITION 7.12

With the above notation,

(7.1) Y1 ∼ D2 +
t−1∑
ν=3

yνDν + Dt ∼ Dt+2 +
t−1∑
ν=3

yνDν+2 + D2t

up to rational equivalence, and Y1 has self-intersection Y 2
1 = 0.

REMARK 7.13

Choosing n1, nt as a basis, the columns of Q∨ become the positive roots of the
associated Weyl groupoid at the object corresponding to Y1.

The formula for the other Yν = Y E , nν ∈ E, follows by cyclic permutation of the
indices. Note that the classes of D2, . . . ,Dt are part of a basis of PicX(A). The
formula can be derived as follows. If Y1 is equivalent to

∑
cνDν , the intersection

numbers D2
ν = aν , DμDν ∈ {0,1} for μ �= ν and

Y1Dν =

{
1, ν ∈ {1, t + 1},

0 else,

yield a system of equations for the coefficients c2, . . . , c2t. This system has a
unique solution modulo (Q, −Q) such that c1 = 0, c2 = 1, which is

(c2, . . . , c2t) = (y2, . . . , yt−1,1,0, . . . ,0) mod (Q, −Q).

For that one has to use the relations between the weights a1, . . . , at (see Section
6). The proof for Y 2

1 = 0 follows from the second equivalence of equation (7.1).
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REMARK 7.14

The relations between the weights a1, . . . , a2t naturally lead to the Grassmannian
and to cluster algebras of type A (see [CH3] for more details).

8. Further remarks

8.1. Reducibility
An arrangement (A, V ) is called reducible if there exist arrangements (A1, V1)
and (A2, V2) such that V = V1 ⊕ V2 and

A = A1 × A2 := {H ⊕ V2 | H ∈ A1} ∪ {V1 ⊕ H | H ∈ A2}

(cf. [OT, Definition 2.15]). It is easy to see that a crystallographic arrangement
(A, V ) is reducible if and only if the corresponding Cartan scheme is reducible
in the sense of [CH2, Definition 4.3], that is, the generalized Cartan matrices are
decomposable. For the fan Σ corresponding to A, reducibility translates to the
fact that there are fans Σ1 and Σ2 such that

Σ = Σ1 × Σ2 = {σ × τ | σ ∈ Σ1, τ ∈ Σ2}.

Notice that by Lemma 3.10 the fans Σ1 and Σ2 are strongly symmetric and
smooth as well.

8.2. Inserting one hyperplane and blowups
In higher dimension, the situation is much more complicated. There are only
finitely many crystallographic arrangements for each rank r > 2. Whether the
insertion of new hyperplanes corresponds to a series of blowups is unclear. The
case of a single new hyperplane may be explained in the following way.

PROPOSITION 8.1

Let (A,R) and (A ′,R′) be crystallographic arrangements of rank r with A′ =
A ∪̇ {H}. Then the toric morphism XΣ′ → XΣ induced by the subdivision is a
blowup along 2-dimensional torus invariant subvarieties of XΣ.

Proof
Let σ ∈ Σ := ΣR be a maximal cone with H ∩ ◦

σ �= ∅. We prove that H star sub-
divides σ. The hyperplane H divides σ into two parts σ′

1 and σ′
2 which intersect

in a codimension one cone τ ′. Note that |σ(1)| = r, |σ′
1(1) ∪ σ′

2(1)| = r + 1; thus
there is exactly one ray ρ′ involved which is not in Σ. Let ρ1 ⊆ σ′

1, ρ2 ⊆ σ′
2 be the

rays which are not subsets of τ ′, and let τ ⊆ σ be the cone generated by ρ1, ρ2.
Then H ∩ τ = ρ′. But by Corollary 4.9, A ′ 〈τ 〉R is a crystallographic arrangement
in which 〈ρ1〉R, 〈ρ′ 〉R, 〈ρ2〉R are subsequent hyperplanes. By Section 6 we obtain
that ρ is generated by the sum of the generators of ρ′

1, ρ′
2. �

8.3. Automorphisms
Let Σ be a strongly symmetric smooth fan, and let (A,R) be the corresponding
crystallographic arrangement.



618 Cuntz, Ren, and Trautmann

DEFINITION 8.2

If A comes from the connected simply connected Cartan scheme C = C(I,A,

(ρi)i∈I , (Ca)a∈A), and a ∈ A, then we call

Aut(C, a) :=
{
w ∈ Hom(a, b)

∣∣ b ∈ A,Ra = Rb
}

the automorphism group of C at a. This is a finite subgroup of Aut(Zr) ∼= Aut(M)
because the number of all morphisms is finite.

Since C is connected, Aut(C, a) ∼= Aut(C, b) for all a, b ∈ A. The choice of a ∈ A

corresponds to the choice of a chamber and thus of an isomorphism Zr ∼= M .
Every element of Aut(C, a) clearly induces a toric automorphism of Σ. The groups
Aut(C, a) have been determined in [CH5] (see [CH5, Theorem 3.18 and Appendix
A.3]). However, sometimes there are elements of Aut(Σ) which are not induced
by an element of Aut(C, a). For example, we always have the toric automorphism

N → N, v �→ −v,

but there is a sporadic Cartan scheme of rank three with trivial automorphism
group.

Acknowledgment. We would like to thank M. Brion for helpful remarks and hints
to literature.
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