
Special values of the Hurwitz zeta function
via generalized Cauchy variables

Takahiko Fujita and Yuko Yano

Abstract As a continuation of the work of Bourgade, Fujita, and Yor, we show how to
recover the extension of the Euler formulae concerning some special values of the Hur-
witz zeta function from theproduct of two, and thenN , independent generalizedCauchy
variables. Meanwhile, we consider the ratio of two independent generalized Cauchy vari-
ables and give another proof of the partial fraction expansion of the cotangent function.

1. Introduction

The special value of the Riemann zeta function ζ(2) is well known:

(1.1) ζ(2) =
∞∑

k=1

1
k2

=
π2

6
.

To find the value of this series is known as the Basel problem. The Basel problem
was originally solved by Euler in 1735. Since then many ways to solve the prob-
lem have been proposed. Bourgade, Fujita, and Yor [3] have suggested another
approach to solve the Basel problem and recovered the Euler formulae as below
for the Riemann zeta function in a probabilistic way. We recall the Euler formu-
lae:

(1.2)
(
1 − 1

22n+2

)
ζ(2n + 2) =

1
2

(π

2

)2n+2 A2n

Γ(2n + 2)
,

for n = 0,1,2, . . . . Here the coefficients An stand for the tangent numbers which
appear in the series expansion:

(1.3)
1

cos2 θ
=

∞∑
k=0

Ak

k!
θk, |θ| <

π

2
.

The authors in [3] have discovered that the product of independent Cauchy vari-
ables could be used to solve the Basel problem and the Euler formulae. More
precisely, let C be a Cauchy variable; that is, C has the following probability
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density function:

(1.4) fC (x) =
1
π

1
1 + x2

, x ∈ R.

Let Ĉ be an independent copy of C. Then the density function of | C Ĉ | is given by

(1.5) f|C Ĉ |(x) =
4
π2

logx

x2 − 1
, x > 0.

Since f|C Ĉ |(x) is a probability density function, it holds that∫ ∞

0

f|C Ĉ |(x)dx = 1,

that is,

(1.6)
π2

4
=

∫ ∞

0

logx

x2 − 1
dx.

By some basic computation involving Taylor expansions, we have

the RHS of (1.6) = 2
∞∑

k=1

1
(2k + 1)2

.

Meanwhile, we have

ζ(2) =
∞∑

k=1

1
k2

=
∞∑

k=0

1
(2k + 1)2

+
∞∑

k=1

1
(2k)2

(1.7)

=
∞∑

k=0

1
(2k + 1)2

+
1
4
ζ(2);(1.8)

therefore we obtain the desired result (1.1). Considering the moment of log| C Ĉ |
or product of N independent Cauchy random variables, we can obtain the Euler
formulae (for the details, see Fujita [5]).

On the other hand, a Cauchy random variable appears as the law of the first
hitting time for planar Brownian motion. Yano, Yano, and Yor [9] have studied
the hitting time of a single point for symmetric α-stable Lévy processes with
indices α ∈ (1,2] and shown the following result.

THEOREM 1.1 ([9, THEOREM 5.3]; SEE ALSO [4, PROPOSITION 1.11])

Let X = (Xt) be a symmetric α-stable Lévy process of index α ∈ (1,2], and let X̂

be an independent copy of X. For a ∈ R, let T{a}(X) be the first hitting time at
a of X. Then

(1.9) X̂
(
T{a}(X)

) law= |a| Cα,

where

(1.10) P (Cα ∈ dx) =
sin(π/α)

2π/α

dx

1 + |x|α , x ∈ R.

The authors in [9] call the random variable Cα an α-Cauchy random variable.
We note that, in the case α = 2, X is Brownian motion (up to a multiplicative
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constant) and C2 is equal in law to the Cauchy random variable, that is, C2
law= C.

We remark that

(1.11) | Cα|α law=
Gγ

Ĝ1−γ

,

where γ = 1/α ∈ [1/2,1), and Gγ and Ĝ1−γ are independent Gamma random
variables with parameters γ and 1 − γ, respectively (see [9, (2.21)]). Here Ga is a
Gamma random variable with parameter a > 0 if it has the following probability
density function:

(1.12) P (Ga ∈ dx) =
1

Γ(a)
xa−1e−x dx, x > 0.

REMARK 1.2

In [5], Fujita introduced (m,n)-generalized Cauchy random variables Cm,n (m,n ∈
R with n > m + 1 > 0) which are defined by

(1.13) P (Cm,n ∈ dx) = C2
m,n

xm

1 + xn
dx, x > 0,

where

(1.14) Cm,n =
sin((m + 1)/n)π

π/n
.

The connection between Cm,n and Cα is as follows:

(1.15) Cm,n
law=

( G(m+1)/n

Ĝ1−(m+1)/n

)1/n

=
(( Gγ

Ĝ1−γ

)γ
)1/(m+1)

law= | Cα|1/(m+1),

where γ = (m + 1)/n and α = 1/γ.

In the present paper we consider some generalizations of Bourgade, Fujita, and
Yor’s results. Using the law of the product of two, then N , independent α-
Cauchy random variables, we can obtain the following formulae, which are well-
known generalizations of the Euler formulae concerning some special values of
the Hurwitz zeta function (see, e.g., [1, (6.4.7), (6.4.10)]).

THEOREM 1.3

For γ ∈ (0,1) and n = 0,1,2, . . . , it holds that

(1.16) ζ(2n + 2, γ) + ζ(2n + 2,1 − γ) =
π2n+2

Γ(2n + 2)
A2n(γπ),

where ζ(s, a) stands for the Hurwitz zeta function

(1.17) ζ(s, a) =
∞∑

k=0

1
(k + a)s

, 0 < a ≤ 1,

and An(a) are the coefficients of the following series expansion:

(1.18)
1

sin2(a + θ)
=

∞∑
k=0

Ak(a)
k!

θk, 0 < a + θ < π.
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REMARK 1.4

(i) We show the Euler formulae (1.2) from (1.16) when γ = 1/2.
(ii) Formula (1.16) can be rewritten as

(1.19)
∞∑

k=− ∞

1
(k + γ)2n+2

=
π2n+2

Γ(2n + 2)
A2n(γπ).

Thus, when n = 0, we can see the well-known formula (see, e.g., [2, (1.2.9)])

(1.20)
∞∑

k=− ∞

1
(k + γ)2

=
( π

sinγπ

)2

.

Recently Fujita [6] succeeded in giving another proof of the Basel problem and
the Euler formulae: the author considered the ratio of two independent arc-sine
random variables. In the present paper we consider the ratio of two indepen-
dent α-Cauchy random variables. Then we can obtain a simple proof for the
well-known formula for the partial fraction expansion of the cotangent func-
tion:

(1.21) π cotγπ =
1
γ

+ 2γ

∞∑
k=1

1
γ2 − k2

=
1
γ

+
∞∑

k=1

( 1
γ + k

+
1

γ − k

)
.

We note that formula (1.20) can be obtained from (1.21) by differentiating both
sides in γ.

The organization of this paper is as follows. In Section 2, we consider the
product of two independent α-Cauchy random variables. We first show the spe-
cial case of (1.16) for n = 0 and then give a proof of Theorem 1.3. In Section 3,
we consider the product of N independent α-Cauchy random variables and give
another proof of Theorem 1.3. In Section 4, we consider the ratio of two indepen-
dent α-Cauchy random variables. We give a new approach to show the partial
fraction expansion of the cotangent function (1.21).

2. Product of two independent α-Cauchy random variables
and some special values of the Hurwitz zeta function

We first present the probability density function of the law of | CαĈα| where Cα

and Ĉα are independent.

PROPOSITION 2.1

Let Cα be an α-Cauchy random variable with α ∈ (1,2], and let Ĉα be an inde-
pendent copy of Cα. Then

(2.1) f|Cα Ĉα |(x) = C2
α

logx

xα − 1
, x > 0,

where Cα = (sin(π/α))/(π/α).

Proof
Formula (2.1) can be obtained by easy computations as follows. We have
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f|Cα Ĉα |(x) =
∫ ∞

0

f|Cα |(u)f|Ĉα |

(x

u

) 1
u

du

= C2
α

∫ ∞

0

1
1 + uα

uα−1

uα + xα
du

=
C2

α

α

∫ ∞

0

1
1 + v

1
v + xα

dv (by change of variables uα = v)

=
C2

α

α

∫ ∞

0

1
xα − 1

( 1
1 + v

− 1
v + xα

)
dv

= C2
α

logx

xα − 1
,

which is our desired result. �

Using this, we obtain the following result.

THEOREM 2.2 (CF. [5, THEOREM 5.1])

For 0 < γ < 1, it holds that

(2.2) ζ(2, γ) + ζ(2,1 − γ) =
( π

sinγπ

)2

,

or equivalently,

(2.3)
∞∑

k=− ∞

1
(k + γ)2

=
( π

sinγπ

)2

,

which is stated as (1.20) above.

Proof
Since the function f|Cα Ĉα | is a probability density function, we have

1 =
∫ ∞

0

f|Cα Ĉα |(x)dx = C2
α

logx

xα − 1
.

Hence we have
1

C2
α

=
∫ ∞

0

logx

xα − 1
dx

=
∫ 1

0

logx

xα − 1
dx +

∫ ∞

1

logx

xα − 1
dx

=
∫ ∞

0

ze−z

1 − e−αz
dz +

∫ ∞

0

we−(α−1)w

1 − e−αw
dw

(by change of variables x = e−z, y = e−z)

=
∫ ∞

0

ze−z dz

∞∑
k=0

e−kαz +
∫ ∞

0

we−(α−1)w dw

∞∑
k=0

e−kαw
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=
∞∑

k=0

∫ ∞

0

ze−(αk+1)z dz +
∞∑

k=0

∫ ∞

0

we−(α(k+1)−1)w dw

=
1
α2

( ∞∑
k=0

1
(k + 1/α)2

+
∞∑

k=0

1
(k + 1 − 1/α)2

)
.

Putting γ = 1/α ∈ [1/2,1), we obtain

(2.4)
∞∑

k=0

1
(k + γ)2

+
∞∑

k=0

1
(k + (1 − γ))2

=
π2

sin2(γπ)
.

Equation (2.4) above is symmetric with respect to γ = 1/2, so that this holds for
every γ ∈ (0,1). Thus we obtain (2.2). �

Next we show Theorem 1.3 in Section 1 by using the even moments of log| CαĈα|.
Before the proof, we compute the even moments of log| CαĈα|.

PROPOSITION 2.3

Let Cα and Ĉα be independent α-Cauchy random variables. Then, for n = 0,

1,2, . . . ,

E
[
(log | CαĈα|)2n

]
(2.5)

= C2
αΓ(2n + 2)

{ ∞∑
k=0

1
(αk + 1)2n+2

+
∞∑

k=0

1
(α(k + 1) − 1)2n+2

}
.

This can be obtained easily by using Proposition 2.1, so we omit the details.

Proof of Theorem 1.3
For p ∈ R, p > 0, and α ∈ (1,2], we have

(2.6) E[| Cα|p] = E
[( G1/α

Ĝ1−1/α

)p/α]
=

sin(π/α)
sin((p + 1)π/α)

,

by (1.11). Here the second identity of (2.6) is obtained from

(2.7) E[G b
a] =

1
Γ(a)

∫ ∞

0

xbxa−1e−x dx =
Γ(a + b)

Γ(a)
.

Thus we obtain

(2.8) E[ep log |Cα Ĉα |] = E[| CαĈα|p] =
( sin(π/α)

sin((p + 1)π/α)

)2

.

By the series expansion (1.18), we have

(2.9) E[ep log |Cα Ĉα |] =
(
sin

π

α

)2 ∞∑
k=0

Ak(π/α)
k!

(pπ

α

)k

.

On the other hand, we have

(2.10) E[ep log |Cα Ĉα |] =
∞∑

k=0

pk

k!
E[log| CαĈα|k].
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We note that E[ep log |Cα Ĉα |] is analytic in p ∈ (−1, α − 1) by (2.8). Combining
(2.10) with (2.9), we obtain

(2.11) E
[
(log| CαĈα|)2n

]
=

(
sin

π

α

)2(π

α

)2n

A2n

(π

α

)
.

Together with Proposition 2.3 this implies
∞∑

k=0

1
(αk + 1)2n+2

+
∞∑

k=0

1
(α(k + 1) − 1)2n+2

(2.12)
=

1
Γ(2n + 2)

(π

α

)2n+2

A2n

(π

α

)
,

and hence we obtain

(2.13)
∞∑

k=0

1
(k + γ)2n+2

+
∞∑

k=0

1
(k + 1 − γ)2n+2

=
π2n+2

Γ(2n + 2)
A2n(γπ),

where γ = 1/α ∈ [1/2,1). We note that

(2.14) Ak

(
(1 − γ)π

)
= (−1)kAk(γπ),

so that (2.13) is symmetric with respect to γ = 1/2. Therefore the desired result
is obtained. �

3. Product of N independent α-Cauchy random variables
and another proof of Theorem 1.3

In this section we present the density function of the product of N independent
α-Cauchy random variables, which is a generalization of [3, Proposition 2], and
then we give another proof of Theorem 1.3.

PROPOSITION 3.1

For N = 0,1,2, . . . , one has

f2N+1(x) = f|C(1)
α ··· C(2N+1)

α |(x)
(3.1)

=
(π

α

)2N C2N+1
α

(2N)!
1

1 + xα

N∏
k=1

((α logx

π

)2

+ (2k − 1)2
)

, x > 0.

For N = 1,2, . . . , one has

f2N (x) = f|C(1)
α ···C(2N)

α |(x)
(3.2)

=
(π

α

)2N −2 C2N
α

(2N − 1)!
logx

xα − 1

N −1∏
k=1

((α logx

π

)2

+ (2k)2
)

, x > 0.

Proof
The results follow by induction on N . For N = 0, f1(x) is precisely the density
function of the absolute value of an α-Cauchy random variable. For N = 1, f2(x)
has been computed in Theorem 2.1.
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We recall formula (2.6):

E[| Cα|p] = sin(π/α)
sin((p + 1)π/α)

.

Consequently, for N ∈ N, we have

E[| C(1)
α C(2)

α · · · C(N)
α |p] =

( sin(π/α)
sin((p + 1)π/α)

)N

(3.3)
= CN

α

(π

α

)N(
sin

(p + 1)π
α

)−N

.

Differentiating twice (3.3) in p, we have

E
[

| C(1)
α C(2)

α · · · C(N)
α |p

{
log| C(1)

α C(2)
α · · · C(N)

α |
}2]

= CN
α

(π

α

)N+2

N(N + 1)
(
sin

(p + 1)π
α

)−(N+2)(
cos

(p + 1)π
α

)2

(3.4)

+ CN
α

(π

α

)N+2

N
(
sin

(p + 1)π
α

)−N

= CN
α

(π

α

)N+2

N(N + 1)
(
sin

(p + 1)π
α

)−(N+2)

(3.5)
− CN

α

(π

α

)N+2

N2
(
sin

(p + 1)π
α

)−N

.

By (3.3), we have

(3.6) (3.5) =
N(N + 1)

C2
α

E[| C(1)
α · · · C(N+2)

α |p] − N2
(π

α

)2

E[| C(1)
α · · · C(N)

α |p],

and hence we have

E[| C(1)
α · · · C(N+2)

α |p]

=
C2

α

N(N + 1)

{
E

[
| C(1)

α C(2)
α · · · C(N)

α |p
{
log| C(1)

α C(2)
α . . . C(N)

α |
}2](3.7)

+ N2
(π

α

)2

E[| C(1)
α · · · C(N)

α |p]
}

,

that is,

(3.8)
∫ ∞

0

xpfN+2(x)dx =
C2

α

N(N + 1)

(π

α

)2
∫ ∞

0

xp

((α logx

π

)2

+N2

)
fN (x)dx.

By uniqueness of the Mellin transform, we obtain

(3.9) fN+2(x) =
C2

α

N(N + 1)

(π

α

)2
((α logx

π

)2

+ N2

)
fN (x),

which completes the proof. �

Now we give another proof of Theorem 1.3 by using formula (3.2). We start with
the following recurrence relation for the Hurwitz zeta function.
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PROPOSITION 3.2

Let α ∈ (1,2], and let N ∈ N. Let pN,k and qN,k be the coefficients in the following
expansion, respectively:

N∏
j=1

(
x + (2j)2

)
=

N∑
k=0

pN,kxk,(3.10)

N∏
j=1

(
x + (2j − 1)2

)
=

N∑
k=0

qN,kxk.(3.11)

Then

(sin(π/α))2N+2

(2N + 1)!

N∑
n=0

pN,n

π2n+2
(2n + 1)!

{
ζ
(
2n + 2,

1
α

)
+ ζ

(
2n + 2,1 − 1

α

)}
(3.12)

= 1,

and

(sin(π/α))2N+1

(2N)!

N∑
n=0

qN,n

π2n+1
(2n)!

{ ∞∑
k=0

( (−1)k

(k + 1/α)2n+1
+

(−1)k

(k + 1 − 1/α)2n+1

)}
(3.13)

= 1.

Proof
We first show (3.12). We have

1 =
∫ ∞

0

f2N+2(x)dx(3.14)

=
π2NC2N

α

α2N (2N + 1)!

∫ ∞

0

f|Cα Ĉα |(x)
N∏

n=1

((α logx

π

)2

+ (2n)2
)

dx(3.15)

=
π2NC2N

α

α2N (2N + 1)!

∫ ∞

0

f|Cα Ĉα |(x)
( N∑

n=0

pN,n

(α logx

π

)2n
)

dx(3.16)

=
π2NC2N

α

α2N (2N + 1)!

N∑
n=0

(α

π

)2n

pN,n

∫ ∞

0

(logx)2nf|Cα Ĉα |(x)dx(3.17)

=
π2NC2N

α

α2N (2N + 1)!

N∑
n=0

(α

π

)2n

pN,nE
[
(log| CαĈα|)2n

]
.(3.18)

Proposition 2.3 implies

(3.18) =
π2NC2N+2

α

α2N+2(2N + 1)!

N∑
n=0

(α

π

)2n

pN,nΓ(2n + 2)

(3.19)

×
{ ∞∑

k=0

1
(αk + 1)2n+2

+
∞∑

k=0

1
(α(k + 1) − 1)2n+2

}
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=
(sin(π/α))2N+2

(2N + 1)!

N∑
n=0

pN,n

π2n+2
Γ(2n + 2)

(3.20)

×
{ ∞∑

k=0

1
(k + 1/α)2n+2

+
∞∑

k=0

1
(k + 1 − 1/α)2n+2

}
,

and hence we obtain the desired result.
Similarly equation (3.13) is proved by the fact that

(3.21)
∫ ∞

0

f2N+1(x)dx = 1.

We complete the proof. �

To prove Theorem 1.3, we should show

(3.22)
(sin(π/α))2N+2

(2N + 1)!

N∑
n=0

pN,nA2n

(π

α

)
= 1.

We recall the following relations for the function f(θ) = 1/ sin2 θ:

(3.23)
{ n∏

j=1

(
(2j)2 +

d2

dθ2

)}
f(θ) = (2n + 1)!f(θ)1+n

(see equation in [3, p. 77] in the case where t = 2). Thus we have

(3.24)
N∑

n=0

pN,nA2n

(π

α

)
= (2N + 1)!

( 1
sin(π/α)

)2N+2

,

and hence we obtain (3.22) by induction on N . Therefore we have proved Theo-
rem 1.3.

REMARK 3.3

Recall the relations for the function g(θ) = 1/ sinθ:

(3.25)
{ n∏

j=1

(
(2j − 1)2 +

d2

dθ2

)}
g(θ) = (2n)!g(θ)1+2n

(see equation in [3, p. 77] in the case where t = 1); thus we obtain

(3.26)
∞∑

k=0

( (−1)k

(k + 1/α)2n+1
+

(−1)k

(k + 1 − 1/α)2n+1

)
=

π2n+1

Γ(2n + 1)
A

(1)
2n

(π

α

)
,

where A
(1)
n are the coefficients of the following series expansion:

(3.27)
1

sin(a + θ)
=

∞∑
k=0

A
(1)
k (a)
k!

θk, 0 < a + θ < π,

by the same steps.
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4. Ratio of two independent α-Cauchy random variables
and the partial fraction expansion of the cotangent function

Considering the ratio of two independent α-Cauchy random variables gives the
partial fraction expansion of the cotangent function.

PROPOSITION 4.1

Let Cα and Ĉα be independent α-Cauchy random variables. Then

(4.1) f|Cα/Ĉα |(x) =
− tan(π/α)

(π/α)
1 − xα−2

xα − 1
, x > 0.

Proof
For 0 < x < 1, we have

f|Cα/Ĉα |(x) =
∫ ∞

0

f|Cα |(u)f|Ĉα |(ux)udu = C2
α

∫ ∞

0

1
1 + uα

1
1 + (ux)α

udu

=
C2

α

α

∫ ∞

0

1
1 + v

1
1 + vxα

v(2−α)/α dv (by change of variables uα = v)

=
C2

α

α

1
1 − xα

∫ ∞

0

v(2/α)−2
( 1

1 + vxα
− 1

1 + v

)
dv

=
C2

α

α
Γ
(

1 −
( 2

α
− 1

))
Γ
( 2

α
− 1

)xα−2 − 1
1 − xα

=
C2

α

α

π

sin((2/α) − 1)π
xα−2 − 1
1 − xα

=
1
α

( sin(π/α)
(π/α)

)2 π

−2 sin(π/α) cos(π/α)
xα−2 − 1
1 − xα

=
− tan(π/α)

(2π)/α

xα−2 − 1
1 − xα

.

For x > 1, the desired result can be obtained immediately from the result for
0 < x < 1 by change of variables. �

Now it holds that

(4.2) 1 =
∫ ∞

0

f|Cα/Ĉα |(x)dx.

Then we have

(4.3)
(2π/α)

− tan(π/α)
=

∫ 1

0

xα−2 − 1
1 − xα

dx +
∫ ∞

1

1 − xα−2

xα − 1
dx = 2

∫ 1

0

xα−2 − 1
1 − xα

dx;

that is,

(4.4)
(π/α)

− tan(π/α)
=

∫ 1

0

xα−2 − 1
1 − xα

dx.
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We can compute the right-hand side of (4.4) as follows:

the RHS of (4.4)
(4.5)

=
∫ ∞

0

e−(α−2)y − 1
1 − e−αy

e−y dy (by change of variables x = e−y)

=
∫ ∞

0

(e−(α−1)y − e−y)dy
∞∑

k=0

e−kαy(4.6)

=
∞∑

k=0

∫ ∞

0

(e−(α(k+1)−1)y − e−(αk+1)y)dy(4.7)

=
∞∑

k=0

( 1
α(k + 1) − 1

− 1
αk + 1

)
(4.8)

= γ

∞∑
k=0

( 1
k + 1 − γ

− 1
k + γ

)
,(4.9)

where γ = 1/α ∈ (1/2,1). The equation

(4.10)
π

− tanγπ
=

∞∑
k=0

( 1
k + 1 − γ

− 1
k + γ

)

is symmetric with respect to γ = 1/2, so that it holds for every γ ∈ (0,1/2) ∪
(1/2,1). Thus we obtain

(4.11)
π

tanγπ
=

1
γ

+
∞∑

k=1

( 1
γ + k

+
1

γ − k

)
.
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