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Abstract Let H = X ⊗ Y be a tensor product of separable Hilbert spaces X and Y . We
establish norm estimates for the resolvent and operator-valued functions of the operator
A =

∑m
k=0 Bk ⊗ Sk, where Bk (k = 0, . . . ,m) are bounded operators acting in Y , and S

is a self-adjoint operator acting inX. By these estimateswe investigate spectrumpertur-
bations of A. The abstract results are applied to the nonself-adjoint differential opera-
tors in Hilbert and Euclidean spaces. Our main tool is a combined use of some properties
of operators on tensor products of Hilbert spaces and the recent estimates for the norm
of the resolvent of a nonself-adjoint operator.

1. Introduction and preliminaries

Let X and Y be separable Hilbert spaces with scalar products 〈 ·, · 〉X and 〈 ·, · 〉Y ,
respectively, and norms ‖ · ‖X =

√
〈·, · 〉X , ‖ · ‖Y =

√
〈 ·, · 〉Y . Let H = X ⊗ Y be the

tensor product of X and Y with the scalar product defined by

〈x ⊗ y,x1 ⊗ y1〉H = 〈y, y1〉Y 〈x,x1〉X (y, y1 ∈ Y ;x,x1 ∈ X),

and the cross norm ‖ · ‖H =
√

〈·, · 〉H . This means that H is the closure in the
norm ‖ · ‖H of the collection of all formal sums of the form

h =
∑

j

xj ⊗ yj (xj ∈ X,yj ∈ Y )

with the understanding that

λ(x ⊗ y) = (λy) ⊗ x = y ⊗ (λx), (x + x1) ⊗ y = x ⊗ y + x1 ⊗ y

x ⊗ (y + y1) = x ⊗ y + x ⊗ y1 (λ ∈ C).

From the theory of tensor products we only need the basic definition and ele-
mentary facts which can be found in [2]. Operators on tensor products of Hilbert
spaces arise in various problems of pure and applied mathematics (cf. [17], [18]).
The classical results on operators on tensor products of Hilbert spaces are pre-
sented in [1] and [2] and in the above-mentioned books; recent results can be

Kyoto Journal of Mathematics, Vol. 51, No. 3 (2011), 673–686
DOI 10.1215/21562261-1299927, © 2011 by Kyoto University
Received July 14, 2010. Revised November 19, 2010. Accepted January 12, 2011.
2010 Mathematics Subject Classification: Primary 47A80, 47E05, 34L15.

http://dx.doi.org/10.1215/21562261-1299927
http://www.ams.org/msc/


674 M. I. Gil’

found, in particular, in [11]–[13] and references therein. In [11] the author inves-
tigates the invariant subspaces of operators on multiple tensor products. In [13]
the authors prove that weak (strong, uniform) convergence of sequences of Hilbert
space operators is preserved by tensor products. In the case of convergence to
zero, it is shown that the boundedness of one sequence and the weak (strong,
uniform) convergence to zero of the other one suffice to ensure the convergence of
their tensor products to zero in the same topology and that the converse holds for
power sequences. They also show that a tensor product of operators is a unilat-
eral shift if and only if it coincides with a tensor product of a unilateral shift and
an isometry. In [12] the authors investigate the problem of transferring Weyl and
Browder’s theorems from operators to their tensor product. In [5]–[7] spectrum
perturbations and resolvents of some classes of operators in H are investigated.
Papers [8] and [9] are devoted to regular functions of operators in H . In this paper
we establish norm estimates for the resolvent and operator-valued functions of
an operator pencil on H . These estimates are applied to differential operators
in Hilbert and Euclidean spaces. The spectrum of ordinary differential operators
was considered in many papers and books (see [2], [14], [15], [19]) and references
therein. In particular, in [19], the author studies the problem of localization of
the spectrum for a class of a scalar differential operator on a finite segment.
However, the resolvents and bounds for the spectrum of the nonself-adjoint dif-
ferential operators with matrix and operator coefficients are still not sufficiently
investigated in the available literature.

We need to say a few words about the contents. The paper consists of six
sections. In Section 2 we formulate and prove the main result of the paper,
Theorem 2.1, on the resolvent of the considered operators. In Section 3, we make
Theorem 2.1 sharper in the case when Y is a Euclidean space. Sections 4 and 5
are devoted to differential operators. In Section 6 we consider the operator-valued
functions.

For a linear operator A, σ(A) is the spectrum, Dom(A) is the domain, A∗ is
adjoint to A, and ImA := 1

2i (A − A∗). By SNp (1 ≤ p < ∞) we denote the ideal
of the Schatten–von Neumann operators K in Y with the finite Schatten–von
Neumann norm Np(K) := [Trace(KK∗)p/2]1/p. IX denotes the identity operator
in a space X .

Let m < ∞ be an integer. The main object of this paper is the operator

(1.1) A =
m∑

k=0

Bk ⊗ Sk with Dom(A) = Dom(Sm) ⊗ Y,

where Bk (k = 0, . . . ,m − 1) are bounded operators acting in Y , Bm = IY , and S

is an invertible self-adjoint operator acting in X . Below we present the relevant
examples. Recall that the polynomial

m−1∑
k=0

Bkλk (λ ∈ C)
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is called the operator pencil (of a scalar argument). Following that definition, we
call the operator defined by (1.1) the operator pencil of an operator argument.

Let Es (s ∈ σ(S)) be the orthogonal expansion of the identity of S, and let

B(s) := smIY +
m−1∑
k=0

Bksk.

Then it is not hard to see that

(1.2) A =
∫

σ(S)

B(s) ⊗ dEs,

where the integral for h = x ⊗ y, g = x1 ⊗ y1 with x ∈ Dom(Sm), x1 ∈ X;y, y1 ∈ Y

is defined by

(Ah,g)H =
∫

σ(S)

(
B(s)y, y1

)
Y

d(Esx,x1)X

and is linearly extended to the whole Dom(A).
Put S0 = S ⊗ IY .

LEMMA 1.1

Let λ ∈ C be a regular point of B(s) for all s ∈ σ(S), and let

(1.3) θ(B,ν,λ) := sup
s∈σ(S)

∥∥sν
(
B(s) − λIY

)−1∥∥
Y

< ∞

for a ν ∈ [0,m). Then λ is a regular point of the operator A defined by (1.1), and

(1.4) (A − λIH)−1 =
∫

σ(S)

(
B(s) − λIY

)−1 ⊗ dEs

and ‖Sν
0 (A − λIH)−1‖H ≤ θ(B,ν,λ).

The integral in (1.4) is understood as the one in (1.2).

Proof
Put

J(λ) =
∫

σ(S)

(
B(s) − λIY

)−1 ⊗ dEs.

Clearly,

(A − λIH)J(λ) =
∫

σ(S)

(
B(s) − λIY

)
⊗ dEs

∫
σ(S)

(
B(s1) − λIY

)−1 ⊗ dEs1

=
∫

σ(S)

(
B(s) − λIY

)(
B(s) − λIY

)−1 ⊗ dEs

=
∫

σ(S)

IY ⊗ dEs = IY ⊗ IX = IH .
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Similarly, J(λ)(A − λIH) = IH . This proves (1.4). Furthermore,(
Sν

0 (A − λI)−1h,Sν
0 (A − λI)−1h

)
H

=
∫

σ(S)

(
sν(B(s) − λIY )−1y, sν

(
B(s) − λIY

)−1
y
)
Y

d(Esx,x)X

for an h = x ⊗ y, with x ∈ X;y ∈ Y . Hence,(
Sν

0 (A − λI)−1h,Sν
0 (A − λI)−1h

)
H

≤ θ2(B,ν,λ)‖y‖2
Y

∫
σ(S)

d(Esx,x)X

= θ2(B,ν,λ)‖y‖2
Y ‖x‖2

X .

Extending this inequality linearly, we prove the lemma. �

We need also the following simple lemma.

LEMMA 1.2

Let A be defined by (1.1), and let Ã be a linear operator in H satisfying

(1.5) Dom(Ã) = Dom(A) and qν := ‖(Ã − A)S−ν
0 ‖H < ∞.

Let the conditions (1.3) and qνθ(B,ν,λ) < 1 hold. Then λ is a regular point for Ã,
and

‖(Ã − IH)−1‖H ≤ θ(B,0, λ)
1 − qνθ(B,ν,λ)

.

Proof
Since

(A − λI)−1 − (Ã − λI)−1 = (A − λI)−1(Ã − A)(A − λI)−1

= (Ã − λI)−1(Ã − A)S−ν
0 Sν

0 (A − λI)−1,

it is not hard to check that λ is regular for Ã if qν ‖Sν
0 (A − λI)−1‖H < 1. In

addition,

‖(Ã − λI)−1‖H ≤ ‖(A − λI)−1‖H

1 − qν ‖Sν
0 (A − λI)−1‖H

.

Now the previous lemma yields the required result. �

2. The main result

Let m0 (−1 ≤ m0 ≤ m − 1) be the smallest integer such that

(2.1) Bk = B∗
k (k = m0 + 1, . . . ,m − 1).

So if all Bk are self-adjoint, then m0 = −1. If all Bk (k < m) are nonself-adjoint,
then m0 = m − 1. Assume that

(2.2) ImBk ∈ SN2p (k = 0, . . . ,m0)
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for an integer p ≥ 1. Since S is invertible, we have

ξ(S) := inf
s∈σ(S)

|s| > 0.

Put

bp := 2
(
1 +

2p

exp(2/3) ln2

)
,

and

v(m0) = bp

m0∑
k=0

N2p(ImBk)ξk−m0(S) for m0 ≥ 0 and v(−1) = 0.

Finally, for a λ ∈ C, set ρ(B(s), λ) := infz∈σ(B(s)) |z − λ|, and let

Φp(y) :=
p−1∑
j=0

yj exp
[1
2
(1 + y2p)

]
(y > 0), and Φp(0) = 1.

Now we are in a position to formulate our main result.

THEOREM 2.1

Under condition (2.2), let

(2.3) ρ(A,λ) := inf
s∈σ(A)

ρ
(
B(s), λ

)
> 0.

Then λ is a regular point for the operator A defined by (1.1), and relation (1.4)
holds. Moreover, for any nonnegative ν < m, we have

(2.4) γν(λ) := sup
s∈σ(S)

|s|ν
ρ(B(s), λ)

< ∞,

and

(2.5) ‖Sν
0 (A − λI)−1‖H ≤ γν(λ)Φp

(
v(m0)γm0(λ)

)
,

where γm0(λ) (m0 ≥ 0) is defined by (2.4) with ν = m0.

Proof
For a bounded linear operator C acting in Y, assume that

(2.6) ImC ∈ SN2p for some integer p ≥ 1.

We need the following result: let ρ(C,λ) = infs∈σ(C) |s − λ| > 0 and condition
(2.6) hold. Then

‖(C − λIY )−1‖Y ≤
p−1∑
j=0

(bpN2p(ImC))j

ρj+1(C,λ)
exp

[1
2

+
(bpN2p(ImC))2p

2ρ2p(C,λ)

]
.

For the proof, see [4, Theorem 7.9.1]. Hence it follows that

∥∥(
B(s) − λIY

)−1∥∥
Y

≤
p−1∑
j=0

ĝj
p(B(s))

ρj+1(B(s), λ)
exp

[1
2

+
ĝ2p

p (B(s))
2ρ2p(B(s), λ)

]
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with

ĝp

(
B(s)

)
:= bp

m0∑
k=0

N2p(ImBk)|s|k.

But ĝp(B(s)) ≤ v(m0)|s|m0 . So

∥∥(
B(s) − λIY

)−1∥∥
Y

≤
p−1∑
j=0

(v(m0)|s|m0)j

ρj+1(B(s), λ)
exp

[1
2

+
(v(m0)|s|m0)2p

2ρ2p(B(s), λ)

]
(2.7)

=
1

ρ(B(s), λ)
Φp

(v(m0)|s|m0

ρ(B(s,λ))

)
.

Put

F (s) = B(s) − smIY =
m−1∑
k=0

Bksk.

Let μ(B(s)) ∈ σ(B(s)). Then μ(B(s)) = sm +μ(F (s)), where μ(F (s)) ∈ σ(F (s)).
So

∣∣μ(
B(s)

)∣∣ ≥ |s|m −
m−1∑
k=0

‖Bk ‖|s|k.

Hence,

|s|ν
ρ(B(s), λ)

≤ |s|ν

|s − λ|m −
∑m−1

k=0 ‖Bk ‖|s − λ|k

for all sufficiently large |s|. Therefore, γν(λ) < ∞, provided that condition (2.3)
holds. So by (2.7),∥∥sν

(
B(s) − λIY

)−1∥∥
Y

≤ γν(λ)Φp

(
v(m0)γm0(λ)

)
.

Now Lemma 1.1 implies the required result. �

Note that γ0(λ) = 1/ρ(A,λ). Theorem 2.1 and Lemma 1.2 imply the following.

COROLLARY 2.2

Under the hypotheses of Theorem 2.1, let Ã be a linear operator in H satisfying
(1.5). In addition, let qνγν(λ)Φp(v(m0)γm0(λ)) < 1. Then λ is a regular point of
Ã, and

‖(Ã − λIH)−1‖H ≤ γ0(λ)Φp(v(m0)γm0(λ)
1 − qνγν(λ)Φp(v(m0)γm0(λ))

.

REMARK 2.3

In the case p = 2n−1, n = 1,2, . . . , one can take sharper values for bp. Namely,
b1 =

√
2 (see [4, Theorem 7.7.2]), and bp = 2(1 + ctg( π

4p )) if p = 2n, n = 1,2, . . . ,

(see [4, Theorem 7.7.2]).
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3. The case Y = C
n

In this section we improve Theorem 2.1 in the case Y = C
n. That is, Bk(k =

0, . . . , n − 1) are (n × n)-matrices. Again, m0 (−1 ≤ m0 ≤ m − 2) is the smallest
integer such that (2.1) holds. Put

w(m0) =
√

2
m0∑
k=0

N2(ImBk)ξk−m0(S) for m0 ≥ 0 and w(−1) = 0.

In the considered case, we have

ρ
(
B(s), λ

)
= min

j=1,...,n

∣∣λj

(
B(s)

)
− λ

∣∣,
where λj(B(s)) are the eigenvalues of B(s) counted with their algebraic multi-
plicities. In addition, condition (2.3) takes the form

(3.1) ρ(A,λ) = inf
s∈σ(S)

min
j=1,...,n

∣∣λj

(
B(s)

)
− λ

∣∣ > 0.

Set also

Ψn(y) :=
n−1∑
j=0

yj

√
k!

(y > 0) and Ψn(0) = 1.

THEOREM 3.1

Let H = X ⊗ C
n, and for a λ ∈ C, let condition (3.1) hold. Then λ is a reg-

ular point of the operator A defined by (1.1), and relation (2.4) holds for any
nonnegative ν < m. Moreover,

(3.2) ‖Sν
0 (A − λIH)−1‖H ≤ γν(λ)Ψn

(
w(m0)γm0(λ)

)
.

Proof
We need the following result: for a linear operator C in C

n, let λ /∈ σ(S); that is,
ρ(C,λ) = minj |λj(C) − λ| > 0. Then

‖(C − λIY )−1‖Cn ≤
n−1∑
j=0

(
√

2N2(ImC))j

√
k!ρj+1(C,λ)

.

For the proof, see [4, Corollary 2.1.2]. Hence it follows that

∥∥(
B(s) − λIY

)−1∥∥
Cn ≤

n−1∑
j=0

(
√

2N2(ImB(s)))j

√
k!ρj+1(B(s), λ)

.

But
√

2N2

(
Im(B(s))

)
≤ w(m0)|s|m0 ,

and thus

(3.3)
∥∥(

B(s) − λIY

)−1∥∥
Cn ≤ 1

ρ(B(s), λ)
Ψn

(w(m0)|s|m0

ρ(B(s), λ)

)
.
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As it was shown in the proof of Theorem 2.1, we have γν(λ) < ∞, provided that
condition (3.1) holds. So by (3.3),∥∥sν

(
B(s) − λIY

)−1∥∥
Cn ≤ γν(λ)Ψn

(
w(m0)γm0(λ)

)
.

Now Lemma 1.1 yields the required result. �

Theorem 3.1 and Lemma 1.2 imply the following.

COROLLARY 3.2

Let H = X ⊗ Cn, let A be defined by (1.1), and let Ã be a linear operator in H

satisfying (1.5). In addition, for a λ ∈ C, let

qνγν(λ)Ψn

(
w(m0)γm0(λ)

)
< 1.

Then λ is a regular point of Ã, and

‖(Ã − λIY )−1‖H ≤ γ0(λ)Ψn(w(m0)γm0(λ))
1 − qνγνΨn(w(m0)γm0(λ))

.

4. Second-order differential operators in a Hilbert space

Let X = L2[0,1], and let H = X ⊗ Y with an arbitrary separable Hilbert space Y .
Put Su = u′ ′

(4.1) Dom(S) =
{
u ∈ L2[0,1] : u′ ′ ∈ L2[0,1];u(0) = u(1) = 0

}
,

and consider the operator

(4.2) Ã = − d2

dx2
+ a1(x)

d

dx
+ a0(x)

(
x ∈ (0,1);Dom(Ã) = Dom(S) ⊗ C

n
)
,

where a1(x), a0(x) are continuous functions defined on [0,1] whose values are
bounded operators in Y . That is, the Dirichlet boundary conditions hold.

For example, let Y = L2(a, b), and let

(Ãu)(x, y) = − ∂2u(x, y)
∂x2

+
∫ b

a

K1(x, y, s)
∂u(x, s)

∂x
ds +

∫ b

a

K0(x, y, s)u(x, s)ds

(x ∈ (0,1);y ∈ (a, b)) with the corresponding kernels K0 and K1.
Furthermore, take A = S ⊗ IY + IX ⊗ B0 with a constant operator B0 satis-

fying the condition ImB0 ∈ SN2p for an integer p ≥ 1. We have σ(S) = {(πk)2 :
k = 1,2, . . .}. So S is invertible and ξ(S) = π2, and ‖S−1/2‖X = 1/π. Let ek(x) =√

2 sin(πkx). Taking ν = 1/2, we obtain

(4.3) S−1/2h =
1
π

∞∑
k=1

1
k

(h, ek)Xek (h ∈ X).

Hence, ( d

dx
S−1/2h

)
(x) =

√
2

∞∑
k=1

1
k

(h, ek)X cos(πkx).
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So ( d

dx
S−1/2h, v

)
X

=
∞∑

k=1

(h, ek)X

(√
2cos(πkx), v

)
X

(h, v ∈ X)

and by the Schwarz inequality,∣∣∣( d

dx
S−1/2h, v

)
X

∣∣∣2 ≤
∞∑

k=1

|(h, ek)X |2
∞∑

k=1

∣∣(√
2cos(πkx), v

)
X

∣∣2 ≤ ‖h‖2
X ‖v‖2

X .

Consequently, ∥∥∥ d

dx
S

−1/2
0

∥∥∥
H

≤ 1.

Thus,

(4.4) q1/2 = ‖(A − Ã)S−1/2
0 ‖H ≤ q̂,

where

q̂ :=
1
π

sup
x

‖a0(x) − B0‖Y + sup
x

‖a1(x)‖Y .

In the considered case, m0 = 0, v(m0) = bpN2p(ImB0), ρ(B(s), λ) =
infμ∈σ(B0) |π2k2 + μ − λ|, and

γ1/2(λ) = sup
k=1,2,...

πk

ρ(B(k), λ)
= sup

k=1,2,...

πk

infμ∈σ(B0) |π2k2 + μ − λ| .

In addition, γ0(λ) = 1
ρ(A,λ) with

ρ(A,λ) = inf
k=1,2,...

inf
μ∈σ(B0)

|π2k2 + μ − λ|.

Now Corollary 2.2 at once implies the following.

COROLLARY 4.1

Let ImB0 ∈ SN2p (p = 1,2, . . .), λ /∈ σ(A), and let

q̂γ1/2(λ)Φp

(
bpN2p(ImB0)/ρ(A,λ)

)
< 1.

Then λ is regular for the operator Ã defined by (4.2), and

‖(Ã−1 − λIH)−1‖H ≤ γ0(λ)Φp(bpN2p(ImB0)/ρ(A,λ))
1 − q̂γ1/2(λ)Φp(bpN2p(ImB0)/ρ(A,λ))

.

5. Second-order matrix differential operator on a segment

Let X = L2[0,1], and let H = X ⊗ C
n := L2([0,1],Cn). Define Dom(S) by (4.1),

and consider the operator defined by (4.2) except that now a1(x), a0(x) are
bounded measurable (n × n)-matrix-valued functions defined on [0,1]. So again
Su = u′ ′ and the Dirichlet boundary conditions hold. Take A = S ⊗ ICn +IX ⊗ B0

with a constant (n × n)-matrix B0 having the eigenvalues λj(B0) (j = 1,2, . . . , n).
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For example, B0 = a0(0). In the case considered, inequality (4.4) is also valid with
Y = C

n and

q̂ :=
1
π

sup
x

‖a0(x) − B0‖Cn + sup
x

‖a1(x)‖Cn .

In addition, m0 = 0,w(m0) =
√

2N2(ImB0), ρ(B(k), λ) = minj=1,2,...,n |π2k2 +
λj(B0) − λ|, and

(5.1) γ1/2(λ) = sup
k=1,2,...

πk

minj=1,...,n |π2k2 + λj(B0) − λ| ,

and γ0 = 1
ρ(A,λ) with

(5.2) ρ(A,λ) = inf
k=1,2,...

min
j=1,...,n

|k2 + λj(B0) − λ|.

Now from Corollary 3.2, at once we get our next result.

COROLLARY 5.1

Let Ã be the operator defined by (4.2) with bounded measurable matrix coeffi-
cients, and let

q̂γ1/2(λ)Ψn

(√
2N2(ImB0)/ρ(A,λ)

)
< 1.

Then λ is a regular point of Ã, and

‖(Ã − λIH)−1‖H ≤ γ0(λ)Ψn(N2(
√

2 ImB0)/ρ(A,λ))
1 − q̂γ1/2(λ)Ψn(

√
2N2(ImB0)/ρ(A,λ))

.

We say that an operator C is stable if inf Reσ(C) > 0.

Assume that

(5.3) Reσ(B0) ≥ 0.

Then for any λ with Reλ ≤ 0, by (5.1) and (5.2), we have

ρ(A,λ) ≥ π2 and γ1/2(λ) ≤ sup
k=1,2,...

1
πk

=
1
π

.

If

(5.4)
q̂

π
Ψn

(√
2N2(ImB0)/π2

)
< 1,

then thanks to Corollary 5.1, the closed left half-plane is regular for Ã. We thus
arrive at the following result.

COROLLARY 5.2

Under the hypothesis of Corollary 5.1, let conditions (5.3) and (5.4) hold. Then
Ã is a stable operator.
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Under the hypothesis of the previous corollary, the stability means that the
semigroup e−Ãt generated by −Ã is exponentially stable.

6. Operator-valued functions

6.1. The Hirsch functional calculus
Let μ be a real nondecreasing function defined on [0, ∞). Consider the function

(6.1) h(z) =
∫ ∞

0

dμ(t)
z + t

(z /∈ (−∞,0)), assuming that
∫ ∞

0

dμ(t)
ε + t

< ∞

for any sufficiently small ε > 0. The Hirsch function h(A) of an operator A acting
in H is defined as

(6.2) h(A) =
∫ ∞

0

(A + tIH)−1 dμ(t)
(
σ(A) ∩ (−∞,0] = 0

)
,

provided that the integral converges in the sense of the strong topology. The
important example of the Hirsch function is the fractional power

A−τ =
sin(πν)

π

∫ ∞

0

t−τ (A + It)−1 dt (0 < τ < 1).

For other examples, see [16, Section 4.1]. We restrict ourselves by the simple but
important case

(6.3) A = S0 + IX ⊗ B0,

assuming that

(6.4) c0 := inf σ(S) + Reσ(B0) > 0.

Then

ρ
(
B(s), −t

)
≥ c0 + t (t ≥ 0).

By Theorem 2.1 with ν = m0 = 0 and v0 = bpN2p(ImB0), we arrive at the fol-
lowing result.

COROLLARY 6.1

Let H = X ⊗ Y , where Y is an arbitrary separable Hilbert space, let A be defined
by (6.3), and let h(A) be defined by (6.2). If the conditions (6.4) and B0 ∈ SN2p

hold for an integer p ≥ 1, then

(6.5) ‖h(A)‖H ≤
∫ ∞

0

1
c0 + t

Φp

( v0

c0 + t

)
dμ(t).

Note that according to (6.1), the integral in (6.5) converges. In particular,

‖A−τ ‖H ≤ sin(πτ)
π

∫ ∞

0

t−τ

c0 + t
Φp

( v0

c0 + t

)
dt (0 < τ < 1).

In the case Y = C
n, the previous corollary can be improved. Namely, by The-

orem 3.1 with ν = m0 = 0 and w0 =
√

2N2(ImB0), we arrive at the following
corollary.
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COROLLARY 6.2

Let H = X ⊗ C
n, let A be defined by (6.3), and let h(A) be defined by (6.2). If

condition (6.4) holds, then

‖h(A)‖H ≤
∫ ∞

0

1
c0 + t

Ψn

( w0

c0 + t

)
dμ(t).

In particular,

‖A−ν ‖H ≤ sin(πν)
π

∫ ∞

0

t−ν

c0 + t
Ψn

( w0

c0 + t

)
dt.

6.2. Regular functions
Let A be defined by (6.3), and for all s ∈ σ(S), let f(z) be a function regular on
a neighborhood of σ(B0 + sIY ). Define f(A) by

(6.6) f(A) =
∫

σ(S)

f
(
B(s)

)
⊗ dEs =

∫
σ(S)

f(B0 + sIY ) ⊗ dEs.

The regularity of f(z) on σ(B0 + sIY ) is equivalent to the regularity of f(z + s)
on σ(B0). In addition, repeating the arguments of the proof of Lemma 1.1, we
obtain the inequality

(6.7) ‖Sν
0 f(A)‖H ≤ sup

s∈σ(S)

‖sνf(B0 + sIY )‖Y .

Assume that

(6.8) ImB0 ∈ SN2,

and put g0 :=
√

2N2(ImB0).

THEOREM 6.3

Let A be defined by (6.3). Assume that condition (6.9) holds and that, for all
s ∈ σ(S), the function f(z + s) is regular in z on the closed convex hall co(B0)
of σ(B0) and that f(A) is defined by (6.7). If for a ν ∈ [0,1) the condition

(6.9) θν(f,A) := sup
s∈σ(S)

n−1∑
j=0

sup
z∈co(B0)

|sνf (j)(z + s)| gj
0

(j!)3/2
< ∞

holds, where n = dim rangeB0 ≤ ∞; then ‖Sν
0 f(A)‖H ≤ θν(f,A).

Proof
We need the following result: for a bounded linear operator C acting in Y , assume
that ImC ∈ SN2 and f are regular on the closed convex hall co(C) of σ(C). Then

‖f(C)‖Y ≤
m−1∑
j=0

sup
z∈co(C)

|f (j)(z)| (
√

2N2(ImC))j

(j!)3/2
,
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where m = dim rangeC. For the proof, see [4, Theorem 7.10.1] and [4, Corollary
2.7.2]. But N2(Im(B(s)) = N2(ImB0). So

∥∥f
(
B(s)

)∥∥
Y

= ‖f(sIY + B0)‖Y ≤
n−1∑
j=0

sup
z∈co(B(s))

|f (j)(z + s)| gj
0

(j!)3/2
.

Hence sups∈σ(S) ‖sνf(B(s))‖Y ≤ θν(f,A). Now (6.8) implies the required result.
�

Theorem 6.2 is sharp. If B0 is self-adjoint and supz∈co(B(s)) |f(z)| =
supz∈σ(B(s)) |f(z)|, then we obtain the equality

‖Sν
0 f(A)‖H = sup

s∈σ(S),z∈σ(B0)

|sνf(z + s)|.

For example, take f(z) = e−zt (t ≥ 0), and assume that β(B0) := inf Reσ(B0) > 0,
β(S) = inf σ(B0) > 0. Then f (j)(z + s) = e−(z+s)t(−t)j , and

sup
z∈σ(B0)

|e−zt| = e−β(B0)t.

Put

ψν(t) := sup
s∈σ(S)

sνe−st =

{
βν(S)e−β(S)t if 0t ≥ β(S)/ν,

e−ν(ν/t)ν if 0 ≤ t ≤ β(S)/ν.

Then we obtain

‖Sν
0 e−At‖H ≤ ψν(t)e−β(B0)t

(
1 +

n−1∑
j=1

tjgj
0√

j!

)
(t ≥ 0).

This result enables us to investigate the stability of parabolic equations.
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