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Abstract We discuss semigroups that preserve a convex set in a Banach space or
a Hilbert space. We give sufficient conditions for which a semigroup preserves a convex
set. Using this, we show that various issues can be treated in a unified way. We also dis-
cuss the problem in the Hilbert space setting, in which we use the sesquilinear form asso-
ciated with a semigroup.

1. Introduction

Markovian properties or positivity-preserving properties are a fundamental notion
in probability theory. There are many criteria for them. Among them, Brezis
and Pazy [1] and Ouhabaz [7] gave a unified method in the framework of convex
set–preserving properties. Let {Tt} be a C0-semigroup in a Hilbert space H .
Suppose that we are given a convex closed set C. If TtC ⊆ C for all t ≥ 0, we
say that the {Tt} preserves the convex set C or that C is stable under the
semigroup {Tt}. Markovian property is characterized in this framework. In fact,
taking C = {f ; 0 ≤ f ≤ 1}, the semigroup {Tt} is Markovian if and only if {Tt}
preserves C. The positivity-preserving property and others are also characterized
in this framework.

Ouhabaz [7] and Brezis and Pazy [1] discussed this issue on Hilbert space.
In this paper, we generalize it to the Banach space setting. To get a condition
for the convex set–preserving property, the shortest points to C and the duality
mapping play an important role. In Banach space, the set of shortest points is
not a single point, and the duality mapping is multivalued in general. To get over
this difficulty, we introduce the notion of good selection. Using this, we can give
a condition for the convex set–preserving property.

The organization of the paper is as follows. In Section 2, we consider semi-
groups in a Banach space and give a condition for which the semigroup preserves
a convex set. To do this, we introduce the notion of good selection. In Section 3,
we give some examples of semigroups that preserve a convex set in a Banach
space. We show that the following issues can be treated in a unified way:

(i) positivity-preserving property,
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(ii) Markovian property,
(iii) L1 contraction property,
(iv) excessive functions,
(v) invariant sets.

In Section 4, we deal with the same problem in the framework of the Hilbert
space setting. We discuss it in terms of bilinear form. This approach was already
adopted by Ouhabaz [7], but he assumed that the semigroups are contractive.
We remove this restriction. We also give some sufficient condition for which the
semigroup is contractive. We have to use different types of criteria to distinguish
contractive semigroups and noncontractive ones.

2. Semigroups that preserve a convex set in a Banach space

Let B be a real or complex Banach space, and suppose that we are given a
C0-semigroup {Tt}. We emphasize that we do not assume that the semigroup is
contractive. This is a main point of this paper. We denote the generator by A

and its domain by Dom(A).
In this section, we consider the case when a semigroup preserves a closed

convex set in a Banach space. So we are given a closed convex set C as well. We
say that the semigroup {Tt} preserves the closed convex set if TtC ⊆ C for all
t ≥ 0. A similar notion can be defined for any family of operators. We rewrite
this condition in terms of resolvents. The resolvent {Gα} is defined as

(2.1) Gα =
∫ ∞

0

e−αtTt dt.

Since we do not assume that {Tt} is a contraction semigroup, we may need α to
be large. The following conditions are equivalent to each other:

(i) {Tt} preserves C,
(ii) {αGα} preserves C.

In fact, it suffices to notice (2.1) and

Ttx = lim
α→∞

e−tα
∞∑

n=0

(tα)n

n!
(αGα)nx.

Let us give examples. Suppose that B is a function space on E, for example,
B = Lp(E). Take C = {f ≥ 0}, that is, a set of all nonnegative functions. Then
the semigroup is called positivity preserving if it preserves the closed convex
set C. If we take C = {0 ≤ f ≤ 1}, then the semigroup is called Markovian when
it preserves C. It is easy to see that the following are equivalent to each other.

(i) {Tt} preserves {0 ≤ f ≤ 1}.
(ii) {Tt} preserves {f ≤ 1}.

Many properties are formulated in this closed convex set–preserving property.
We give other examples later.
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We recall some notions. For a Banach space B, we denote its dual space
by B∗. For any x ∈ B, we define

F (x) :=
{
ϕ ∈ B∗; 〈x,ϕ〉 = ‖x‖2 = ‖ϕ‖2

}
.

Here 〈 , 〉 denotes the pairing of B and B∗. F (x) is a (multivalued) function
called the duality map of B. The following fact plays a fundamental role in the
later argument. Take any x ∈ B. Then ‖x+λy‖ ≥ ‖x‖ for small λ > 0 if and only
if there exists ϕ ∈ B∗ such that

	 〈y,ϕ〉 ≥ 0

(see, e.g., Goldstein [3, Lemma I.3.4, p. 26]). Here 	 stands for the real part.
Let C be a closed convex set. Take any x ∈ B. We denote by P (x) the set of

all shortest points from x to C. P (x) is possibly an empty set or infinite set. We
have the following.

PROPOSITION 2.1

Take any x ∈ B and z ∈ C. Then, for any y ∈ P (x), there exists ϕ ∈ F (x − y)
such that

(2.2) 	 〈z − y,ϕ〉 ≤ 0.

Proof
Let x, y, and z be as above. Since C is convex, y +λ(z − y) ∈ C for any λ ∈ [0,1].
The minimality of ‖x − y‖ implies

‖x − y‖ ≤
∥∥x −

(
y + λ(z − y)

)∥∥ = ‖x − y + λ(y − z)‖.

Now, by using the above remark, there exists ϕ ∈ F (x − y) such that

	 〈y − z,ϕ〉 ≥ 0,

which shows (2.2). �

From now on, we assume that P (x) 
= ∅ for any x ∈ B.

THEOREM 2.2

Take any γ ∈ R, and fix it. Assume that for any x ∈ Dom(A), there exists y ∈ P (x)
such that for all ϕ ∈ F (x − y),

(2.3) 	 〈Ax,ϕ〉 ≤ γ‖x − y‖2.

Then {Tt} preserves C.
Conversely, assume that {Tt} preserves C and, moreover, that {e−γtTt} is

a contraction semigroup. Then, for any x ∈ Dom(A) and y ∈ P (x), there exists
ϕ ∈ F (x − y) such that (2.3) holds.

Proof
Assuming (2.3), we show that the resolvents preserve C. Take any z ∈ C, and
set x = αGαz. Note that Ax = α(x − z). Now from the assumptions, we can take
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y ∈ P (x) so that

	 〈Ax,ϕ〉 ≤ γ‖x − y‖2, ∀ϕ ∈ F (x − y).

By Proposition 2.1, we can choose ϕ ∈ F (x − y) so that

(2.4) 	 〈z − y,ϕ〉 ≤ 0.

Then, for this ϕ, we have

0 ≥ 	 〈Ax,ϕ〉 − γ‖x − y‖2

= α	 〈x − z,ϕ〉 − γ‖x − y‖2

= α	 〈x − y + y − z,ϕ〉 − γ‖x − y‖2

= (α − γ)‖x − y‖2 + α	 〈y − z,ϕ〉

≥ (α − γ)‖x − y‖2 (∵ (2.4)).

By taking α > γ, we get x = y, which means that x ∈ C.
Next we show the converse implication. So we assume that {Tt} preserves C.

In this case, we additionally assume the contraction property of {e−γtTt}. Take
any x ∈ Dom(A) and y ∈ P (x). Then Tty ∈ C. From Proposition 2.1 we can take
ϕt ∈ F (x − y) so that

〈Tty − y,ϕt〉 ≤ 0.

Using this, we have

	 〈Ttx − x,ϕt〉 = 	 〈Tt(x − y) + (Tty − y) + (y − x), ϕt〉

≤ 	 〈Tt(x − y), ϕt〉 − ‖x − y‖2

≤ eγt‖x − y‖2 − ‖x − y‖2 (∵ e−γtTt is contractive)

≤ (eγt − 1)‖x − y‖2.

We can take a sequence {tn} so that {ϕtn } converges *-weakly. Then

	
〈Ttnx − x

tn
, ϕtn

〉
≤ eγtn − 1

tn
‖x − y‖2.

Now letting n → ∞, we have 	 〈Ax,ϕ〉 ≤ γ‖x − y‖2, which is the desired result.
�

In the sufficiency part, we assumed that ϕ ∈ F (x − y) for all ϕ. In applications,
this condition is rather difficult to check, so we give another formulation. To do
this, we need the notion of good selection. For x ∈ B, we call Q(x) ∈ P (x) and
G(x) ∈ F (x − Q(x)) a good selection if

(2.5) 	 〈z − Q(x),G(x)〉 ≤ 0, ∀z ∈ C.

Of course, good selections do not always exist. We give examples of good selec-
tions later. In addition, when a good selection (Q(x),G(x)) can be taken for all
x ∈ B, the function x �→ (Q(x),G(x)) is called a good selection function. The
theorem above can be rewritten as follows by using this concept.



Semigroups preserving a convex set 651

THEOREM 2.3

Suppose that γ ∈ R is given. If there exists a good selection function (Q(x),G(x))
such that for all x ∈ Dom(A),

(2.6) 	 〈Ax,G(x)〉 ≤ γ‖x − Q(x)‖2,

then the semigroup {Tt} preserves C.
Conversely, assume that the semigroup {Tt} preserves C. We additionally

assume that {e−γtTt} is a contraction semigroup. Then, for any good selection
function (Q(x),G(x)) if it exists, (2.6) holds for all x ∈ Dom(A).

Proof
Assuming (2.6), we show that the resolvent preserves C. Take any z ∈ C, and set
x = αGαz. Then Ax = α(x − z). Since (Q(x),G(x)) is a good selection, we have

(2.7) 	 〈z − Q(x),G(x)〉 ≤ 0.

Hence

0 ≥ 	 〈Ax,G(x)〉 − γ‖x − Q(x)‖2

= α	 〈x − z,G(x)〉 − γ‖x − Q(x)‖2

= α	 〈x − Q(x) + Q(x) − z,G(x)〉 − γ‖x − Q(x)‖2

= (α − γ)‖x − Q(x)‖2 + α	 〈Q(x) − z,G(x)〉

≥ (α − γ)‖x − Q(x)‖2 (∵ (2.7)).

We can take α > γ, and so x = Q(x) ∈ C follows.
Conversely, assume that {Tt} preserves C. Take any x ∈ Dom(A) and any

good selection (Q(x),G(x)). Then Q(x) ∈ C, and hence TtQ(x) ∈ C from the
assumption. By (2.5), we have

〈TtQ(x) − Q(x),G(x)〉 ≤ 0.

Using this, we have

	 〈Ttx − x,G(x)〉 = 	
〈
Tt

(
x − Q(x)

)
+

(
TtQ(x) − Q(x)

)
+

(
Q(x) − x

)
,G(x)

〉
≤ 	

〈
Tt

(
x − Q(x)

)
,G(x)

〉
− ‖x − Q(x)‖2

≤ eγt‖x − Q(x)‖2 − ‖x − Q(x)‖2 (∵ e−γtTt is contractive)

≤ (eγt − 1)‖x − Q(x)‖2.

Dividing both sides by t and letting t → 0, it follows that

	 〈Ax,G(x)〉 ≤ γ‖x − Q(x)‖2,

which is what we want. �

Let us give some examples of good selection. Let E be a locally compact Hausdorff
space with countable basis. We consider a Banach space C∞(E), a set of all
continuous functions that vanish at infinity. We take R as a scalar field. Let C
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be a set of all nonnegative functions. C is a closed convex set in C∞(E). We can
easily find a good selection as follows. For any f ∈ C∞(E), we can take f+ = f ∨ 0
as an element of P (f). Here a ∨ b = max{a, b}. Take any ϕ ∈ F (f − f+). Then ϕ is
a nonpositive Radon measure with a support contained in {t ∈ E;f(t) = −‖f ‖}.
Therefore 〈ϕ,f+〉 = 0 and

	 〈h − f+, ϕ〉 ≤ 0, ∀h ∈ C.

This means that (f+, ϕ) becomes a good selection for any ϕ ∈ F (f − f+).
Next, let (M,μ) be a measure space, and take L1(μ) as a Banach space.

Again C is a set of all nonnegative functions in L1(μ). Then, for any f ∈ L1(μ),
P (f) = {f+}. So P is a single-valued function. This time, define ϕ ∈ L∞(μ) as

(2.8) ϕ(t) =

{
−‖f− ‖1 if f(t) < 0,

0 if f(t) ≥ 0.

Then ϕ ∈ F (f − f+), and it is easy to see that 〈h − f+, ϕ〉 ≤ 0 for any h ∈ C. This
means that (f+, ϕ) is a good selection.

If we assume a stronger assumption of a Banach space B, then the good
selection function (G(x),Q(x)) is uniquely determined. In fact, let us assume
that B is uniformly convex and that the dual space B∗ is also uniformly convex.
Then it is known that P (x) and F (x) are sets of a single point. Hence Q(x) = P (x)
and G(x) = F (x − P (x)) are uniquely determined, and (Q(x), P (x)) becomes a
good selection. If B is a Hilbert space, then it is uniformly convex. In this case,
F (x) = x and (2.6) becomes 	 〈Ax,x − P (x)〉 ≤ γ‖x − P (x)‖2. This criterion is
proved in Brezis and Pazy [1], whereas they formulated the theorem in terms of
the subdifferential. So our result is a generalization to Banach space.

3. Examples of convex set–preserving semigroups

We give examples of semigroups which preserve a closed convex set. In this
section, we always assume that Banach spaces are real. Applying Theorem 2.3,
we see that many issues can be treated in a unified way. Changing a closed convex
set, we can get various criteria. We treat the following issues:

(i) positivity-preserving property,
(ii) Markovian property,
(iii) L1 contraction property,
(iv) excessive functions,
(v) invariant sets.

These are individually well discussed, but the point of this paper is that they
can be treated in a unified way.

Suppose that we are given a semigroup {Tt} generated by A on a Banach
space B. For any closed convex set C, we are interested in when {Tt} preserves
a closed convex set C.



Semigroups preserving a convex set 653

3.1. Positivity-preserving property
We first discuss the positivity-preserving property. In this case, we take a closed
convex set C as C = {f ≥ 0}. In the case B = C∞(E) with E being a locally
compact Hausdorff space, we have the following.

THEOREM 3.1

Take γ ∈ R. Assume that for any f ∈ Dom(A) taking negative minimum, there
exists a minimum point x0 of f such that

(3.1) (A − γ)f(x0) ≥ 0.

Then the semigroup {e−γtTt} is a positivity-preserving contraction semigroup.
Conversely, if {e−γtTt} is a positivity-preserving contraction semigroup,

then (3.1) holds for any f ∈ Dom(A) and the negative minimum point x0 of f .

Proof
Take f ∈ Dom(A) taking negative minimum. Let x0 be the minimum point
so that (3.1) holds. Then, defining G(f) = −δx0 and Q(f) = f+, (Q(f),G(f))
becomes a good selection. We also have to consider the case when f ∈ Dom(A)
takes nonnegative minimum. In this case, Q(f) = f+ = f and so f − Q(f) = 0.
This means that G(f) = 0 and (Q(f),G(f)) is also a good selection and satis-
fies (2.6) of Theorem 2.3.

Now we can apply Theorem 2.3 and get the desired result.
Taking −f instead of f in (3.1), we can see that the opposite inequality

of (3.1) holds at a point x0 taking positive maximum of f . Combining both
of them, we can show that A − γ is dissipative, which implies the contraction
property of the semigroup.

The reversed implication can also be shown by Theorem 2.3. �

We proceed to the case B = L1(μ) on a measure space (M,μ). We have the
following.

THEOREM 3.2

Let γ ∈ R be given. Then {e−γtTt} is a positivity-preserving contraction semi-
group if and only if for any f ∈ Dom(A), the following inequality holds:

(3.2) −
∫

{f<0}
Af(t)dμ(t) ≤ γ‖f− ‖1.

Proof
Sufficiency is easily shown by Theorem 2.3. We show the necessity. If we assume (3.2),
then from Theorem 2.3 it follows that the semigroup preserves the positivity. Fur-
ther, taking −f instead of f in (3.2), we have

(3.3)
∫

{f>0}
Af(t)dμ(t) ≤ γ‖f+‖1.
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Note that ϕ(t) = sgnf(t) ∈ F (f). Here sgn is defined by

sgnx =

⎧⎪⎪⎨
⎪⎪⎩

−1 for x < 0,

0 for x = 0,

1 for x > 0.

Combining (3.2) and (3.3), we have∫
M

Af(t)ϕ(t)dμ(t) ≤ γ‖f ‖1,

which means that A − γ is dissipative. Therefore we have that {e−γtTt} is a
contraction semigroup, as desired. �

Under the same setting, let us proceed to the case B = Lp(μ), 1 < p < ∞. In
this case, B and B∗ become uniformly convex, and the duality map F becomes a
single-valued map given by F (f) = |f |p−1 sgnf/‖f ‖p−2

p . Moreover, for any closed
convex set C, P (x) is uniquely determined. Concerning the positivity-preserving
property, we should take C = {f ≥ 0} and, in this case, P (f) = f+. Applying
Theorem 2.3, we have the following.

THEOREM 3.3

Let γ ∈ R be given. Suppose that {Tt} is a C0-semigroup in Lp. Then the following
three conditions are equivalent to each other.

(i) {Tt} preserves the positivity, and {e−γtTt} is a contraction semigroup.
(ii) For any f ∈ Dom(A), we have

(3.4) 〈Af, fp−1
− 〉 ≥ −γ‖f− ‖p

p.

(iii) For any f ∈ Dom(A), we have

(3.5) 〈Af, fp−1
+ 〉 ≤ γ‖f+‖p

p.

Proof
Noting that f− = (−f)+, we can easily see the equivalence of (ii) and (iii).

We show that (ii) ⇒ (i). Since f − Pf = f − f+ = −f−, Theorem 2.3 implies
that {Tt} preserves C = {f ≥ 0}. Moreover, since

‖f− ‖p
p = 〈f−, fp−1

− 〉 = −〈f, fp−1
− 〉,

(3.4) is equivalent to

〈(A − γ)f, fp−1
− 〉 ≥ 0.

Similarly, taking −f instead of f , we have

〈(A − γ)f, fp−1
+ 〉 ≤ 0.

Combining both of them, we have

0 ≥ 〈(A − γ)f, fp−1
+ − fp−1

− 〉 = 〈(A − γ)f, |f |p−1 sgnf 〉.
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This brings 〈(A − λ)f,F (f)〉 ≤ 0, and by the Lumer-Phillips theorem, we can
show that A − λ generates a contraction semigroup.

Next we show that (i) ⇒ (ii). Since we assume that {e−tλTt} is a contraction
semigroup, we can have the desired result by using Theorem 2.3. �

3.2. Markovian property
Next we discuss the Markovian property. A semigroup is called Markovian if it
preserves the set {0 ≤ f ≤ 1}. This is equivalent to the fact that the semigroup
preserves the set {f ≤ 1}. Until the end of this subsection, we discuss mainly the
case C = {f ≤ 1}. In this case, the shortest point to C is given by

(3.6) Q(f) = f ∧ 1.

Let us begin with the case B = C∞(E), where E is a locally compact Haus-
dorff space. It is clear that the semigroup is Markovian if and only if it is
a positivity-preserving contraction semigroup. So the result is included in the
positivity-preserving case. That is, if for any f ∈ Dom(A) we have

(3.7) Af(x0) ≥ 0

at some point x0 taking the negative minimum of f , then the semigroup is
Markovian. Conversely, if the semigroup is Markovian, then for any f ∈ Dom(A),
(3.7) holds at any point x0 taking the negative minimum.

The second case is B = L1(μ) on a measure space (M,μ). Since Q(f) = f ∧ 1,
we have f − Q(f) = (f − 1)+. So we can take a ϕ ∈ F ((f − 1)+) as

ϕ(u) = ‖(f − 1)+‖11{f>1}(u).

If we take this ϕ, then, for any h ∈ C, we have

〈h − f ∧ 1, ϕ〉 =
∫

{f>1}
‖(f − 1)+‖1(h − f ∧ 1)dμ

= ‖(f − 1)+‖1

∫
{f>1}

(h − 1)dμ

≤ 0 (∵ h ≤ 1).

Thus Q(f) = (f − 1)+, G(f) = ϕ = ‖(f − 1)+‖11{f>1} becomes a good selection.
Hence by using Theorem 2.3, we have the following.

THEOREM 3.4

Let γ ∈ R be given. Then the following are equivalent to each other.

(i) {Tt} is Markovian, and {e−γtTt} is a contraction semigroup.
(ii) For any f ∈ Dom(A), we have

(3.8)
∫

{f>1}
Af(u)dμ(u) ≤ γ‖(f − 1)+‖1.
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(iii) For any f ∈ Dom(A), we have

(3.9)
∫

{f>1}
Af(u)dμ(u) −

∫
{f<0}

Af(u)dμ(u) ≤ γ‖f − f+ ∧ 1‖1.

Proof
It is enough to use Theorem 2.3. We see only that the contraction property can
be deduced from (3.8). Take any constant c > 0. Taking f/c instead of f in (3.8)
and noting that (f/c − 1)+ = 1/c(f − c)+,∫

{f>c}
Af(u)dμ(u) ≤ γ‖(f − c)+‖1,

which bears, by letting c ↓ 0,∫
{f>0}

Af(u)dμ(u) ≤ γ‖f+‖1.

This is equivalent to (3.2) in Theorem 3.2. So the contraction property can be
shown in the same way as in Theorem 3.2. �

We can do the same thing in the case B = Lp(μ) 1 < p < ∞.

THEOREM 3.5

Let γ ∈ R be given, and let {Tt} be a semigroup in Lp. Then the following three
conditions are equivalent to each other.

(i) {Tt} is Markovian and {e−γtTt} is a contraction semigroup.
(ii) For any x ∈ Dom(A), we have

(3.10) 〈Af, (f − 1)p−1
+ 〉 ≤ γ‖(f − 1)+‖p

p.

If we replace (3.10) with

(3.11) 〈Af, |f − f+ ∧ 1|p−1 sgnf 〉 ≤ γ‖f − f+ ∧ 1‖p
p,

the same conclusion holds.

Proof
We first show that (ii) ⇒ (i). Assume (3.10). Then, by Theorem 2.3, it follows
that {Tt} preserves {f ≤ 1}, and hence {Tt} is Markovian.

We now take any c > 0 and substitute f/c in (3.10). By noting that (f/c −
1)+ = 1/c(f − c)+, we have

〈Af, (f − c)p−1
+ 〉 ≤ γ‖(f − c)+‖p

p.

Now, letting c → 0, we can see that (3.5) holds, and hence {Tt} becomes a con-
traction semigroup by Theorem 2.3.

To show that (i) ⇒ (ii), we just apply Theorem 2.3.
A similar result holds when we assume (3.11). �
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When γ = 0, the above result was discussed in [4, Section 4.6] and [2]. The
contraction property is assumed there, but it is not necessary. In the L2-case,
Ma and Röckner [6] called an operator satisfying (3.10) with γ = 0 a Dirichlet
operator. By this definition, the operator generates a contraction semigroup. It
may be better to remove the restriction of contraction.

3.3. L1-contraction property
The Markovian property is equivalent to L∞-contraction and positivity preserv-
ing. Its dual notion is L1-contraction and positivity preserving. We discuss it
here.

Let (M,μ) be a measure space. We take a Banach space B as Lp(μ) (p ∈
[1, ∞)). The L1-contraction property means that for any f ∈ B,

(3.12)
∫

M

|Ttf | dμ ≤
∫

M

|f | dμ.

In addition, if we assume the positivity preserving, then the above property is
equivalent to (3.12) with nonnegative f . So we take a convex set C as

(3.13) C =
{

f ;f ≥ 0,

∫
M

f dμ ≤ 1
}

.

C is clearly closed. The semigroup is L1-contractive and positivity preserving if
and only if it preserves C. To see this, assume that the semigroup preserves C.
Take any f ≥ 0. Then, for any ε > 0, we can find δ > 0 so that (f − ε)+δ ∈ C.
Since the semigroup preserves C, we have Tt(f − ε)+ ≥ 0. Letting ε → 0, we are
lead to Ttf ≥ 0, which means the positivity preserving. Now the L1-contraction
property easily follows. The converse is much easier.

We need to get the shortest point to C. We show that it is given by (f − c)+,
where c ≥ 0 is chosen so that ∫

M

(f − c)+ dμ = 1,

whereas, when ∫
M

f+ dμ ≤ 1,

then we set c = 0. If f satisfies ∫
M

f+ dμ ≤ 1,

then it is clear that f+ is the shortest point. If f does not satisfy the condition
above, we need the following.

PROPOSITION 3.6

Suppose that f , g ∈ Lp(μ) (p > 1) satisfy 0 ≤ g ≤ f and that a constant c > 0
satisfies

(3.14)
∫

M

(f − c)+ dμ =
∫

M

(f − g)dμ.
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Then we have

(3.15)
∫

M

(f ∧ c)p dμ ≤
∫

M

gp dμ,

and the identity holds only when g = f ∧ c.

Proof
Note that ∫

M

fp dμ =
1
p

∫ ∞

0

xp−1μ(f ≥ x)dx.

Using this, (3.14) can be rewritten as∫ ∞

0

{
μ(f ≥ x) − μ(g ≥ x)

}
dx =

∫ ∞

c

μ(f ≥ x)dx.

Hence we have ∫ c

0

{
μ(f ≥ x) − μ(g ≥ x)

}
dx =

∫ ∞

c

μ(g ≥ x)dx.

Therefore∫ c

0

(x

c

)p−1{
μ(f ≥ x) − μ(g ≥ x)

}
dx ≤

∫ c

0

{
μ(f ≥ x) − μ(g ≥ x)

}
dx

=
∫ ∞

c

μ(g ≥ x)dx

≤
∫ ∞

c

(x

c

)p−1

μ(g ≥ x)dx.

Multiplying cp−1 to both hands, we have∫ c

0

xp−1
{
μ(f ≥ x) − μ(g ≥ x)

}
dx ≤

∫ ∞

c

xp−1μ(g ≥ x)dx,

which is the desired result. If the equality holds in the above equation, then all
the inequalities above must be equalities, and hence g = f ∧ c would hold. �

The result above holds even when p = 1 and the last inequality should be equality,
whereas we cannot have g = f ∧ c in general.

Using the result above, we can see that the shortest point is given by (f −
c)+. Now, if we assume that the semigroup preserves C and that {e−γtTt} is a
contraction semigroup, then by Theorem 2.3, we have

(3.16)
∫

M

Af sgn(f)|f ∧ c|p−1 dμ ≤ γ‖f ∧ c‖p
p.

Here c is a constant that satisfies∫
M

(f − c)+ dμ = 1.
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But the constant c ≥ 0 can be arbitrary. In fact, for any λ > 0, take λf instead
of f . Then (3.16) becomes∫

M

λAf sgn(f)
(
λf ∧ c(λf)

)p−1
dμ ≤ γ‖λf ∧ c(λf)‖p

p,

which leads to ∫
M

Af sgn(f)
(
f ∧ c(λf)

λ

)p−1

dμ ≤ γ‖f ∧ c(λf)
λ

‖p
p.

The constant c(λf)/λ is characterized by∫
M

(
f − c(λf)

λ

)
+
dμ =

1
λ

.

So it can take all positive values by varying λ > 0. We take c = 1 for simplicity.
Thus we have the following theorem.

THEOREM 3.7

Let γ ∈ R be given. Then the following conditions are equivalent to each other.

(i) {Tt} preserves C and {e−γtTt} is contractive.
(ii) For any f ∈ Dom(A), we have

(3.17)
∫

M

Af sgn(f)|f ∧ 1|p−1 dμ ≤ γ‖f ∧ 1‖p
p.

3.4. Excessive functions
We show that we can deal with excessive functions in our framework. The exces-
sive functions are defined as follows. If a nonnegative function u satisfies

(3.18) e−αtTtu ≤ u

for any t ≥ 0, then we call it an α-excessive function. In the sequel, we always
assume that u is nonnegative. We usually assume that the {Tt} is Markovian,
but we do not need this. Being excessive is a property of a function. But we
change the viewpoint. It can be thought to be a property of the semigroup. We
take this viewpoint. We assume that {Tt} is positivity preserving, and we define
a convex set C by C = {f ;f ≤ u}. Then it is easily verified that u is α-excessive
if and only if {e−αtTt} preserves C. So we can apply our theorem. We note that
for any f , the shortest point to C is given by P (f) = f ∧ u.

We start with the case when E is locally compact and B = C∞(E). For
any f , we can take Q(f) = f ∧ u ∈ P (f). Then

f − Q(f) = (f − u)+.

Assume that (f − u)+ 
= 0, and take any maximum point x0 of (f − u)+. Now
define

ϕ = ‖(f − u)+‖ ∞δx0 .

Then, for any h ∈ C, we have

〈h − (f ∧ u), ϕ〉 =
(
h(x0) − u(x0)

)
‖(f − u)+‖ ∞ ≤ 0.
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This means that f ∧ u, ‖(f − u)+‖ ∞δx0 is a good selection. So we can get the
following.

THEOREM 3.8

Let γ ∈ R be given. Assume that u is α-excessive and {e−(α+γ)tTt} is contractive.
Then for any f ∈ Dom(A) and any x0 taking positive maximum of (f − u)+, we
have

(3.19) (A − α)f(x0) ≤ γ
(
f(x0) − u(x0)

)
.

Conversely, assume that for any f ∈ Dom(A), (3.19) holds at some point x0

taking positive maximum of (f − u)+. Then u is excessive and {e−(α+γ)tTt} is
Markovian.

Proof
The first part follows from Theorem 2.3.

In the converse part, we show only that {e−(α+γ)tTt} is Markovian. Take any
f ∈ Dom(A), and let x0 be a point taking the positive maximum of (f − u)+.
Then we have

(A − α)f(x0) ≤ γ
(
f(x0) − u(x0)

)
.

Now, for any c > 0, take f/c instead of f . Note that (f/c − u)+ = (1/c)(f − cu)+.
Therefore we have

(3.20) (A − α)f(xc) ≤ γ
(
f(xc) − cu(xc)

)
.

Here xc is a point taking the positive maximum of (f − cu)+. When c ↓ 0, we can
take a convergent subsequence from xc. We set the limit by y0. It is clear that
f+ takes the positive maximum at y0. Moreover, taking the limit in (3.20) along
a subsequence, we have

(A − α)f(y0) ≤ γf(y0).

The Markovian property of {e−(α+γ)tTt} follows from this. �

We proceed to the case B = L1(μ) with (M,μ) a measure space. For C = {f : f ≤
u}, Q(f) = f ∧ u. Moreover, we can take ϕ = ‖(f − u)+‖11{f>u} as an element of
F (f − Q(f)) = F ((f − u)+); (f ∧ u,ϕ) is a good selection. In fact, for any h ∈ C,
we have

〈h − Q(f), ϕ〉 = ‖(f − u)+‖1

∫
{f>u}

(h − f ∧ u)dμ

= ‖(f − u)+‖1

∫
{f>u}

(h − u)dμ ≤ 0.

Now we have the following theorem.

THEOREM 3.9

Let γ ∈ R be given. Then the following conditions are equivalent to each other:
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(i) u is α-excessive and {e−(α+γ)tTt} is a contraction semigroup;
(ii) for any f ∈ Dom(A), we have

(3.21)
∫

{f>u}
(A − α)f dμ ≤ γ‖(f − u)+‖1.

Proof
The implication that (i) ⇒ (ii) follows from Theorem 2.3.

We show only that (ii) implies that {e−(α+γ)tTt} is a positivity-preserving
contraction semigroup. For any c > 0, take f/c instead of f . Then (3.21) is written
as ∫

{f>cu}
(A − α)f dμ ≤ γ‖(f − cu)+‖1.

Now letting c ↓ 0, we have∫
{f>0}

(A − α)f dμ ≤ γ‖f+‖1.

By using Theorem 3.2, we can show that {e−(α+γ)tTt} is a positivity-preserving
contraction semigroup. �

Last, we discuss the case Lp (1 < p < ∞).

THEOREM 3.10

Let γ ∈ R be given. Then the following are equivalent to each other:

(i) u is α-excessive and {e−(α+γ)tTt} is a positivity-preserving contraction
semigroup;

(ii) for f ∈ Dom(A), we have

(3.22) 〈(A − α)f, (f − u)p−1
+ 〉 ≤ γ‖(f − u)+‖p

p.

Proof
We show only that (ii) implies that the semigroup is positivity preserving and
contractive. So take f/c instead of f in (3.22). Then

〈(A − α)f, (f − cu)p−1
+ 〉 ≤ γ‖(f − cu)+‖p

p.

Letting c ↓ 0, we have

〈(A − α)f, fp−1
+ 〉 ≤ γ‖f+‖p

p.

Applying Theorem 3.3, we can get the desired result. �

3.5. Invariant sets
A measurable set D ⊆ E is called weakly invariant if for any t ≥ 0,

(3.23) 1DcTt1D = 0.
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We want to give a characterization of a weakly invariant set. To do this, define
a convex set C by

(3.24) C = {f ; 1Dcf = 0}.

In this case, we define Q(f) by

Q(f) = 1Df.

Hence we have f − Q(f) = 1Dcf .
We first consider the case B = C∞(E), where E is a locally compact Haus-

dorff space. We assume that D is open and closed. Let x0 be a point where
|f − Q(f)| takes its positive maximum. Set ϕ = ‖1Dcf ‖ ∞ sgn(f(x0))δx0 . Then
ϕ ∈ F (f − Q(f)), and for any h ∈ C,

〈h − 1Df,ϕ〉 =
(
h(x0) − f(x0)

)
‖1Dcf ‖ ∞ sgn

(
f(x0)

)
= −‖1Dcf ‖ ∞ |f(x0)| ≤ 0.

Thus (Q(f), ϕ) is a good selection. Now the following theorem can be obtained
from Theorem 2.3.

THEOREM 3.11

Let γ ∈ R be given. Assume that for any f ∈ Dom(A), we have

(3.25) Af(x0) sgnf(x0) ≤ γ|f(x0)|

at some x0 taking the positive maximum of |f | in Dc. Then D is a weakly invari-
ant set.

Conversely, if D is a weakly invariant set and the {e−γtTt} is contractive,
then for any f ∈ Dom(A), (3.25) holds for all x0, where |f | takes positive maxi-
mum in D.

In the case B = L1(μ) with (M,μ) a measure space, we can take ϕ =
1Dc sgnf ‖1Dcf ‖ from F (1Dcf). To see that (Q(f), ϕ) is a good selection, note
that for any h ∈ C,

〈h − 1Df,ϕ〉 =
∫

Dc

(h − 1Df)‖1Dcf ‖1 sgnf dμ ≤ 0.

From Theorem 2.3, we can have the following.

THEOREM 3.12

Let γ ∈ R be given. Assume that for any f ∈ Dom(A),

(3.26)
∫

Dc

Af sgn(f)dμ ≤ γ‖1Dcf ‖1.

Then D is a weakly invariant set.
Conversely, if D is weakly invariant and {e−γtTt} is a contraction semigroup,

then (3.26) holds for any f ∈ Dom(A).

Similarly, we have the following theorem in the case when B = Lp(μ) (1 < p < ∞).
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THEOREM 3.13

Let γ be given. Assume that for any f ∈ Dom(A),

(3.27) 〈Af,1Dc |f |p−1 sgnf 〉 ≤ γ‖1Dcf ‖p
p.

Then D is a weakly invariant set.
Conversely, if D is weakly invariant and the semigroup {e−γtTt} is contrac-

tive, then (3.27) holds for any f ∈ Dom(A).

4. Convex set–preserving semigroups in Hilbert space

In this section, we consider conditions for which a semigroup in a Hilbert space
preserves a convex set. Of course, Hilbert spaces are Banach spaces, so the previ-
ous result in Section 2 holds. In the Hilbert space case, we consider a semigroup
associated with a sesquilinear form. We describe conditions in terms of sesquilin-
ear forms. This kind of problem was discussed by Ouhabaz [7], but he always
assumed that semigroups are contractive. Our aim here is to remove the restric-
tion of the contraction property. We mainly follow his argument, but sometimes
we need modifications.

4.1. Convex set–preserving property
Let a complex or a real Hilbert space H be given. We denote its inner product
by ( | )H and the norm by | · |. Suppose that we are given a closed sesquilinear
form E . For any γ ∈ R, we define Eγ by

Eγ(x, y) = E (x, y) + γ(x | y)H .

We assume that E is bounded from below and satisfies the sector condition: there
exist constants ξ and K such that

Eξ(x,x) ≥ 0,

Eξ(x, y) ≤ KEξ+1(x,x)1/2Eξ+1(y, y)1/2.

We denote the associated semigroup and the generator by {Tt} and A, respec-
tively. We also denote the resolvent by Gα. Gα is defined at least for α > ξ. Let
a closed convex set C be given. As before, we denote the shortest point from x

to C by Px. Since H is uniformly convex, Px is a single-valued function, and the
duality map F (x) is just F (x) = x. As was mentioned in Section 3, (Px,x − Px)
is a good selection; that is, we have, for any y ∈ C,

(4.1) 	(y − Px | x − Px)H ≤ 0.

Now we show the following.

THEOREM 4.1

Let γ ∈ R and θ ∈ [0,1] be given. We consider the following conditions.

(i) For any x ∈ Dom(E ), we have Px ∈ Dom(E ) and

(4.2) 	 E
(
(1 − θ)x + θPx,x − Px

)
≥ −(1 − θ)γ|x − Px|2, ∀x ∈ Dom(E ).
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(ii) The semigroup {Tt} preserves C.
(iii) For any x ∈ Dom(E ), we have Px ∈ Dom(E ) and

(4.3) 	 E (Px,x − Px) ≥ 0, ∀x ∈ Dom(E ).

Then the implications that (i) ⇒ (ii) ⇒ (iii) hold; (iii) is nothing but (i) with
θ = 1, so (ii) and (iii) are equivalent to each other.

If, in addition, {e−γtTt} is contractive, then the three conditions are equiva-
lent and, moreover, they are equivalent to the following condition (iv).

(iv) For any η ∈ [0,1] and for any x ∈ Dom(E ), we have Px ∈ Dom(E ) and

(4.4) 	 E
(
(1 − η)x + ηPx,x − Px

)
≥ −(1 − η)γ|u − Pu|2, ∀x ∈ Dom(E ).

If E is Hermitian (we do not assume that e−γtTt is contractive), then (ii)
follows from the following condition (v).

(v) For any x ∈ Dom(E ), we have Px ∈ Dom(E ) and

(4.5) E (Px,Px) ≤ E (x,x) + γ|x − Px|2, ∀x ∈ Dom(E ).

If we assume that {e−γtTt} is contractive in addition to the Hermitian prop-
erty, then all five conditions are equivalent to each other.

Proof
We first show that (i) ⇒ (ii). It suffices to show that αGαx ∈ C for any x ∈ C.
Set y = αGαx. Since E (Gαx, z) = (x − αGαx | z)H , we have

(4.6) E (y, z) = α(x − y | z)H .

From (i), (4.2) holds, whereas we take a larger γ. So we may assume that
Eγ(f, f) ≥ 0 for all f . Moreover, take α such that α ≥ γ. Then

0 ≥ −	 E
(
(1 − θ)y + θPy, y − Py

)
− (1 − θ)γ|u − Pu|2 − θ	 Eγ(y − Py, y − Py)

= −	E (y, y − Py) + θ	 E (y − Py, y − Py) − (1 − θ)γ|y − Pu|2

− θ	 E (y − Py, y − Py) − θγ|y − Py|2

= −	E (y, y − Py) − θγ|y − Py|2

= −α	(x − y | y − Py)H − γ|y − Py|2 (∵ (4.6))

= −α	(x − Py | y − Py)H + α	(y − Py | y − Py)H − γ|y − Py|2

≥ (α − γ)|y − Py|2 (∵ (4.2)),

which leads to y = Py ∈ C, as we wanted.
Ouhabaz [7, Theorem 2.1] proved that (ii) ⇒ (iii).
Assuming that {e−γtTt} is contractive, that is, that Eγ(f, f) ≥ 0 for any

f ∈ Dom(E ), let us show that (iii) ⇒ (iv). Since Eγ is nonnegative,

0 ≤ 	 E (Px,x − Px) + (1 − η)Eγ(x − Px,x − Px)

= 	 E
(
(1 − η)x − ηP,x − Px

)
+ (1 − η)γ|x − Px|2,
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which is the desired result.
If E is Hermitian, then we have

	 E (x + Px,x − Px) + γ|x − Px|2

= E (x,x) + 	
{

E (Px,x) − E (x,Px)
}

− E (Px,Px) + γ|x − Px|2

= E (x,x) + 	
{

E (Px,x) − E (Px,x)
}

− E (Px,Px) + γ|x − Px|2

= E (x,x) − E (Px,Px) + γ|x − Px|2.

The left-hand side is (4.2) with θ = 1/2, and so (ii) follows from (v). If, in addition,
we assume the positivity of Eγ , it is easy to see that all conditions are equivalent
to each other. �

Now we discuss examples. We take a measure space (M,m) and consider a real
Hilbert H = L2(m). We denote the inner product by ( | )2 and the norm by ‖ ‖2.
So far, we denote the Hilbert norm by | |, but we reserve it for the absolute value
of a function. Elements of L2 are denoted by f , g, h, . . . . Now we proceed to
individual cases, as in Section 3.

4.2. Positivity-preserving property
The convex set is given as C = {f ≥ 0}; recall that Pf = f+. From Theorem 4.1,
we have the following theorem.

THEOREM 4.2

The following two conditions are equivalent to each other.

(i) {Tt} is positivity preserving.
(ii) For any f ∈ Dom(E ), we have |f | ∈ Dom(E ) and

(4.7) E (f+, f−) ≤ 0.

Under (i) or (ii), the following condition (iii) holds.

(iii) For any f ∈ Dom(E ), we have |f | ∈ Dom(E ) and

(4.8) E (|f |, |f |) ≤ E (f, f).

If E is symmetric, the three conditions are equivalent to each other.

Proof
The equivalence between (i) and (ii) is a direct consequence from Theorem 4.1.
On the other hand,

E (|f |, |f |) − E (f, f) = E (f+ + f−, f+ + f−) − E (f+ − f−, f+ − f−)

= E (f+, f+) + 2E (f+, f−) + E (f−, f−)

− E (f+, f+) + 2E (f+, f−) − E (f−, f−)

= 2E (f+, f−) + 2E (f−, f+).
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Now we can see that (iii) follows from (ii). If E is symmetric, (ii) follows from (iii)
by the identity above. �

In connection to the contraction property of the semigroup, we have the following.

THEOREM 4.3

Let γ ∈ R and θ ∈ [0,1) be given. Then the following three conditions are equiva-
lent to each other.

(i) The semigroup {e−γtTt} is a positivity-preserving contraction semi-
group.

(ii) For any f ∈ Dom(E ), we have |f | ∈ Dom(E ) and

(4.9) E
(
(1 − θ)f + θf+, f − f+

)
≥ −γ(1 − θ)‖f− ‖2

2.

(iii) For any f ∈ Dom(E ), we have |f | ∈ Dom(E ) and, for any η ∈ [0,1),

(4.10) E
(
(1 − η)f + ηf+, f − f+

)
≥ −γ(1 − η)‖f− ‖2

2.

If, in addition, E is symmetric, then the following conditions are also equiv-
alent to previous ones.

(iv) For any f ∈ Dom(E ), we have |f | ∈ Dom(E ) and

(4.11) E (f+, f+) ≤ E (f, f) + γ‖f− ‖2.

(v) For any f ∈ Dom(E ), we have |f | ∈ Dom(E ) and

(4.12) 0 ≤ Eγ(|f |, |f |) ≤ Eγ(f, f).

Proof
We show only that (ii) ⇒ (i). The others easily follow from Theorem 4.1.

Since E is bounded from below, there exists a constant λ ≥ 0 such that
Eγ+λ(f, f) ≥ 0. On the other hand, from (4.9),

−γ(1 − θ)‖f− ‖2
2 ≤ E

(
(1 − θ)f + θf+, f − f+

)
≤ −E (f+, f−) + (1 − θ)E (f−, f−),

which leads to

E (f+, f−) − (1 − θ)Eγ(f−, f−) ≤ 0.

Using this inequality, let us compute Eγ+θλ:

Eγ+θλ(f, f−) = Eγ(f+ − f−, f−) − θλ(f | f−)2

= Eγ(f+, f−) − Eγ(f−, f−) − θλ(f | f−)2

= E (f+, f−) − (1 − θ)Eγ(f−, f−)

− θEγ(f−, f−) − θλ(f− | f−)2

= E (f+, f−) − (1 − θ)Eγ(f−, f−)

− θEγ+λ(f−, f−) ≤ 0.
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Here, in the third line, we used Eγ(f+, f−) = E (f+, f−). Now, taking −f instead
of f , we have

Eγ+θλ(f, f+) ≥ 0.

Combining both of them, we have

Eγ+θλ(f, f) = Eγ+θλ(f, f+) − Eγ+θλ(f, f−) ≥ 0.

Thus we have deduced Eγ+θλ(f, f) ≥ 0 from Eγ+λ(f, f) ≥ 0. Repeating this pro-
cedure, we have Eγ+θnλ(f, f) ≥ 0. Letting n → ∞, we eventually get Eγ(f, f) ≥ 0,
as desired.

If E is symmetric, it is enough to note that condition (iv) is nothing but (i)
with θ = 1/2. �

4.3. Markovian property
The next issue is the Markovian property. First, we give a definition.

DEFINITION 4.1

A bilinear form E is called a semi-Dirichlet form if the associated semigroup is
Markovian. If E and its dual E ∗ are semi-Dirichlet forms, E is called a Dirichlet
form.

Let us give the necessary and sufficient conditions for which E becomes a semi-
Dirichlet form.

THEOREM 4.4

The following two conditions are equivalent to each other.

(i) {Tt} is Markovian.
(ii) For any f ∈ Dom(E ), we have f ∧ 1 ∈ Dom(E ) and

(4.13) E (f ∧ 1, f − f ∧ 1) ≥ 0.

We may change f ∧ 1 with f+.

Proof
This is clear from Theorem 4.1. �

We also have the following theorem.

THEOREM 4.5

Let γ ∈ R and θ ∈ [0,1) be given. Then the following three conditions are equiva-
lent to each other.

(i) {Tt} is Markovian and {e−γtTt} is a contraction semigroup.
(ii) For any f ∈ Dom(E ), we have f ∧ 1 ∈ Dom(E ) and

(4.14) E
(
(1 − θ)f + θ(f ∧ 1), f − f ∧ 1

)
≥ −γ(1 − θ)‖f − f ∧ 1‖2

2.
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(iii) For any f ∈ Dom(E ), we have f ∧ 1 ∈ Dom(E ), and for any η ∈ [0,1),

(4.15) E
(
(1 − η)f + η(f ∧ 1), f − f ∧ 1

)
≥ −γ(1 − η)‖f − f ∧ 1‖2

2.

If, in addition, E is symmetric, then the following condition is equivalent to
the others.

(iv) For any f ∈ Dom(E ), we have f ∧ 1 ∈ Dom(E ) and

(4.16) E (f ∧ 1, f ∧ 1) ≤ E (f, f) + γ‖f − f ∧ 1‖2
2.

We may replace f ∧ 1 with f+ ∧ 1 in the equations above.

Proof
We need to show only that (ii) ⇒ (i). Others easily follow from Theorem 4.1.

From Theorem 4.1, we can have that {Tt} is Markovian. To show the con-
traction property, taking f/c (c > 0) in (4.14), we have

E
(
(1 − θ)f + θ(f ∧ c), f − f ∧ c

)
≥ −γ(1 − θ)‖f − f ∧ c‖2

2.

Letting c → 0, we have

E
(
(1 − θ)f + θ(f ∧ 0), f − f ∧ 0

)
≥ −γ(1 − θ)‖f − f ∧ 0‖2.

Now, by Theorem 4.3, we can get that {e−γtTt} is contractive. �

In Ma and Röckner [6], E is called a semi-Dirichlet form if for any f ∈ Dom(E ),
we have f+ ∧ 1 ∈ Dom(E ) and

(4.17) E (f + f+ ∧ 1, f − f+ ∧ 1) ≥ 0.

As was shown, this condition leads to the contraction property of the semi-
group, and so the noncontractive semigroups are excluded. They considered only
contraction semigroups, and so there is no problem, but if we include noncon-
tractive semigroups, it seems better to adopt the definition that was given in
Definition 4.1.

Last, we give an example of a Markovian semigroup which does not satisfy
the contraction property. We take R to be a state space with a reference measure
μ(dx) = (1/

√
2π)e−x2/2 dx. On this space, the Ornstein-Uhlenbeck operator L =

d
dx2 − x d

dx is associated with the following symmetric Dirichlet form:∫
R

df

dx

dg

dx
dμ(x).

We consider an operator of the form L + b with b = 2β d
dx . The Dirichlet form E

associated with L + b is given by

E (f, g) =
∫

R

( df

dx

dg

dx
− 2β

df

dx
g(x)

)
dμ(x).

If −1/4 < β < 1/4, we can show that this form satisfies the sector condition; to
be precise, we can find γ > 0 such that Eγ satisfies the sector condition. We can
also check that it is a semi-Dirichlet form. We are now interested in whether E
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is nonnegative; that is, E (f, f) ≥ 0. Note that

E (f, f) =
∫

R

{( df

dx

)2

− 2βx
df

dx
f(x)

}
dμ(x)

=
∫

R

( df

dx

)2

dμ(x) −
∫

R

βx
d

dx
f(x)2

1√
2π

e−x2/2 dx

=
∫

R

( df

dx

)2

dμ(x) +
∫

R

f(x)2
d

dx

(
βx

1√
2π

e−x2/2
)

dx

=
∫

R

( df

dx

)2

dμ(x) +
∫

R

f(x)2(β − βx2)dμ(x)

=
∫

R

(−L + β − βx2)f(x)f(x)dμ(x).

Let us find an eigenvalue of L + βx2 − β. We search for an eigenfunction of the
form eαx2

:

(L + βx2 − β)eαx2
=

{
(4α2 − 2α)x2 + 2α

}
eαx2

+ (βx2 − β)eαx2

= (4α2 − 2α + β)x2eαx2
+ (2α − β)eαx2

.

Hence if 4α2 − 2α+β = 0, then eαx2
is an eigenfunction of the eigenvalue 2α − β.

Solving 4α2 − 2α + β = 0, we have α = (1 ±
√

1 − 4β)/4, but we should take
α = (1 −

√
1 − 4β)/4 to ensure that eαx2 ∈ L2(μ). The eigenvalue is

2α − β =
1 −

√
1 − 4β − 2β

2
,

which is positive if β 
= 0. Therefore −L − βx2 +β has a negative eigenvalue, and
so the associated semigroup does not satisfy the contraction property.

4.4. L1-contraction property
From Theorem 4.1, the condition for the L1-contraction and the positivity-
preserving property is given as

(4.18) E
(
(f − 1)+, f ∧ 1

)
≥ 0.

On the other hand, the Markovian property was characterized by E (f ∧ 1, (f −
1)+) ≥ 0, which is exactly the dual of (4.18). So one follows from the other.

If we introduce the parameter θ, then the L1-contraction and the positivity-
preserving property are characterized by

E
(
f − θ(f ∧ 1), f ∧ 1

)
≥ −γ(1 − θ)‖f ∧ 1‖2

2

and the Markovian property is characterized by

E
(
f − θ(f − 1)+, (f − 1)+

)
≥ −γ(1 − θ)‖(f − 1)+‖2

2.

In this case, the duality is not so clear.



670 Ichiro Shigekawa

4.5. Excessive functions
Let us consider the excessive functions. Recall that a nonnegative function u is
called α-excessive if

(4.19) e−αtTtu ≤ u, ∀t ≥ 0.

Let us give a characterization in terms of bilinear form. We remark that these
results are basically known (see, e.g., Ma, Overbeck, and Röckner [5]).

THEOREM 4.6

The following two conditions are equivalent to each other:

(i) u is α-excessive, and {Tt} is positivity preserving;
(ii) u ≥ 0, and for any f ∈ Dom(E ), we have f ∧ u ∈ Dom(E ) and

(4.20) Eα(f ∧ u, f − f ∧ u) ≥ 0.

Proof
(i) ⇒ (ii) This follows from Theorem 4.1.
(ii) ⇒ (i) This also follows from Theorem 4.1, but we need to show that {Tt} is
positivity preserving. We take λ ≥ α large enough so that Eλ is nonnegative. We
may assume that u is λ-excessive. We take f/c in (4.20). Then

Eλ(f ∧ cu, f − f ∧ cu) ≥ 0.

Letting c ↓ 0, we have that f ∧ cu converges to f ∧ 0 weakly in Eλ. Hence

Eλ(f ∧ 0, f ∧ 0) ≤ lim inf
c→0

Eλ(f ∧ cu, f ∧ cu)

≤ lim inf
c→0

Eλ(f ∧ cu, f)

= Eλ(f ∧ 0, f).

This means that Eλ(f+, f−) ≤ 0, and by using Theorem 4.2, we can have that
{Tt} is positivity preserving. �

The following theorem can be proved similarly.

THEOREM 4.7

Let γ ∈ R and θ ∈ [0,1) be given. Then the following three conditions are equiva-
lent to each other:

(i) u is α-excessive, and {e−(α+γ)tTt} is a positivity-preserving contraction
semigroup;

(ii) for any f ∈ Dom(E ), we have f ∧ u ∈ Dom(E ) and

(4.21) Eα

(
(1 − θ)f + θ(f ∧ u), f − f ∧ u

)
≥ −γ(1 − θ)‖f − f ∧ u‖2;
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(iii) for any f ∈ Dom(E ), we have f ∧ u ∈ Dom(E ) and for any η ∈ [0,1),

(4.22) Eα

(
(1 − η)f + η(f ∧ u), f − f ∧ u

)
≥ −γ(1 − η)‖f − f ∧ u‖2.

4.6. Invariant sets
A set B is called weakly invariant if

1BcTt1B = 0, ∀t ≥ 0.

In this case, we have the following criterion.

THEOREM 4.8

The following three conditions are equivalent to each other:

(i) B is an invariant set;
(ii) for any f ∈ Dom(E ), we have 1Bf ∈ Dom(E ) and

(4.23) E (1Bf,1Bcf) ≥ 0;

(iii) for any f ∈ Dom(E ), we have 1Bf ∈ Dom(E ) and

(4.24) E (1Bf,1Bcf) = 0.

Proof
The equivalence of (i) and (ii) follows from Theorem 4.1; (iii) ⇒ (ii) is clear.
Let us show that (i) ⇒ (iii). By (ii), we have 1Bf ∈ Dom(E ). Further, by the
invariance of B, (

(Tt − I)1Bf,1Bcf
)
= 0.

Divide both hands by t, and letting t ↓ 0, we easily get (4.24). �
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[6] Z.-M. Ma and M. Röckner, Introduction to the Theory of (Nonsymmetric)

Dirichlet Forms, Springer, Berlin, 1992.



672 Ichiro Shigekawa

[7] E. Ouhabaz, Invariance of closed convex sets and domination criteria for

semigroups, Potential Anal. 5 (1996), 611–625.

Department of Mathematics, Graduate School of Science, Kyoto University,

Kyoto 606-8502, Japan; ichiro@math.kyoto-u.ac.jp


	Introduction
	Semigroups that preserve a convex set in a Banach space
	Examples of convex set-preserving semigroups
	Positivity-preserving property
	Markovian property
	L1-contraction property
	Excessive functions
	Invariant sets

	Convex set-preserving semigroups in Hilbert space
	Convex set-preserving property
	Positivity-preserving property
	Markovian property
	L1-contraction property
	Excessive functions
	Invariant sets

	References
	Author's Addresses

