
Global solutions to quasi-linear hyperbolic
systems of viscoelasticity

Priyanjana M. N. Dharmawardane, Tohru Nakamura, and Shuichi Kawashima

Abstract In the present paper, we study a large-time behavior of solutions to a quasi-
linear second-order hyperbolic system which describes a motion of viscoelastic materi-
als. The system has dissipative properties consisting of a memory term and a damping
term. It is proved that the solution exists globally in time in the Sobolev space, provided
that the initial data are sufficiently small.Moreover, we show that the solution converges
to zero as time tends to infinity. The crucial point of the proof is to derive uniformapriori
estimates of solutions by using an energy method.

1. Introduction

The present paper is concerned with an asymptotic behavior of solutions to the
following nonlinear second-order hyperbolic system:

(1.1) utt −
n∑

j=1

bj(∂xu)xj +
n∑

j,k=1

Kjk ∗ uxjxk
+ Lut = 0.

We prescribe an initial condition for (1.1) as

(1.2) u(x,0) = u0(x), ut(x,0) = u1(x).

In the system (1.1), u is an unknown m-vector function of x = (x1, . . . , xn) ∈ R
n

and t ≥ 0; bj(v) are smooth m-vector functions of v = (v1, . . . , vn) ∈ R
mn, where

vj ∈ R
m corresponds to uxj ; Kjk(t) are smooth m × m real matrix functions

of t ≥ 0 satisfying Kjk(t)T = Kkj(t) for each j, k, and t; L is an m × m real
symmetric constant matrix; and the symbol “∗” denotes the convolution with
respect to t, that is,

Kjk ∗ uxjxk
=

∫ t

0

Kjk(t − τ)uxjxk
(τ)dτ.

We assume that the system (1.1) has a free energy φ(v) which is a smooth
scalar function of v = (v1, . . . , vn) satisfying

(1.3) bj(v) = Dvj φ(v),
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where Dvj φ(v) denotes the Fréchet derivative of φ(v) with respect to vj . We
define m × m real matrix functions by

Bjk(v) := Dvk
bj(v) = Dvk

Dvj φ(v).

Notice that Bjk(v)T = Bkj(v) holds for each j, k, and v ∈ R
mn. Moreover, with-

out loss of generality, we assume that

φ(0) = 0, bj(0) = 0 for j = 1, . . . , n.

Then, by virtue of the Taylor theorem, we see that

(1.4) φ(v) =
1
2

∑
j,k

〈Bjk(0)vj , vk 〉 + O(|v|3)

for v = (v1, . . . , vn) ∈ R
mn.

We employ the following symbols of the differential operators associated with
(1.1):

(1.5) Bω(v) :=
∑
j,k

Bjk(v)ωjωk, Kω(t) :=
∑
j,k

Kjk(t)ωjωk

for ω = (ω1, . . . , ωn) ∈ Sn−1. We see that Bω(v) and Kω(t) are real symmetric
matrices. Using these symbols, we impose the following structural conditions.

[A1] Bω(0) is positive definite for each ω ∈ Sn−1, while Kω(t) is nonnegative
definite for each ω ∈ Sn−1 and t ≥ 0, and L is real symmetric and nonnegative
definite.

[A2] Bω(0) − Kω(t) is positive definite for each ω ∈ Sn−1 uniformly in t ≥ 0,
where Kω(t) :=

∫ t

0
Kω(s)ds.

[A3] Kω(0) + L is (real symmetric and) positive definite for each ω ∈ Sn−1.
[A4] Kω(t) is smooth in t ≥ 0 and decays exponentially as t → ∞. Pre-

cisely, there are positive constants C0 and c0 such that −C0Kω(t) ≤ K̇ω(t) ≤
−c0Kω(t) and −C0Kω(t) ≤ K̈ω(t) ≤ C0Kω(t) for ω ∈ Sn−1 and t ≥ 0, where
K̇ω(t) := ∂tKω(t) and K̈ω(t) := ∂2

t Kω(t).

There are many mathematical results related to the viscoelastic body. It is
well known that the solution to a single equation with a damping term behaves
like that of a heat equation as t → ∞. For the case when the equation has a
memory term and does not have a damping term, it was shown in [2], [8], and
[9] that the solution also verifies a standard decay estimate. In the paper [10],
Rivera, Naso, and Vegni studied a decay property of the regularity-loss type and
showed that the solution verifies a weak decay estimate. This kind of the decay
property of the regularity-loss type was also studied in [3] for a hyperbolic-elliptic
system of a radiating gas and in [5] for the dissipative Timoshenko system. Dhar-
mawardane, Rivera, and Kawashima considered a linearized problem of (1.1) in
[1] and obtained a decay property of the solution by using an energy method in
the Fourier space. They also treated the regularity-loss type. Thus the paper
[1] generalized the previous results in [2], [7]–[10] for a single equation of vis-
coelasticity. For a nonlinear problem, Kawashima and Shibata [6] proved the
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global existence and exponential stability of small solutions for viscoelasticity in
a bounded domain. The main aim of the present paper is to show the global
existence of a solution to the nonlinear system (1.1) of which the dissipative
property is obtained by combining a memory term and a damping term.

The contents of the present paper are as follows. In Section 2 we give some
preliminary estimates for convolution-type operators of matrices with vectors,
which will be used to estimate the memory term. In Section 3 we give the main
theorem of the present paper, which shows the global existence of solutions to the
problem (1.1) and (1.2). The proof is mainly based on deriving a priori estimates
of solutions by using an energy method in an L2-framework. This is discussed in
Section 4.

2. Preliminaries

In the present section we give some standard notation and important results for
convolution-type operators of matrices with vectors.

We denote by ∂k
xu the totality of all kth-order derivatives of u with respect

to x. We denote by û = F [u] the Fourier transform of a function u:

û(ξ) = F [u](ξ) := (2π)−n/2

∫
Rn

u(x)e−iξx dx.

For 1 ≤ p ≤ ∞, we denote by Lp = Lp(Rn) the standard Lebesgue space on R
n

with the norm ‖ · ‖Lp . For a nonnegative integer s, Hs = Hs(Rn) denotes the
sth-order Sobolev space on R

n in the L2-sense, equipped with the norm ‖ · ‖Hs .
Throughout the present paper, c and C denote generic positive constants.

Let X m be the totality of m × m real matrices, and let 〈 ·, · 〉 be the standard
inner product in C

m. We introduce the operator norm of A ∈ X m by

|A| := sup
ψ∈C

m

ψ �=0

|Aψ|
|ψ| .

If A is real symmetric and nonnegative definite, then

(2.1) |Aψ|2 ≤ |A| 〈Aψ,ψ〉

for ψ ∈ Cm. Let A(t) ∈ X m and ψ(t) ∈ Cm. We define the convolution A ∗ ψ by

(A ∗ ψ)(t) :=
∫ t

0

A(t − τ)ψ(τ)dτ.

We also introduce the related operator and the corresponding quadratic form, as
in [9] and [10], defined by

(A � ψ)(t) :=
∫ t

0

A(t − τ)
(
ψ(t) − ψ(τ)

)
dτ,

A[ψ, ζ](t) :=
∫ t

0

〈
A(t − τ)

(
ψ(t) − ψ(τ)

)
, ζ(t) − ζ(τ)

〉
dτ
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for ψ(t), ζ(t) ∈ C
m. Using the above definitions, we obtain the following relations.

The convolution A ∗ ψ is related to A � ψ by

(2.2) A ∗ ψ = A ψ − A � ψ,

where A(t) :=
∫ t

0
A(s)ds. Direct computations show that

(2.3) (A ∗ ψ)t = A(0)ψ + Ȧ ∗ ψ = Aψ − Ȧ � ψ,

where Ȧ(t) := dA(t)/dt. In deriving the second equality in (2.3), we use (2.2)
and the relation Ȧ ∗ ψ = (A − A(0))ψ − Ȧ � ψ. Moreover, differentiating (2.3)
with respect to t, we have

(2.4) (A ∗ ψ)tt = A(0)ψt + (Ȧ ∗ ψ)t.

The following inequalities, which can be proved in a similar way to [1, Lemma 2.2],
play important roles to control the memory term in deriving a priori estimates.

LEMMA 2.1

Let ψ(t) ∈ C
m. Then we have

|Kω � ψ|2 ≤ CKω[ψ,ψ],(2.5)

|(Kω ∗ ψ)t|2 ≤ C(Kω[ψ,ψ] + 〈Kωψ,ψ〉).(2.6)

Proof
The inequality (2.5) immediately follows from [1, Lemmas 2.2, 2.3]. Indeed, using
(2.1) and the Hölder inequality as well as the exponentially decaying property of
Kω in condition [A4], we obtain

|(Kω � ψ)(t)| ≤
∫ t

0

∣∣Kω(t − τ)
(
ψ(t) − ψ(τ)

)∣∣dτ

≤
(∫ t

0

|Kω(s)| ds
)1/2

Kω[ψ,ψ](t)1/2 ≤ CKω[ψ,ψ](t)1/2.

In a similar computation, we also obtain

(2.7) |K̇ω � ψ|2 ≤ CKω[ψ,ψ].

To show (2.6), we use (2.1), the second equality in (2.3) and the inequalities (2.5)
and (2.7). Namely we have

|(Kω ∗ ψ)t|2 ≤ C(|Kωψ|2 + |K̇ω � ψ|2) ≤ C(Kω[ψ,ψ] + 〈Kωψ,ψ〉).

Therefore the proof of the lemma is complete. �

3. Global existence

In the present section, we give the main result on the global existence and asymp-
totic behavior of solutions to the problem (1.1) and (1.2). To this end, it is
convenient to introduce the following quantities QK , Q�

K , and Q�
K defined by

QK [∂xu] := Q�
K [∂xu] + Q�

K [∂xu],(3.1)
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Q�
K [∂xu] :=

∑
j,k

∫
Rn

Kjk[uxj , uxk
]dx, Q�

K [∂xu] :=
∑
j,k

∫
Rn

〈Kjkuxj , uxk
〉 dx.

The Plancherel theorem yields

(3.2) Q�
K [∂xu] =

∫
Rn

ξ

|ξ|2Kω[û, û]dξ, Q�
K [∂xu] =

∫
Rn

ξ

|ξ|2〈Kωû, û〉 dξ,

where ω := ξ/|ξ|. Notice that the nonnegativity of (3.2) follows from that of
Kω(t). We define the energy norm E(t) and the corresponding dissipation norm
D(t) by

E(t)2 := sup
0≤τ ≤t

‖(ut, ∂xu)(τ)‖2
Hs +

s∑
l=0

sup
0≤τ ≤t

QK [∂l+1
x u](τ),

D(t)2 := D̃(t)2 +
∫ t

0

‖(∂xut, ∂
2
xu)(τ)‖2

Hs−1 dτ,

D̃(t)2 :=
∫ t

0

‖(I − P )ut(τ)‖2
Hs dτ +

s∑
l=0

∫ t

0

QK [∂l+1
x u](τ)dτ,

where I and P are the identity matrix and the orthogonal projection matrix on
ker(L), respectively. Under the structural conditions [A1]–[A4] and a smallness
assumption on the initial data, the global existence of solutions to the problem
(1.1) and (1.2) in the Sobolev space Hs(Rn) is shown in Theorem 3.1, where s

is an integer satisfying s ≥ [n/2] + 2.

THEOREM 3.1 (GLOBAL EXISTENCE AND ASYMPTOTIC DECAY)

Suppose that all the conditions [A1]–[A4] are satisfied. Assume that u0 ∈ Hs+1

and u1 ∈ Hs for s ≥ [n/2] + 2, and put

E0 := ‖(u1, ∂xu0)‖Hs .

Then there is a positive constant δ0 such that if E0 ≤ δ0, then the problem (1.1)
and (1.2) has a unique global solution u(x, t) verifying

ut, ∂xu ∈ C([0, ∞);Hs).

The solution satisfies the uniform energy estimate

sup
t∈[0,∞)

‖(ut, ∂xu)(t)‖2
Hs +

∫ ∞

0

(
‖(∂xut, ∂

2
xu)(t)‖2

Hs−1 + ‖(I − P )ut(t)‖2
Hs

)
dt

(3.3)
≤ CE2

0 ,

where C is a positive constant. Moreover, the solution converges to zero as t → ∞
in the following sense:

(3.4) lim
t→∞

‖(∂j
xut, ∂

j+1
x u)(t)‖L∞ = 0,

where 0 ≤ j ≤ s − [n/2] − 2.
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The key to the proof of this global existence result is to combine a local existence
result summarized in Lemma 3.2 and the corresponding a priori estimates of
solutions in Proposition 3.3. The following lemma can be proved by applying the
theory in [4] for the solvability of quasi-linear second-order hyperbolic systems
since the memory term

∑
j,k Kjk ∗ uxjxk

in (1.1) is regarded as a lower-order
term. Thus we omit the details of the proof.

LEMMA 3.2 (LOCAL EXISTENCE)

Suppose that the matrix Bω(v) in (1.5) is real symmetric and positive definite for
each v ∈ R

mn and ω ∈ Sn−1, and suppose that Kω(t) is smooth in t ≥ 0. Assume
that u0 ∈ Hs+1 and u1 ∈ Hs for s ≥ [n/2] + 2. Then there is a positive constant
T0 depending only on E0 such that the problem (1.1) and (1.2) admits a unique
solution u(x, t) with

ut, ∂xu ∈ C([0, T0];Hs),

which satisfies the estimate

‖(ut, ∂xu)(t)‖Hs ≤ CE0

for t ∈ [0, T0], where C is a positive constant depending on E0.

The a priori estimates of solution u to the problem (1.1) and (1.2) are given as
follows.

PROPOSITION 3.3 (A PRIORI ESTIMATE)

Assume the same conditions as in Theorem 3.1. Let u(x, t) be a solution to the
problem (1.1) and (1.2) satisfying

ut, ∂xu ∈ C([0, T ];Hs)

for a certain T > 0. Then there is a positive constant δ1 independent of T such
that if E(T ) ≤ δ1, then the solution verifies the following uniform estimate:

(3.5) E(t)2 + D(t)2 ≤ CE2
0

for an arbitrary t ∈ [0, T ], where C is a positive constant independent of T .

The proofs of Theorem 3.1 and Proposition 3.3 are given in Section 4. In deriv-
ing the a priori estimate (3.5), we utilize the following inequalities to control
nonlinear terms.

LEMMA 3.4

Let 1 ≤ p, q, r ≤ ∞ and 1/p = 1/q + 1/r. Then we have

‖∂k
x(uv)‖Lp ≤ C(‖u‖Lq ‖∂k

xv‖Lr + ‖v‖Lq ‖∂k
xu‖Lr) for k ≥ 0,(3.6)

‖[∂k
x , u]∂xv‖Lp ≤ C(‖∂xu‖Lq ‖∂k

xv‖Lr + ‖∂xv‖Lq ‖∂k
xu‖Lr) for k ≥ 1,(3.7)

where [∂k
x , u]v := ∂k

x(uv) − u∂k
xv is a commutator.
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LEMMA 3.5

Let f(u) be a smooth function of u. Assume that ‖u‖L∞ ≤ M for a certain
constant M > 0. Then we have

(3.8) ‖∂k
xf(u)‖Lp ≤ C(M)(1 + ‖u‖L∞ )k−1‖∂k

xu‖Lp

for 1 ≤ p ≤ ∞ and k ≥ 1, where C(M) is a constant depending on M .

These inequalities for nonlinear terms are well known and proved in [3], for
instance, so that we omit the proof. We also use the following inequalities to
estimate linear terms arising from the memory term.

LEMMA 3.6

Let u be a function satisfying ∂xu ∈ C([0, T ];Hs), and let f ∈ H1. Then we have∣∣∣∑
j,k

∫
Rn

〈Kjk � uxj , fxk
〉 dx

∣∣∣ ≤ C‖∂xf ‖L2Q�
K [∂xu]1/2,(3.9)

∣∣∣∑
j,k

∫
Rn

〈(Kjk ∗ uxj )t, fxk
〉 dx

∣∣∣ ≤ C‖∂xf ‖L2QK [∂xu]1/2,(3.10)

∣∣∣∑
j,k

∫
Rn

〈(Kjk ∗ uxjxk
)t, f 〉 dx

∣∣∣ ≤ C‖f ‖L2QK [∂2
xu]1/2.(3.11)

Proof
Using the Plancherel theorem and the Schwarz inequality, we have∣∣∣∑

j,k

∫
Rn

〈Kjk � uxj , fxk
〉 dx

∣∣∣ =
∣∣∣
∫

Rn
ξ

|ξ|2〈Kω � û, f̂ 〉 dξ
∣∣∣

(3.12)

≤ ‖∂xf ‖L2

(∫
Rn

ξ

|ξ|2|Kω � û|2 dξ
)1/2

.

Moreover, the inequality (2.5) and the property (3.2) of Q�
K yield

(3.13)
∫

Rn
ξ

|ξ|2|Kω � û|2 dξ ≤ C

∫
Rn

ξ

|ξ|2Kω[û, û]dξ = CQ�
K [∂xu].

Substituting (3.13) in (3.12) gives the inequality (3.9).
Next we show (3.10). From the inequality (2.6) and properties (3.1) and

(3.2) of QK , we have∫
Rn

ξ

|ξ|2|(Kω ∗ û)t|2 dξ ≤ C

∫
Rn

ξ

|ξ|2(Kω[û, û] + 〈Kωû, û〉)dξ = CQK [∂xu],

which immediately yields the inequality (3.10). To show (3.11), we use (2.6) and
the Plancherel theorem to obtain∣∣∣∑

j,k

∫
Rn

〈(Kjk ∗ uxjxk
)t, f 〉 dx

∣∣∣ =
∣∣∣
∫

Rn
ξ

|ξ|2〈(Kω ∗ û)t, f̂ 〉 dξ
∣∣∣

(3.14)
≤ C‖f ‖L2(I + J)1/2,
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where

I :=
∫

Rn
ξ

|ξ|4〈Kωû, û〉 dξ, J :=
∫

Rn
ξ

|ξ|4Kω[û, û]dξ.

We compute I as

I =
∑
j,k,l

∫
Rn

ξ

〈Kjkξjξlû, ξkξlû〉 dξ =
∑
j,k

∫
Rn

〈Kjk∂xuxj , ∂xuxk
〉 dx = Q�

K [∂2
xu].

In a similar computation, we see that J = Q�
K [∂2

xu]. Substituting these equalities
of I and J in (3.14) yields the inequality (3.11). Therefore we complete the
proof. �

REMARK 3.7

By similar computations as in Lemma 3.6, we have

(3.15)
∣∣∣∑

j,k

∫
Rn

〈(K̇jk ∗ uxj )t, fxk
〉 dx

∣∣∣ ≤ C‖∂xf ‖L2QK [∂xu]1/2,

which is obtained by replacing Kjk by K̇jk in (3.10) and using assumption [A4].

4. Proof of a priori estimates

This section is devoted to showing the proof of Proposition 3.3. Namely, we
obtain the a priori estimate (3.5), provided that E(t) is sufficiently small. To do
this, we employ N(t) defined by

N(t) := sup
0≤τ ≤t

‖(∂xu,∂xut, ∂
2
xu)(τ)‖L∞

and obtain the energy estimates under the smallness assumption on N(t). The
proof of Proposition 3.3 is divided into several steps.

LEMMA 4.1

Assume the same conditions as in Proposition 3.3. Then we have

‖(ut, ∂xu)(t)‖2
L2 + QK [∂xu](t) +

∫ t

0

(
‖(I − P )ut(τ)‖2

L2 + QK [∂xu](τ)
)
dτ

(4.1)
≤ C‖(u1, ∂xu0)‖2

L2 .

Proof
Take the inner product of (1.1) with ut to get

(4.2) 〈utt, ut〉 −
〈∑

j

bj(∂xu)xj , ut

〉
+

〈∑
j,k

Kjk ∗ uxjxk
, ut

〉
+ 〈Lut, ut〉 = 0.

By using the property (1.3) of the free energy φ, we rewrite the second term on
the left-hand side of (4.2) as

(4.3) −
〈∑

j

bj(∂xu)xj , ut

〉
= −

∑
j

{〈bj(∂xu), ut〉 }xj + φ(∂xu)t.
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By straightforward computations using (2.2), we see that the third term on the
left-hand side of (4.2) is rewritten to be〈∑

j,k

Kjk ∗ uxjxk
, ut

〉
=

1
2

{
−

∑
j,k

〈Kjkuxj , uxk
〉 +

∑
j,k

Kjk[uxj , uxk
]
}

t

+
∑
j,k

{ 〈Kjk ∗ uxj , ut〉}xk
− 1

2

∑
j,k

K̇jk[uxj , uxk
] +

1
2

∑
j,k

〈Kjkuxj , uxk
〉.

(4.4)

Substituting (4.3) and (4.4) in (4.2) yields

(4.5) ∂tE (0)
1 +

∑
k

∂xk
F (0)

1k + D(0)
1 = 0,

where

E (0)
1 :=

1
2

{
|ut|2 + 2φ(∂xu) −

∑
j,k

〈Kjkuxj , uxk
〉 +

∑
j,k

Kjk[uxj , uxk
]
}

,

F (0)
1k := −〈bk(∂xu), ut〉 +

∑
j

〈Kjk ∗ uxj , ut〉,

D(0)
1 := 〈Lut, ut〉 +

1
2

{
−

∑
j,k

K̇jk[uxj , uxk
] +

∑
j,k

〈Kjkuxj , uxk
〉
}

.

We next show that E (0)
1 satisfies

(4.6)
∫

Rn

E (0)
1 dx ≥ c(‖(ut, ∂xu)‖2

L2 + Q�
K [∂xu]),

provided that ‖∂xu‖L∞ is sufficiently small. To show (4.6), we use (1.4) and the
assumption [A2] to obtain∫

Rn

(
2φ(∂xu) −

∑
j,k

〈Kjkuxj , uxk
〉
)

dx

=
∫

Rn

∑
j,k

〈(Bjk(0) − Kjk)uxj , uxk
〉 dx

+
∫

Rn

(
2φ(∂xu) −

∑
j,k

〈Bjk(0)uxj , uxk
〉
)

dx

≥ (c − C‖∂xu‖L∞ )‖∂xu‖2
L2 ,

which yields the lower estimate (4.6) using the definition of Q�
K . The assumptions

[A1] and [A4] give the lower estimate of the dissipative term as

(4.7)
∫

Rn

D(0)
1 dx ≥ c(‖(I − P )ut‖2

L2 + QK [∂xu]).

Therefore, integrating (4.5) over R
n × (0, t), substituting (4.6) and (4.7) in the

resultant inequality, and using a simple inequality

QK [∂xu] ≤ C(‖∂xu‖2
L2 + Q�

K [∂xu]),
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which follows from the boundedness of Kω , we obtain the desired estimate (4.1).
�

We next derive the energy inequality for derivatives ∂l
xu for 1 ≤ l ≤ s.

LEMMA 4.2

Assume the same conditions as in Proposition 3.3. Then we have

‖(∂l
xut, ∂

l+1
x u)(t)‖2

L2 + QK [∂l+1
x u](t)

+
∫ t

0

(
‖(I − P )∂l

xut(τ)‖2
L2 + QK [∂l+1

x u](τ)
)
dτ(4.8)

≤ CE2
0 + CN(t)D(t)2

for an arbitrary integer l satisfying 1 ≤ l ≤ s.

Proof
Applying ∂l

x to (1.1) and using the fact bj(∂xu)xj =
∑

k Bjk(∂xu)uxjxk
, we have

∂l
xutt −

∑
j,k

Bjk(∂xu)∂l
xuxjxk

+
∑
j,k

Kjk ∗ ∂l
xuxjxk

+ L∂l
xut = f (l),(4.9)

f (l) :=
∑
j,k

[∂l
x,Bjk(∂xu)]uxjxk

.

Taking the inner product of (4.9) with ∂l
xut yields

〈∂l
xutt, ∂

l
xut〉 −

〈∑
j,k

Bjk(∂xu)∂l
xuxjxk

, ∂l
xut

〉
+

〈∑
j,k

Kjk ∗ ∂l
xuxjxk

, ∂l
xut

〉

+ 〈L∂l
xut, ∂

l
xut〉 = 〈f (l), ∂l

xut〉.
(4.10)

The second term on the left-hand side of (4.10) is computed using the following
equality:

−
〈∑

j,k

Bjk(∂xu)uxjxk
, ut

〉
=

1
2

∑
j,k

{〈Bjk(∂xu)uxj , uxk
〉 }t

−
∑
j,k

{〈Bjk(∂xu)uxj , ut〉 }xk

− 1
2

∑
j,k

〈Bjk(∂xu)tuxj , uxk
〉

+
∑
j,k

〈Bjk(∂xu)xk
uxj , ut〉.
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The third term on the left-hand side of (4.10) is handled in the same way as in
Lemma 4.1 by using the equality (4.4). Thus the equality (4.9) is reduced to

(4.11) ∂tE (l)
1 +

∑
k

∂xk
F (l)

1k + D(l)
1 = R(l)

1 ,

where we put

E (l)
1 :=

1
2

{
|∂l

xut|2 +
∑
j,k

〈(
Bjk(∂xu) − Kjk

)
∂l

xuxj , ∂
l
xuxk

〉

+
∑
j,k

Kjk[∂l
xuxj , ∂

l
xuxk

]
}

,

F (l)
1k := −

∑
j

〈Bjk(∂xu)∂l
xuxj , ∂

l
xuxk

〉 +
∑

j

〈Kjk ∗ ∂l
xuxj , ∂

l
xut〉,

D(l)
1 := 〈L∂l

xut, ∂
l
xut〉 +

1
2

{
−

∑
j,k

K̇jk[∂l
xuxj , ∂

l
xuxk

] +
∑
j,k

〈Kjk∂l
xuxj , ∂

l
xuxk

〉
}

,

R(l)
1 := 〈f (l), ∂l

xut〉 +
1
2

∑
j,k

〈Bjk(∂xu)t∂
l
xuxj , ∂

l
xuxk

〉

−
∑
j,k

〈Bjk(∂xu)xk
∂l

xuxj , ∂
l
xut〉.

By computations similar to Lemma 4.1, we have the estimates from below for
E (l)
1 and D(l)

1 as ∫
Rn

E (l)
1 dx ≥ c

(
‖(∂l

xut, ∂
l+1
x u)‖2

L2 + Q�
K [∂l+1

x u]
)
,(4.12)

∫
Rn

D(l)
1 dx ≥ c

(
‖(I − P )∂l

xut‖2
L2 + QK [∂l+1

x u]
)
.(4.13)

We use inequalities (3.6)–(3.8) to get the estimate for nonlinear terms∫
Rn

R(l)
1 dx

≤ C‖f (l)‖L2 ‖∂l
xut‖L2 + C‖∂xut‖L∞ ‖∂l+1

x u‖2
L2

(4.14)
+ C‖∂2

xu‖L∞ ‖∂l+1
x u‖L2 ‖∂l

xut‖L2

≤ C‖(∂xut, ∂
2
xu)‖L∞ ‖(∂l

xut, ∂
l+1
x u)‖2

L2 ,

where we have used the fact

‖f (l)‖L2 ≤ C‖∂2
xu‖L∞ ‖∂l+1

x u‖L2 .

Integrating (4.11) over R
n × (0, t) and substituting the estimates (4.12)–(4.14) in

the resultant equality, we obtain the desired inequality (4.8). �

Summing up (4.8) for l = 1, . . . , s and adding (4.1) to the resultant inequality, we
have the basic energy inequality (4.15) below.
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COROLLARY 4.3

Assume the same conditions as in Proposition 3.3. Then we have

(4.15) E(t)2 + D̃(t)2 ≤ CE2
0 + CN(t)D(t)2.

We next obtain the estimate for the dissipative term ∂xut.

LEMMA 4.4

Assume the same conditions as in Proposition 3.3. For an arbitrary constant
λ > 0, we have∫ t

0

‖∂xut(τ)‖2
Hs−1 dτ ≤ CE2

0 + CN(t)D(t)2

(4.16)

+ λ

∫ t

0

‖∂2
xu(τ)‖2

Hs−1 dτ + CλD̃(t)2,

where Cλ is a positive constant depending on λ.

Proof
Let l be an integer satisfying 0 ≤ l ≤ s − 1. Taking the inner product of (4.9)
with

∑
j,k(Kjk ∗ ∂l

xuxjxk
)t and using the equality

∑
j,k

〈utt, (Kjk ∗ uxjxk
)t〉

=
∑
j,k

{
〈utt, (Kjk ∗ uxj )t〉

}
xk

−
∑
j,k

{
〈uxkt, (Kjk ∗ uxj )t〉

}
t

+
∑
j,k

〈uxkt, (Kjk ∗ uxj )tt〉

=
∑
j,k

{
〈utt, (Kjk ∗ uxj )t〉

}
xk

−
∑
j,k

{
〈uxkt, (Kjk ∗ uxj )t〉

}
t

+
∑
j,k

〈uxkt,K
jk(0)uxjt + (K̇jk ∗ uxj )t〉,

which follows from (2.4), we have the second energy equality as

(4.17) ∂tE (l)
2 +

∑
k

∂xk
F (l)

2k + D(l)
2 = M(l)

2 + R(l)
2 ,

where

E (l)
2 :=

1
2

∣∣∣∑
j,k

Kjk ∗ ∂l
xuxjxk

∣∣∣2 −
∑
j,k

〈(Kjk ∗ ∂l
xuxj )t, ∂

l
xuxkt〉,

F (l)
2k :=

∑
j

〈(Kjk ∗ ∂l
xuxj )t, ∂

l
xutt + L∂l

xut − f (l)〉,

D(l)
2 :=

∑
j,k

〈(
Kjk(0) + L

)
∂l

xuxjt, ∂
l
xuxkt

〉
,
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M(l)
2 := −

∑
j,k

〈(K̇jk ∗ ∂l
xuxj )t, ∂

l
xuxkt〉

+
〈∑

j,k

(Kjk ∗ ∂l
xuxjxk

)t,
∑
j,k

Bjk(∂xu)∂l
xuxjxk

〉

+
∑
j,k

〈(Kjk ∗ ∂l
xuxj )t + ∂l

xuxjt,L∂l
xuxkt〉,

R(l)
2 := −

∑
j,k

〈(Kjk ∗ ∂l
xuxj )t, f

(l)
xk

〉.

The second term in E (l)
2 is estimated using (3.10) as

(4.18)
∣∣∣
∫

Rn

∑
j,k

〈(Kjk ∗ ∂l
xuxj )t, ∂

l
xuxkt〉 dx

∣∣∣ ≤ C(‖∂l+1
x ut‖2

L2 + QK [∂l+1
x u]).

The assumption [A3] gives the estimate for D(l)
2 from below:

(4.19)
∫

Rn

D(l)
2 dx ≥ c‖∂l+1

x ut‖2
L2 .

We next estimate each term in M(l)
2 . From (3.15), we have

∣∣∣
∫

Rn

∑
j,k

〈(K̇jk ∗ ∂l
xuxj )t, ∂

l
xuxkt〉 dx

∣∣∣ ≤ ε‖∂l+1
x ut‖2

L2 + CεQK [∂l+1
x u],

where ε > 0 is a constant and Cε > 0 is a constant depending on ε. The inequality
(3.11) yields the estimate of the second term in M(l)

2 as
∣∣∣
∫

Rn

〈∑
j,k

(Kjk ∗ ∂l
xuxjxk

)t,
∑
j,k

Bjk(∂xu)∂l
xuxjxk

〉
dx

∣∣∣

≤ λ‖∂l+2
x u‖2

L2 + CλQK [∂l+2
x u].

We estimate the third term in M(l)
2 by using (3.10) as

∣∣∣
∫

Rn

∑
j,k

〈(Kjk ∗ ∂l
xuxj )t + ∂l

xuxjt,L∂l
xuxkt〉 dx

∣∣∣

≤ C
(

‖(I − P )∂l+1
x ut‖2

L2 + QK [∂l+1
x u]

)
.

Combining the above three inequalities, we get the estimate for M(l)
2 as

∣∣∣
∫

Rn

M(l)
2 dx

∣∣∣ ≤ ε‖∂l+1
x ut‖2

L2 + λ‖∂l+2
x u‖2

L2

(4.20)
+ C‖(I − P )∂l+1

x ut‖2
L2 + CεQK [∂l+1

x u] + CλQK [∂l+2
x u].

Finally, we consider the nonlinear term R(l)
2 . Using the inequality

‖∂xf (l)‖L2 ≤ ‖f (l+1)‖L2 +
∑
j,k

‖∂xBjk(∂xu)∂l
xuxjxk

‖L2 ≤ C‖∂2
xu‖L∞ ‖∂l+2

x u‖L2
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and (3.10), we have∣∣∣
∫

Rn

R(l)
2 dx

∣∣∣ ≤ ‖∂xf (l)‖L2QK [∂l+1
x u]1/2

(4.21)
≤ C‖∂2

xu‖L∞ (‖∂l+2
x u‖2

L2 + QK [∂l+1
x u]).

Therefore, integrating (4.17) over R
n × (0, t), substituting the estimates (4.18)–

(4.21), and letting ε be suitably small, we have
∥∥∥∑

j,k

Kjk ∗ ∂l
xuxjxk

∥∥∥2

L2
+

∫ t

0

‖∂l+1
x ut‖2

L2 dτ ≤ CE2
0 + CN(t)D(t)2

+ λ

∫ t

0

‖∂l+2
x u‖2

L2 dτ + Cλ

∫ t

0

QK [∂l+2
x u]dτ

(4.22)
+ C(‖∂l+1

x ut‖2
L2 + QK [∂l+1

x u])

+ C

∫ t

0

(
‖(I − P )∂l+1

x ut‖2
L2 + QK [∂l+1

x u]
)
dτ.

Substituting the basic estimate (4.15) in the fifth and sixth terms on the right-
hand side of (4.22) and summing up the resultant inequality for l = 0, . . . , s − 1,
we obtain the desired estimate (4.16). �

We next show the estimate for the dissipative term ∂2
xu.

LEMMA 4.5

Assume the same conditions as in Proposition 3.3. Then we have

(4.23)
∫ t

0

‖∂2
xu(τ)‖2

Hs−1 dτ ≤ CE2
0 + CN(t)D(t)2 + C

∫ t

0

‖∂xut(τ)‖2
Hs−1 dτ.

Proof
Let l be an integer satisfying 0 ≤ l ≤ s − 1. Apply ∂l+1

x to (1.1) to get

∂l+1
x utt −

∑
j,k

Bjk(0)∂l+1
x uxjxk

+
∑
j,k

Kjk ∗ ∂l+1
x uxjxk

+ L∂l+1
x ut

(4.24)
=

∑
j

∂l+1
x gj(∂xu)xj ,

gj(∂xu) := bj(∂xu) −
∑

k

Bjk(0)uxk
.

Notice that gj(∂xu) = O(|∂xu|2). Taking the inner product of (4.24) with ∂l+1
x u

and using (2.2), we have

(4.25) ∂tE (l)
3 +

∑
k

∂xk
F (l)

3k + D(l)
3 = M(l)

3 + R(l)
3 ,

where we put

E (l)
3 := 〈∂l+1

x ut, ∂
l+1
x u〉 +

1
2

〈L∂l+1
x u,∂l+1

x u〉,
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F (l)
3k := −〈∂l+1

x bk(∂xu), ∂l+1
x u〉 −

∑
j

〈Kjk ∗ ∂l+1
x uxj , ∂

l+1
x u〉,

D(l)
3 :=

∑
j,k

〈
(Bjk(0) − Kjk)∂l+1

x uxj , ∂
l+1
x uxk

〉
,

M(l)
3 := |∂l+1

x ut|2 −
∑
j,k

〈Kjk � ∂l+1
x uxj , ∂

l+1
x uxk

〉,

R(l)
3 := −

∑
k

〈∂l+1
x gk(∂xu), ∂l+1

x uxk
〉.

The estimates for E (l)
3 and D(l)

3 are given by

(4.26)
∣∣∣
∫

Rn

E (l)
3 dx

∣∣∣ ≤ C‖(∂l+1
x ut, ∂

l+1
x u)‖2

L2 ,

∫
Rn

D(l)
3 dx ≥ c‖∂l+2

x u‖2
L2 .

In deriving the lower estimate for D(l)
3 , we have used the assumption [A2]. For

an arbitrary positive constant ε, by using (3.9), we have the estimate for M(l)
3

as

(4.27)
∣∣∣
∫

Rn

M(l)
3 dx

∣∣∣ ≤ ε‖∂l+2
x u‖2

L2 + Cε(‖∂l+1
x ut‖2

L2 + Q�
K [∂l+2

x u]).

The nonlinear term R(l)
3 satisfies

(4.28)
∣∣∣
∫

Rn

R(l)
3 dx

∣∣∣ ≤ C‖∂xu‖L∞ ‖∂l+2
x u‖2

L2

since we have the estimate for gk(∂xu) from Lemma 3.4 as

‖∂l+1
x gk(∂xu)‖L2 ≤ C‖∂xu‖L∞ ‖∂l+2

x u‖L2 .

Therefore, integrating (4.25) over Rn × (0, t), substituting (4.26)–(4.28), and let-
ting ε be suitably small, we get∫ t

0

‖∂l+2
x u‖2

L2 dτ ≤ CE2
0 + CN(t)D(t)2 + C

∫ t

0

‖∂l+1
x ut‖2

L2 dτ

(4.29)

+ C‖(∂l+1
x ut, ∂

l+1
x u)‖2

L2 + C

∫ t

0

Q�
K [∂l+2

x u]dτ.

We substitute (4.15) in the fourth and fifth terms on the right-hand side of (4.29)
and sum up the resultant inequality for l = 0, . . . , s − 1. These computations yield
the desired inequality (4.23). �

Proof of Proposition 3.3
We give the proof of the a priori estimate (3.5) by combining Corollary 4.3 and
Lemmas 4.4 and 4.5. Multiplying (4.23) by a positive constant α and adding the
resultant inequality to (4.16), we get

(1 − αC)
∫ t

0

‖∂xut‖2
Hs−1 dτ + (α − λ)

∫ t

0

‖∂2
xu‖2

Hs−1 dτ

(4.30)
≤ CE2

0 + CN(t)D(t)2 + CλD̃(t)2.
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We fix α to satisfy 1 − αC = 1/2 and let λ = α/2. Successively we substitute
(4.15) in the last term on the right-hand side of (4.30). These computations
yield

(4.31)
∫ t

0

‖(∂xut, ∂
2
xu)‖2

Hs−1 dτ ≤ CE2
0 + CN(t)D(t)2.

Combining (4.15) and (4.31), we have

E(t)2 + D(t)2 ≤ CE2
0 + CN(t)D(t)2.

Since N(t) ≤ CE(t) by the Sobolev inequality, we deduce the desired estimate
(3.5) by assuming a smallness condition on E(t). Therefore we complete the
proof of Proposition 3.3. �

Proof of Theorem 3.1
We finally show the proof of Theorem 3.1. The existence of the solution globally
in time is proved by combining the local existence result in Lemma 3.2 and the
a priori estimate (3.5) with a standard continuation argument. Moreover, we see
that the solution satisfies the estimate (3.5) for any t ≥ 0. Next we show the
asymptotic behavior (3.4). Let v := (ut, ∂xu), and let j be an integer satisfying
0 ≤ j ≤ s − s0 − 1, where s0 := [n/2]+1. From the Gagliardo-Nirenberg inequality
and (3.5), we have

‖∂j
xv(t)‖L∞ ≤ C‖∂j

xv(t)‖1−θ
L2 ‖∂j+s0

x v(t)‖θ
L2

(4.32)
≤ C‖∂j+s0

x v(t)‖θ
L2 , θ :=

n

2s0
.

Thus, to show (3.4), it suffices to show that

(4.33) I(t) := ‖∂j+s0
x v(t)‖2

L2 → 0 as t → ∞.

By straightforward computations from (3.5), under the condition j + s0 + 1 ≤ s,
we see that ∫ ∞

0

|I(t)| dt ≤ C,

∫ ∞

0

|I ′(t)| dt ≤ C,

which yield the convergence (4.33). Consequently, we complete the proof of
Theorem 3.1. �
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