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Abstract We construct an enlargement of the classifying space of mixed Hodge struc-
tures with polarized graded quotients by adding mixed Hodge theoretic version of
SL(2)-orbits. This space has a real analytic structure and a log structure with sign. The
SL(2)-orbit theorem in several variables for mixed Hodge structures can be understood
naturally with this space.
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L’impossible voyage aux points à l’infini
N’a pas fait battre en vain le coeur du géomètre

— translated by Luc Illusie

0. Introduction

This is part II of our series of articles in which we study degeneration of mixed
Hodge structures.

0.1.
We first review the case of pure Hodge structures. Let D be the classifying space
of polarized Hodge structures of given weight and given Hodge numbers, defined
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by Griffiths [G]. Let Ft ∈ D be a variation of polarized Hodge structure with
complex analytic parameter t = (t1, . . . , tn), t1 · · · tn �= 0, which degenerates when
t→ 0 = (0, . . . ,0). It is often asked how Ft and invariants of Ft, like Hodge metric
of Ft, and so on, behave when t→ 0. Usually, Ft diverges in D and invariants of
Ft also diverge.

There are two famous theorems concerning the degeneration of Ft, which are
roughly reviewed in Section 0.3:

(1) the nilpotent orbit theorem (see [Sc]),
(2) the SL(2)-orbit theorem (see [Sc], [CKS]).

In [KU2] and [KU3] (an announcement is given in [KU1]), we constructed
enlargements DSL(2) and DΣ of D, respectively. Roughly speaking, these the-
orems (1) and (2) are interpreted as in (1)′ and (2)′ below, respectively (see
[KU3]).

(1)′ (Ft mod Γ) ∈ Γ\D converges in Γ\DΣ, and asymptotic behaviors of
invariants of Ft are described by coordinate functions around the limit point on
Γ\DΣ.

(2)′ Ft ∈D converges in DSL(2), and asymptotic behaviors of invariants of
Ft are described by coordinate functions around the limit point on DSL(2) (see
Section 0.2).

Here in (1)′, Γ is the monodromy group of Ft which acts on D, and Σ is a
certain cone decomposition which is chosen suitably for Ft. The space Γ\DΣ is
a kind of toroidal partial compactification of the quotient space Γ\D and has a
kind of complex analytic structure. The space DSL(2) has a kind of real analytic
structure. For the study of asymptotic behaviors of real analytic objects such as
Hodge metrics, DSL(2) is a nice space in which to work.

0.2.
Now let D be the classifying space of mixed Hodge structures whose graded
quotients for the weight filtrations are polarized, as defined in [U1]. The purpose
of this article is to construct an enlargement DSL(2) of D, which is a mixed
Hodge theoretic version of DSL(2) in [KU2]. A mixed Hodge theoretic version
of the SL(2)-orbit theorem of [CKS] was obtained in [KNU1], and it is also
interpreted in the form (2)′ above by using the present DSL(2) (see Section 4.1
of this article).

In Part I ([KNU2]) of this series of articles, we constructed the Borel-Serre
space DBS which contains D as a dense open subset and which is a real analytic
manifold with corners like the original Borel-Serre space in [BS]. These spaces
DSL(2) and DBS belong to the following fundamental diagram of eight enlarge-
ments of D whose constructions will be given in forthcoming parts of this series
of articles. This fundamental diagram for the pure case (see Section 0.1) was
constructed in [KU3]:
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DSL(2),val ↪→ DBS,val

↓ ↓
DΣ,val ← D�

Σ,val → DSL(2) DBS

↓ ↓
DΣ ← D�

Σ

In the next parts of this series, we will construct the rest of the spaces in this
diagram. Among them, DΣ is the space of nilpotent orbits. Degenerations of
mixed Hodge structures of geometric origin also satisfy a nilpotent orbit theorem
(see [SZ], [K], [Sa], [P1], etc.; a review is given in [KNU1, Section 12.10]). In the
next articles in this series, we plan to interpret this in the style (1)′ above by
using DΣ in this diagram.

0.3.
We explain the contents of Sections 0.1 and 0.2 more precisely (but still roughly).

The nilpotent orbit theorem (in the pure case, see Section 0.1, and in the
mixed case, see Section 0.2 also) says roughly that when t = (t1, . . . , tn)→ 0, we
have

(Ft mod Γ)∼
(

exp
( n∑

j=1

zjNj

)
F mod Γ

)

for some fixed Hodge filtration F (∼ expresses “very near,” but the precise
meaning of it is not explained here), where zj is a branch of (2πi)−1 log(tj) and
Nj is the logarithm of the local monodromy of Ft around the divisor tj = 0. In
[KU3] for the pure case and in the next articles in this series for the mixed case,
this is interpreted as the convergence

(Ft mod Γ)→
(
(σ,Z) mod Γ

)
∈ Γ\DΣ,

where σ is the cone
∑n

j=1 R≥0Nj and Z is the orbit exp
(∑n

j=1 CNj

)
F . (As in

the pure case, as a set, DΣ is a set of such pairs (σ,Z).)
The SL(2)-orbit theorem in the pure case of Section 0.1, obtained in [CKS],

says roughly that when t→ 0, tj ∈R>0, and yj/yj+1 →∞, where yj =−(2π)−1×
log(tj) for 1≤ j ≤ n (yn+1 = 1), we have

Ft ∼ ρ

((√
y1 0
0 1/

√
y1

)
, . . . ,

(√
yn 0
0 1/

√
yn

))
ϕ(i),

(∼ expresses “very near” again) where ρ is a homomorphism of algebraic groups
SL(2,R)n →Aut(D), ϕ is a complex analytic map hn →D from the product hn of
copies of the upper half-plane h, satisfying ϕ(gz) = ρ(g)ϕ(z) for any g ∈ SL(2,R)n

and z ∈ hn, and where i = (i, . . . , i) ∈ hn. In [KU3], this is interpreted as the
convergence

Ft → class(ρ,ϕ) ∈DSL(2).

The SL(2)-orbit theorem in the mixed case of Section 0.2 obtained in [KNU1]
says roughly that when t→ 0, tj ∈R>0, and yj/yj+1 →∞, where yj =−(2π)−1×
log(tj) for 1≤ j ≤ n (yn+1 = 1), we have
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Ft ∼ lift

(⊕
w∈Z

y
−w/2
1 ρw

((√
y1 0
0 1/

√
y1

)
, . . . ,

(√
yn 0
0 1/

√
yn

)))
r,

where (ρw, ϕw) (w ∈ Z) is the SL(2)-orbit of pure weight w associated to the
filtration on grW

w induced from Ft, r is a certain point of D which induces ϕw(i)
on each grW

w , and “lift” is the lifting to Aut(D) by the canonical splitting of the
weight filtration associated to r (see Section 1.2). For details, see [KNU1] and
also Section 2.4 of this article. By using the space DSL(2) of this article, this is
interpreted as the convergence

Ft → class
(
(ρw, ϕw)w∈Z,r

)
∈DSL(2).

Since DSL(2) has a real analytic structure, we can discuss the differential of the
extended period map t �→ Ft at t = 0. We hope that such a delicate structure of
DSL(2) is useful for the study of degeneration.

0.4.
Precisely, there are two natural spaces DI

SL(2) and DII
SL(2) which can sit in the

place of DSL(2) in the fundamental diagram. They coincide in the pure case
and coincide always as sets but do not coincide in general. What we wrote in
Section 0.3 is valid for both. They both have good properties, so that we do not
choose one of them as a standard one (see Section 3.2.1 for more surveys).

0.5.
The organization of this article is as follows. In Section 1, we give preliminaries
about basic facts on mixed Hodge structures. In Section 2, we define the space
DSL(2) as a set. In Section 3, we endow this set with topologies and with real
analytic structures. (These spaces DI

SL(2) and DII
SL(2) are not necessarily real

analytic spaces, but they have the sheaves of real analytic functions which we call
the real analytic structures.) We study properties of these spaces. In Section 4,
we consider how the degenerations of mixed Hodge structures are related to these
spaces.

NOTATION

Fix a quadruple

Φ0 =
(
H0,W, (〈 , 〉w)w∈Z, (hp,q)p,q∈Z

)
,

where

• H0 is a finitely generated free Z-module;
• W is an increasing filtration on H0,R := R⊗Z H0 defined over Q;
• 〈 , 〉w is a nondegenerate R-bilinear form grW

w ×grW
w →R defined over Q

for each w ∈ Z which is symmetric if w is even and antisymmetric if w is odd;
and

• hp,q is a nonnegative integer given for p, q ∈ Z such that hp,q = hq,p,
rankZ(H0) =

∑
p,q hp,q , and dimR(grW

w ) =
∑

p+q=w hp,q for all w.
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Let Ď be the set of all decreasing filtrations F on H0,C := C⊗Z H0 satisfying
the following two conditions:

(1) dim(F p(grW
p+q)/F p+1(grW

p+q)) = hp,q for any p, q ∈Z;
(2) 〈 , 〉w kills F p(grW

w )× F q(grW
w ) for any p, q,w ∈Z such that p + q > w.

Here F (grW
w ) denotes the filtration on grW

w,C := C⊗R grW
w induced by F .

Let D be the set of all decreasing filtrations F ∈ Ď which also satisfy the
following condition:

(3) ip−q〈x, x̄〉w > 0 for any nonzero x ∈ F p(grW
w )∩F q(grW

w ) and any p, q,w ∈
Z with p + q = w.

Then D is an open subset of Ď and, for each F ∈D and w ∈ Z, F (grW
w ) is

a Hodge structure on (H0 ∩Ww)/(H0 ∩Ww−1) of weight w with Hodge number
(hp,q)p+q=w which is polarized by 〈 , 〉w. The space D is the classifying space
of mixed Hodge structures of type Φ0 introduced in [U1], which is a natural
generalization to the mixed case of the Griffiths domain in [G]. These two are
related by taking graded quotients by W as follows:

• D(grW
w ): the D for ((H0 ∩Ww)/(H0 ∩Ww−1), 〈 , 〉w, (hp,q)p+q=w) for each

w ∈Z;
• D(grW ) =

∏
w∈Z D(grW

w );
• D→D(grW ), F �→ F (grW ) := (F (grW

w ))w∈Z, the canonical surjection.

For A = Z,Q,R, or C,

• GA: the group of all A-automorphisms g of H0,A := A⊗Z H0 compatible
with W such that grW

w (g) : grW
w → grW

w are compatible with 〈 , 〉w for all w;
• GA,u := {g ∈GA | grW

w (g) = 1 for all w ∈Z}, the unipotent radical of GA;
• GA(grW

w ): the GA of ((H0 ∩Ww)/(H0 ∩Ww−1), 〈 , 〉w) for each w ∈Z;
• GA(grW ) :=

∏
w GA(grW

w ).

Then GA/GA,u = GA(grW ), and GA is a semidirect product of GA,u and
GA(grW ).

The natural action of GC on Ď is transitive, and Ď is a complex homogeneous
space under the action of GC. Hence Ď is a complex analytic manifold. An open
subset D of Ď is also a complex analytic manifold. However, the action of GR

on D is not transitive in general (see the equivalent conditions (4), (5) below).
The subgroup GRGC,u of GC acts always transitively on D, and the action of
GC,u on each fiber of D→D(grW ) is transitive.

• spl(W ): the set of all isomorphisms s : grW =
⊕

w grW
w

∼→H0,R of R-vector
spaces such that for any w ∈ Z and v ∈ grW

w , s(v) ∈ Ww and v = (s(v) mod
Ww−1).

• We have the action GR,u × spl(W )→ spl(W ), (g, s) �→ gs.

For a fixed s ∈ spl(W ), we have a bijection GR,u
∼→ spl(W ), g �→ gs. Via this

bijection, we endow spl(W ) with a structure of a real analytic manifold.
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• Dspl := {s(F ) | s ∈ spl(W ), F ∈ D(grW )} ⊂ D, the subset of R-split ele-
ments.

Here s(F )p := s
(⊕

w F p
(w)

)
for F = (F(w))w ∈D(grW ).

• Dnspl := D � Dspl.

Then, Dspl is a closed real analytic submanifold of D, and we have a real
analytic isomorphism spl(W )×D(grW ) ∼→Dspl, (s,F ) �→ s(F ).

The following two conditions are equivalent (see [KNU2], Proposition 8.7):

(4) D is GR-homogeneous;
(5) D = Dspl.

For example, if there is w ∈ Z such that Ww = H0,R and Ww−2 = 0, then the
above equivalent conditions are satisfied. But in general these conditions are not
satisfied (see Examples I, III, IV in Section 1.1).

For A = Q,R,C,

gA := Lie(GA) which is identified with {X ∈ EndA(H0,A) |X(Ww)⊂Ww

for all w; 〈grW
w (X)(x), y〉w + 〈x,grW

w (X)(y)〉w = 0 for all w,x, y};
gA,u := Lie(GA,u) = {X ∈ gA | grW

w (X) = 0 for all w};
gA(grW

w ): the gA of ((H0 ∩Ww)/(H0 ∩Ww−1), 〈 , 〉w) for each w ∈Z;
gA(grW ) :=

⊕
w∈Z gA(grW

w ).

Then gA/gA,u = gA(grW ).

1. Basic facts

We examine some examples, review some basic facts, and fix further notation
which is used in this article.

1.1. Examples
1.1.1.
We give six simple examples (see Examples 0–V) of D for which the set {w ∈
Z | grW

w �= 0} is {−1}, {0,−2}, {0,−1}, {0,−3}, {0,−1,−2}, {0,1}, respectively.
Among these, Examples I, II, and III are already presented in [KNU2, Sec-
tions 1.10–1.12] to illustrate the results in that article on each step. All these
examples are retreated also to illustrate the results in this article on each step.

EXAMPLE 0

(This example belongs to the pure case, although Examples I–V below do not.)
Let H0 = Z2 = Ze1 +Ze2. Let W be the increasing filtration on H0,R defined by

W−2 = 0⊂W−1 = H0,R.

Let 〈e2, e1〉−1 = 1. Let h−1,0 = h0,−1 = 1, and let hp,q = 0 for all the other (p, q).
For τ ∈C, let F (τ) be the decreasing filtration on H0,C defined by

F (τ)1 = 0⊂ F (τ)0 = C(τe1 + e2)⊂ F (τ)−1 = H0,C.
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Then we have an isomorphism of complex analytic manifolds

D � h,

where h is the upper half-plane {x + iy | x, y ∈R, y > 0}, in which τ ∈ h corre-
sponds to F (τ) ∈D. This isomorphism naturally extends to Ď �P1(C).

EXAMPLE I

Let H0 = Z2 = Ze1 +Ze2, and let W be the increasing filtration on H0,R defined
by

W−3 = 0⊂W−2 = W−1 = Re1 ⊂W0 = H0,R.

For j = 1 (resp., j = 2), let e′
j be the image of ej in grW

−2 (resp., grW
0 ). Let

〈e′
2, e

′
2〉0 = 1, 〈e′

1, e
′
1〉−2 = 1, and let h0,0 = h−1,−1 = 1, hp,q = 0 for all the other

(p, q).
We have an isomorphism of complex analytic manifolds

D �C.

For z ∈C, the corresponding F (z) ∈D is defined as

F (z)1 = 0⊂ F (z)0 = C(ze1 + e2)⊂ F (z)−1 = H0,C.

The group GZ,u is isomorphic to Z and is generated by γ ∈ GZ, which is
defined as

γ(e1) = e1, γ(e2) = e1 + e2.

We have

GZ,u\D �C×,

where (F (z) mod GZ,u) corresponds to exp(2πiz) ∈C×.
The space GZ,u\D is the classifying space of extensions of mixed Hodge

structures of the form 0→Z(1)→∗→Z→ 0.
In this case, D(grW ) is a one-point set.

EXAMPLE II

Let H0 = Z3 = Ze1 + Ze2 + Ze3, and let

W−2 = 0⊂W−1 = Re1 + Re2 ⊂W0 = H0,R.

For j = 1,2 (resp., 3), let e′
j be the image of ej in grW

−1 (resp., grW
0 ). Let

〈e′
3, e

′
3〉0 = 1, let 〈e′

2, e
′
1〉−1 = 1, and let h0,0 = h0,−1 = h−1,0 = 1, hp,q = 0 for

all the other (p, q).
Then we have isomorphisms of complex analytic manifolds

D � h×C, D(grW )� h.

Here (τ, z) ∈ h×C corresponds to F = F (τ, z) ∈D given by

F 1 = 0⊂ F 0 = C(τe1 + e2) + C(ze1 + e3)⊂ F −1 = H0,C.
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The induced isomorphism D(grW ) = D(grW
−1)� h is identified with the isomor-

phism D � h in Example 0.
The group GZ,u is isomorphic to Z2, where (a, b) ∈ Z2 corresponds to the

element of GZ which sends ej to ej for j = 1,2 and sends e3 to ae1 +be2 +e3. The
quotient space GZ,u\D is the universal elliptic curve over the upper half-plane h.
For τ ∈ h, the fiber of GZ,u\D→D(grW ) = h over τ is identified with the elliptic
curve Eτ := C/(Zτ +Z). The Hodge structure on H0∩W−1 corresponding to τ is
isomorphic to H1(Eτ )(1). Here H1(Eτ ) denotes the Hodge structure H1(Eτ ,Z)
of weight 1 endowed with the Hodge filtration and (1) denotes the Tate twist.
The fiber of GZ,u\D → h over τ is the classifying space of extensions of mixed
Hodge structures of the form

0→H1(Eτ )(1)→∗→Z→ 0.

EXAMPLE III

Let H0 = Z3 = Ze1 + Ze2 + Ze3, and let

W−4 = 0⊂W−3 = W−1 = Re1 + Re2 ⊂W0 = H0,R.

For j = 1,2 (resp., 3), let e′
j be the image of ej in grW

−3 (resp., grW
0 ). Let

〈e′
3, e

′
3〉0 = 1, 〈e′

2, e
′
1〉−3 = 1, and let h0,0 = h−1,−2 = h−2,−1 = 1, hp,q = 0 for all

the other (p, q).
Then we have isomorphisms of complex analytic manifolds

D � h×C2, D(grW )� h.

Here (τ, z1, z2) ∈ h×C2 corresponds to F = F (τ, z1, z2) ∈D given by

F 1 = 0⊂ F 0 = C(z1e1 + z2e2 + e3)⊂ F −1 = F 0 + C(τe1 + e2)⊂ F −2 = H0,C.

The induced isomorphism D(grW ) = D(grW
−3)� h is identified with the isomor-

phism D � h in Example 0 (F ∈D(grW ) corresponds to the twist F (−1) of F ,
which belongs to the D in Example 0).

The group GZ,u is the same as in Example II. The Hodge structure on
H0 ∩W−3 corresponding to τ ∈ h �D(grW

−3) is isomorphic to H1(Eτ )(2). The
fiber of GZ,u\D →D(grW ) � h over τ ∈ h is the classifying space of extensions
of mixed Hodge structures of the form

0→H1(Eτ )(2)→∗→Z→ 0.

EXAMPLE IV

Let H0 = Z4 = Ze1 + Ze2 + Ze3 + Ze4, and let

W−3 = 0⊂W−2 = Re1 ⊂W−1 = W−2 + Re2 + Re3 ⊂W0 = H0,R.

For j = 1 (resp., 2,3, resp., 4), let e′
j be the image of ej in grW

−2 (resp., grW
−1,

resp., grW
0 ). Let 〈e′

4, e
′
4〉0 = 1, 〈e′

1, e
′
1〉−2 = 1, let 〈e′

3, e
′
2〉−1 = 1, and let h0,0 =

h0,−1 = h−1,0 = h−1,−1 = 1, hp,q = 0 for all the other (p, q).
Then we have isomorphisms of complex analytic manifolds

D = h×C3, D(grW ) = D(grW
−1) = h.
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Here (τ, z1, z2, z3) ∈ h×C3 corresponds to F = F (τ, z1, z2, z3) ∈D given by F −1 =
H0,C, F 1 = 0, and

F 0 = C(z1e1 + τe2 + e3) + C(z2e1 + z3e2 + e4).

The induced isomorphism D(grW ) = D(grW
−1)� h is identified with the isomor-

phism D � h in Example 0.
There is a bijection GZ,u � Z5 (but not a group isomorphism), where

(aj)1≤j≤5 ∈ Z5 corresponds to the element of GZ,u which sends e1 to e1, e2

to a1e1 + e2, e3 to a2e1 + e3, and e4 to a3e1 + a4e2 + a5e3 + e4.

EXAMPLE V

Let H0 = Z5 = Ze1 + Ze2 + Ze3 + Ze4 + Ze5, and let

W−1 = 0⊂W0 = Re1 + Re2 + Re3 ⊂W1 = H0,R.

For j = 1,2,3 (resp., 4,5), let e′
j be the image of ej in grW

0 (resp., grW
1 ). Let

〈e′
5, e

′
4〉1 = 1, 〈e′

1, e
′
3〉0 = 2, 〈e′

2, e
′
2〉0 = −1, and 〈e′

j , e
′
k〉0 = 0 (j + k �= 4, 1 ≤ j,

k ≤ 3), and let h1,−1 = h0,0 = h−1,1 = h1,0 = h0,1 = 1 and hp,q = 0 for all the
other (p, q).

Let h± = {x + iy | x, y ∈R, y �= 0}= h � (−h). Then we have isomorphisms
of complex analytic manifolds

D � h± × h×C3, D(grW
0 )� h±, D(grW

1 )� h.

Here (τ0, τ1, z1, z2, z3) ∈ h± × h×C3 corresponds to F = F (τ0, τ1, z1, z2, z3) ∈D

given by F 2 = 0, F −1 = H0,C, and

F 1 = C(τ2
0 e1 + 2τ0e2 + e3) + C(z1e1 + z2e2 + τ1e4 + e5),

F 0 = F 1 + C(τ0e1 + e2) + C(z3e1 + e4).

Let F (τ) be the filtration in Example 0 corresponding to τ ∈ h. The induced
isomorphism D(grW

1 )� h sends τ ∈ h to the Tate twist F (τ)(−1) of F (τ). The
induced isomorphism D(grW

0 )� h± sends τ ∈ h± to Sym2(F (τ))(−1) ∈D(grW
0 )

(see Section 1.1.2).
The group GZ,u is isomorphic to Z6, where (aj)1≤j≤6 ∈ Z6 corresponds to

the element of GZ which sends ej to ej for j = 1,2,3, e4 to a1e1 +a2e2 +a3e3 +e4,
and e5 to a4e1 + a5e2 + a6e3 + e5.

1.1.2.
REMARK

For the computations of Example V in Section 1.1.1 and in Sections 3.6 and 4.2.4
later, we describe here the classifying space D2 of polarized Hodge structures of
weight 2 underlain by the second symmetric power of the Tate twist (by −1) of
(H0, 〈 , 〉−1) in Example 0.

The domain D(grW
0 ) in Example V of Section 1.1.1 is identified with D2 via the

Tate twist.
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Let H0 = Z2 = Zf1 + Zf2, let W0 = 0 ⊂ W1 = H0,R, and let 〈f2, f1〉1 = 1.
Then Sym2(H0) = Z3 = Ze1 + Ze2 + Ze3, where e1 := f2

1 , e2 := f1f2, e3 := f2
2 ,

and the induced polarization on Sym2(H0), which is defined by

〈x1x2, y1y2〉2 = 〈x1, y1〉1〈x2, y2〉1 + 〈x1, y2〉1〈x2, y1〉1 (xj , yj ∈H0, j = 1,2),

is given by

〈e1, e3〉2 = 〈e3, e1〉2 = 2, 〈e2, e2〉2 =−1, 〈ej , ek〉2 = 0

otherwise.
For v = ω1e1 + ω2e2 + ω3e3 ∈Ce1 + Ce2 + Ce3 to be Hodge type (2,0), the

Riemann-Hodge bilinear relations are

〈v, v〉2 = 4ω1ω3 − ω2
2 = 0,

〈Cv, v̄〉2 = i2〈v, v̄〉2 =−4Re(ω1ω̄3) + |ω2|2 > 0,

where C is the Weil operator. Hence the classifying space D2 and its compact
dual Ď2 of the Hodge structures of weight 2, with Hodge type h2,0 = h1,1 = h0,2 =
1 and hp,q = 0 otherwise, and with the polarization 〈 , 〉2, is as follows:

Ď2 =
{
C(ω1e1 + ω2e2 + ω3e3)⊂Ce1 + Ce2 + Ce3 | 4ω1ω3 − ω2

2 = 0
}
�P1(C),

D2 =
{
C(ω1e1 + ω2e2 + ω3e3) ∈ Ď | −4Re(ω1ω̄3) + |ω2|2 > 0

}
� h±.(1)

The isomorphism is given by ω1e1 + ω2e2 + ω3e3 = ω2e1 + 2ωe2 + e3 ↔ ω.
Assigning g ∈ SL(2,R) to sym2(g) ∈ Aut(H0,R, 〈 , 〉2), we have an exact se-

quence

(2) 1→{±1}→ SL(2,R)→Aut(H0,R, 〈 , 〉2)→{±1}→ 1.

The isomorphism (1) is compatible with (2).

1.2. Canonical splittings of weight filtrations for mixed Hodge structures
Let W and D be as in the notation at the end of the introduction. In this section,
we review the canonical splitting s = splW (F ) ∈ spl(W ) of the weight filtration
W associated to F ∈D, defined by the theory of Cattani, Kaplan, and Schmid
[CKS]. This canonical splitting s appeared naturally in the SL(2)-orbit theorem
for mixed Hodge structures proved in our previous article [KNU1]. The definition
of s was reviewed in detail in [KNU1, Section 1], although the formulation there
is different from the one in this section. The canonical splitting plays important
roles in the present series of our articles.

1.2.1.
Let F = (F(w))w ∈ D(grW ). Regard F as the filtration

⊕
w F(w) on grW

C =⊕
w grW

w,C, and let Hp,q
F = Hp,q

F(p+q)
⊂ grW

p+q,C. Let

L−1,−1
R (F ) =

{
δ ∈ EndR(grW )

∣∣∣ δ(Hp,q
F )⊂

⊕
p′<p,q′<q

Hp′,q′

F for all p, q ∈Z
}

.
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All elements of L−1,−1
R (F ) are nilpotent. Let

L= EndR(grW )≤ −2

be the set of all R-linear maps δ : grW → grW such that δ(grW
w )⊂

⊕
w′ ≤w−2 grW

w′

for any w ∈Z. Denote

L(F ) = L−1,−1
R (F )⊂L.

L(F ) is sometimes denoted simply by L.
In this Section 1.2, we review the isomorphism of real analytic manifolds

D �
{
(s,F, δ) ∈ spl(W )×D(grW )×L | δ ∈ L(F )

}
obtained in the work [CKS] (see Section 1.2.5). For F ′ ∈ D, the correspond-
ing (s,F, δ) consists of F = F ′(grW ), δ = δ(F ′) ∈ L(F ) defined in Section 1.2.2,
and the canonical splitting s = splW (F ′) of W associated to F ′ explained in
Section 1.2.3.

1.2.2.
For F ′ ∈D, there is a unique pair (s′, δ) ∈ spl(W )×L(F ′(grW )) such that

F ′ = s′(exp(iδ)F ′(grW )
)

(see [CKS]). This is the definition of δ = δ(F ′) associated to F ′.

1.2.3.
Let F ′ ∈D, and let s′ ∈ spl(W ) and δ ∈ L(F ′(grW )) be as in Section 1.2.2. Then
the canonical splitting s = splW (F ′) of W associated to F ′ is defined by

s = s′ exp(ζ),

where ζ = ζ(F ′(grW ), δ) is a certain element ofL(F ′(grW )) determined by F ′(grW )
and δ in the following way.

Let δp,q (p, q ∈Z) be the (p, q)-Hodge component of δ with respect to F ′(grW )
defined by

δ =
∑
p,q

δp,q

(
δp,q ∈ LC(F ′(grW )) = C⊗R L(F ′(grW ))

)
,

δp,q(H
k,l
F ′(grW )

)⊂Hk+p,l+q
F ′(grW )

for all k, l ∈Z.

Then the (p, q)-Hodge component ζp,q of ζ = ζ(F ′(grW ), δ) with respect to F ′(grW )
is given as a certain universal Lie polynomial of δp′,q′ (p′, q′ ∈Z, p′ ≤−1, q′ ≤−1)
(see [CKS] and [KNU1, Section 1]). For example,

ζ−1,−1 = 0,

ζ−1,−2 =− i

2
δ−1,−2,

ζ−2,−1 =
i

2
δ−2,−1.
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1.2.4.
For F ∈D(grW ) and δ ∈ L(F ), we define a filtration θ(F, δ) on grW

C by

θ(F, δ) = exp(−ζ) exp(iδ)F,

where ζ = ζ(F, δ) is the element of L(F ) associated to the pair (F, δ) as in Sec-
tion 1.2.3.

PROPOSITION 1.2.5

We have an isomorphism of real analytic manifolds

D �
{
(s,F, δ) ∈ spl(W )×D(grW )×L

∣∣ δ ∈ L(F )
}
,

F ′ �→
(
splW (F ′), F ′(grW ), δ(F ′)

)
,

whose inverse is given by (s,F, δ) �→ s(θ(F, δ)).

1.2.6.
For g = (gw)w ∈GR(grW ) =

∏
w GR(grW

w ), we have

gθ(F, δ) = θ
(
gF,Ad(g)δ

)
,

where Ad(g)δ = gδg−1.

1.2.7.
For F ∈D(grW ), δ ∈ L(F ), and s ∈ spl(W ), the element s(θ(F, δ)) of D belongs
to Dspl if and only if δ = 0.

1.2.8.
REMARK

The results in Section 1.2 are valid for W defined over R, that is, without assum-
ing that W is being defined over Q.

1.2.9.
We consider Examples I–V in Section 1.1.1. For these examples, L(F ) =
L−1,−1

R (F ) ⊂ L in Section 1.2.1 is independent of the choice of F ∈ D(grW ),
and we denote it simply by L. By Proposition 1.2.5, we have a real analytic
presentation of D,

(1) D � spl(W )×D(grW )×L.

The relation with the complex analytic presentation of D given in Section 1.1.1
is as follows. We use the notation in Section 1.1.1.

EXAMPLE I

We have spl(W )�R by assigning s ∈R to the splitting of W defined by e′
2 �→

se1 + e2, D(grW ) is one point, and L � R, δ ↔ d, by δ(e′
2) = de′

1 (see Sec-
tion 1.2.3).
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The relation with the complex analytic presentation D � C in Example I
in Section 1.1.1 and the real analytic presentation (1) of D is as follows. The
composition

C�D � spl(W )×L�R×R

is given by

z ↔ (s, d), z = s + id.

Conversely, we have

s = Re(z), d = Im(z).

This is because the ζ associated to δ ∈ L is equal to ζ−1,−1 = 0 (see Section 1.2.3).

EXAMPLE II

We have spl(W ) �R2, s↔ (s1, s2), by s(e′
3) = s1e1 + s2e2 + e3 and s(e′

j) = ej

(j = 1,2), and we have L = 0.
The relation with the complex analytic presentation D � h×C in Example II

in Section 1.1.1 and the real analytic presentation (1) of D is as follows. The
composition

h×C�D � spl(W )×D(grW )�R2 × h

is given by

(τ, z)↔
(
(s1, s2), τ

)
with z = s1 − s2τ.

Conversely, we have

s1 = Re(z)− Im(z)
Im(τ)

Re(τ), s2 =− Im(z)
Im(τ)

.

EXAMPLE III

We have spl(W ) �R2, s↔ (s1, s2), by s(e′
3) = s1e1 + s2e2 + e3 and s(e′

j) = ej

(j = 1,2), and we have L�R2, δ↔ (d1, d2), by δ(e′
3) = d1e

′
1 + d2e

′
2.

The relation with the complex analytic presentation D � h×C2 in Exam-
ple III in Section 1.1.1 and the real analytic presentation (1) of D is as follows.
The composition

h×C2 �D � spl(W )×D(grW )×L�R2 × h×R2

is given by

(2) (τ, z1, z2)↔
(
(s1, s2), τ, (d1, d2)

)
,

where

z1 = s1 +
( Re(τ)

2 Im(τ)
+ i

)
d1 −

Re(τ)2 + Im(τ)2

2 Im(τ)
d2,(3)

z2 = s2 +
1

2 Im(τ)
d1 +

(
− Re(τ)

2 Im(τ)
+ i

)
d2.
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Conversely, we have

d1 = Im(z1), d2 = Im(z2),

s1 = Re(z1)−
Re(τ)
2 Im(τ)

Im(z1) +
Re(τ)2 + Im(τ)2

2 Im(τ)
Im(z2),(4)

s2 = Re(z2)−
1

2 Im(τ)
Im(z1) +

Re(τ)
2 Im(τ)

Im(z2).

We explain that the correspondence (2) is described as in (3) and (4). Write
τ = x + iy with x, y ∈R, y > 0. We have in grW

−3,C the Hodge decomposition
δ(e′

3) = d1e
′
1 + d2e

′
2 = A + B, where

A =
d1 − d2τ̄

2yi
(τe′

1 + e′
2), B =

−d1 + d2τ

2yi
(τ̄ e′

1 + e′
2)

with respect to the element F ∈D(grW
−3) = D(grW ) corresponding to τ ∈ h. This

shows that the (p, q)-Hodge component δp,q of δ is given as follows. We have
δp,q = 0 for (p, q) �= (−1,−2), (−2,−1), and δ−1,−2 sends e′

3 to A, and δ−2,−1

sends e′
3 to B. Since ζ(F, δ) = −(i/2)δ−1,−2 + (i/2)δ−2,−1 (see Section 1.2.3),

this shows that ζ(F, δ) sends e′
3 to

v :=
−d1x + d2(x2 + y2)

2y
e′
1 +

−d1 + d2x

2y
e′
2.

Hence θ(F, δ) = exp(−ζ(F, δ)) exp(iδ)F is the decreasing filtration of grW
C char-

acterized by the following properties: θ(F, δ)1 = 0, θ(F, δ)−2 = grW
C , θ(F, δ)0 is

generated over C by −v+ id1e
′
1 + id2e

′
2 +e′

3, and θ(F, δ)−1 is generated over C by
θ(F, δ)0 and τe′

1 + e′
2. The above (3) follows from this, and (4) follows from (3).

EXAMPLE IV

We have spl(W ) �R5, s↔ (sj)1≤j≤5, by s(e′
1) = e1, s(e′

2) = s1e1 + e2, s(e′
3) =

s2e1 + e3, and s(e′
4) = s3e1 + s4e2 + s5e3 + e4, and we have L �R, δ ↔ d, by

δ(e′
4) = de′

1.
The relation with the complex analytic presentation D � h×C3 in Exam-

ple IV in Section 1.1.1 and the real analytic presentation (1) of D is as follows.
The composition

h×C3 �D � spl(W )×D(grW )×L�R5 × h×R

is given by

(τ, z1, z2, z3)↔
(
(s1, . . . , s5), τ, d

)
,

where

z1 = s1τ + s2, z2 = s3 − s5(s1τ + s2) + id, z3 = s4 − s5τ.

Conversely, we have

s1 =
Im(z1)
Im(τ)

, s2 = Re(z1)−
Im(z1)
Im(τ)

Re(τ),
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s3 = Re(z2)−
Im(z3)
Im(τ)

Re(z1), s4 = Re(z3)−
Im(z3)
Im(τ)

Re(τ),

s5 =− Im(z3)
Im(τ)

, d = Im(z2)−
Im(z1) Im(z3)

Im(τ)
.

This follows from ζ = ζ−1,−1 = 0 (see Section 1.2.3).

EXAMPLE V

We have spl(W )�R6, s↔ (sj)1≤j≤6, by s(e′
4) = s1e1 + s2e2 + s3e3 + e4, s(e′

5) =
s4e1 + s5e2 + s6e3 + e5, and s(e′

j) = ej (j = 1,2,3), and L = 0.
The relation with the complex analytic presentation D � h± × h × C3 in

Example V in Section 1.1.1 and the real analytic presentation (1) of D is as
follows. The composition

h± × h×C3 �D � spl(W )×D(grW )�R6 × h± × h

is given by

(τ0, τ1, z1, z2, z3)↔
(
(s1, . . . , s6), τ0, τ1

)
,

where

z1 = s1τ1 − s3τ
2
0 τ1 + s4 − s6τ

2
0 , z2 = s2τ1 − 2s3τ0τ1 + s5 − 2s6τ0,

z3 = s1 − s2τ0 + s3τ
2
0 .

From this we can obtain presentations of sj (1≤ j ≤ 6) in terms of τ0, τ1, z1, z2,
z3, but we do not write them down here.

2. The set DSL(2)

2.1. SL(2)-orbits in pure case
We review SL(2)-orbits in the case of pure weight. We also prove some new
results here.

Let w ∈Z, and assume Ww = H0,R and Ww−1 = 0.

2.1.1.
Let n≥ 0, and consider a pair (ρ,ϕ) consisting of a homomorphism

ρ : SL(2,C)n →GC

of algebraic groups which is defined over R and a holomorphic map ϕ : P1(C)n →
Ď satisfying the following condition:

ϕ(gz) = ρ(g)ϕ(z) for any g ∈ SL(2,C)n, z ∈P1(C)n.

2.1.2.
As in [KU3, Section 5] (see also [KU2, Section 3]), we call (ρ,ϕ) as in Section 2.1.1
an SL(2)-orbit in n variables if it further satisfies the following two conditions
(1) and (2):

ϕ(hn)⊂D.(1)
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ρ∗
(
filpz(sl(2,C)⊕n)

)
⊂ filpϕ(z)(gC) for any z ∈P1(C)n and any p ∈Z.(2)

Here in (1), h = {x + iy | x, y ∈R, y > 0} ⊂P1(C) as in Section 1.1. In (2), ρ∗
denotes the Lie algebra homomorphism sl(2,C)⊕n → gC induced by ρ,

filpz
(
sl(2,C)⊕n

)
=

{
X ∈ sl(2,C)⊕n

∣∣∣ X
( n⊕

j=1

F r
zj

(C2)
)
⊂

n⊕
j=1

F r+p
zj

(C2) (∀r ∈Z)
}

,

where for a ∈P1(C), F r
a (C2) = C2 if r ≤ 0, F 1

a (C2) = C
(
a
1

)
if a ∈C, F 1

∞(C2) =
C

(
1
0

)
, F r

a (C2) = 0 for r ≥ 2, and

filpF (gC) = {X ∈ gC |XF r ⊂ F r+p for all r ∈Z} forF ∈ Ď.

PROPOSITION 2.1.3

Let (ρ,ϕ) be as in Section 2.1.1.

(i) Condition (1) in Section 2.1.2 is satisfied if there exists z ∈ hn such that
ϕ(z) ∈D.

(ii) Condition (2) in Section 2.1.2 is satisfied if there exists z ∈P1(C)n such
that ρ∗

(
filpz(sl(2,C)⊕n)

)
⊂ filpϕ(z)(gC) for all p ∈Z.

Proof
We prove (i). Any element z′ of hn is written in the form gz with g ∈ SL(2,R)n.
Hence ϕ(z′) = ρ(g)ϕ(z) ∈D.

We prove (ii). Any element z′ of P1(C)n is written in the form gz with
g ∈ SL(2,C)n. Hence

ρ∗
(
filpz′ (sl(2,C)⊕n)

)
= ρ∗

(
Ad(g)filpz(sl(2,C)⊕n)

)
= Ad

(
ρ(g)

)
ρ∗

(
filpz(sl(2,C)⊕n)

)
⊂ Ad

(
ρ(g)

)
filpϕ(z)(gC) = filpϕ(z′)(gC). �

2.1.4.
We fix notation. Assume that we are given (ρ,ϕ) as in Section 2.1.1.

Let

Nj , Yj ,N
+
j ∈ gR (1≤ j ≤ n),

Nj = ρ∗

(
0 1
0 0

)
j

, Yj = ρ∗

(
−1 0
0 1

)
j

, N+
j = ρ∗

(
0 0
1 0

)
j

,

where ( )j means the embedding sl(2)→ sl(2)⊕n into the jth factor.

PROPOSITION 2.1.5

Let (ρ,ϕ) be as in Section 2.1.1. Fix F ∈ ϕ(Cn). Then condition (2) in Sec-
tion 2.1.2 is satisfied if and only if

(2′) NjF
p ⊂ F p−1 for any 1≤ j ≤ n and any p ∈Z.
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Proof
Since F = ϕ((zj)j) = exp

(∑n
j=1 zjNj

)
ϕ(0) for some (zj)j ∈Cn, where 0 = 0n ∈

P1(C)n, condition (2′) for F ∈ ϕ(Cn) is equivalent to condition (2′) for F = ϕ(0).
Note that filp0(sl(2,C)⊕n) = 0 if p≥ 2, that fil10(sl(2,C)⊕n) is generated as a C-
vector space by the matrices

(
0
1

0
0

)
j

(1≤ j ≤ n), that fil00(sl(2,C)⊕n) is generated

as a C-vector space by fil10(sl(2,C)⊕n) and the matrices
( −1

0
0
1

)
j

(1 ≤ j ≤ n),
and that filp0(sl(2,C)⊕n) = sl(2,C)⊕n if p≤−1. Hence, by Proposition 2.1.3(ii),
condition (2) in Section 2.1.2 is equivalent to

Njϕ(0)p ⊂ ϕ(0)p−1, Yjϕ(0)p ⊂ ϕ(0)p, N+
j ϕ(0)p ⊂ ϕ(0)p+1 for any j, p.

Hence, if condition (2) in Section 2.1.2 is satisfied, then (2′) is satisfied for F =
ϕ(0).

Assume that condition (2′) is satisfied for F = ϕ(0). We show that con-
dition (2) in Section 2.1.2 is satisfied. For any diagonal matrices g1, . . . , gn in
SL(2,C), we have (g1, . . . , gn)0 = 0 and hence ρ(g1, . . . , gn)ϕ(0) = ϕ(0). From
this, we have Yjϕ(0)p ⊂ ϕ(0)p for all j and all p ∈ Z. It remains to prove
N+

j ϕ(0)p ⊂ ϕ(0)p+1 for all j and all p ∈ Z. The following argument is given in
[U2, Section 2] in the case n = 1. By the theory of representations of sl(2,R)⊕n

and by the property Yjϕ(0)p ⊂ ϕ(0)p for any j and any p, we have a direct sum
decomposition as an R-vector space

H0,R =
⊕

(a,b)∈S

Pa,b

with S = {(a, b) ∈ Zn ×Zn | a≥ b≥−a, a(j)≡ b(j) mod 2 for 1≤ j ≤ n}, having
the following properties (1)–(4). Here, for a, b ∈ Zn, a≥ b means a(j)≥ b(j) for
all 1≤ j ≤ n. For 1≤ j ≤ n, let ej be the element of Zn defined by ej(k) = 1 if
k = j and ej(k) = 0 if k �= j.

(1) On Pa,b, Yj acts as the multiplication by b(j).
(2) Let (a, b) ∈ S. If b(j) �= −a(j), Nj(Pa,b) ⊂ Pa,b−2ej , and the map Nj :

Pa,b → Pa,b−2ej is an isomorphism. If b(j) =−a(j), Nj annihilates Pa,b.
(3) Let (a, b) ∈ S. If b(j) �= a(j), N+

j (Pa,b)⊂ Pa,b+2ej , and for some nonzero
rational number c, the map N+

j : Pa,b → Pa,b+2ej is c times the inverse of the
isomorphism Nj : Pa,b+2ej

∼→ Pa,b. If b(j) = a(j), N+
j annihilates Pa,b.

(4) For any p ∈ Z, ϕ(0)p =
⊕

(a,b)∈S ϕ(0)p ∩ Pa,b,C. For any (a, b) ∈ S, Pa,b

with the filtration (ϕ(0)p ∩ Pa,b,C)p∈Z is an R-Hodge structure of weight w +∑n
j=1 b(j).

For (a, b) ∈ S such that b(j) �= a(j), by (2′) with F = ϕ(0) and (4), the
bijection Nj : Pa,b+2ej

∼→ Pa,b in the above (2) sends the (p + 1, q + 1)-Hodge
component of Pa,b+2ej ,C with p + q = w +

∑n
j=1 b(j) bijectively onto the (p, q)-

Hodge component of Pa,b,C for the Hodge structure in (4). Hence, by (3), N+
j

sends the (p, q)-Hodge component of Pa,b,C with p + q = w +
∑n

j=1 b(j) onto the
(p + 1, q + 1)-Hodge component of Pa,b+2ej ,C. This proves N+

j ϕ(0)p ⊂ ϕ(0)p+1

for any p. �
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2.1.6.
For 1≤ j ≤ n, define the increasing filtration W (j) on H0,R as follows. Note that

H0,R =
⊕

m∈Zn

Vm,

where Yj acts on Vm as the multiplication by m(j). Let

W
(j)
k =

⊕
m∈Zn,m(1)+···+m(j)≤k−w

Vm

= (the part of H0,R on which eigenvalues of Y1 + · · ·+ Yj are ≤ k−w).

Here w is the integer such that Ww = H0,R and Ww−1 = 0 as at the beginning
of this section.

Let s(j) be the splitting of W (j) given by the eigenspaces of Y1 + · · ·+ Yj .
That is, s(j) is the unique splitting of W (j) for which the image of grW (j)

k under
s(j) is the part of H0,R on which Y1 + · · ·+Yj acts as the multiplication by k−w

for any k ∈Z.

PROPOSITION 2.1.7

An SL(2)-orbit in n variables is determined by ((W (j))1≤j≤n, ϕ(i)).

This is proved in [KU2, Lemma 3.10].
In Sections 2.1.8 and 2.1.10, we characterize the splitting s(j) of W (j) given

in Section 2.1.6 in terms of the canonical splittings and the Borel-Serre splittings,
respectively.

PROPOSITION 2.1.8

Let (ρ,ϕ) be an SL(2)-orbit in n variables, and take j such that 1≤ j ≤ n. Let
yk ∈R≥0 (1≤ k ≤ n), and assume yk > 0 for j < k ≤ n. Then (W (j), ϕ(iy1, . . . ,

iyn)) is a mixed Hodge structure, and s(j) coincides with the canonical splitting
(see Section 1.2.3; cf. Section 1.2.8) associated to this mixed Hodge structure.

Proof
Let F = ϕ(iy1, . . . , iyn), F ′ = ϕ(0, . . . ,0, iyj+1, . . . , iyn). Then F = exp(iy1N1 +
· · ·+ iyjNj)F ′, (W (j), F ) is an R-mixed Hodge structure, (W (j), F ′) is an R-split
R-mixed Hodge structure, and the canonical splitting of W (j) associated to F ′

is given by Y1 + · · ·+ Yj . We have δ(F ) = y1N1 + · · ·+ yjNj . Since this δ has
only (−1,−1)-Hodge component, ζ = 0 by Section 1.2.3, and hence Y1 + · · ·+ Yj

is also the canonical splitting of W (j) associated to F . �

2.1.9.
Let W ′ be an increasing filtration on H0,R such that there exists a group homo-
morphism α : Gm,R → GR such that, for k ∈ Z, W ′

k =
⊕

m≤k−w H(m), where
H(m) := {x ∈H0,R | α(t)x = tmx (t ∈R×)}.
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We define the real analytic map

splBS
W ′ : D→ spl(W ′)

as follows. Let P = (G◦
W ′ )R be the parabolic subgroup of GR defined by W ′.

(Here G◦ is the connected component of G as an algebraic group containing 1.)
Let Pu be the unipotent radical of P , and let SP be the maximal R-split torus
of the center of P/Pu. Let Gm,R → SP , t �→ (tk−w on grW ′

k )k, be the weight
map induced by α. For F ∈D, let KF be the maximal compact subgroup of GR

consisting of the elements of GR which preserve the Hodge metric 〈CF (•), •̄〉w,
where CF is the Weil operator associated to F . Let SP → P be the Borel-Serre
lifting homomorphism at F , which assigns a ∈ SP to the element aF ∈ P uniquely
determined by the following condition: The class of aF in P/Pu coincides with a,
and θKF

(aF ) = a−1
F , where θKF

is the Cartan involution at KF which coincides
with ad(CF ) in the present situation ([KU3, Section 5.1.3], [KNU1, Section 8.1]).
Then the composite Gm,R → SP → P defines an action of Gm,R on H0,R, and we
call the corresponding splitting of W ′ the Borel-Serre splitting at F and denote
it by splBS

W ′ (F ).
It is easy to see that the map splBS

W ′ : D → spl(W ′), F �→ splBS
W ′ (F ), is real

analytic.

PROPOSITION 2.1.10

Let (ρ,ϕ) be an SL(2)-orbit in n variables, let yj > 0 (1 ≤ j ≤ n), and let p =
ϕ(iy1, . . . , iyn) ∈D. Then

s(j) = splBS
W (j)(p) (1≤ j ≤ n).

See [KU2, Lemma 3.9] for the proof.

2.1.11.
Let E be a finite-dimensional vector space over a field, and let W ′ be an increasing
filtration on E such that W ′

w = E for w� 0 and W ′
w = 0 for w� 0.

Recall (see [D, Section 1.6]) that for a nilpotent endomorphism N of (E,W ′),
an increasing filtration M on E is called a relative monodromy filtration of N

with respect to W ′ if the following two conditions are satisfied.

(1) N(Mk)⊂Mk−2 for any k ∈Z.
(2) Nk induces an isomorphism grM

w+k grW ′

w
∼→ grM

w−k grW ′

w for any w ∈Z and
any k ≥ 0.

If a relative monodromy filtration exists, it is unique and is denoted by
M(N,W ′). In the case where W ′ is pure, that is, W ′

w = E and W ′
w−1 = 0 for

some w, then M(N,W ′) exists.
Let (ρ,ϕ) be as in Section 2.1.1. For the family of filtrations in Section 2.1.6,

we see that, for 0 ≤ j ≤ k ≤ n, W (k) is the relative monodromy filtration of∑
j<l≤k Nl with respect to W (j) (W (0) := W ).
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For an increasing filtration W ′ on E such that W ′
w = E for w � 0 and

W ′
w = 0 for w � 0, define the mean value of the weights μ(W ′) ∈Q of W ′ and

the variance of the weights σ2(W ′) ∈Q of W ′ by

μ(W ′) =
∑
w∈Z

dim(grW ′

w )w/dim(E),

σ2(W ′) =
∑
w∈Z

dim(grW ′

w )(w− μ(W ′))2/dim(E).

PROPOSITION 2.1.12

Let N be a nilpotent endomorphism of (E,W ′) as in Section 2.1.11. Assume
that the relative monodromy filtration M = M(N,W ′) exists. Then the following
hold:

(i) μ(M) = μ(W ′),
(ii) σ2(M) > σ2(W ′) unless M = W ′.

Proof
For each k, we have the equality

(1) dim(grM
k ) =

∑
w

dim(grW ′

w grM
k ) =

∑
w

dim(grM
k grW ′

w ).

Taking
∑

k(· · · )k/dim(E) of (1), and using Section 2.1.11(2), we obtain (i). Let
μ = μ(M) = μ(W ′). By taking

∑
k(· · · )(k − μ)2/dim(E) of (1), (ii) is reduced

to the inequality
∑

k dk(k− μ)2 > (
∑

k dk)(w− μ)2 unless dk = 0 for any k �= w,
where dk = dim(grM

k grW ′
w ) for each w. This inequality is obtained again by using

Section 2.1.11(2). �

PROPOSITION 2.1.13

Let (ρ,ϕ) be an SL(2)-orbit in n variables, and let W (j) (1 ≤ j ≤ n) be as in
Section 2.1.6. Let W (0) = W .

(i) Let 1 ≤ j ≤ n. Then W (j−1) = W (j) if and only if the jth component
SL(2,C)→GC of ρ is the trivial homomorphism.

(ii) For 0 ≤ j ≤ n, let σ2(j) = σ2(W (j)) be as in Section 2.1.11 for the
increasing filtration W (j) on the R-vector space H0,R. Then σ2(j) ≤ σ2(j′) if
0≤ j ≤ j′ ≤ n.

(iii) Let 0 ≤ j ≤ n, 0 ≤ j′ ≤ n. Then W (j) = W (j′) if and only if σ2(j) =
σ2(j′).

Statement (i) was proved in [KU2, Section 3]. Statements (ii) and (iii) follow
from Proposition 2.1.12.



Classifying spaces of degenerating mixed Hodge structures, II 169

2.1.14.
Let (ρ,ϕ) be an SL(2)-orbit in n variables in pure case. Put W (0) = W . We
define rank of (ρ,ϕ) as the number of the elements of the set {j | 1≤ j ≤ n,W (j) �=
W (j−1)}.

2.1.15.
EXAMPLE 0

Recall that in this case, D is identified with the upper half-plane h. Let ρ be the
standard isomorphism SL(2,C) → GC, and let ϕ : P1(C) → Ď be the natural
isomorphism in Section 1.1.1. Then (ρ,ϕ) is an SL(2)-orbit in one variable of
rank 1.

2.2. Nilpotent orbits and SL(2)-orbits in pure case
We consider the pure case. Let w ∈Z, and assume Ww = H0,R and Ww−1 = 0.

2.2.1.
Let F ∈ Ď, and let N1, . . . ,Nn be elements of gR such that NjNk = NkNj for
any j, k and such that Nj is nilpotent as a linear map H0,R →H0,R for any j.

We say that the map

Cn → Ď, (z1, . . . , zn) �→ exp
( n∑

j=1

zjNj

)
F

is a nilpotent orbit if the following conditions (1) and (2) are satisfied:

(1) exp(
∑n

j=1 zjNj)F ∈D if Im(zj)� 0 for all j,
(2) NjF

p ⊂ F p−1 for any j and any p.

In this case, we say also that (N1, . . . ,Nn, F ) generates a nilpotent orbit.

2.2.2.
Assume that (N1, . . . ,Nn, F ) generates a nilpotent orbit. By [CK], for yj ∈R≥0,
the filtration M(y1N1 + · · ·+ ynNn,W ) (see Section 2.1.11) depends only on the
set {j | yj �= 0}. For 1≤ j ≤ n, let W (j) = M(N1 + · · ·+ Nj ,W ).

2.2.3.
Assume that (N1, . . . ,Nn, F ) generates a nilpotent orbit. Then by Cattani,
Kaplan, and Schmid [CKS], an SL(2)-orbit (ρ,ϕ) is canonically associated to
(N1, . . . ,Nn, F ). (The homomorphism ρ is given in [CKS, Theorem 4.20], and
ϕ is defined by ϕ(g0) = ρ(g)F̂ (g ∈ SL(2,C)n), where 0 = 0n ∈ P1(C)n.) By
[KNU1], this SL(2)-orbit is characterized in the style of the following theorem.

THEOREM 2.2.4

Assume that (N1, . . . ,Nn, F ) generates a nilpotent orbit.
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(i) Let 1 ≤ j ≤ n. Then, when yk ∈ R>0 and yk/yk+1 →∞ (1 ≤ k ≤ n,
yn+1 means 1), the Borel-Serre splitting splBS

W (j)(exp(
∑n

k=1 iykNk)F ) converges
in spl(W (j)) (see [KNU1, Section 8.7]).

Let s(j) ∈ spl(W (j)) be the limit.
(ii) There is a homomorphism τ : Gn

m,R →AutR(H0,R) of algebraic groups
over R characterized by the following property. For any 1≤ j ≤ n and any k ∈Z,
we have

s(j)(grW (j)

k ) =
{
v ∈H0,R

∣∣ τj(t)v = tkv for any t ∈R×}
,

where τj : Gm,R →AutR(H0,R) is the jth component of τ .
(iii) There exists a unique SL(2)-orbit (ρ,ϕ) in n variables characterized by

the following properties (1) and (2).
(1) The associated weight filtrations W (j) (1≤ j ≤ n) are the same as W (j)

in Section 2.2.2.
(2) The point ϕ(i) is the limit in D of

τ
(√

y2

y1
, . . . ,

√
yn+1

yn

)−1

exp
( n∑

j=1

iyjNj

)
F (yj > 0, yj/yj+1 →∞ (1≤ j ≤ n))

(yn+1 means 1), where τ is as in (ii).
(iv) The associated torus action ρ̃ (see [KU2, Section 3.1(4)]) of (ρ,ϕ) and

the homomorphism τ in (ii) are related as follows:

τ(t1, . . . , tn) =
( n∏

j=1

tj

)w

ρ̃(t1, . . . , tn).

2.2.5.
EXAMPLE 0

Let (N,F ) be as follows: N(e2) = e1, N(e1) = 0, F = F (z) with z ∈ i ·R in
the notation of Section 1.1.1. Then (N,F ) generates a nilpotent orbit, and the
associated SL(2)-orbit is the one in Section 2.1.15.

In fact, exp(iyN)F = F (z + iy), and τ(t) in Theorem 2.2.4(ii) sends e1 to
t−2e1 and e2 to e2. Hence τ(1/

√
y)−1 exp(iyN)F = F ((z + iy)/y) → F (i) as

y→∞.

2.2.6.
Assume that (N,F ) generates a nilpotent orbit in the pure case in Section 2.2.1
for n = 1. Let W (1) = M(N,W ) be as in Section 2.2.2. Then (W (1), F ) is a
mixed Hodge structure, and the splitting s(1) of W (1) given by the SL(2)-orbit
(see Section 2.1.6) associated to (N,F ) coincides with the canonical splitting of
W (1) associated to F (see Section 1.2).

2.2.7.
More generally, for any mixed Hodge structure, its canonical splitting (see Sec-
tion 1.2) is obtained as in Section 2.2.6 by embedding the mixed Hodge structure
into a pure nilpotent orbit.
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In fact, let (M,F ) be a mixed Hodge structure on an R-vector space V . Let
k be an integer such that all the weights of (M,F ) are not greater than k. It
is shown in [KNU1] that there exist an R-vector space V ′, an R-linear injective
map q : V → V ′, a nilpotent endomorphism N of V ′, and a decreasing filtration
F ′ on V ′

C such that the pair (N,F ′) generates a nilpotent orbit on V ′ in the pure
case of weight k in Section 2.2.1 for n = 1, which satisfy the following conditions.

Let W ′ be the trivial weight filtration on V ′ of weight k, and let W (1) =
M(N,W ′) be as in Section 2.2.2. Then, 0→ (V,M,F )

q→ (V ′,W (1), F ′) N→ (V ′,

W (1)[−2], F ′(−1)) is an exact sequence of mixed Hodge structures, where [−2]
is the shift by −2 and (−1) is the Tate twist by −1, and the restriction of the
splitting s(1) of W (1), given by the SL(2)-orbit associated to (N,F ′) on V ′, to
Ker(N : grW (1) → grW (1)[−2])� grM coincides with the canonical splitting of M

on V associated to F .
For the proof, see [KNU1, Section 3].

2.3. SL(2)-orbits in mixed case
Now we consider the mixed version of Section 2.1. Let W be as in the notation.

2.3.1.
For n≥ 0, let D′

SL(2),n be the set of pairs ((ρw, ϕw)w∈Z,r), where (ρw, ϕw) is an
SL(2)-orbit in n variables for grW

w for each w ∈Z and r is an element of D such
that r(grW

w ) = ϕw(i) for each w ∈Z. Here i = (i, . . . , i) ∈Cn ⊂P1(C)n.

2.3.2.
Let DSL(2),n be the set of all triples ((ρw, ϕw)w∈Z,r, J), where ((ρw, ϕw)w∈Z,r) ∈
D′

SL(2),n and J is a subset of {1, . . . , n} satisfying the following conditions (1) and
(2). Let

J ′ =
{
j

∣∣ 1≤ j ≤ n, there is w ∈Z such that the jth component

SL(2)→GR(grW
w ) of ρw is a nontrivial homomorphism

}
.

(1) If r ∈Dspl, J = J ′.
(2) If r ∈Dnspl, either J = J ′ or J = J ′ ∪ {k} for some k < minJ ′.

Let

DSL(2) =
⊔
n≥0

DSL(2),n.

We call an element of DSL(2),n an SL(2)-orbit in n variables and call an
element of DSL(2) an SL(2)-orbit. Note that, in the pure case, J is determined
uniquely by (ρw)w since D = Dspl.

We call the cardinality of the set J the rank of the SL(2)-orbit.
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2.3.3.
Let DSL(2),n,� ⊂DSL(2),n be the set of all SL(2)-orbits in n variables of rank n.

For an element ((ρw, ϕw)w,r, J) of DSL(2),n,�, J = {1, . . . , n}. Hence, by for-
getting J , the set DSL(2),n,� is identified with the subset of D′

SL(2),n (see Sec-
tion 2.3.1) consisting of all elements ((ρw, ϕw)w,r) satisfying the following con-
ditions (1) and (2).

(1) If 2≤ j ≤ n, there exists w ∈ Z such that the jth component of ρw is a
nontrivial homomorphism.

(2) If r ∈Dspl and n≥ 1, there exists w ∈ Z such that the first component
of ρw is a nontrivial homomorphism.

As is seen later in Section 2.5, for the construction of the space DSL(2), it is
sufficient to consider SL(2)-orbits in n variables of rank r with r = n. We call
this type of SL(2)-orbit a nondegenerate SL(2)-orbit of rank n or, for simplicity,
an SL(2)-orbit of rank n, and we regard it as an element of D′

SL(2),n.
On the other hand, the generality of the definition in Section 2.3.2 with the

auxiliary data J is natural in Section 2.4 when we consider the relations with
nilpotent orbits.

2.3.4.
If ((ρw, ϕw)w,r, J) is an SL(2)-orbit in n variables of rank r, we have the asso-
ciated SL(2)-orbit ((ρ′

w, ϕ′
w)w,r) in r variables of rank r, defined as follows. Let

J = {a(1), . . . , a(r)} with a(1) < · · ·< a(r). Then

ρ′
w(ga(1), . . . , ga(r)) := ρw(g1, . . . , gn), ϕ′

w(za(1), . . . , za(r)) := ϕw(z1, . . . , zn).

Note that, for any w ∈Z, ρw factors through the projection SL(2)n → SL(2)J

to the J -component, and ϕw factors through the projection P1(C)n →P1(C)J

to the J -component, and hence (ρw, ϕw)w is essentially the same as (ρ′
w, ϕ′

w)w.

2.3.5. Associated torus action
Assume that we are given an SL(2)-orbit in n variables ((ρw, ϕw)w,r, J).

We define the associated homomorphism of algebraic groups over R,

τ : Gn
m,R →AutR(H0,R,W ),

as follows. Let sr : grW ∼→H0,R be the canonical splitting of W associated to r
(see Section 1.2). Then

τ(t1, . . . , tn) = sr ◦
(⊕

w∈Z

( n∏
j=1

tj

)w

ρw(g1, . . . , gn) on grW
w

)
◦ s−1

r

with gj =

(
1/

∏n
k=j tk 0
0

∏n
k=j tk

)
.

For 1≤ j ≤ n, let τj : Gm,R →AutR(H0,R,W ) be the jth component of τ .
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REMARK

The induced action of τ(t) (t ∈Rn
>0) on D is described as follows. For s(θ(F, δ)) ∈

D with s ∈ spl(W ), F ∈D(grW ), δ ∈ L(F ) (see Proposition 1.2.5), we have

τ(t)s
(
θ(F, δ)

)
= s′(θ(F ′, δ′)

)
with s′ = τ(t)sgrW (τ(t))−1, F ′ = grW (τ(t))F , δ′ = Ad

(
grW (τ(t))

)
δ.

2.3.6. Associated family of weight filtrations
In the situation of Section 2.3.5, for 1 ≤ j ≤ n, we define the associated jth
weight filtration W (j) on H0,R as follows. For k ∈ Z, W

(j)
k is the direct sum of

{x ∈H0,R | τj(t)x = t�x (∀t ∈R×)} over all �≤ k.
By definition, we have W

(j)
k =

∑
w∈Z sr(W

(j)
k (grW

w )), and W
(j)
k (grW

w ) coin-
cides with the kth filter of the jth weight filtration on grW

w associated to the
SL(2)-orbit (ρw, ϕw) in n variables.

PROPOSITION 2.3.7

(i) An SL(2)-orbit in n variables ((ρw, ϕw)w,r, J) is uniquely determined
by

(
(W (j)(grW ))1≤j≤n,r, J

)
.

(ii) An SL(2)-orbit in n variables ((ρw, ϕw)w,r, J) is uniquely determined
by (τ,r, J).

Proof
(i) In the pure case, this is Proposition 2.1.7. The general case is clearly

reduced to the pure case.
(ii) This follows from (i) since the family of weight filtrations

(W (j)(grW ))1≤j≤n is determined by τ . �

PROPOSITION 2.3.8

Let ((ρw, ϕw)w,r, J) be an SL(2)-orbit in n variables, and let W (j) (1≤ j ≤ n)
be as in Section 2.3.6. Let W (0) = W .

(i) Let 1 ≤ j ≤ n. Then W (j) = W (j−1) if and only if for any w ∈ Z, the
jth factor SL(2,C)→GC(grW

w ) of ρw is the trivial homomorphism.
(ii) For 0≤ j ≤ n, let σ2(j) =

∑
w∈Z σ2(W (j)(grW

w )), where σ2(W (j)(grW
w ))

is the variance (see Section 2.1.11) of the increasing filtration W (j)(grW
w ) on the

R-vector space grW
w . Then, σ2(j)≤ σ2(j′) if 0≤ j ≤ j′ ≤ n.

(iii) Let 0 ≤ j ≤ n, 0 ≤ j′ ≤ n. Then, W (j) = W (j′) if and only if σ2(j) =
σ2(j′).

Proof
This is also reduced to the pure case, Proposition 2.1.13. �
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2.3.9.
We describe the kind of SL(2)-orbits of positive rank which exist in Examples I–V.
We consider only an SL(2)-orbit in r variables of rank r; hence, J = {1, . . . , r} in
the following (see Section 2.3.3).

EXAMPLE I

Any SL(2)-orbit of rank > 0 is of rank 1. An SL(2)-orbit in one variable of rank 1
is ((ρw, ϕw)w,r), where ρw is the trivial homomorphism from SL(2) to GR(grW

w )
and ϕw is the unique map from P1(C) onto the one-point set D(grW

w ), and r is
any element of Dnspl = C � R. We have W (1) = W . Later we refer to the case
r = F (i) ∈D (i.e., r = i ∈C = D) as Section 2.3.9, Example I.

EXAMPLE II

Any SL(2)-orbit of rank > 0 is of rank 1. An SL(2)-orbit in one variable of rank
1 is ((ρw, ϕw)w,r), where (ρw, ϕw) is of rank 0 for w �=−1, and (ρ−1, ϕ−1) is of
rank 1. An example of such an SL(2)-orbit is that (ρ−1, ϕ−1) is the SL(2)-orbit
in Section 2.1.15, and r = F (i, z) in the notation of Section 1.1.1, Example II.
For this SL(2)-orbit, W (1) is given by

W
(1)

−3 = 0⊂W
(1)

−2 = W
(1)

−1 = Re1 ⊂W
(1)
0 = H0,R.

EXAMPLE III

There are three cases for SL(2)-orbits in r variables of rank r > 0. For any of
them, (ρw, ϕw) is of rank 0 unless w =−3.

Case 1: r = 1 and (ρ−3, ϕ−3) is of rank 1. An example of such an SL(2)-orbit
is given as follows: (ρ−3, ϕ−3) is (ρ,ϕ(1)) of Section 2.1.15 (we identify Ď(grW

−3)
with P1(C) via the Tate twist), and r = F (i, z1, i) for z1 ∈C (see Section 1.1.1).
For this SL(2)-orbit,

W
(1)

−5 = 0⊂W
(1)

−4 = W
(1)

−3 = Re1 ⊂W
(1)

−2 = W
(1)

−1 = W
(1)

−3 + Re2 ⊂W
(1)
0 = H0,R.

Case 2: r = 1 and (ρ−3, ϕ−3) is of rank 0. An example of such an SL(2)-orbit is
given as follows: ρ−3 is the trivial homomorphism onto {1}, ϕ−3 is the constant
map with value i ∈ h = D(grW

−3), and r = F (i, z1, z2) with (z1, z2) ∈C2 �R2. For
this SL(2)-orbit, W (1) = W .

Case 3: r = 2 and (ρ−3, ϕ−3) is of rank 1. The homomorphism ρ−3 : SL(2,C)2 →
GC(grW

−3) = SL(2,C) factors through the second projection onto SL(2,C), and
ϕ−3 : P1(C)2 → Ď(grW

−3) = P1(C) factors through the second projection onto
P1(C). An example of such an SL(2)-orbit is given as follows: ρ−3(g1, g2) = g2,
ϕ−3(p1, p2) = p2, and r = F (i, z1, z2), where (z1, z2) ∈C2 � R2. For this SL(2)-
orbit, W (1) = W and W (2) is the W (1) in the example in Case 1.
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EXAMPLE IV

There are three cases for SL(2)-orbits in r variables of rank r > 0. For any of
them, (ρw, ϕw) is of rank 0 unless w =−1.

Case 1: r = 1 and (ρ−1, ϕ−1) is of rank 1. An example of such an SL(2)-orbit is
given as follows: (ρ−1, ϕ−1) is the standard one (which is identified with (ρ,ϕ)
in Section 2.1.15 by the identification of e′

2, e
′
3 here with e1, e2 there), and r =

F (i, z1, z2, z3) for z1, z2, z3 ∈C (see Section 1.1.1). For this SL(2)-orbit,

W
(1)

−3 = 0⊂W
(1)

−2 = W
(1)

−1 = Re1 + Re2 ⊂W
(1)
0 = H0,R.

Case 2: r = 1 and (ρ−1, ϕ−1) is of rank 0. An example of such an SL(2)-orbit
is given as follows: ρ−1 is the trivial homomorphism onto {1}, ϕ−1 is the con-
stant map with value i ∈ h = D(grW

−1), and r = F (i, z1, z2, z3) with Im(z2) �=
Im(z1) Im(z3) (the last condition says that F (i, z1, z2, z3) ∈ Dnspl). For this
SL(2)-orbit, W (1) = W .

Case 3: r = 2 and (ρ−1, ϕ−1) is of rank 1. The homomorphism ρ−1 : SL(2,C)2 →
GC(grW

−1) factors through the second projection onto SL(2,C), and ϕ−1 :
P1(C)2 → Ď(grW

−1) = P1(C) factors through the second projection onto P1(C).
An example of such an SL(2)-orbit is given as follows: ρ−1(g1, g2) = g2, ϕ−1(p1,

p2) = p2, and r = F (i, z1, z2, z3) with Im(z2) �= Im(z1) Im(z3). For this SL(2)-
orbit, W (1) = W and W (2) is the W (1) in the example in Case 1.

EXAMPLE V

There are five cases for SL(2)-orbits in r variables of rank r > 0. For any of them,
(ρw, ϕw) is of rank 0 if w /∈ {0,1}.

Case 1 (resp., Case 2): r = 1 and (ρ0, ϕ0) is of rank 1 (resp., 0), and (ρ1, ϕ1)
is of rank 0 (resp., 1). An example of such an SL(2)-orbit is given as follows:
(ρ0, ϕ0) (resp., (ρ1, ϕ1)) is (Sym2(ρ),Sym2(ϕ)(−1)) (resp., (ρ,ϕ(−1))) for the
standard (ρ,ϕ) in Section 2.1.15 via a suitable identification, where (−1) means
the Tate twist, and r = F (i, i, z1, z2, z3) for z1, z2, z3 ∈C. For this SL(2)-orbit,

W
(1)

−3 = 0⊂W
(1)

−2 = W
(1)

−1 = Re1 ⊂W
(1)
0 = W

(1)
−1 + Re2

⊂W
(1)
1 = W

(1)
0 + Re4 + Re5 ⊂W

(1)
2 = H0,R

(resp., W
(1)

−1 = 0⊂W
(1)
0 = W

(1)
1 = Re1 + Re2 + Re3 + Re4 ⊂W

(1)
2 = H0,R).

Case 3: r = 1, and both (ρ0, ϕ0) and (ρ1, ϕ1) are of rank 1. An example of such
an SL(2)-orbit is given as follows: ρ0 = Sym2(ρ), ϕ0 = Sym2(ϕ)(−1), ρ1 = ρ,
ϕ1 = ϕ(−1) for the standard (ρ,ϕ) in Section 2.1.15 via a suitable identification,
and r = F (i, i, z1, z2, z3) for z1, z2, z3 ∈C. For this SL(2)-orbit,

W
(1)

−3 = 0⊂W
(1)

−2 = W
(1)

−1 = Re1 ⊂W
(1)
0 = W

(1)
1 = W

(1)
−1 + Re2 + Re4

⊂W
(1)
2 = H0,R.
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Case 4 (resp., Case 5): r = 2, both (ρ0, ϕ0) and (ρ1, ϕ1) are of rank 1, ρ0 :
SL(2,C)2 → GC(grW

0 ) factors through the first (resp., second) projection onto
SL(2,C), ϕ0 : P1(C)2 → Ď(grW

0 ) factors through the first (resp., second) projec-
tion onto P1(C), ρ1 : SL(2,C)2 → GC(grW

1 ) factors through the second (resp.,
first) projection onto SL(2,C), and ϕ1 : P1(C)2 → Ď(grW

1 ) factors through the
second (resp., first) projection onto P1(C). An example of such an SL(2)-orbit
is given as follows. For j = 1 (resp., 2), ρ0(g1, g2) = Sym2(gj), ϕ0(p1, p2) = pj ∈
P1(C) � Ď(grW

0 ) (cf. Section 1.1.2), ρ1(g1, g2) = g3−j , ϕ1(p1, p2) = p3−j(−1) ∈
P1(C) � Ď(grW

1 ), and r = F (i, i, z1, z2, z3) with z1, z2, z3 ∈ C. For this SL(2)-
orbit, W (1) is the W (1) in the example in Case 1 (resp., Case 2) and W (2) is the
W (1) in the example in Case 3.

2.4. Nilpotent orbits and SL(2)-orbits in mixed case
2.4.1.
Let Nj ∈ gR (1≤ j ≤ n), and let F ∈ Ď. We say that (N1, . . . ,Nn, F ) generates
a nilpotent orbit if the following conditions (1)–(4) are satisfied.

(1) The R-linear maps Nj : H0,R →H0,R are nilpotent for all j, and NjNk =
NkNj for all j, k.

(2) If yj � 0 (1≤ j ≤ n), then exp(
∑n

j=1 iyjNj)F ∈D.
(3) We have NjF

p ⊂ F p−1 for all j and p (Griffiths transversality).
(4) Let J be any subset of {1, . . . , n}. Then for yj ∈R>0 (j ∈ J), the rel-

ative monodromy filtration M(
∑

j∈J yjNj ,W ) (see Section 2.1.11) exists. Fur-
thermore, this filtration is independent of the choice of yj ∈R>0.

In the pure case, by Section 2.2.2, (N1, . . . ,Nn, F ) generates a nilpotent orbit
in this sense if and only if it does in the sense of Section 2.2.1.

Let Dnilp,n be the set of all (N1, . . . ,Nn, F ) which generate nilpotent orbits.
For (N1, . . . ,Nn, F ) ∈Dnilp,n, we call the map

(z1, . . . , zn) �→ exp
( n∑

j=1

zjNj

)
F

a nilpotent orbit in n variables.
In the terminology of Kashiwara [K], Dnilp,n is the set of all (N1, . . . ,Nn, F )

such that (H0,C;WC;F, F̄ ;N1, . . . ,Nn), with F̄ the complex conjugate of F , is
an infinitesimal mixed Hodge module.

We prove Theorem 2.4.2, Proposition 2.4.3, and Theorem 2.4.5. Theo-
rem 2.4.2(i) was already proved in Theorem 0.5 of our previous article [KNU1].

THEOREM 2.4.2

Let (N1, . . . ,Nn, F ) ∈Dnilp,n. For each w ∈Z, let (ρw, ϕw) be the SL(2)-orbit in
n variables for grW

w associated to (grW
w (N1), . . . ,grW

w (Nn), F (grW
w )), which gen-

erates a nilpotent orbit for grW
w (see Section 2.2.3). Let k = min({j | 1 ≤ j ≤

n,Nj �= 0} ∪ {n + 1}).
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(i) If yj ∈R>0 and yj/yj+1 →∞ (1≤ j ≤ n, yn+1 means 1), the canonical
splitting splW (exp(

∑n
j=1 iyjNj)F ) of W associated to exp(

∑n
j=1 iyjNj)F (see

Section 1.2.3) converges in spl(W ).
Let s ∈ spl(W ) be the limit.
(ii) Let τ : Gn

m,R → AutR(H0,R,W ) be the homomorphism of algebraic
groups defined by

τ(t1, . . . , tn) = s ◦
(⊕

w∈Z

(( n∏
j=1

tj

)w

ρw(g1, . . . , gn) on grW
w

))
◦ s−1,

where gj is as in Section 2.3.5. Then, as yj > 0, y1 = · · · = yk, yj/yj+1 →∞
(k ≤ j ≤ n, yn+1 means 1),

τ
(√

y2

y1
, . . . ,

√
yn+1

yn

)−1

exp
( n∑

j=1

iyjNj

)
F

converges in D.
Let r1 ∈D be the limit.
(iii) Let

J ′ = {j | 1≤ j ≤ n, the jth component of ρw is nontrivial for some w ∈Z}.

Let J = J ′ = ∅ if k = n + 1, and let J = J ′ ∪ {k} otherwise. Then(
(ρw, ϕw)w,r1, J

)
∈DSL(2),n.

(iv) The family of weight filtrations (see Section 2.3.6) and the torus action
(see Section 2.3.5) associated to ((ρw, ϕw)w,r1, J) coincide with (M(N1 + · · ·+
Nj ,W ))1≤j≤n and τ in (ii), respectively.

We prove this theorem later in Section 2.4.8.
By this theorem, we have a map

ψ : Dnilp,n →DSL(2),n, (N1, . . . ,Nn, F ) �→ ((ρw, ϕw)w,r1, J),

(for the notation, see Sections 2.4.1, 2.3.2). For p ∈ Dnilp,n, we call ψ(p) ∈
DSL(2),n the SL(2)-orbit associated to p. Note that this definition is slightly dif-
ferent from that in [KNU1, Section 0.2]. Note also that though in the definition
of a nilpotent orbit in Section 2.4.1, the order of N1, . . . ,Nn in (N1, . . . ,Nn, F ) is
not important, when we consider the SL(2)-orbit associated to (N1, . . . ,Nn, F ),
the order of N1, . . . ,Nn becomes essential.

Even when k = 1, the r1 in Theorem 2.4.2(ii) is not r but exp(ε0)r in the
main theorem [KNU1, Theorem 0.5], although the s in Theorem 2.4.2(i) coincides
with splW (r1) (see Section 1.2.3).

PROPOSITION 2.4.3

Let (N1, . . . ,Nn, F ) ∈Dnilp,n, and let W (j) = M(N1 + · · ·+ Nj ,W ) for 1≤ j ≤ n

(cf. Section 2.2.2 in the pure case). Let k = min({j | 1≤ j ≤ n,Nj �= 0} ∪ {n +
1}). Then the following two conditions (1) and (2) are equivalent.
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(1) For any k ≤ j ≤ n,
(
W (j), exp

(∑n
l=j+1 iNl

)
F

)
is an R-split mixed Hodge

structure.
(2) For any k ≤ j ≤ n and for any yl ∈R>0 (j < l≤ n),

(
W (j), exp

(∑n
l=j+1

iylNl

)
F

)
is an R-split mixed Hodge structure.

We prove this proposition later in Section 2.4.9.

2.4.4.
Let Dnilp,SL(2),n ⊂Dnilp,n be the set of all (N1, . . . ,Nn, F ) ∈Dnilp,n which satisfy
the equivalent conditions in Proposition 2.4.3.

For example, Dnilp,SL(2),1 is the set of all (N,F ) ∈Dnilp,1 such that N = 0 or
(M(N,W ), F ) is an R-split mixed Hodge structure.

THEOREM 2.4.5

For p = (N1, . . . ,Nn, F ) ∈ Dnilp,n, let k = min({j | 1≤ j ≤ n,Nj �= 0} ∪ {n + 1}),
and let φ(p) = (N1, . . . ,Nk,NΔ

k+1, . . . ,N
Δ
n , F ′), where F ′ = F if k = n + 1 and

F ′ = F̂(n) otherwise (NΔ
j ∈ gR (k < j ≤ n) and F̂(n) ∈ Ď are as in [KNU1,

Sections 10.1–10.2]; we review these objects in Section 2.4.6, Proposition 2.4.7
below).

(i) For p ∈Dnilp,n, we have φ(p) ∈Dnilp,n and φ(φ(p)) = φ(p).
(ii) We have Dnilp,SL(2),n = {p ∈Dnilp,n | φ(p) = p}.
(iii) The map ψ : Dnilp,SL(2),n →DSL(2),n is injective. This map is described

via Proposition 2.3.7 as follows. For p = (N1, . . . ,Nn, F ) ∈Dnilp,SL(2),n, the fam-
ily of weight filtrations associated to ψ(p) is given as in Theorem 2.4.2(iv), r1 =
exp(iN1 + · · ·+ iNn)F , and J = {j | 1 ≤ j ≤ n,Nj �= 0}. If J = {a(1), . . . , a(r)}
(a(1) < · · · < a(r)) and if p′ denotes (Na(1), . . . ,Na(r), F ), ψ(p′) coincides with
the SL(2)-orbit in r variables of rank r associated to ψ(p) (see Section 2.3.4).

(iv) In the pure case, the map ψ :Dnilp,SL(2),n →DSL(2),n is bijective. The
converse map is given by (ρ,ϕ) �→ (N1, . . . ,Nn, ϕ(0)), where Nj is the operator
associated to ρ in Section 2.1.4.

(v) The map ψ : Dnilp,n → DSL(2),n factors as Dnilp,n
φ→ Dnilp,SL(2),n

ψ
↪→

DSL(2),n.
(vi) Assume p = (N1, . . . ,Nn, F ) ∈Dnilp,SL(2),n. Let

ψ(p) =
(
(ρw, ϕw)w,r1, J

)
(see Theorem 2.4.2), and let (W (j))1≤j≤n be the family of weight filtrations asso-
ciated to ψ(p). Then (W (j),r1) is a mixed Hodge structure for 1≤ j ≤ n, and p

is recovered from ψ(p) by the following (1) and (2).
(1) Let k = min(J ∪ {n + 1}). For 1 ≤ j < k, Nj = 0. For k ≤ j ≤ n,∑j

l=k Nl = s(j)δ(W (j),r1)(s(j))−1, where s(j) is the sr1-lift (cf. Section 2.4.6;
see Section 2.3.5 for sr1) of (s(j) of (ρw, ϕw))w.

(2) If k = n + 1, F = r1. Otherwise, (W (n), F ) is the R-split mixed Hodge
structure associated to the mixed Hodge structure (W (n),r1).
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We prove this theorem later in Section 2.4.10.
The injection ψ : Dnilp,SL(2),n → DSL(2),n need not be surjective although

it is bijective in the pure case (see Theorem 2.4.5(iv); see also Section 2.4.11,
Example III).

Some readers may prefer to define an SL(2)-orbit as an element of⊔
nDnilp,SL(2),n, not using DSL(2),n. The reason we use the set DSL(2),n is that

the space DSL(2) of the classes of SL(2)-orbits defined by using DSL(2),n has nice
properties (e.g., Theorem 3.5.15).

We now give preparations for the proofs of Theorem 2.4.2, Proposition 2.4.3,
and Theorem 2.4.5.

2.4.6.
Let (N1, . . . ,Nn, F ) ∈ Dnilp,n. In the following, we review an alternative con-
struction of s, τ , and r1 by a finite number of algebraic steps, not by a limit. In
particular, we review the definition of F̂(n).

For 0≤ j ≤ n, we denote M(
∑j

k=1 Nk,W ) by W (j). In particular, W (0) = W .
For 0≤ j ≤ n, we define an R-split mixed Hodge structure (W (j), F̂(j)) and

the associated splitting s(j) of W (j) inductively starting from j = n and ending
at j = 0 (see [KNU1, Section 10.1]; in the pure case, see [CKS]). Note that, in the
definition of mixed Hodge structure, we do not assume that the weight filtration
is rational (cf. Section 1.2.8). First, (W (n), F ) is a mixed Hodge structure, as is
proved by Deligne (see [K, Proposition 5.2.1]). Let (W (n), F̂(n)) be the R-split
mixed Hodge structure associated to the mixed Hodge structure (W (n), F ). Then
(W (n−1), exp(iNn)F̂(n)) is a mixed Hodge structure. Let (W (n−1), F̂(n−1)) be
the R-split mixed Hodge structure associated to (W (n−1), exp(iNn)F̂(n)). Then
(W (n−2), exp(iNn−1)F̂(n−1)) is a mixed Hodge structure. This process continues.
In this way we define F̂(j) inductively as the R-split mixed Hodge structure
associated to the mixed Hodge structure (W (j), exp(iNj+1)F̂(j+1)) and define
s(j) to be the splitting of W (j) associated to F̂(j). The splitting s in Theorem
2.4.2(i) is nothing but s(0) (see [KNU1, Section 10.1.2]).

Thus we have s(j) = splW (j)(exp(iNj+1)F̂(j+1)), F̂(j) = s(j)
(
(exp(iNj+1) ·

F̂(j+1))(grW (j)
)
)

(Nn+1 := 0, F̂(n+1) := F ). We also have r1 = exp(iNk)F̂(k),
where k = min({j | 1≤ j ≤ n,Nj �= 0} ∪ {n + 1}) (cf. Section 2.4.8).

These s(j) (0≤ j ≤ n) are compatible in the sense that we have a direct sum
decomposition

H0,R =
⊕

θ∈Zn+1

H
[θ]
0,R, where H

[θ]
0,R =

n⋂
j=0

s(j)(grW (j)

θ(j) ).

This compatibility is expressed also in the following way. Let

τj : Gm,R →AutR(H0,R,W ) (0≤ j ≤ n)

be the homomorphism of algebraic groups over R characterized as follows. For
a ∈R× and w ∈ Z, τj(a) acts on s(j)(grW (j)

w ) as the multiplication by aw. Then
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the compatibility of s(j) (0 ≤ j ≤ n) in question is expressed as the fact that
τj(a)τk(b) = τk(b)τj(a) for any j, k and any a, b ∈R>0. Let

τ(a) =
n∏

j=1

τj(aj) for a = (aj)j ∈Rn
>0.

This τ coincides with the τ in Theorem 2.4.2(ii). Note also that s(j) is the
s-lift of (s(j) of (ρw, ϕw))w; that is, it coincides with the composite grW (j) ∼=⊕

w grW (j)
(grW

w ) →
⊕

w grW
w

s→ H0,R, where the first arrow is the sum of the
splittings s(j) on grW

w with respect to (ρw, ϕw). In [KNU1, Section 10.3], we
denoted τj(

√
a)−1 for a ∈R>0 by t(j)(a) and τ((

√
aj+1/aj)j) for a = (aj)j ∈Rn

>0

(an+1 := 1) by t(a).
Any h ∈ gR is decomposed uniquely in the form

h =
∑

θ∈Zn+1

h[θ], h[θ] ∈ gR, h[θ](H [θ′]
0,R)⊂H

[θ+θ′]
0,R (∀θ′ ∈Zn+1).

PROPOSITION 2.4.7

Let the notation be as above.

(i) Let 1≤ j ≤ n, and let θ = (θ(k))0≤k≤n ∈Zn+1 (θ(k) ∈Z). Then N
[θ]
j =

0 unless θ(k) =−2 for j ≤ k ≤ n.
(ii) Let 1 ≤ j ≤ n, and define N̂j (resp., NΔ

j , resp., N̂ ′
j) to be the sum of

N
[θ]
j , where θ ranges over all elements of Zn+1 such that θ(k) = 0 for 0≤ k ≤ j−1

(resp., for 1≤ k ≤ j − 1, resp., for k = j − 1). Then

N̂j = N̂ ′
j .

Consequently,

NΔ
j = N̂j for 2≤ j ≤ n, NΔ

1 = N1.

(iii) We have NjN̂k = N̂kNj if 1≤ j < k ≤ n.
(iv) We have N̂jN̂k = N̂kN̂j and NΔ

j NΔ
k = NΔ

k NΔ
j for all j, k.

(v) Assume 1 ≤ j ≤ k ≤ n. Then (W (k), F̂(j)) is a mixed Hodge structure.
The R-split mixed Hodge structure associated to (W (k), F̂(j)) is (W (k), F̂(k)),
(s(k))−1N�s

(k) and (s(k))−1N̂�s
(k) belong to L−1,−1

R (W (k), F̂(k)(grW (k)
)) (which

is a subset of EndR(grW (k)
) defined similarly to L−1,−1

R (F ) in Section 1.2.1) for
all �≤ k, and δ(W (k), F̂(j)) = (s(k))−1(

∑
j<�≤k N̂�)s(k).

REMARK 1

Thus (NΔ
1 , . . . ,NΔ

n ) is nothing but (N1, N̂2, . . . , N̂n). In [KNU1], Proposition
2.4.7(ii) above was not recognized, so we did not unify the notation NΔ

j and N̂j .

REMARK 2

In the case j ≥ k, NjN̂k = N̂kNj in Proposition 2.4.7(iii) need not be true. For
example, in Section 1.1.1, Example III, if we take N in Section 2.4.11, Example III
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below as Nj for 1 ≤ j ≤ n and take F in Section 2.4.11, Example III, then N̂1

sends e1 and e3 to zero and e2 to e1, so NjN̂1 = 0, but N̂1Nj is not zero for any j.
(On the other hand, in this example, N̂j = 0 for j ≥ 2, and hence N1N̂j = N̂jN1

is trivially true for j ≥ 2.)

Proof of Proposition 2.4.7
The assertion (i) is explained in [KNU1, Section 10.3]. We give the proofs of the
remaining statements.

Let 1≤ j ≤ n. By [KNU1, Section 10.1.4], F̂(j) = s(ϕ({0}j × {i}n−j)). Here
s is the splitting of W associated to r1. From this, we have the following.

(1) The filtration F̂(j) coincides with s(k)
(⊕

w F̂(j)(grW (k)

w )
)

if 0≤ k ≤ j.

By (1) and by (s(j))−1Nks(j) ∈ L−1,−1
R (W (j), F̂(j)(grW (j)

)) for 1≤ k ≤ j, we
have

(2) The endomorphism (s(j))−1N̂ks(j) and (s(j))−1N̂ ′
ks(j) belong to

L−1,−1
R (W (j), F̂(j)(grW (j)

)) for 1≤ k ≤ j.

We prove (ii). By (1), we see that

F̂(j−1) = exp(iN̂ ′
j)F̂(j),

and since (W (j), F̂(j)) is an R-split mixed Hodge structure, we have by (2),

(3) δ(W (j), F̂(j−1)) = (s(j))−1N̂ ′
js

(j).

Note that ζ = 0 since δ has only (−1,−1)-Hodge component (see Section 1.2.3).
Next, by [KNU1, Proposition 10.4(1)],

F̂(j−1) = exp(iN̂j)F̂(j).

Hence by (1) and (2), we have

(4) δ(W (j), F̂(j−1)) = (s(j))−1N̂js
(j).

Comparing (3) and (4), we conclude that N̂j = N̂ ′
j .

We prove (iii). Since N
[θ]
j = 0 unless θ(k−1) =−2 by (i), and since N̂k = N̂ ′

k

by (ii), NjN̂k (resp., N̂kNj) is the sum of (NjNk)[θ] (resp., (NkNj)[θ]), where θ

ranges over all elements of Zn+1 such that θ(k − 1) = −2. But NjNk = NkNj ;
(iii) follows.

We prove (iv). We may assume j < k. Then, by (ii), N̂jN̂k (resp., N̂kN̂j)
is the sum of (NjN̂k)[θ] (resp., (N̂kNj)[θ]), where θ ranges over all elements of
Zn+1 such that θ(j − 1) = 0. But NjN̂k = N̂kNj by (iii). The first assertion of
(iv) follows, and hence the second follows.

The rest is (v). Again by [KNU1, Proposition 10.4(1)], we have F̂(j) =
exp(

∑
j<�≤k iN̂�)F̂(k). This implies (v) by the same argument as in the proof of

(ii). �
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2.4.8. Proof of Theorem 2.4.2
The assertion (i) is contained in [KNU1, Theorem 0.5].

We prove (ii). It is clear in the case when k = n+1. When k ≤ n, the proof of
[KNU1, Proposition 10.4(2)] shows (ii), and furthermore, r1 = exp(iNk + iNΔ

k+1 +
· · ·+ iNΔ

n )F̂(n).
We prove (iii). We may assume k ≤ n. By the pure case, r1(grW

w ) = ϕw(i).
By the calculation of r1 in the above proof of (ii) together with [KNU1, Propo-
sition 10.4(1)] and Proposition 2.4.7(ii), we have the following.

CLAIM

r1 in Theorem 2.4.2(ii) coincides with exp(iNk)F̂(k).

If grW (Nk) �= 0, then by the pure case, k ∈ J ′, and hence there is no problem (see
Section 2.3.2). Assume grW (Nk) = 0. Then W (k) = W , and hence (W, F̂(k)) is an
R-split mixed Hodge structure. Since Nk sends the (p, q)-Hodge component of
(W, F̂(k)) to the (p− 1, q − 1)-Hodge component, we have δ(W, exp(iNk)F̂(k)) =
s−1Nks. This shows that if Nk �= 0, then r1 = exp(iNk)F̂(k) (see the claim above)
belongs to Dnspl (see Section 1.2.7). Hence ((ρw, ϕw)w,r1, J) ∈ DSL(2),n (see
Section 2.3.2).

We prove Theorem 2.4.2(iv). Since s(0) in Section 2.4.6 coincides with
splW (r1) and also with the s in Theorem 2.4.2(i) (by the claim), it is reduced to
the pure case that τ in Section 2.4.6 coincides with the torus action associated
to ((ρw, ϕw)w,r1, J) in Section 2.3.5 and also with the τ in Theorem 2.4.2(ii).
This also shows the statement for the associated weight filtrations. �

2.4.9. Proof of Proposition 2.4.3
We may assume k ≤ n. It is enough to show that (1) implies (2). Assume (1).
By Section 2.4.6, we have F̂(j) = exp(

∑n
l=j+1 iNl)F for k ≤ j ≤ n. This gives

F̂ (n) = F and also δ(W (n), F̂(j)) = (s(n))−1(
∑n

l=j+1 Nl)s(n) for k ≤ j ≤ n. Com-
paring this with δ(W (n), F̂(j)) = (s(n))−1(

∑n
l=j+1 N̂l)s(n) (k ≤ j ≤ n) obtained in

Proposition 2.4.7(v), we have N̂j = Nj for k < j ≤ n. This implies (2). �

2.4.10. Proof of Theorem 2.4.5
We prove (i). We may assume k ≤ n. We show φ(p) ∈Dnilp,n by checking condi-
tions (1)–(4) in Section 2.4.1. Condition (1) is satisfied by Proposition 2.4.7(ii)–
(iv). Section 2.4.1(2) is seen by reduction to the pure case. Section 2.4.1(3)
(Griffiths transversality) for Nj follows from [KNU1, Proposition 5.7] and Sec-
tion 2.4.1(3) for N̂j is deduced from it and from (1) in the proof of Proposi-
tion 2.4.7. We show Section 2.4.1(4) (concerning relative monodromy filtration).
By Kashiwara [K, Theorem 4.4.1] and by Proposition 2.4.7(ii), it is sufficient to
show that the relative monodromy filtration exists for N̂j (k ≤ j ≤ n) and for
Nk. For Nk, this is included in the assumption. For N̂j (k ≤ j ≤ n), this is easy
since N̂j is of weight zero with respect to s(0). Once φ(p) ∈Dnilp,n is verified, it
is easy to see that φ ◦ φ = φ.
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The assertion (ii) is essentially proved in Section 2.4.9. The assertion (iii) is
proved later. The assertion (iv) is known as the pure case (see [KU2, Section 6]).
The assertion (v) is easy.

We prove (vi). For k ≤ j ≤ n, we have r1 = exp(
∑j

l=k iNl)F̂(j) in the notation
of Section 2.4.6. In particular, we have r1 = exp(

∑n
l=k iNl)F . The assertion (vi)

is deduced from these relations.
We prove (iii). The injectivity follows from (vi).
To prove J = {j | 1≤ j ≤ n,Nj �= 0}, we first show the following.

CLAIM

For k < j ≤ n, W (j) �= W (j−1) if and only if Nj �= 0.

Proof
Since Nj is of weight zero with respect to s(j−1), the Nj is zero if and only if
grW (j−1)

w (Nj) is zero for any w. The latter condition is equivalent to W (j) =
W (j−1). �

By this claim, we have the description of J . The remaining parts of (iii) are easy.
This finishes the proof of Theorem 2.4.5. �

2.4.11.
For some examples in Examples I–III, we describe here the map ψ : Dnilp,1 →
DSL(2),1, (N,F ) �→ ((ρw, ϕw)w,r1, J), in Theorem 2.4.2, the torus actions τj :
Gm,R →Aut(H0,R,W ) (j = 0,1), and nilpotent endomorphisms N̂ and NΔ (see
Proposition 2.4.7).

EXAMPLE I

Let N(e1) = 0, N(e2) = e1, and let F = F (i). Then (N,F ) generates a nilpotent
orbit. The canonical splitting of W associated to exp(iy1N)F (y1 > 0) sends e′

2

to e2. From this we have τ(t)e1 = t−2e1, τ(t)e2 = e2. For t = 1/
√

y1, we have
limt→0 τ(t)−1 exp(iy1N)F = F (i). Hence the image ((ρw, ϕw)w,r1, J) of (N,F )
under ψ consists of Section 2.3.9, Example I with J = {1}.

We have W (1) = W , and τ1 = τ0 = τ . Hence N̂ = 0, NΔ = N .

EXAMPLE II

We consider the following example (N,F ) which generates a nilpotent orbit. Let
N(e2) = e1, N(ej) = 0 (j = 1,3), and let F = F (i, ia) with a ∈R.

By Section 1.2.9, (s1, s2) ∈ R2 corresponding to the canonical splitting
splW (exp(iy1N)F ) is s1 = 0, s2 = −a/(1 + y1). When y1 →∞, (s1, s2) con-
verges to (0,0) in spl(W ) = R2. From this, we have τ(t)e1 = t−2e1, τ(t)ej = ej

(j = 2,3). For t = 1/
√

y1, we have limt→0 τ(t)−1 exp(iy1N)F = r1 ∈ D, where
r1
1 := 0, r0

1 := C(ie1 +e2)+Ce3, r−1
1 := H0,C. Hence the image ((ρw, ϕw)w,r1, J)

of (N,F ) under ψ consists of the example in Section 2.3.9, Example II with z = ia

and J = {1}.
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The torus actions τ0, τ1 which induce the splittings of the filtrations W ,
W (1) in Section 1.1.1, Example II, and Section 2.3.9, Example II, respectively,
are as follows: τ0(t)ej = t−1ej (j = 1,2), τ0(t)e3 = e3; τ1 = τ above. Hence
N̂ = NΔ = N .

EXAMPLE III

We consider the following example (N,F ) which generates a nilpotent orbit. Let
N(e3) = e2, N(e2) = e1, N(e1) = 0, and let F = F (i, z, i) with z ∈C.

By Section 1.2.9, (s1, s2) ∈ R2 corresponding to the canonical splitting
splW (exp(iy1N)F ) is s1 = Re(z)+(1/2), s2 =− Im(z)/2(1+y1). When y1 →∞,
(s1, s2) converges to (Re(z) + (1/2),0) in spl(W ) = R2. From this, we have
τ(t)e1 = t−4e1, τ(t)e2 = t−2e2, τ(t)e3 = e3 + (1 − t−4)(Re(z) + (1/2))e1. For
t = 1/

√
y1, we have limt→0 τ(t)−1 exp(iy1N)F = r1 ∈ D, where r1

1 := 0, r0
1 :=

C(Re(z)e1 + ie2 + e3), r−1
1 := r0

1 + C(ie1 + e2), r−2
1 := H0,C. Hence the image

((ρw, ϕw)w,r1, J) of (N,F ) under ψ consists of the example in Section 2.3.9,
Example III, Case 1 with z1 = Re(z) and J = {1}.

There is no nilpotent orbit whose associated SL(2)-orbit is in Case 2 or 3 in
Section 2.3.9, Example III (cf. the comment after Theorem 2.4.5). (In Examples
I, II, IV, and V, all SL(2)-orbits come from nilpotent orbits.)

In the following, assume Re(z) =−1/2 for simplicity. The torus actions τ0,
τ1 which induce the splittings of the filtrations W , W (1), in Section 1.1.1, Exam-
ple III and in Case 1 of Section 2.3.9, Example III, respectively, are as follows:
τ0(t)ej = t−3ej (j = 1,2), τ0(t)e3 = e3; τ1 = τ above. Hence N̂ = N [(0,−2)] is
given by N̂(e2) = e1, N̂(ej) = 0 (j = 1,3); NΔ = N .

2.5. Definition of the set DSL(2)

2.5.1.
Two nondegenerate SL(2)-orbits p = ((ρw, ϕw)w,r) and p′ = ((ρ′

w, ϕ′
w)w,r′) in

n variables of rank n (see Section 2.3.3) are said to be equivalent if there is a
t ∈Rn

>0 such that

ρ′
w = Int

(
grW

w (τ(t))
)
◦ ρw, ϕ′

w = grW
w

(
τ(t)

)
◦ϕw (∀w ∈Z), r′ = τ(t)r.

Here τ : Gn
m,R →AutR(H0,R,W ) is the torus action associated to ((ρw, ϕw)w,r)

defined in Section 2.3.5.
Note that this is actually an equivalence relation. We explain this. For t =

(tj)j ∈Rn
>0, we write ρ̃w(t) = ρw(g1, . . . , gn) in Section 2.3.5. Since grW

w (τ(t)) =
(
∏n

j=1 tj)wρ̃w(t) for t ∈Rn
>0 (see Section 2.3.5), we have ρ̃′

w = ρ̃w as homomor-
phisms Gn

m,R → GR(grW
w ) for any w. On the other hand, the splittings of W

associated to r and to r′ = τ(t)r coincide by the remark in Section 2.3.5. From
these it follows that τ of p and τ of p′ coincide. The axioms of equivalence
relations can be now easily checked.

An SL(2)-orbit ((ρw, ϕw)w,r, J) in n variables of rank r and an SL(2)-orbit
((ρ′

w, ϕ′
w)w,r′, J ′) in n′ variables of rank r′ are said to be equivalent if r = r′
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and their associated SL(2)-orbits in r variables of rank r (see Section 2.3.4) are
equivalent.

The class determines and is determined by the associated set of weight fil-
trations, the associated torus action, and the associated torus orbit; that is, we
have the following.

PROPOSITION 2.5.2

Let p = ((ρw, ϕw)w,r) be a nondegenerate SL(2)-orbit of rank n.

(i) The W (j) of p, the τ and the τj of p (1≤ j ≤ n), the canonical splitting
of W associated to r (see Section 1.2.3), and Z = τ(Rn

>0)r depend only on the
equivalence class of p. Here τ is the homomorphism in Section 2.3.5 associated
to p. Z is called the torus orbit associated to p.

(ii) The equivalence class of p is determined by
(
(W (j)(grW ))1≤j≤n,Z

)
,

where Z is as above.
(iii) The equivalence class of p is determined by (τ,Z), where τ and Z are

as above.

Proof
We prove (i). The statement for W (j) follows from τ(t)W (j) = W (j) (t ∈ (R×)n),
the statements for τ and for the splitting were proved in Section 2.5.1, and the
rest is clear.

The statements (ii) and (iii) follow from (i) and from Proposition 2.3.7. �

2.5.3.
Let DSL(2) be the set of all equivalence classes of SL(2)-orbits satisfying the
following condition (C).

Take an SL(2)-orbit ((ρw, ϕw)w,r, J) in n variables which is a representative
of the class in question.

(C) For each w ∈ Z and for each 1≤ j ≤ n, the weight filtration W (j)(grW
w )

is rational.

(This condition is independent of the choice of the representative by Proposi-
tion 2.5.2(i).)

As a set, we have

DSL(2) =
⊔
n≥0

DSL(2),n,

where DSL(2),n is the set of equivalence classes of SL(2)-orbits of rank n (see
Section 2.3.3) with rational associated weight filtrations. We identify DSL(2),0

with D in the evident way.
Let DSL(2),spl be the subset of DSL(2) consisting of the classes of ((ρw, ϕw)w,r)

with r ∈Dspl (see the notation in Section 0). (The last condition is independent
of the choice of the representative.) Let DSL(2),nspl = DSL(2) � DSL(2),spl.
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2.5.4.
We have a canonical projection

DSL(2) →DSL(2)(grW ) =
∏
w∈Z

DSL(2)(grW
w ),

class
(
(ρw, ϕw)w,r

)
�→

(
class(ρw, ϕw)

)
w
.

Here DSL(2)(grW
w ) is the DSL(2) for ((H0 ∩Ww)/(H0 ∩Ww−1), 〈 , 〉w). Note that

in the pure case, the definition of DSL(2) coincides with that of [KU2].

2.5.5.
As in the notation in Section 0, let spl(W ) be the set of all splittings of W . We
have a canonical map

DSL(2) → spl(W )

as class((ρw, ϕw)w,r) �→ s, where s denotes the canonical splitting of W associ-
ated to r (see Proposition 2.5.2(i)).

2.5.6.
For p ∈DSL(2), we denote by τp and Zp the corresponding τ and Z, respectively
(see Proposition 2.5.2(iii)).

2.5.7.
Later, in Section 3.2, we define two topologies on the set DSL(2). Basic properties
of these topologies are the following (see Section 3.2, Theorem 4.1.1).

(i) If p ∈DSL(2) is the class of (τp,r), then we have, in DSL(2),

τp(t)r→ p when t ∈Rn
>0 tends to 0.

Here n is the rank of p and 0 = (0, . . . ,0) ∈Rn
≥0.

(ii) If (N1, . . . ,Nn, F ) generates a nilpotent orbit and if the monodromy fil-
tration of grW

w (N1) + · · ·+ grW
w (Nj) is rational for any w ∈Z and any 1≤ j ≤ n,

then we have, in DSL(2),

exp
( n∑

j=1

iyjNj

)
F → p

when yj > 0, yj/yj+1 →∞ (1≤ j ≤ n, yn+1 denotes 1), where p denotes the class
of the SL(2)-orbit associated to (N1, . . . ,Nn, F ) by Theorem 2.4.2.

This (ii) is the basic principle that lies in our construction of the topolo-
gies on DSL(2). Our SL(2)-orbit theorem [KNU1, Theorem 0.5] says roughly
that, when yj/yj+1 →∞ (1 ≤ j ≤ n, yn+1 = 1), exp(

∑n
j=1 iyjNj)F is near to

τp(
√

y2/y1, . . . ,
√

yn+1/yn)r, where r ∈ Zp. Hence (i) is natural in view of (ii).



Classifying spaces of degenerating mixed Hodge structures, II 187

3. Real analytic structures of DSL(2)

3.1. Spaces with real analytic structures and log structures with sign
We discuss a category BR of spaces with real analytic structures and its logarith-
mic version, a category BR(log). In Section 3.1.11, Proposition 3.1.12 and Sec-
tion 3.1.13, we consider log modifications in BR(log) associated to cone decom-
positions.

3.1.1. The categories BR, B′
R, and CR

We define three full subcategories

BR ⊂B′
R ⊂ CR

of the category of local ringed spaces over R.
We first define B′

R. An object of B′
R is a local ringed space (S,OS) over

R such that the following holds locally on S. There are n≥ 0 and a morphism
ι : S →Rn of local ringed spaces over R from S to the real analytic manifold Rn

such that ι is injective, the topology of S coincides with the one induced from
the topology of Rn via ι, and the canonical map ι−1(ORn)→OS is surjective.
Here ORn denotes the sheaf of R-valued real analytic functions on Rn, and ι−1( )
denotes the inverse image of a sheaf. Morphisms of B′

R are those of local ringed
spaces over R.

Let BR be the full subcategory of B′
R consisting of all objects for which,

locally on S, we can take ι : S →Rn as above such that the kernel of the surjec-
tion ι−1(ORn)→OS is a finitely generated ideal.

Of course, a real analytic manifold is an object of BR. An example of an
object of BR which often appears in this article is Rn

≥0 with the inverse image
of the sheaf of real analytic functions on Rn.

For an object (S,OS) of B′
R, we often call OS the sheaf of real analytic

functions of S, although (S,OS) need not be a real analytic space.
We define another category CR as follows. An object of CR is a local ringed

space (S,OS) over R such that for any open set U of S and for any n≥ 0, the
canonical map Mor(U,Rn) → OS(U)n, ϕ �→ (ϕj)1≤j≤n, is bijective, where Rn

is regarded as a real analytic manifold as usual, Mor(U,Rn) is the set of all
morphisms in the category of local ringed spaces over R, and ϕj denotes the
pullback of the jth coordinate function of Rn via ϕ. Morphisms of CR are those
of local ringed spaces over R.

It is easily seen that real analytic manifolds, C∞-manifolds (with the sheaves
of C∞-functions), and any topological spaces with the sheaves of real-valued
continuous functions belong to CR.

LEMMA 3.1.2

We have

B′
R ⊂ CR.
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Proof
Let S be an object of B′

R. Let MorS(−,Rn) be the sheaf on S of morphisms into
Rn. We prove that the map MorS(−,Rn) →On

S is an isomorphism. We first
prove the surjectivity. A local section of On

S comes, locally on S, from an element
of ORm(V )n for some open set V of Rm and for some morphism S → V . Since
ORm(V )n = Mor(V,Rn), a local section of On

S comes from MorS(−,Rn) locally
on S. It remains to prove the injectivity of MorS(−,Rn)→On

S . We prove the
following.

CLAIM

For any s ∈ S, the local ring OS,s is Noetherian.

This is reduced to the fact that the local rings of the real analytic manifold Rn

are Noetherian. These local rings are the rings of convergent Taylor series. Hence
they are Noetherian.

Now we return to the proof of Lemma 3.1.2. Assume that two morphisms
f, g : S →Rn induce the same element (ϕj)j of OS(S)n. The underlying map
S →Rn of sets induced by f and g are given by s �→ (ϕj(s))j , and hence they
coincide. To prove f = g, it is sufficient to prove that for any s ∈ S with
image s′ = f(s) = g(s) ∈ Rn and for any element h of ORn,s′ , the pullbacks
f ∗(h), g∗(h) ∈OS,s coincide. Let m be the maximal ideal of OS,s, and let m′ be
the maximal ideal of ORn,s′ . Let r ≥ 1. Then h mod (m′)r is expressed as a poly-
nomial over R in the coordinate functions tjRn. Hence f ∗(h)≡ g∗(h) mod mr.
Since OS,s is Noetherian, the canonical map OS,s → lim←−r

OS,s/mr is injective.
Hence f ∗(h) = g∗(h) in OS,s. �

PROPOSITION 3.1.3

The category B′
R has fiber products, and BR is stable under taking fiber products.

The underlying topological space of a fiber product in B′
R is the fiber product of

the underlying topological spaces. The fiber product in B′
R is also a fiber product

in CR.

Proof
Let S′ → S and S′ ′ → S be morphisms in B′

R.
Working locally on S, S′, and S′ ′, we may assume that there are injective

morphisms ι : S →Rn, ι′ : S′ →Rn′
, ι′ ′ : S′ ′ →Rn′ ′

such that the topologies of
S, S′, S′ ′ are induced from those of Rn, Rn′

, and Rn′ ′
, respectively, and such that

the homomorphisms ι−1(ORn)→OS , (ι′)−1(ORn′ )→OS′ , and (ι′ ′)−1(ORn′ ′ )→
OS′ ′ are surjective. Let I ′ and I ′ ′ be the kernels of the last two homomorphisms,
respectively. Let tj (1≤ j ≤ n) be the jth coordinate function of Rn. Working
locally on S′, we may assume that for an open neighborhood U ′ of S′ in Rn′

,
there are elements s′

j ∈ O(U ′) (1 ≤ j ≤ n) such that the restriction of s′
j to S′

coincides with the pullback of tj for each j. Similarly, working locally on S′ ′, we
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may assume that for an open neighborhood U ′ ′ of S′ ′ in Rn′ ′
, there are elements

s′ ′
j ∈ O(U ′ ′) (1≤ j ≤ n) such that the restriction of s′ ′

j to S′ ′ coincides with the
pullback of tj for each j. Let F := S′ ×S S′ ′ ⊂ V := U ′ × U ′ ′ ⊂Rn′+n′ ′

. Endow
F with the topology as the fiber product, and endow it with the inverse image of

OV /J with J =
(
I ′OV + I ′ ′OV + (s′

1 − s′ ′
1)OV + · · ·+ (s′

n − s′ ′
n)OV

)
.

Here I ′OV + I ′ ′OV denotes the ideal of OV generated by the inverse images of
I ′ and I ′ ′. When we regard the diagram S′ → S ← S′ ′ as the one in CR by
Lemma 3.1.2, we can show that F is the fiber product of it in CR, and hence F

is the fiber product also in B′
R. If S,S′, S′ ′ belong to BR, we can assume that I ′

and I ′ ′ are finitely generated. Then the ideal J is finitely generated. �

We now begin to discuss log structures.

LEMMA 3.1.4

Let (S,OS) be an object of CR. Let O×
S,>0 be the subsheaf of O×

S consisting
of all local sections whose values are strictly greater than zero. Then {±1} ∼→
O×

S /O×
S,>0. Furthermore, O×

S,>0 coincides with the image of O×
S →O×

S , f �→ f2.

Proof
The isomorphisms R>0 × {±1} ∼→R× and R>0

∼→R>0, x �→ x2, of real analytic
manifolds induce isomorphisms of sheaves

O×
S,>0 × {±1} ∼= MorS(−,R>0 × {±1}) ∼→MorS(−,R×)∼=O×

S ,

O×
S,>0

∼→O×
S,>0, f �→ f2,

respectively. This proves Lemma 3.1.4. �

DEFINITION 3.1.5

For an object S of CR, a log structure with sign on S is an integral log structure
MS on S in the sense of Fontaine and Illusie (see [KU3, Section 2.1]) endowed
with a subgroup sheaf Mgp

S,>0 of Mgp
S satisfying the following three conditions.

Here Mgp
S ⊃ MS denotes the sheaf of commutative groups {ab−1 | a, b ∈ MS}

associated to the sheaf MS of commutative monoids.

(1) We have Mgp
S,>0 ⊃O×

S,>0.
(2) We have O×

S /O×
S,>0

∼→Mgp
S /Mgp

S,>0.

(3) Let MS,>0 := MS ∩Mgp
S,>0 ⊂Mgp

S . Then the image of MS,>0 in OS under
the structural map MS →OS of the log structure has values in R≥0 ⊂R at any
points of S.

(We note that (MS,>0)gp = Mgp
S,>0, and thus Mgp

S,>0 is recovered from MS,>0.)
Let BR(log) (resp., B′

R(log), resp., CR(log)) be the category of objects of BR

(resp., B′
R, resp., CR) endowed with an fs log structure (see [KU3, Section 2.1])

with sign.
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If S is an object of CR(log) such that the structural map MS →OS is injective
and also the canonical map from OS to the sheaf of real-valued functions on S

is injective, then for an object S′ of CR(log), a morphism f : S → S′ in CR(log)
is determined by its underlying map f̄ of sets. For such S and an object S′ of
CR(log), and for a map g : S → S′ of sets, we sometimes say that g is a morphism
of CR(log) if g = f̄ for some morphism f : S → S′ of CR(log).

We introduce some terminologies.
A trivial log structure with sign is the log structure MS =O×

S with Mgp
S,>0 =

O×
S,>0.

The inverse image of a log structure with sign is the following. For a mor-
phism S′ → S in CR and for a log structure MS with sign on S, the inverse image
MS′ of MS on S′, which is a log structure with sign on S′, is defined as follows.
As a log structure, MS′ is the inverse image of MS (see [KU3, Section 2.1.3]).
Mgp

S′,>0 is the subgroup sheaf of Mgp
S′ generated by O×

S′,>0 and the inverse image
of Mgp

S,>0.
A chart of an fs log structure with sign is the following. Let S be an object of

CR(log). A chart of MS with sign is a pair of an fs monoid S and a homomorphism
h : S →MS,>0 such that h : S →MS is a chart of the fs log structure MS (see
[KU3, Section 2.1.5]) and such that MS,>0 is generated by O×

S,>0 and h(S) as a
sheaf of monoids. A chart of MS with sign exists locally on S. This is shown by
the fact that MS,>0/O×

S,>0 →MS/O×
S is an isomorphism.

3.1.6. Real toric varieties, real analytic manifolds with corners
As standard examples of objects of BR(log), we have real toric varieties and also
real analytic manifolds with corners.

Let S be an fs monoid. We regard S = Hom(S,Rmult
≥0 ) as an object of BR(log)

as follows and call it a real toric variety associated to S : OS is the sheaf of
real-valued functions on S which belong to OX |S . Here X = Hom(S,Cmult) =
Spec(C[S])an, and OX denotes the sheaf of complex analytic functions on X ;
MS is the log structure associated to S →OS ; Mgp

S,>0 is generated by Sgp and
O×

S,>0.
For any object T of CR(log), we have

Mor
(
T,Hom(S,Rmult

≥0 )
)

= Hom(S,MT,>0).

In the case S = Nn, we have S = Rn
≥0. We usually regard Rn

≥0 as an object
of BR(log) in this way.

A real analytic manifold with corners S is a local ringed space over R which
has an open covering (Uλ)λ such that for each λ, Uλ is isomorphic to an open set
of the object Rn(λ)

≥0 of BR(log) for some n(λ)≥ 0. The inverse images on Uλ of

the fs log structures with sign of Rn(λ)
≥0 glue together to an fs log structure with

sign on S canonically. Thus a real analytic manifold with corners is regarded
canonically as an object of BR(log).
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PROPOSITION 3.1.7

The category B′
R(log) has fiber products, and BR(log) is stable under taking fiber

products. A fiber product in BR(log) is a fiber product in CR(log). The underlying
object of B′

R (resp., the underlying topological space) of a fiber product S′×S S′ ′ in
B′

R(log) coincides with the fiber product in B′
R (resp., fiber product as topological

spaces) if one of the following conditions (1) and (2) is satisfied.

(1) The log structure of S is trivial.
(2) The log structure of S′ coincides with the inverse image of the log struc-

ture of S.

This is a real analytic version of the complex analytic theory about the category
B(log) in [KU3, Section 2.1.10]. The proof is given by the same arguments there.

We next consider toric geometry in BR(log) and log modifications in BR(log)
and in B′

R(log). These are real analytic versions of those in B(log) (see [KU3,
Section 3.6]).

3.1.8.
Let N be a finitely generated free abelian group whose group law is denoted
additively. A rational fan in NR := R⊗Z N is a nonempty set Σ of sharp rational
finitely generated cones in NR satisfying the following conditions (1) and (2).

(1) If σ ∈Σ, any face of σ belongs to Σ.
(2) If σ, τ ∈Σ, then σ ∩ τ is a face of σ.

Here a finitely generated cone in NR is a subset of NR of the form
{∑n

j=1 ajNj |
aj ∈R≥0

}
with N1, . . . ,Nn ∈NR.

A finitely generated cone in NR is said to be rational if we can take N1, . . . ,

Nn ∈NQ := Q⊗Z N in the above.
A finitely generated cone σ in NR is said to be sharp if σ ∩ (−σ) = {0}.
For a finitely generated cone σ in NR, a face of σ is a nonempty subset τ of

σ satisfying the following conditions (3) and (4).

(3) If x, y ∈ τ and a, b ∈R≥0, then ax + by ∈ τ .
(4) If x, y ∈ σ and x + y ∈ τ , then x, y ∈ τ .

A face of a finitely generated cone σ in NR is a finitely generated cone in
NR. It is rational if σ is rational.

3.1.9.
Let N be as in Section 3.1.8, and let Σ be a rational fan in NR. Recalling the
definition of the (complex analytic) toric variety toric(Σ) corresponding to Σ
(see [O, Section 1.2]; see also [KU3, Section 3.3]), we define a subset |toric|(Σ)
of toric(Σ) and a structure of an object of BR(log) on |toric|(Σ).

Let M = Hom(N,Z), and denote the group law of M multiplicatively.
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For σ ∈Σ, let

S(σ) = {χ ∈M | χ : NR →R sends σ to R≥0}.

Then

σ = {x ∈NR | χ : NR →R sends x into R≥0 for any χ ∈ S(σ)}.

We have S(σ)gp = M , where S(σ)gp = {ab−1 | a, b ∈ S(σ)}.
For σ ∈Σ, let toric(σ) = Spec(C[S(σ)])an = Hom(S(σ),Cmult), where Cmult

denotes C regarded as a multiplicative monoid. Then we have an open covering

toric(Σ) =
⋃

σ∈Σ

toric(σ).

Let

|toric|(Σ) =
⋃

σ∈Σ

|toric|(σ)⊂ toric(Σ) =
⋃

σ∈Σ

toric(σ)

with |toric|(σ) := Hom
(
S(σ),Rmult

≥0

)
.

Then |toric|(Σ) has the unique structure of an object of BR(log) whose restriction
to each open subsets |toric|(σ) coincides with the one given in Section 3.1.6.

Note that |toric|(Σ)⊃Hom(M,R>0) = N ⊗R>0, which is the restriction of
toric(Σ)⊃Hom(M,C×) = N ⊗C×. As a subset of toric(Σ), |toric|(Σ) coincides
with the closure of N ⊗R>0 in toric(Σ).

There is a canonical bijection between toric(Σ) (resp., |toric|(Σ)) and the
set of all pairs (σ,h), where σ ∈ Σ and h is a homomorphism S(σ)× → C×

(resp., S(σ)× →R>0). Here S(σ)× denotes the group of invertible elements of
S(σ). Indeed, for such a pair (σ,h), the corresponding element of toric(σ) =
Hom(S(σ),Cmult) (resp., |toric|(σ) = Hom(S(σ),Rmult

≥0 )) is defined to be the
homomorphism sending x ∈ S(σ) to h(x) if x ∈ S(σ)× and to zero if x /∈ S(σ)×.

3.1.10.
Let Σ and Σ′ be rational fans in NR, and assume that the following condition
(1) is satisfied.

(1) For each τ ∈Σ′, there is σ ∈Σ such that τ ⊂ σ.

Then we have a morphism toric(Σ′)→ toric(Σ) of complex analytic spaces
(resp., a morphism |toric|(Σ′)→ |toric|(Σ) in BR(log)) which induces the mor-
phisms toric(τ)→ toric(σ) (resp., |toric|(τ)→ |toric|(σ)) (τ ∈ Σ′ σ ∈ Σ, τ ⊂ σ)
induced by the inclusion maps τ ⊂ σ.

Under condition (1), let Σ′ →Σ be the map which sends τ ∈Σ′ to the small-
est σ ∈ Σ with τ ⊂ σ. Then the map toric(Σ′)→ toric(Σ) (resp., |toric|(Σ′)→
|toric|(Σ)) sends the point of toric(Σ′) (resp., |toric|(Σ′)) corresponding to the
pair (τ, h′) (τ ∈Σ′, h′ is a homomorphism S(τ)× →C× (resp., S(τ)× →R>0) to
the point of toric(Σ) (resp., |toric|(Σ)) corresponding to the pair (σ,h), where σ is
the image of τ under the map Σ′ →Σ, and h is the composite of S(σ)× →S(τ)×

with h′.
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3.1.11.
Let Σ be a finite rational fan in NR.

A finite rational subdivision of Σ is a finite rational fan Σ′ in NR satisfying
condition 3.1.10(1) and also the following condition (1):

(1)
⋃

τ ∈Σ′

τ =
⋃

σ∈Σ

σ.

For a finite rational subdivision Σ′ of Σ, the maps toric(Σ′)→ toric(Σ) and
|toric|(Σ′)→ |toric|(Σ) are proper.

PROPOSITION 3.1.12

Let S be an object of BR(log) (resp., B′
R(log)). Let S be an fs monoid, and let

S →MS/O×
S be a homomorphism which lifts locally on S to a chart S →MS,>0

of fs log structure with sign (see Definition 3.1.5). Let Σ be a finite rational
subdivision of the cone Hom(S,Radd

≥0 ). Then we have an object S(Σ) of BR(log)
(resp., B′

R(log)) having the following universal property.

(1) If T is an object of CR(log) over S, then there is at most one mor-
phism T → S(Σ) over S. We have a criterion for the existence of such a
morphism: such a morphism exists if and only if, for any t ∈ T and for any
homomorphism h : (MT /O×

T )t →N, there exists σ ∈ Σ such that the composite
S → (MS/O×

S )s → (MT /O×
T )t →N (s is the image of t in S) belongs to σ.

The map S(Σ)→ S is proper and surjective.

Proof
This S(Σ) is obtained as follows. By taking N = Hom(Sgp,Z) and M = Sgp,
define |toric|(Σ) as in Section 3.1.9. Locally on S, take a lift S → MS,>0 of
S →MS/O×

S , and consider the corresponding morphism S →Hom(S,Rmult
≥0 ) (see

Section 3.1.6). Then S(Σ) is obtained as the fiber product (see Proposition 3.1.7)
of S → Hom(S,Rmult

≥0 )← |toric|(Σ). The universal property is proved similarly
to the complex analytic case (see [KU3, Proposition 3.6.1, Section 3.6.11]). �

The object S(Σ) is called the log modification of S associated to the subdivision Σ
of the cone Hom(S,Radd

≥0 ). It is the real analytic version of the complex analytic
log modification in the category B(log) in [KU3, Definition 3.6.12].

3.1.13.
We use the notation in Proposition 3.1.12. As a set, the log modification S(Σ)
is identified with the set of all triples (s,σ,h), where s ∈ S, σ ∈ Σ, and if P (σ)
denotes the image of S(σ) (see Section 3.1.9 for N = Hom(Sgp,Z) and M = Sgp)
in (MS/O×

S )gps and P ′(σ) denotes the inverse image of P (σ) in Mgp
S,>0,s, then h

is a homomorphism P ′(σ)× →R>0, satisfying the following conditions (1) and
(2).

(1) We have P (σ)× ∩ (MS/O×
S )s = {1}.
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(2) The restriction of h to O×
S,>0,s (⊂ P ′(σ)×) is the evaluation map at s.

This is the real analytic version of the complex analytic theory (see [KU3,
Lemma 3.6.15]).

3.2. Real analytic structures of DSL(2)

3.2.1.
We define two structures on the set DSL(2) as an object of BR(log). We denote
DSL(2) with these structures by DI

SL(2) and DII
SL(2). There is a morphism DI

SL(2) →
DII

SL(2) whose underlying map is the identity map of DSL(2). The log structure
with sign of DI

SL(2) coincides with the inverse image (see Definition 3.1.5) of that
of DII

SL(2).
In the pure case, these two structures coincide, and the topology of DSL(2)

given by these structures coincides with the one defined in [KU2].
DII

SL(2) is proper over spl(W ) × DSL(2)(grW ) (see Theorem 3.5.16). This
shows that our definition of DSL(2) in the mixed case provides sufficiently many
points at infinity. This properness is a good property of DII

SL(2) which DI
SL(2)

need not have. On the other hand, DI
SL(2) is nice for norm estimates (see Propo-

sition 4.2.2), but DII
SL(2) need not be.

The sheaf of rings on DI
SL(2) is called the sheaf of real analytic functions

(or the real analytic structure) on DSL(2) in the first sense, and that on DII
SL(2)

is called the sheaf of real analytic functions (or the real analytic structure) on
DSL(2) in the second sense. The topology of DI

SL(2) is called the stronger topology
of DSL(2), and that of DII

SL(2) is called the weaker topology of DSL(2). These two
topologies often differ.

In Section 3.2, we characterize the structures of DI
SL(2) and DII

SL(2) as objects
of BR(log) by certain nice properties of them (see Theorem 3.2.10). The exis-
tences of such structures are proved in Sections 3.3 and 3.4.

3.2.2.
We define sets W , W , a subset DI

SL(2)(Ψ) of DSL(2) for Ψ ∈ W , and a subset
DII

SL(2)(Φ) of DSL(2) for Φ ∈W , as follows.
For p ∈DSL(2), let W(p) be the set of weight filtrations associated to p.
By an admissible set of weight filtrations on H0,R we mean a finite set Ψ of

increasing filtrations on H0,R such that Ψ =W(p) for some element p of DSL(2).
We denote by W the set of all admissible sets of weight filtrations on H0,R.

For Ψ ∈W , we define a subset DI
SL(2)(Ψ) of DSL(2) by

DI
SL(2)(Ψ) =

{
p ∈DSL(2)

∣∣W(p)⊂Ψ
}
.

Note that DSL(2) is covered by the subsets DI
SL(2)(Ψ) for Ψ ∈W . Furthermore,

DSL(2) is covered by the subsets DI
SL(2)(Ψ) for Ψ ∈ W with W /∈ Ψ and the

subsets DI
SL(2)(Ψ)nspl := DI

SL(2)(Ψ) ∩DSL(2),nspl for Ψ ∈W with W ∈ Ψ. As is
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stated in Theorem 3.2.10, these are open coverings of DSL(2) for the topology of
DI

SL(2).
For p ∈DSL(2), let

W(p) =
{
W ′(grW )

∣∣ W ′ ∈W(p),W ′ �= W
}
,

where W ′(grW ) is the filtration on grW =
⊕

w grW
w induced by W ′; that is,

W ′(grW )k :=
⊕

w W ′
k(grW

w )⊂
⊕

w grW
w .

By an admissible set of weight filtrations on grW we mean a finite set Φ of
increasing filtrations on grW such that Φ =W(p) for some element p of DSL(2).
We denote by W the set of all admissible sets of weight filtrations on grW .

For Φ ∈W , we define a subset DII
SL(2)(Φ) of DSL(2) by

DII
SL(2)(Φ) =

{
p ∈DSL(2)

∣∣W(p)⊂Φ
}
.

As a set, DSL(2) is covered by DII
SL(2)(Φ) (Φ ∈W). As is stated in Theorem 3.2.10,

this is an open covering for the topology of DII
SL(2).

We have a canonical map

W→W

which sends Ψ ∈W to Ψ̄ := {W ′(grW ) |W ′ ∈Ψ,W ′ �= W} ∈W . For Ψ ∈W , we
have DI

SL(2)(Ψ)⊂DII
SL(2)(Ψ̄).

3.2.3.
Let Ψ ∈W . A homomorphism α : GΨ

m,R →AutR(H0,R,W ) of algebraic groups
over R is called a splitting of Ψ if it satisfies the following conditions (1) and (2).

(1) The corresponding direct sum decomposition

H0,R =
⊕
μ∈X

Sμ (X := ZΨ)

into eigen R-subspaces Sμ satisfies

W ′
w′ =

∑
μ∈X,μ(W ′)≤w′

Sμ

for all W ′ ∈Ψ and for all w′ ∈Z.
(2) For all w ∈ Z and all t ∈GΨ

m,R, ι(t)−wαw(t) is contained in GR(grW
w ),

where αw : GΨ
m,R →AutR(grW

w ) is the homomorphism induced by α, and ι is the
composite of the multiplication GΨ

m,R →Gm,R and the canonical map Gm,R →
AutR(grW

w ), a �→ (multiplication by a).

A splitting of Ψ exists: If Ψ is associated to p ∈DSL(2), the torus action τp

associated to p (see Sections 2.5.6, 2.3.5) is a splitting of Ψ. Here and hereafter,
we identify {1, . . . , n} (n is the rank of p) with Ψ via the bijection j �→ W (j),
which is independent of the choice of p by Proposition 2.3.8.

Let Φ ∈ W . A homomorphism α : GΦ
m,R →

∏
w AutR(grW

w ) of algebraic
groups over R is called a splitting of Φ if it satisfies the following conditions
(1̄) and (2̄).
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(1̄) The corresponding direct sum decomposition

grW =
⊕
μ∈X

Sμ (X := ZΦ)

into eigen R-subspaces Sμ satisfies

W ′
w′ =

∑
μ∈X,μ(W ′)≤w′

Sμ

for all W ′ ∈Φ and for all w′ ∈Z.
(2̄) For all w ∈ Z and all t ∈GΦ

m,R, ι(t)−wαw(t) is contained in GR(grW
w ),

where αw : GΦ
m,R →AutR(grW

w ) is the w-component of α, and ι is the composite
of the multiplication GΦ

m,R →Gm,R and the canonical map Gm,R →AutR(grW
w ).

A splitting of Φ exists. For p ∈DSL(2), let τ̄p be grW (τp) in the case W /∈
W(p), and in the case W ∈W(p), let τ̄p be the restriction of grW (τp) to GW(p)

m,R

which we identify with the part of GW(p)
m,R with the W -component removed. Then

if Φ =W(p), τ̄p is a splitting of Φ.

REMARK

Under condition (1̄), condition (2̄) is equivalent to the following condition: for
all w ∈Z, the direct sum decomposition

grW
w =

⊕
μ∈X

Sw,μ

corresponding to αw satisfies

〈Sw,μ, Sw,μ′〉= 0

unless μ + μ′ = (2w, . . . ,2w).

3.2.4.
Let Ψ ∈W . Assume W /∈Ψ (resp., W ∈Ψ). If a real analytic map β : D→RΨ

>0

(resp., Dnspl →RΨ
>0) satisfies the following (1) for any splitting α of Ψ, then we

call β a distance to Ψ-boundary :

(1) β
(
α(t)p

)
= tβ(p) (t ∈RΨ

>0, p ∈D (resp.,Dnspl)).

Let Φ ∈W . If a real analytic map β : D(grW )→RΦ
>0 satisfies the following

(1̄) for any splitting α of Φ, then we call β a distance to Φ-boundary :

(1̄) β
(
α(t)p

)
= tβ(p) (t ∈RΦ

>0, p ∈D(grW )).

The proofs of Propositions 3.2.5–3.2.7 and 3.2.9 are given in Section 3.3.

PROPOSITION 3.2.5

(i) Let Ψ ∈W . Then a distance to Ψ-boundary exists.
(ii) Let Φ ∈W . Then a distance to Φ-boundary exists.
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PROPOSITION 3.2.6

(i) Let Ψ ∈W , let α be a splitting of Ψ, and let β be a distance to Ψ-boundary.
Assume W /∈Ψ (resp., W ∈Ψ), and consider the map

να,β : D (resp., Dnspl)→RΨ
>0 ×D× spl(W )×

∏
W ′ ∈Ψ

spl
(
W ′(grW )

)
,

p �→
(
β(p), αβ(p)−1p, splW (p), (splBS

W ′(grW )(p(grW )))W ′ ∈Ψ

)
.

Here splW (p) is the canonical splitting of W associated to p in Section 1.2,
and splBS

W ′(grW )(p(grW )) is the Borel-Serre splitting of W ′(grW ) associated to
p(grW ) in Section 2.1.9. Let p ∈ DI

SL(2)(Ψ) (resp., DI
SL(2)(Ψ)nspl), let J be

the set of weight filtrations associated to p (see Section 2.3.6), let τp : GJ
m,R →

AutR(H0,R,W ) be the associated torus action (see Sections 2.5.6, 2.3.5), and let
r ∈D be a point on the torus orbit (see Proposition 2.5.2) associated to p. Then,
when t ∈RJ

>0 tends to 0J in RJ
≥0, να,β(τp(t)r) converges in RΨ

≥0×D× spl(W )×∏
W ′ ∈Ψ spl(W ′(grW )). This limit depends only on p and is independent of the

choice of r.
(ii) Let Φ ∈W, let α be a splitting of Φ, and let β be a distance to Φ-boundary.

Consider the map

να,β : D→RΦ
>0 ×D(grW )×L× spl(W )×

∏
W ′ ∈Φ

spl(W ′),

p �→
(
β(p(grW )), αβ(p(grW ))−1p(grW ),Ad(αβ(p(grW )))−1δ(p),

splW (p), (splBS
W ′ (p(grW )))W ′ ∈Φ

)
.

Here L is in Section 1.2.1 and δ(p) denotes δ of p. Let p ∈DII
SL(2)(Φ), let J be

the set of weight filtrations associated to p, let τp : GJ
m,R → AutR(H0,R,W ) be

the associated torus action, and let r ∈D be a point on the torus orbit associated
to p. Then, when t ∈RJ

>0 tends to 0J in RJ
≥0, να,β(τp(t)r) converges in RΦ

≥0 ×
D(grW ) × L̄ × spl(W ) ×

∏
W ′ ∈Φ spl(W ′). This limit depends only on p and is

independent of the choice of r.

We recall the compactified vector space V̄ associated to a weightened finite-
dimensional R-vector space V =

⊕
w∈Z Vw such that Vw = 0 unless w ≤ −1.

It is a compact real analytic manifold with boundary. For t ∈ R>0 and v =∑
w∈Z vw �= 0 (vw ∈ Vw), let t ◦ v =

∑
w twvw. Then as a set, V̄ is the disjoint

union of V and the points 0 ◦ v (v ∈ V � {0}), where 0 ◦ v is the limit point in
V̄ of t ◦ v with t ∈R>0, t→ 0. We have 0 ◦ v = 0 ◦ v′ if and only if v′ = t ◦ v for
some t ∈R>0.

Since V̄ is a real analytic manifold with boundary (a special case of a real
analytic manifold with corners), V̄ is regarded as an object of B(log) (see Sec-
tion 3.1.6).

Since L is a finite-dimensional weightened R-vector space of weights ≤−2,
we have the associated compactified vector space L̄ ⊃ L.
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In Proposition 3.2.6, in both (i) and (ii), we denote the limit of να,β(τp(t)r)
by να,β(p).

As we see in Section 3.3.10, in Proposition 3.2.6(ii), the L̄-component of
να,β(p) belongs to L (resp., L̄�L) if and only if W /∈W(p) (resp., W ∈W(p)).

PROPOSITION 3.2.7

(i) Let Ψ ∈ W , let α be a splitting of Ψ, and let β be a distance to Ψ-
boundary. Then, in the case W /∈Ψ (resp., W ∈Ψ), the map

να,β : DI
SL(2)(Ψ)

(
resp.,DI

SL(2)(Ψ)nspl

)
→RΨ

≥0 ×D× spl(W )×
∏

W ′ ∈Ψ

spl
(
W ′(grW )

)
is injective.

(ii) Let Φ ∈ W , let α be a splitting of Φ, and let β be a distance to Φ-
boundary. Then the map

να,β : DII
SL(2)(Φ)→RΦ

≥0 ×D(grW )× L̄× spl(W )×
∏

W ′ ∈Φ

spl(W ′)

is injective.

3.2.8.
Here, for Ψ ∈ W , we define a structure of an object of B′

R(log) on the set
DI

SL(2)(Ψ) (resp., DI
SL(2)(Ψ)nspl) in the case W /∈Ψ (resp., W ∈Ψ), depending on

choices of a splitting α of Ψ and a distance to Ψ-boundary β. Also, for Φ ∈W ,
we define a structure of an object of B′

R(log) on the set DII
SL(2)(Φ) depending on

choices of a splitting α of Φ and a distance to Φ-boundary β.
Let Ψ ∈W . Assume W /∈Ψ (resp., W ∈Ψ). Let A = DI

SL(2)(Ψ) (resp., A =
DI

SL(2)(Ψ)nspl), let B = RΨ
≥0 ×D × spl(W )×

∏
W ′ ∈Ψ spl(W ′(grW )), and regard

B as an object of BR(log). Define the topology of A to be the one as a subspace
of B in which A is embedded by να,β in Proposition 3.2.7(i). We define the sheaf
of real analytic functions on A as follows. For an open set U of A and a function
f : U →R, we say that f is a real analytic function if and only if, for each p ∈ U ,
there are an open neighborhood U ′ of p in U , an open neighborhood U ′ ′ of U ′

in B, and a real analytic function g : U ′ ′ →R such that the restrictions to U ′ of
f and g coincide. Then A belongs to B′

R. Define the log structure with sign on
A as the inverse image (see Definition 3.1.5) of the log structure with sign of B.

Let Φ ∈ W . Let A = DII
SL(2)(Φ), let B = RΦ

≥0 × D(grW ) × L̄ × spl(W ) ×∏
W ′ ∈Φ spl(W ′), and regard B as an object of BR(log). Define the topology

of A to be the one as a subspace of B in which A is embedded by να,β in
Proposition 3.2.7(ii). We define the sheaf of real analytic functions on A as
follows. For an open set U of A and a function f : U →R, we say that f is a real
analytic function if and only if, for each p ∈ U , there are an open neighborhood
U ′ of p in U , an open neighborhood U ′ ′ of U ′ in B, and a real analytic function
g : U ′ ′ →R such that the restrictions to U ′ of f and g coincide. Then A belongs
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to B′
R. Define the log structure with sign on A as the inverse image of the log

structure with sign of B.

PROPOSITION 3.2.9

(i) Let Ψ ∈ W . Assume W /∈ Ψ (resp., W ∈ Ψ). Then the structure of
an object of B′

R(log) on DI
SL(2)(Ψ) (resp., DI

SL(2)(Ψ)nspl) in Section 3.2.8 is
independent of the choices of α and β.

(ii) Let Φ ∈W . Then the structure of an object of B′
R(log) on DII

SL(2)(Φ) in
Section 3.2.8 is independent of the choices of α and β.

The following theorem is proved in Section 3.4.

THEOREM 3.2.10

(i) There exists a unique structure DI
SL(2) of an object of BR(log) on the set

DSL(2) having the following property: For any Ψ ∈W , DI
SL(2)(Ψ) and DI

SL(2)(Ψ)nspl

are open in DI
SL(2), and if W /∈ Ψ (resp., W ∈ Ψ), the induced structure on

DI
SL(2)(Ψ) (resp., DI

SL(2)(Ψ)nspl) coincides with the structure in Proposition 3.2.9
as objects of B′

R(log).
(ii) There exists a unique structure DII

SL(2) of an object of BR(log) on the
set DSL(2) having the following property: for any Φ ∈W, DII

SL(2)(Φ) is open in
DII

SL(2), and the induced structure on DSL(2)(Φ) coincides with the structure in
Proposition 3.2.9 as objects of B′

R(log).
(iii) The topology of DII

SL(2) is coarser than or equal to that of DI
SL(2), and

the sheaf of real analytic functions on DII
SL(2) is contained in the sheaf of real

analytic functions on DI
SL(2). Thus we have a morphism DI

SL(2) → DII
SL(2) of

local ringed spaces over R. The log structure with sign on DI
SL(2) coincides with

the inverse image of that of DII
SL(2). Thus we have a morphism DI

SL(2) →DII
SL(2)

in BR(log) whose underlying map of sets is the identity map of DSL(2). In the
pure case (i.e., in the case where Ww = H0,R and Ww−1 = 0 for some w ∈ Z),
the last morphism is an isomorphism, and the topology of DSL(2) given by these
structures coincides with the one defined in [KU2].

3.2.11.
In Proposition 3.2.12 below, we give characterizations of the topologies of DI

SL(2)

and DII
SL(2). Recall (see [Bn, chapitre 1, section 8, no. 4]) that a topological

space X is said to be regular if it is Hausdorff and if for any point x of X and
any neighborhood U of x there is a closed neighborhood of x contained in U .

Recall (see [Bn, chapitre 1, section 8, no. 5]) that the topology of a regular
topological space X is determined by the restrictions of neighborhoods of each
point to a dense subset X ′ of X . Precisely speaking, if T1 and T2 are topologies
on a set X and if X ′ is a subset of X , then T1 and T2 coincide if the following
conditions (1) and (2) are satisfied.
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(1) The space X is regular for T1 and also for T2, and the subset X ′ is dense
in X for T1 and also for T2.

(2) Let x ∈X , and for j = 1,2, let Sj be the set {X ′∩U | U is a neighborhood
of x in X for Tj} of subsets of X ′. Then S1 = S2.

This condition (2) is equivalent to the following condition (2′).

(2′) For any x ∈ X and for any directed family (xλ)λ of elements of X ′,
(xλ)λ converges to x for T1 if and only if it converges to x for T2.

The topologies of DI
SL(2) and that of DII

SL(2) have the following characteriza-
tions.

PROPOSITION 3.2.12

(i) The topology of DI
SL(2) is the unique topology which satisfies the following

conditions (1) and (2).

(1) For any admissible set Ψ of weight filtrations on H0,R, DI
SL(2)(Ψ) (see

Section 3.2.2) is open and regular, and D is dense in it.
(2) For any p ∈ DSL(2) and for any family (pλ)λ∈Λ of points of D with a

directed ordered set Λ, (pλ) converges to p in DI
SL(2) if and only if the following

(a), (b), and (c.I) are satisfied. Let n be the rank of p (see Sections 2.5.1, 2.3.2–
2.3.3), let ((ρw, ϕw)w,r) be an SL(2)-orbit in n variables which represents p, let
Ψ =W(p), and let τ : GΨ

m →AutR(H0,R,W ) be the homomorphism of algebraic
groups associated to p (see Section 2.3.5).

(a) The canonical splitting of W associated to pλ converges to the canonical
splitting of W associated to r.

(b) For each 1 ≤ j ≤ n and w ∈ Z, the Borel-Serre splitting
splBS

W (j)(grW
w )(pλ(grW

w )) of W (j)(grW
w ) at pλ(grW

w ) (see Section 2.1.9) converges
to the Borel-Serre splitting of W (j)(grW

w ) at r(grW
w ).

(c.I) There is a family (tλ)λ∈Λ of elements of Rn
>0 such that tλ → 0 in Rn

≥0

and such that τ(tλ)−1pλ → r.

(ii) The topology of DII
SL(2) is the unique topology which satisfies the following

conditions (1) and (2).

(1) For any admissible set Φ of weight filtrations on grW , DII
SL(2)(Φ) (see

Section 3.2.2) is open and regular, and D is dense in it.
(2) For any p ∈ DSL(2) and for any family (pλ)λ∈Λ of points of D with a

directed ordered set Λ, (pλ) converges to p in DII
SL(2) if and only if (a) and (b)

in (i) and the following (c.II) are satisfied. Let n, ((ρw, ϕw)w,r), Ψ, and τ be as
in (2) of (i). Let Φ =W(p) = Ψ̄.

(c.II) There is a family (tλ)λ∈Λ of elements of RΦ
>0 ⊂RΨ

>0 such that tλ → 0
in RΦ

≥0 ⊂RΨ
≥0 and such that (τ(tλ)−1pλ)(grW ) → r(grW ) and δ(τ(tλ)−1pλ) →

δ(r).

The proof of Proposition 3.2.12 is given in Section 3.4.



Classifying spaces of degenerating mixed Hodge structures, II 201

3.2.13.
EXAMPLE 0

Consider the pure case Example 0 in Section 1.1.1. Let Ψ = {W ′}, where W ′
−3 =

0 ⊂W ′
−2 = W ′

−1 = Re1 ⊂W ′
0 = H0,R. Then we have a splitting α of Ψ defined

by α(t)e1 = t−2e1, α(t)e2 = e2, and we have a distance β to Ψ-boundary defined
by β(x + iy) = y−1/2 (x + iy ∈ h = D,x, y ∈R, y > 0). Then the map

να,β : D→R>0 ×D× spl(W ′), p �→
(
β(p), αβ(p)−1p, splBS

W ′ (p)
)

is described as

x + iy �→
(
y−1/2,

x

y
+ i, x

)
(x, y ∈R, y > 0),

where we identify spl(W ′) with R in the standard way. We can identify DI
SL(2)(Ψ)

with {x + iy | x, y ∈R,0 < y ≤∞} (see Section 3.6.1). The extended map να,β :
DI

SL(2)(Ψ)→R≥0 ×D× spl(W ′) sends x + i∞ to (0, i, x).

3.3. Proofs of Propositions 3.2.5–3.2.7 and 3.2.9
3.3.1.
Let W be as in Section 3.2.2. For each w ∈ Z, let W(grW

w ) be the set of all
admissible sets of weight filtrations on grW

w . We have a canonical map

W→W(grW
w ), Φ �→

{
W ′(grW

w )
∣∣ W ′ ∈Φ,W ′(grW

w ) �= W (grW
w )

}
.

This map sends W(p) for p ∈DSL(2) to W(p(grW
w )).

For Φ ∈ W and w ∈ Z, let Φ(w) ∈ W(grW
w ) be the image of Φ under the

above map.
We sometimes denote elements of Φ and elements of Φ(w) by the small letters

j, k, and so on.
Note that Φ is a totally ordered set by Proposition 2.3.8 (for j, k ∈ Φ, j ≤

k means σ2(j) ≤ σ2(k)), and {W (grW
w )} ∪ Φ(w) is also a totally ordered set

by Proposition 2.1.13 with respect to σ2. (Note that W (grW
w ) ≤ j for any j ∈

Φ(w).) The canonical map Φ → {W (grW
w )} ∪ Φ(w),W ′ �→ W ′(grW

w ), preserves
the ordering.

LEMMA 3.3.2

We use the notation in Section 3.3.1.
(i) For Φ ∈W and w ∈ Z, the map Φ→

∏
w∈Z({W (grW

w )} ∪ Φ(w)), W ′ �→
(W ′(grW

w ))w∈Z, is injective.
By this injection, we identify Φ and its image and denote the latter also by Φ.
(ii) We have the bijection from W onto the set of pairs (Φ′, (Φ′(w))w∈Z),

where Φ′(w) is an element of W(grW
w ) for each w ∈ Z and Φ′ is a subset of∏

w∈Z({W (grW
w )} ∪ Φ′(w)) satisfying conditions (1)–(3) below. The bijection

sends Φ ∈W to (Φ, (Φ(w))w∈Z).

(1) For each w ∈ Z, the image of the projection Φ′ → {W (grW
w )} ∪ Φ′(w),

which we denote by j �→ j(w), contains Φ′(w).
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(2) For each j ∈ Φ′, there is w ∈ Z such that j(w) ∈ {W (grW
w )} ∪ Φ′(w)

belongs to Φ′(w).
(3) For any j, k ∈Φ′, one of the following (a), (b) holds.
(a) j(w)≤ k(w) for all w ∈Z.
(b) j(w)≥ k(w) for all w ∈Z.

Proof
The assertion (i) is clear.

We prove (ii). The injectivity of the map Φ �→ (Φ, (Φ(w))w) follows from (i).
We prove the surjectivity. Let (Φ′, (Φ′(w))w) be a pair satisfying (1)–(3). For
w ∈ Z, let n(w) be the cardinality of Φ′(w), let (ρ′

w, ϕ′
w) be an SL(2)-orbit on

grW
w in n(w) variables of rank n(w) whose associated set of weight filtrations is

Φ′(w), and let r(w) ∈D(grW
w ) be a point on the torus orbit associated to (ρ′

w, ϕ′
w).

Take a point r of DSL(2) such that r(grW ) = (r(w))w. Let n be the cardinality
of Φ′, write Φ′ = {φ1, . . . , φn} (φ1(w)≤ · · · ≤ φn(w) for all w ∈Z), write Φ′(w) =
{φw,1, . . . , φw,n(w)} (φw,1 < · · ·< φw,n(w)), and let ew : {1, . . . , n(w)}→ {1, . . . , n}
be the injection defined by ew(k) = min{j | φj(w) = φw,k}. Let p ∈DSL(2) be the
class of the SL(2)-orbit ((ρw, ϕw)w,r) in n variables of rank n, where

ρw(g1, . . . , gn) = ρ′
w(gew(1), . . . , gew(n(w))),

ϕw(z1, . . . , zn) = ϕ′
w(zew(1), . . . , zew(n(w))).

Then the pair (Φ′, (Φ′(w))w) is the image of W(p) ∈W . �

LEMMA 3.3.3

Let Φ ∈ W , and let (Φ(w))w be the image of Φ in
∏

wW(grW
w ). Then there

is a bijection between the set of all splittings of Φ and the set of all families
(αw)w∈Z, where αw is a splitting of Φ(w) for each w. This bijection sends a
splitting α of Φ to the following family (αw)w. For w ∈Z, let ew : Φ(w)→Φ be
the map defined by ew(k) = min{j ∈ Φ | j(grW

w ) = k}. Then αw is the composite
GΦ(w)

m,R →GΦ
m,R → Aut(grW

w ), where the first arrow is induced from ew and the
second arrow is given by α.

Proof
From a family (αw)w of splittings αw of Φ(w), the corresponding splitting α

of Φ is recovered as follows. For w ∈ Z, let R(w) = {W (grW
w )} ∪ Φ(w). Let

GΦ
m,R → GR(w)

m,R = Gm,R ×GΦ(w)
m,R be the homomorphism induced by the map

Φ→ R(w), W ′ �→W ′(grW
w ). Then the action of GΦ

m on grW
w by α is defined to

be the composite GΦ
m,R →Gm,R ×GΦ(w)

m,R → Aut(grW
w ), where the last arrow is

(t, t′) �→ twαw(t′). �

LEMMA 3.3.4

Let Φ ∈W . For each w ∈ Z, let βw : D(grW
w )→RΦ(w)

>0 be a distance to Φ(w)-
boundary. Let h : ZΦ →

∏
w∈Z ZΦ(w) be an injective homomorphism induced

by the map Φ →
∏

w∈Z({W (grW
w )} ∪ Φ(w)). Then there is a homomorphism
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h′ :
∏

w∈Z ZΦ(w) → ZΦ such that the composite ZΦ h→
∏

w∈Z ZΦ(w) h′
→ ZΦ is the

identity map, and, for such an h′, the composite D(grW )→
∏

w∈Z RΦ(w)
>0 →RΦ

>0,
where the first arrow is (βw)w and the second arrow is induced by h′, is a distance
to Φ-boundary.

Proof
Since the cokernel of h is torsion free, there is such an h′. The rest follows from
Lemma 3.3.3. �

LEMMA 3.3.5

Let Ψ ∈W , and let Φ ∈W be the image of Ψ under the canonical map W→W
(see Section 3.2.2). Let β : D(grW )→RΦ

≥0 be a distance to Φ-boundary.

(i) Assume W /∈Ψ. Then the map

D→D(grW )
β→RΦ

>0 �RΨ
>0, x �→ β

(
x(grW )

)
,

is a distance to Ψ-boundary, where the last isomorphism is induced from the
canonical bijection Ψ→Φ,W ′ �→W ′(grW ).

(ii) Assume W ∈ Ψ. Let γ : Dnspl →R>0 be a real analytic map such that
γ(α(t)x) = tW γ(x) for any t ∈ RΨ

>0 and x ∈ Dnspl, where tW denotes the W -
component of t. Then the map

Dnspl →R>0 ×RΦ
>0 �RΨ

>0, x �→
(
γ(x), β(x(grW ))

)
is a distance to Ψ-boundary.

This is proved easily.

3.3.6.
We prove Proposition 3.2.5 (the existence of β)

Proof
Assume first that we are in the pure case. In this case, the existence of β is
proved in [KU2, Proposition 4.12].

In fact, there is a mistake in [KU2], for [KU2, Proposition 4.12] does not
hold for a general compatible family of Q-rational increasing filtrations in the
sense of [KU2]. The proof for Proposition 4.12 there assumed the injectivity of
the splitting (denoted ν there), but, for a general compatible family, a splitting
is not necessarily injective. On the other hand, for an admissible set of weight
filtrations, any splitting is injective, and for such a family, the proof there is
correct, and hence the conclusion of [KU2], Proposition 4.12 holds.

The existence of a distance to Φ-boundary β for Φ ∈W follows from the pure
case by Lemma 3.3.4.

We prove the existence of a distance to Ψ-boundary β for Ψ ∈W . Let Φ be
the image Ψ̄ of Ψ in W as in Section 3.2.2.
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If W /∈Ψ, the existence of β follows from Lemma 3.3.5(i). Assume W ∈Ψ. It
is sufficient to construct a real analytic map γ : Dnspl →R>0 having the property
stated in Lemma 3.3.5(ii). Fix r̄ = (r̄w)w ∈D(grW ) and, for each w ≤−1, fix a
K ′

r̄w
-invariant positive definite symmetric R-bilinear form ( , )w on the compo-

nent Lw of L := L(r̄) (see Section 1.2.1) of weight w. Here K ′
r̄w

is the isotropy
subgroup of GR(grW

w ) at r̄w, which is compact so that there is such a form.
Let f : L−{0}→R>0, f(v) := (

∑
w≤ −1(vw, vw)−1/w

w )−1/2, where vw denotes the
component of v of weight w. For F ∈D(grW ), if g is an element of GR(grW )
such that F = gr̄, then we have an isomorphism Ad(g)−1 : L(F ) ∼→ L. The map
fF : L(F )−{0}→R>0, v �→ f(Ad(g)−1v), is independent of the choice of g. This
is because (g′)−1g ∈

∏
w K ′

r̄w
if g, g′ ∈GR(grW ) and gr̄ = g′r̄. Define γ′ : Dnspl →

R>0 by γ′(s(θ(F, δ))
)

= fF (δ). Let α be any splitting of Ψ. Then γ′(α(t)x) =
(
∏

W ′ ∈Ψ tW ′ )γ′(x) for t ∈RΨ
>0 and x ∈Dnspl, where tW ′ ∈R>0 denotes the W ′-

component of t. For x ∈Dnspl, define γ(x) = γ′(x) ·
∏

W ′ ∈Φ β(x(grW ))−1
W ′ , where

β(x(grW ))W ′ denotes the W ′-component of β(x(grW )). Then γ has the property
stated in Lemma 3.3.5(ii). �

3.3.7.
We start to prove Proposition 3.2.6. The last assertions of (i) and (ii) are clear
once the preceding convergences are shown. We then prove the convergences in
Sections 3.3.7–3.3.12.

Here we prove the following part of Proposition 3.2.6(i).
Let Ψ ∈W , and assume W /∈ Ψ (resp., W ∈ Ψ), let β be a distance to Ψ-

boundary, let p ∈DI
SL(2)(Ψ) (resp., DI

SL(2)(Ψ)nspl), and let r ∈D be a point on
the torus orbit associated to p. Let J be the set of weight filtrations associated
to p. Then β(τp(t)r) (t ∈RJ

>0) converges in RΨ
≥0 when t tends to 0J .

Proof
Take a splitting α of Ψ, and let αJ : GJ

m,R →Aut(H0,R) be the restriction of α to
the J -component GJ

m,R of GΨ
m,R. Let H0,R =

⊕
m∈ZJ S(J,m) be the decompo-

sition associated to αJ . Since both τp and αJ split J , there is a unique element u

of GR such that τp = Int(u)(αJ) and such that (1−u)S(J,m)⊂
⊕

m′<m S(J,m′)
for any m ∈ZJ . We have

β
(
τp(t)r

)
= β

(
uαJ(t)u−1r

)
= β

(
αJ(t)utu

−1r
)

= ιJ(t)β(utu
−1r),

where ut = Int(αJ(t))−1(u), and ιJ : RJ
>0 →RΨ

>0 is the canonical injective homo-
morphism from the J -component. When t→ 0J , ut converges to 1, as is easily
seen. Hence β(τp(t)r) converges to 0Jβ(u−1r) in RΨ

≥0, where 0J denotes the
element of RΨ

≥0 whose jth component for j ∈Ψ is 0 if j ∈ J and is 1 if j /∈ J . �

REMARK

In [KU2, Proposition 4.12], the corresponding statement in the pure case was
treated, but on the second line after the proof of it, the factor corresponding to
0J here is missing.
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3.3.8.
We prove the following part of Proposition 3.2.6(ii).

Let Φ ∈W, let β be a distance to Φ-boundary, let p ∈DII
SL(2)(Φ), and let r

be a point on the torus orbit associated to p. Let J be the set of weight filtrations
associated to p. Then β(τp(t)r(grW )) (t ∈RJ

>0) converges in RΦ
≥0 when t tends

to 0J .

Proof
Let J̄ ∈W be the image of J , and let τ̄p be as in Section 3.2.3. Take a splitting
α of Φ, let αJ̄ : GJ̄

m,R →AutR(grW ) be the restriction of α to the J̄ -component
GJ̄

m,R of GΦ
m,R, and let grW =

⊕
m∈ZJ̄ S̄(J̄ ,m) be the decomposition associated

to αJ̄ . Since both τ̄p and αJ̄ split J̄ , there is a unique element u of GR(grW )
such that τ̄p = Int(u)(αJ̄ ) and such that (1− u)S̄(J̄ ,m) ⊂

⊕
m′<m S̄(J̄ ,m′) for

any m ∈ZJ̄ . We have

β
(
τp(t)r(grW )

)
= β

(
uαJ̄(tJ̄ )u−1r(grW )

)
= β

(
αJ̄(tJ̄ )utu

−1r(grW )
)

= ιJ̄(tJ̄)β
(
utu

−1r(grW )
)
,

where ut = Int(αJ̄ (tJ̄))−1(u), ιJ̄ : RJ̄
>0 →RΦ

>0 is the canonical injective homo-
morphism from the J̄ -component, and tJ̄ is the J̄ -component of t. Here we
identify J̄ with J (resp., J �{W}) if W /∈ J (resp., W ∈ J). When t→ 0J , ut con-
verges to 1 as is easily seen. Hence β(τp(t)r(grW )) converges to 0J̄β(u−1r(grW )),
where 0J̄ denotes the element of RΦ

≥0 whose jth component for j ∈Φ is 0 if j ∈ J̄

and is 1 if j /∈ J̄ . �

3.3.9.
We prove the following part of Proposition 3.2.6(i).

Let the notation be as in Section 3.3.7, let α be a splitting of Ψ, and let
μ : D → D be the map x �→ αβ(x)−1x. Then μ(τp(t)r) converges in D when
t ∈RJ

>0 tends to 0J in RJ
≥0.

Proof
We have

μ
(
τp(t)r

)
= μ

(
uαJ(t)u−1r

)
= μ

(
αJ (t)utu

−1r
)

= μ(utu
−1r)→ μ(u−1r)

when t→ 0J . �

3.3.10.
We prove the following part of Proposition 3.2.6(ii).

Let the notation be as in Section 3.3.8, let α be a splitting of Φ, and let μ =
(μ1, μ2) : D → D(grW ) × L be the map x �→

(
αβ(x(grW ))−1x(grW ),

Ad(αβ(x(grW )))−1δ(x)
)
. Then, μ(τp(t)r) converges in D(grW ) × L̄ when t ∈

RJ
>0 tends to 0J in RJ

≥0.
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Proof
This μ1 factors through the projection D→D(grW ) and

μ1

(
τp(t)r

)
= μ1

(
uαJ̄(tJ̄ )u−1r(grW )

)
= μ1

(
αJ̄(tJ̄)utu

−1r(grW )
)

= μ1

(
utu

−1r(grW )
)
→ μ

(
u−1r(grW )

)
when t→ 0J . Assume W /∈ J , and identify J and J̄ via the canonical bijection.
Then

μ2

(
τp(t)r

)
=

(
Adαβ(τ̄p(t)r(grW ))

)−1 Ad
(
τ̄p(t)

)
δ(r)

= Ad
(
αβ(utu

−1r(grW ))
)−1 Ad(utu

−1)δ(r)

→ Ad
(
αβ(u−1r(grW ))

)−1 Ad(u−1)δ(r)

when t→ 0J . Next, assume W ∈ J and identify J � {W} with J̄ via the canon-
ical bijection. For t ∈ RJ

>0, write t = (t′, tJ̄), where t′ ∈ R>0 denotes the W -
component of t and tJ̄ denotes the J̄ -component of t. Then

μ2

(
τp(t)r

)
= Ad

(
αβ(τ̄p(t)r(grW ))

)−1(
t′ ◦Ad(τ̄p(t))δ(r)

)
= t′ ◦Ad

(
αβ(utu

−1r(grW ))
)−1 Ad(utu

−1)δ(r)

→ 0 ◦Ad
(
αβ(u−1r(grW ))

)−1 Ad(u−1)δ(r)

when t→ 0J . Here, for t ∈R>0 and δ =
∑

w≤ −2 δw ∈ L, we write t ◦ δ =
∑

twδw,
and 0 ◦ δ = limt→0 t ◦ δ in L̄. �

3.3.11.
Since the convergences of the canonical splittings are trivial (cf. Sections 2.4.6,
2.5.5), to prove Proposition 3.2.6, the rest is the convergences of Borel-Serre
splittings. To see the latter, we may and do assume that we are in the pure case.

Let Ψ be an admissible set of weight filtrations, and let W ′ ∈ Ψ. Fix an
SL(2)-orbit q whose associated set of weight filtrations is Ψ. Let X = ZΨ, and
let gR =

⊕
m∈X gR,m be the direct sum decomposition, where t ∈ (R×)Ψ acts

via τq on gR,m as the multiplication by tm.
In this paragraph, we prove the following.
Let r be a point on the torus orbit associated to q. Let J be a subset of Ψ,

and let τJ be the restriction of τq to the J -component GJ
m,R of GΨ

m,R. Let h ∈ gR

be an element whose m-component is zero (m ∈X) unless m(j) < 0 for all j ∈ J .
Then there are an open neighborhood U of 0J in RJ

≥0 and real analytic maps
f1 : U →GW ′,R and f2 : U →Kr such that Int(τJ (t))−1(exp(h)) = f1(t)f2(t) for
any t ∈ U ∩RJ

>0, and, furthermore, Int(τJ(t))(f1(t)) extends to a real analytic
map on U .

To prove this, first, we take an R-subspace V of gR satisfying the following
(1)–(3).

(1) We have gR = V ⊕ Lie(Kr).
(2) The vector space V is the sum of V±m := V ∩ (gR,m +gR,−m) for m ∈X .
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(3) We have Lie(GW ′,u,R)⊂ V ⊂ Lie(GW ′,R).

Then there exist an open neighborhood O of zero in gR and a real analytic
function a = (a1, a2) : O→ V ⊕ Lie(Kr) having the following properties (4)–(7).

(4) For any x ∈O, exp(x) = exp(a1(x)) exp(a2(x)).
(5) We have a(0) = (0,0).
(6) The map exp : O→GR is an injective open map.
(7) For k = 1,2, ak has the form of absolutely convergent series ak =∑∞

r=0 ak,r, where ak,r is the part of degree r in the Taylor expansion of ak

at zero, such that ak,r(x) = lk,r(x⊗ · · · ⊗ x) for some linear map lk,r : g
⊗r
R → gR

having the following property: If m1, . . . ,mr ∈X and xj ∈ gR,mj for 1≤ j ≤ r,
then lk,r(x1 ⊗ · · · ⊗ xr) ∈

∑
m gR,m, where m ranges over all elements of X sat-

isfying |m| ≤ |m1|+ · · ·+ |mr|. Here | | : ZΨ →NΨ is the map sending (m(j))j

to (|m(j)|)j .

This is proved similarly as [KU3, Lemma 10.3.4]. Or, if we choose V such
that V = Lie(ρ̃(Rn

>0))⊕L for some L as in [KU3, Section 10.1.2] (such a choice
is always possible), this is seen by [KU3, Lemma 10.3.4] just by taking a1(x) =
H(f1(x), f2(x)), a2(x) = f3(x), where H(x, y) = x+y+(1/2)[x, y]+ · · · is a Haus-
dorff series.

Now consider the decomposition h =
∑

m∈X hm (hm ∈ gR,m). By assump-
tion, hm = 0unlessm(j) < 0 for any j ∈ J . ThenAd(τJ(t))−1(h) =

∑
m∈X t−mJ hm

(t ∈ RJ
>0) extends to a real analytic map g : RJ

≥0 → gR sending 0J to zero,
where mJ ∈ ZJ is the J -component of m. Let U = g−1(O), fj = exp◦aj ◦ g

(j = 1,2). It is enough to show that Ad(τJ (t))
(
a1(g(t))

)
extends to a real ana-

lytic map around zero. This is a consequence of the property (7) of a1. In fact,
in the notation in (7), a1(g(t)) = a1

(∑
t−mJ hm

)
is the infinite formal sum of

t−((m1)J+···+(mr)J )l1,r(hm1 ⊗· · ·⊗hmr ) (mj ∈X,hmj ∈ gR,mj (1≤ j ≤ r)). Since
the weights m of l1,r(hm1 ⊗· · ·⊗hmr ) satisfy |m| ≤ |m1|+ · · ·+ |mr|, we conclude
that Ad(τJ (t))

(
a1(g(t))

)
extends to a real analytic map over 0J , as desired.

3.3.12.
We continue to assume that we are in the pure situation.

Let Ψ be an admissible set of weight filtrations, and let W ′ ∈Ψ. We prove
the following, which completes the proof of Proposition 3.2.6.

Let p ∈DSL(2)(Ψ), and let r be a point on the torus orbit associated to p. Let
J be the set of weight filtrations associated to p. Then splBS

W ′ (τp(t)r) (t ∈RJ
>0)

converges in spl(W ′) when t tends to 0J .

REMARK 1

The proof is easy when W ′ ∈ J (Borel-Serre splitting is then constant on the
torus orbit) but is not when W ′ /∈ J (see Remark 3 after the proof).
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Proof
Since Ψ is admissible, Ψ is the set of weight filtrations associated to some
q ∈ DSL(2). Let rq be a point on the torus orbit associated to q. Then, by
[KU3, Section 6.4.4, Claim 1], there exist v ∈ GJ,R and k ∈ Krq such that
τp = Int(v)(τq,J ) and r = vkrq . Here GJ,R = {g ∈ GR | gW ′ ′ = W ′ ′ for any
W ′ ′ ∈ J}, and τq,J denotes the restriction of τq to the J -component GJ

m,R of
GΨ

m,R.
Let GR(J) be the R-algebraic subgroup of GJ,R consisting of all elements

of GR which commute with any element of τq,J(GJ
m,R). Then we have the

projection GJ,R →GR(J), a �→ a(J), where a(J) on S(J,m) (m ∈ ZJ ) (see Sec-
tion 3.3.7) is defined to be the (S(J,m)→ S(J,m))-component of a : S(J,m)→⊕

m′ ≤m S(J,m′). The composite GR(J)→GJ,R →GR(J) is the identity map.
Since GR(J) is reductive, any element of GR(J) is expressed in the form bc, where
b ∈GR(J)∩GW ′,R and c ∈GR(J)∩Krq . Write the image of v in GR(J) as bc by
using such b and c. Then v = bvuc with vu ∈GJ,R satisfying (vu − 1)S(J,m)⊂⊕

m′<m S(J,m) for any m ∈ ZJ . We have Int(τq,J(t))−1(vu)→ 1 when t→ 0J

in RJ
≥0. Hence, by Section 3.3.11, there are an open neighborhood U of 0J

in RJ
≥0 and real analytic maps bu : U → GW ′,R and cu : U → Krq such that

Int(τq,J (t))−1(vu) = Int(τq,J(t))−1(bu(t))cu(t) for any t ∈ U ∩RJ
>0. We have, for

t ∈ U ∩RJ
>0,

τp(t)r = vτq,J(t)krq = bbu(t)τq,J (t)cu(t)ckrq,

and hence

splBS
W ′

(
τp(t)r

)
= Int

(
bbu(t)

)
Int

(
τq,J(t)

)(
splBS

W ′ (cu(t)ckrq)
)

= Int
(
bbu(t)

)
Int

(
τq,J(t)

)(
splBS

W ′ (rq)
)

= Int
(
bbu(t)

)(
splBS

W ′ (rq)
)

→ Int
(
bbu(0J)

)(
splBS

W ′ (rq)
)
. �

REMARK 2

In the above proof, splBS
W ′ (rq) coincides with the splitting of W ′ associated to q.

REMARK 3

In the case W ′ ∈ J , splBS
W ′ (τp(t)r) constantly coincides with Int(v) splBS

W ′ (rq) with
v as in the above proof.

3.3.13. Proof of Proposition 3.2.7 (injectivity of να,β)
Recall that a point of DSL(2) is determined by the associated weight filtrations
and the associated torus orbit (see Proposition 2.5.2(ii)).

First, let Ψ ∈W . Assume W /∈Ψ (resp., W ∈Ψ). We prove that the map

να,β : DI
SL(2)(Ψ)

(
resp.,DI

SL(2)(Ψ)nspl

)
→RΨ

≥0 ×D× spl(W )×
∏

W ′ ∈Ψ

spl
(
W ′(grW )

)
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is injective. Denote να,β(p) by
(
β(p), μ(p), splW (p), (splBS

W ′(grW )(p(grW )))W ′ ∈Ψ

)
.

(Note that the symbol μ was introduced in Section 3.3.9.)
Let p ∈ DI

SL(2)(Ψ) (resp., DI
SL(2)(Ψ)nspl). Then the set J ⊂ Ψ of weight

filtrations associated to p is recovered from β(p) as

J =
{
j ∈Ψ

∣∣ β(p)j = 0
}
.

Let αJ be the restriction of α to the J -component GJ
m,R of GΨ

m,R. Since both
grW (τp) and grW (αJ) split W ′(grW ) for all W ′ ∈ J , there is a unique element u of
GR(grW ) such that grW (τp) = Int(u)(grW (αJ)) and such that (1− u)S̄(J̄ ,m)⊂⊕

m′<m S̄(J̄ ,m′) for any m ∈ ZJ̄ (cf. Section 3.3.8). This u is characterized by
the following property (1).

(1) For any W ′ ∈ J , u−1 splBS
W ′(grW )(p(grW )) coincides with the splitting of

W ′(grW ) defined by the W ′-component of α.

The torus orbit associated to p is recovered as{
splW (p)θ

(
ugrW (α(t))(μ(p)(grW )),Ad(uα(t))(δ(μ(p)))

) ∣∣ t ∈RΨ
>0, β(p) = 0J t

}
.

Next, let Φ ∈W . We prove that the map

να,β : DII
SL(2)(Φ)→RΦ

≥0 ×D(grW )× L̄× spl(W )×
∏

W ′ ∈Φ

spl(W ′)

is injective. Denote να,β(p) by(
β(p(grW )), μ(p(grW )), splW (p), (splBS

W ′ (p(grW )))W ′ ∈Φ

)
.

Let p ∈DII
SL(2)(Φ). Let J be the set of weight filtrations associated to p. Let

J̄ = {W ′(grW ) |W ′ ∈ J,W ′ �= W} ⊂Φ. Then J̄ is recovered from β(p(grW )) as

J̄ =
{
j ∈Φ

∣∣ β
(
p(grW )

)
j
= 0

}
.

Let μ(p(grW )) = (x, y) with x ∈D(grW ) and y ∈ L̄ (see Section 3.3.10). If y ∈ L,
J is the lifting of J̄ on H0,R by splW (p). If y ∈ L̄� L, J is the union of {W}
and the lifting of J̄ on H0,R by splW (p).

Let αJ̄ be the restriction of α to the J̄ -component GJ̄
m,R of GΦ

m,R. Since
both τ̄p and αJ̄ split all W ′ ∈ J̄ , there is a unique element u of GR(grW ) such
that grW (τ̄p) = Int(u)(αJ̄ ) and such that (1− u)S̄(J̄ ,m)⊂

⊕
m′<m S̄(J̄ ,m′) for

any m ∈ZJ̄ . This u is characterized by the following property (1).

(1) For any W ′ ∈ J̄ , u−1 splBS
W ′ (p(grW )) coincides with the splitting of W ′

defined by the W ′-component of α.

If W /∈ J (note that y ∈ L in this case), the torus orbit associated to p is
recovered as{

splW (p)θ
(
uα(t)(x),Ad(uα(t))(y)

) ∣∣ t ∈RΦ
>0, β(p) = 0J t

}
.

If W ∈ J , y has the shape 0 ◦ z with z ∈ L� {0} (see Section 3.3.10), and the
torus orbit associated to p is recovered as{

splW (p)θ
(
uα(t)(x), t′ ◦Ad(uα(t))(z)

) ∣∣ t ∈RΦ
>0, β(p) = 0J t, t′ ∈R>0

}
.
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Proposition 3.2.7 is proved. �

3.3.14. Proof of Proposition 3.2.9
The proofs of (i) and (ii) are similar. We give here the proof of (ii).

To prove that another choice (α′, β′) gives the same structure as (α,β), we
may assume either α = α′ or β = β′.

Assume first α = α′. Then we have a commutative diagram in which the
right vertical arrow is a morphism of BR(log):

DII
SL(2)(Φ)

by να,β−−−−−−→ RΦ
≥0 ×D(grW )× L̄ (t, y, δ)

‖ ↓ ↓
DII

SL(2)(Φ)
by να,β′−−−−−−→ RΦ

≥0 ×D(grW )× L̄
(
tβ′(y), αβ′(y)−1y,Ad(αβ′(y))−1δ

)
Assume β = β′. Then α′ = Int(u)α for some u ∈GR such that (u−1)W ′

w ⊂W ′
w−1

for any W ′ ∈ Φ and for any w ∈ Z. For t ∈RΦ
>0, let ut = α(t)−1uα(t). Then

as is easily seen, the map RΦ
>0 → GR, t �→ ut, extends to a real analytic map

RΦ
≥0 →GR, which we still denote by t �→ ut. We have a commutative diagram

in which the right vertical arrow is a morphism in BR(log):

DII
SL(2)(Φ)

by να,β−−−−−−→ RΦ
≥0 ×D(grW )× L̄ (t, y, δ)

‖ ↓ ↓
DII

SL(2)(Φ)
by να′ ,β−−−−−−→ RΦ

≥0 ×D(grW )× L̄
(
t, uu−1

t y,Ad(uu−1
t )δ

)
These commutative diagrams prove Proposition 3.2.9(ii). �

3.4. Local properties of DSL(2)

In this subsection, we prove Theorem 3.2.10 and Proposition 3.2.12, give local
descriptions of DI

SL(2) and DII
SL(2) (Theorems 3.4.4, 3.4.6), and prove a criterion

(Proposition 3.4.29) for the coincidence of DI
SL(2) and DII

SL(2).

3.4.1.
Let p ∈DSL(2), let Φ =W(p) (see Section 3.2.2), let r be a point on the torus
orbit associated to p, and let r̄ = r(grW ). Fix R-subspaces

R⊂ gR(grW ), S ⊂ Lie(Kr̄)

satisfying the following conditions (a), (b), and (c). Here Kr̄ =
∏

w Kr̄w with
Kr̄w the maximal compact subgroup of GR(grW

w ) corresponding to r̄w (see [KU3,
Section 5.1.2]), where we write r̄ = (r̄w)w as in Section 3.3.6. Note that Kr̄w ⊃
K ′

r̄w
for all w.

(a) We have gR(grW ) = R⊕ Lie(ρ̃(RΦ
>0))⊕ Lie(Kr̄).

Here ρ̃ is the homomorphism GΦ
m,R →GR(grW ) defined by

ρ̃(t1, . . . , tn) =
⊕
w∈Z

(
ρw(g1, . . . , gn) on grW

w

)
with gj =

(
1/

∏n
k=j tk 0
0

∏n
k=j tk

)
,
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where n is the number of the elements of Φ and ((ρw, ϕw)w,r) is the SL(2)-orbit
in n variables of rank n with class p (cf. Section 2.3.5).

(b) We have Lie(Kr̄) = S⊕Lie(K ′
r̄), where K ′

r̄ =
∏

w K ′
r̄w

(cf. Section 3.3.6).
We introduce the notation to state condition (c). Let

gR(grW ) =
⊕

m∈ZΦ

gR(grW )m

be the direct decomposition associated to the adjoint action of GΦ
m,R via ρ̃.

Note that this action coincides with the adjoint action of GΦ
m,R via τ̄p (see

Section 3.2.3). Thus

gR(grW )m :=
{
x ∈ gR(grW )

∣∣ Ad
(
τ̄p(t)

)
x = tmx for all t ∈ (R×)Φ

}
.

Condition (c) is the following.

(c) We have R =
∑

m∈ZΦ R ∩ (gR(grW )m + gR(grW )−m).
Such R and S exist. The proof of the existence for the pure case is in [KU3,

Section 10.1.2], and the general case is similar to it. We remark that when we
are given a parabolic subgroup P of GR(grW ), we can take R⊂ Lie(P ).

3.4.2.
Let the notation be as in Section 3.4.1. We define objects Y II (p,r, S) and
Y II (p,r,R,S) of BR(log).

Let L = L(r̄) (see Section 1.2.1).
We define sets Z(p) and Z(p,R). Let

Z(p)⊂RΦ
≥0 × gR(grW )× gR(grW )× gR(grW )

be the set of all (t, f, g, h) satisfying the following conditions (1) and (2). Let
J = J(t) := {j ∈Φ | tj = 0}.

(1) For m ∈ZΦ, gm = 0 unless m(j) = 0 for all j ∈ J , fm = 0 unless m(j)≤ 0
for all j ∈ J , and hm = 0 unless m(j)≥ 0 for all j ∈ J .

Here ( )m for m ∈ ZΦ denotes the m-component for the adjoint action of
GΦ

m,R under τ̄p.
(2) Let t′ be any element of RΦ

>0 such that t′
j = tj for any j ∈ Φ � J . If

m ∈ ZΦ and m(j) = 0 for any j ∈ J , then gm = Ad(τ̄p(t′))−1(fm) and gm =
Ad(τ̄p(t′))(hm).

Let

Z(p,R)⊂ Z(p)

be the subset consisting of all elements (t, f, g, h) satisfying the following condi-
tion (3).

(3) We have g ∈R and fm + h−m ∈R for all m ∈ZΦ.
Let

Y II (p,r, S)⊂ Z(p)× S × L̄× gR,u(
resp., Y II (p,r,R,S)⊂ Z(p,R)× S × L̄× gR,u

)
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be the set consisting of all elements (t, f, g, h, k, δ, u) ((t, f, g, h) ∈ Z(p) (resp.,
Z(p,R)), k ∈ S, δ ∈ L̄, u ∈ gR,u) satisfying the following condition (4).

(4) We have exp(k)r̄ ∈ (Kr̄ ∩ GR(grW )J) · r̄ with J = J(t), where
GR(grW )J = {g ∈GR(grW ) | gW ′ = W ′ for any W ′ ∈ J}.

We endow Y II (p,r, S) (resp., Y II (p,r,R,S)) with the following structure as
an object of BR(log).

Let E = RΦ
≥0 × gR(grW ) × gR(grW ) × gR(grW ) × S × L̄ × gR,u. Let A =

Y II (p,r, S) (resp., A = Y II (p,r,R,S)).
We endow A with the topology as a subspace of E.
We define the sheaf of real analytic functions on A as follows. For an open set

U of A and for a map f : U →R, we say that f is real analytic if and only if, for
any p ∈ U , there are an open neighborhood U ′ of p in U , an open neighborhood
U ′ ′ of U ′ in E, and a real analytic function g on U ′ ′, such that the restrictions
to U ′ of f and g coincide.

We show that with this sheaf of rings over R, A is an object of BR. Let OE

be the sheaf of real analytic functions on E. Let I be the ideal of OE generated by
the following sections am,l and bm,l given for elements m of ZΦ and for R-linear
maps l : gR(grW )→R:

am,l(t, f, g, h, k, δ, u) =
( ∏

j∈Φ,m(j)≤0

t
−m(j)
j

)
l(fm)−

( ∏
j∈Φ,m(j)≥0

t
m(j)
j

)
l(gm),

bm,l(t, f, g, h, k, δ, u) =
( ∏

j∈Φ,m(j)≤0

t
−m(j)
j

)
l(gm)−

( ∏
j∈Φ,m(j)≥0

t
m(j)
j

)
l(hm).

Here ( )m denotes the mth component with respect to the adjoint action of GΦ
m,R

by τ̄p,
∏

j∈Φ,m(j)≤0 means the product over all j ∈ Φ such that m(j) ≤ 0, and∏
j∈Φ,m(j)≥0 is defined in a similar way. Then I is a finitely generated ideal.

Indeed, if l1, . . . , lr form a basis of the dual R-vector space of gR(grW ), am,lj and
bm,lj (1≤ j ≤ r) such that gR(grW )m �= 0 (there are only finitely many such m)
generate I . Furthermore, the inverse image ofOE/I on Y II (p,r, S) coincides with
the sheaf of real analytic functions on Y II (p,r, S). Hence Y II (p,r, S) is an object
of BR. Let I ′ be the ideal of OE generated by I and by the following sections cl

and dm,l given for elements m of ZΦ and R-linear maps l : gR(grW )→R which
kill R:

cl(t, f, g, h, k, δ, u) = l(g),

dm,l(t, f, g, h, k, δ, u) = l(fm + h−m).

As is easily seen, I ′ is a finitely generated ideal. Furthermore, the inverse image
of OE/I ′ on Y II (p,r,R,S) coincides with the sheaf of real analytic functions on
Y II (p,r,R,S). Hence Y II (p,r,R,S) is also an object of BR.

We define the log structures with sign of Y II (p,r, S) and of Y II (p,r,R,S)
to be the inverse images of the log structure with sign of RΦ

≥0. This endows
Y II (p,r, S) and Y II (p,r,R,S) with structures of objects of BR(log).
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3.4.3.
Define an open subset Y II

0 (p,r, S) of Y II (p,r, S) by

Y II
0 (p,r, S) =

{
(t, f, g, h, k, δ, u) ∈ Y II (p,r, S)

∣∣ t ∈RΦ
>0, δ ∈ L

}
.

We define an open subset Y II
0 (p,r,R,S) of Y II (p,r,R,S) by

Y II
0 (p,r,R,S) = Y II (p,r,R,S)∩ Y II

0 (p,r, S).

We have isomorphisms of real analytic manifolds

Y II
0 (p,r, S) ∼→RΦ

>0 × gR(grW )× S ×L× gR,u,

Y II
0 (p,r,R,S) ∼→RΦ

>0 ×R× S ×L× gR,u,

given by

(t, f, g, h, k, δ, u) �→ (t, g, k, δ, u),

whose inverse maps are given by

f = Ad
(
τ̄p(t)

)
(g), h = Ad

(
τ̄p(t)

)−1(g).

We have a morphism of real analytic manifolds

ηII
p,r,S : Y II

0 (p,r, S)→D, (t, f, g, h, k, δ, u) �→ exp(u)srθ
(
dr̄,Ad(d)δ

)
with sr = splW (r), d = τ̄p(t) exp(g) exp(k) = exp(f)τ̄p(t) exp(k).

Let

ηII
p,r,R,S : Y II

0 (p,r,R,S)→D

be the induced morphism.

THEOREM 3.4.4

Let the notation be as above. If U is a sufficiently small open neighborhood of
0 := (0,0,0,0) in gR(grW )×gR(grW )×gR(grW )×S and if Y II (p,r, S,U) (resp.,
Y II (p,r,R,S,U)) denotes the open set of Y II (p,r, S) (resp., Y II (p,r,R,S)) con-
sisting of all elements (t, f, g, h, k, δ, u) such that (f, g, h, k) ∈ U , we have the
following.

(i) There is a unique morphism Y II (p,r, S,U)→DII
SL(2)(Φ) in the category

B′
R(log) whose restriction to Y II

0 (p,r, S,U) = Y II
0 (p,r, S) ∩ Y II (p,r, S,U) coin-

cides with the restriction of ηII
p,r,S (Section 3.4.3).

(ii) The restriction of the morphism in (i) induces an open immersion
Y II (p,r,R,S,U)→DII

SL(2)(Φ) in the category B′
R(log) which sends (0Φ,0,0,0,0,

δ(r),0) ∈ Y II (p,r,R,S,U) to p.

The proof of this theorem is given later in Sections 3.4.18–3.4.19.

REMARK

From the proof of Theorem 3.4.4 given below, we see that if q is the image of
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(t, f, g, h, k, δ, u) ∈ Y II (p,r, S,U) in DSL(2)(Φ), then q ∈DSL(2),spl if and only if
δ = 0, and W ∈W(q) if and only if δ ∈ L̄ � L.

3.4.5.
Next, we consider DI

SL(2).
Let Ψ =W(p). Let Φ,r,R,S be as before in Section 3.4.1.
We define an object Y I(p,r,R,S) of BR(log) first in the case W /∈ W(p).

Let

(∗) Y I(p,r,R,S)⊂ Y II (p,r,R,S)× gR,u

be the set consisting of all elements (t, f, g, h, k, δ, u, v) ((t, f, g, h, k, δ, u) ∈
Y II (p,r,R,S), v ∈ gR,u) satisfying the following conditions (5)–(7). Via the
bijection Ψ→Φ, we regard τp as a homomorphism GΦ

m,R →Aut(H0,R,W ). Let
gR,u =

⊕
m∈ZΦ gR,u,m be the corresponding direct sum decomposition. Denote

by um the m-component of u ∈ gR,u.

(5) For m ∈ ZΦ, um = 0 unless m(j) ≤ 0 for all j ∈ J = J(t), and vm = 0
unless m(j) = 0 for all j ∈ J .

(6) Let t′ be any element of RΦ
>0 such that t′

j = tj for any j ∈ Φ � J . If
m ∈ZΦ and m(j) = 0 for any j ∈ J , then vm = Ad(τp(t′))−1(um).

(7) We have δ ∈ L in L̄.

We endow Y I(p,r,R,S) with a structure of an object of BR(log) via the
injection Y I(p,r,R,S) ↪→ E × gR,u, just as we endowed Y II (p,r,R,S) with it
via the injection Y II (p,r,R,S) ↪→E in Section 3.4.2.

Next, in the case W ∈W(p), we define an object Y I(p,r,R,S) of BR(log)
by fixing a closed real analytic subspace L(1) of L � {0} such that R>0×L(1) →
L � {0}, (a,x) �→ a ◦ x, is an isomorphism of real analytic manifolds. Via the
evident bijection between Ψ and the disjoint union of {W} and Φ, we regard τp

as a homomorphism Gm,R ×GΦ
m,R →Aut(H0,R,W ). Let

(∗) Y I(p,r,R,S)⊂R≥0 × Y II (p,r,R,S)× gR,u

be the set consisting of all elements (t0, t, f, g, h, k, δ, u, v) (t0 ∈R≥0, (t, f, g, h, k,

δ, u) ∈ Y II (p,r,R,S), v ∈ gR,u) satisfying the following conditions (5′)–(7′).

(5′) Condition (5) holds, and furthermore, in the case t0 = 0, we have
exp(v)sr = sr.

(6′) Let t′ be any element of RΦ
>0 such that t′

j = tj for any j ∈Φ�J . Let m ∈
ZΦ, and assume m(j) = 0 for any j ∈ J . If t0 �= 0, then vm = Ad(τp(t0, t′))−1(um).
If t0 = 0, then vm = Ad(τp(1, t′))−1(um).

(7′) We have δ ∈ L(1).

We endow Y I(p,r,R,S) with a structure of an object in BR(log) via the
injection Y I(p,r,R,S) ↪→R≥0 ×B × gR,u.

We define a canonical morphism Y I(p,r,R,S)→ Y II (p,r,R,S). In the case
W /∈ W(p), it is just the canonical projection. In the case W ∈ W(p), it is
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the morphism (t0, t′, f, g, h, k, δ, u, v) �→ (t′, f, g, h, k, t0 ◦ δ, u). In both cases, this
morphism is injective.

Define an open subset Y I
0 (p,r,R,S) of Y I(p,r,R,S) by the inverse image of

Y II
0 (p,r,R,S) (see Section 3.4.3). Then we have an isomorphism of real analytic

manifolds Y I
0 (p,r,R,S) ∼→ Y II

0 (p,r,R,S).
Combining this with ηII

p,r,R,S (see Section 3.4.3), we have a morphism of real
analytic manifolds

ηI
p,r,R,S : Y I

0 (p,r,R,S)→D.

THEOREM 3.4.6

Let the notation be as above. Assume W /∈Ψ (resp., W ∈Ψ). Then if U is a suf-
ficiently small open neighborhood of 0 := (0,0,0,0) in gR(grW )×R×gR(grW )×S

and if Y I(p,r,R,S,U) denotes the open set of Y I(p,r,R,S) defined as the inverse
image of U by the canonical map Y I(p,r,R,S)→ gR(grW )×R× gR(grW )× S,
then there is an open immersion Y I(p,r,R,S,U) → DI

SL(2)(Ψ) in the category
B′

R(log) which sends (0Φ,0,0,0,0, δ(r),0,0) (resp., (0Ψ,0,0,0,0, δ(r)(1),0,0),
where δ(r)(1) ∈ L(1) (see Section 3.4.5) such that δ(r) = 0 ◦ δ(r)(1)) to p and
whose restriction to Y I(p,r,R,S,U) ∩ Y I

0 (p,r,R,S) coincides with the restric-
tion of ηI

p,r,R,S (see Section 3.4.5).

The proof is given in Section 3.4.20.

3.4.7.
Before we start to prove Theorems 3.4.4 and 3.4.6, we make some preparations.

Let the notation be as in Section 3.4.1. Then there exist an open neigh-
borhood O of zero in gR(grW ) and a real analytic function c = (c1, c2, c3) : O→
RΦ

>0 ×R× S having the following properties (1)–(4).

(1) For any x ∈O, exp(x)r̄ = τ̄p(c1(x)) exp(c2(x)) exp(c3(x))r̄.
(2) We have c(0) = (1,0,0).
(3) The map exp : O→GR(grW ) is an injective open map.
(4) For k = 2,3, ck has the form of absolutely convergent series ck =

∑∞
r=0 ck,r,

where ck,r is the part of degree r in the Taylor expansion of ck at zero, such that
ck,r(x) = lk,r(x⊗ · · · ⊗ x) for some linear map lk,r : gR(grW )⊗r → gR(grW ) hav-
ing the following property: if m1, . . . ,mr ∈ZΦ and xj ∈ gR(grW )mj for 1≤ j ≤ r,
then lk,r(x1⊗· · ·⊗xr) ∈

∑
m gR(grW )m, where m ranges over all elements of ZΦ

of the form
∑

1≤j≤r ejmj with ej ∈ {1,−1} for each j.

This is proved similarly as [KU3, Lemma 10.3.4] (cf. also Section 3.3.11). It
is clear that there is a real analytic c satisfying (1)–(3) unique up to restrictions
of domains of definitions. The property (4) of Taylor expansion can be checked
formally as follows.

Consider the following formal calculation:

exp(x) = exp(t(1) + b(1) + k(1)) = exp(t(1)) exp(b(1) + x(1)) exp(k(1))



216 Kato, Nakayama, and Usui

= exp(t(1)) exp(b(1) + t(2) + b(2) + k(2)) exp(k(1))

= exp(t(1)) exp(t(2)) exp(b(1) + b(2) + x(2)) exp(k(2)) exp(k(1)) = · · · .

Here x ∈ O, t(j) ∈ Lie(ρ̃(RΦ
>0)) with ρ̃ being as in Section 3.4.1 (note that the

actions of ρ̃(t) and τ̄p(t) for t ∈RΦ
>0 on D(grW ) coincide), and b(j) ∈R, k(j) ∈ S,

x(j) ∈ gR(grW ) for any j. Then we have ρ̃(c1(x)) = exp(t(1)) exp(t(2)) · · · , c2(x) =
b(1) + b(2) + · · · , and exp(c3(x)) = · · · exp(k(2)) exp(k(1)) formally. From these, we
can prove property (4) formally.

3.4.8.
We prove Theorem 3.4.4 up to Section 3.4.19. After that, we prove Theorem 3.4.6.
Let p,Φ, and r be as in Section 3.4.1. In the notation in Section 3.4.7, let
U = exp(O)r̄ which is an open neighborhood of r̄ in D(grW ). By Section 3.4.7,
there is a real analytic map

a = (a1, a2, a3) : U →RΦ
>0 ×R× S

such that for any y ∈ U , we have y = τ̄p(a1(y)) exp(a2(y)) exp(a3(y))r̄. (Just put
aj(exp(x)r̄) = cj(x) for x ∈O.)

3.4.9.
Fix a distance β to Φ-boundary such that β(r̄) = 1. Here we denote β(x) =
β(x(grW )) (x ∈ D) by abuse of notation. Let μ : D(grW ) → D(grW ) be the
real analytic map defined by μ(x) = τ̄p(β(x))−1x. Denote the composite D →
D(grW )

μ→D(grW ) also by μ by abuse of notation. Let D(U)⊂D be the inverse
image of U by μ.

Let

b = bR,S : D(U)→ Y II
0 (p,r,R,S)

be the real analytic map x �→ (t, f, g, h, k, δ, u), where t = β(x)a1(μ(x)), f =
Ad(τ̄p(t))(a2(μ(x))), g = a2(μ(x)), h = Ad(τ̄p(t))−1(a2(μ(x))), k = a3(μ(x)), δ =
Ad(τ̄p(t) exp(g) exp(k))−1(δ(x)), and u is characterized by splW (x) = exp(u) ·
splW (r).

Recall that, in Theorem 3.4.4, for an open neighborhood U ′ of zero in
gR(grW )× gR(grW )× gR(grW )× S, we denote by Y II (p,r, S,U ′) the subset of
Y II (p,r, S) consisting of all elements (t, f, g, h, k, δ, u) such that (f, g, h, k) ∈ U ′.
We also defined Y II

0 (p,r, S,U ′) and Y II (p,r,R,S,U ′) there. Now, we define
Y II

0 (p,r,R,S,U ′) = Y II (p,r,R,S,U ′)∩ Y II
0 (p,r, S).

The next two lemmas are easily seen.

LEMMA 3.4.10

The composite D(U) b→ Y II
0 (p,r,R,S)→D is the canonical inclusion.

LEMMA 3.4.11

If U ′ is sufficiently small, the image of Y II
0 (p,r, S,U ′) in D is contained in D(U)
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and the map Y II
0 (p,r,R,S,U ′)→D(U)→ Y II

0 (p,r,R,S) is the canonical inclu-
sion.

3.4.12.
We define

p(J,r, z, δ, u) ∈DII
SL(2)(Φ)

as follows for a subset J of Φ, a point r on the torus orbit associated to p (see
Proposition 2.5.2), an element z of GR(grW ) which satisfies

(1) z ∈GR(grW )J ,

an element δ of L̄, and an element u of gR,u.
This p(J,r, z, δ, u) is the unique element of DSL(2) which satisfies the following

(2)–(5).

(2) The set of weight filtrations on grW associated to p(J,r, z, δ, u) is J .
(3) The torus action τ̄ associated to p(J,r, z, δ, u) is Int(z)(τ̄p,J ) : GJ

m,R →
AutR(grW ), where τ̄p,J denotes the restriction of τ̄p : GΦ

m,R → AutR(grW ) (see
Sections 2.5.6, 2.3.5) to the J -component of GΦ

m,R.
(4) We have δ ∈ L in L̄ if and only if W does not belong to the set of weight

filtrations associated to p(J,r, z, δ, u).
(5) The torus orbit associated to p(J,r, z, δ, u) (see Proposition 2.5.2) con-

tains exp(u)srθ
(
z(r(grW )),Ad(z)(δ)

)
if δ ∈ L, and contains exp(u)srθ

(
z(r(grW )),

Ad(z)(δ′)
)

if δ ∈ L̄ � L and δ = 0 ◦ δ′ with δ′ ∈ L � {0}.

This p(J,r, z, δ, u) is constructed as follows. Let n be the cardinality of
Ψ =W(p), and identify Ψ with {1, . . . , n} as a totally ordered set for the ordering
in Proposition 2.3.8. In the case W /∈Ψ, consider the bijection Ψ→Φ. In the case
W ∈Ψ, consider the bijection Ψ � {W}→Φ. Via these bijections, embed J ⊂Φ
into Ψ. In the case δ ∈ L (resp., δ ∈ L̄ � L), let m = �(J) (resp., m = �(J) + 1),
and write J = {j1, . . . , jm} ⊂ Ψ with j1 < · · · < jm (resp., J = {j2, . . . , jm} ⊂ Ψ
with j2 < · · ·< jm). Let ((ρw, ϕw)w,r) be an SL(2)-orbit in n variables of rank
n whose class in DSL(2) is p. Then, in the case δ ∈ L (resp., δ ∈ L̄ � L), the
p(J,r, z, δ, u) is the class of the following SL(2)-orbit ((ρ′, ϕ′) = (ρ′

w, ϕ′
w)w,r′) in

m variables of rank m:

ρ′(g1, . . . , gm) := Int(z)
(
ρ(g′

1, . . . , g
′
n)

)
,

ϕ′(z1, . . . , zm) := zϕ(z′
1, . . . , z

′
n),

r′ := exp(u)srθ
(
z(r(grW )),Ad(z)(δ)

)
(resp., r′ := exp(u)srθ

(
z(r(grW )),Ad(z)(δ′)

)
with δ′ ∈ L � {0}, δ = 0 ◦ δ′), where

g′
j and z′

j (1 ≤ j ≤ n) are as follows. If j ≤ jk for some k, define g′
j := gk and

z′
j := zk for the smallest integer k with j ≤ jk. Otherwise, g′

j := 1 and z′
j := i.

Let Y1 := Y II
1 (p,r, S) be the subset of Y II (p,r, S) consisting of all elements

(t, f, g, h, k, δ, u) such that hm = 0 unless m(j) = 0 for all j ∈ J(t). We have
Y1 ⊃ Y0 := Y II

0 (p,r, S). We have the following.
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(6) A point (t, f, g, h, k, δ, u) ∈ Y II
1 (p,r, S) is the limit of y(t′, δ′) ∈ Y II

0 (p,r, S)
defined by y(t′, δ′) =

(
t′, f,Ad(τp(t′))−1(f),Ad(τp(t′))−2(f), k, δ′, u

)
, where t′ ∈

RΦ
>0, δ′ ∈ L, and t′ tends to t and δ′ tends to δ. Write exp(k) · r̄ = k′ · r̄

with k′ ∈ Kr̄ ∩ GR(grW )J . Note that k′ commutes with τ̄p(t′). The image of
y(t′, δ′) in D is exp(u)srθ(z(r̄),Ad(z)(δ′ ′)), where z = exp(f)k′τ̄p(t′) and δ′ ′ =
Ad((k′)−1 exp(k))(δ′).

We extend the map ηII
p,r,S : Y0 →D in Section 3.4.3 to a map

ηII
p,r,S : Y1 →DII

SL(2)(Φ),

ηII
p,r,S(t, f, g, h, k, δ, u) = p(J,r, z, δ′, u),

where J , z, and δ′ are defined as follows. Let J = {j ∈ Φ | tj = 0}. Let t′

be an element of RΦ
>0 such that t′

j = tj for any j ∈ Φ � J , and let k′ be an
element of Kr̄ ∩GR(grW )J such that exp(k) · r̄ = k′ · r̄. Let z = exp(f)k′τ̄p(t′)
and δ′ = Ad((k′)−1 exp(k))δ.

We use the following fact (7) which is deduced from [KU3, Section 10.2.16].

(7) Let μ : DII
SL(2)(Φ)→D(grW ) be the extension of αβ(x(grW ))−1x(grW )

(x ∈ D) given in Proposition 3.2.6(ii). Then, if p′ ∈ DII
SL(2)(Φ) and if μ(p′) is

sufficiently near to μ(p), p′ is expressed as p(J,r, z, δ′, u) as above.

LEMMA 3.4.13

There are an open neighborhood U ′ of zero in gR(grW )×gR(grW )×gR(grW )×S

and a morphism ξ : Y II (p,r, S,U ′) → Y II (p,r,R,S) which satisfy the follow-
ing conditions: ηII

p,r,S sends Y II
0 (p,r, S,U ′) into D(U), and the restriction of

ξ to Y II
0 (p,r, S,U ′) coincides with the composite Y II

0 (p,r, S,U ′)
ηII

p,r,S−−−−→D(U) b→
Y II

0 (p,r,R,S), where b is as in Section 3.4.9.

Proof
Let x = ηII

p,r,S(t, f, g, h, k, δ, u), and write b(x) as (t′, f ′, g′, h′, k′, δ′, u′).
First, we show that each component t′, f ′, g′, . . . extends real analytically

over the boundary of Y II (p,r, S,U ′) for some U ′. Since μ(x) = τ̄p

(
β(exp(g) ·

exp(k)r̄)
)−1 exp(g) exp(k)r̄, this extends over the boundary. Hence so does ajμ(x)

for each j = 1,2,3 (see Section 3.4.8). On the other hand, β(x) = tβ(exp(g) ·
exp(k)r̄), and this is also real analytic over the boundary because β is so. Thus
t′, g′, k′ extend. Further, u′ = u trivially extends. We have δ′ = Ad(τ̄p(t′) exp(g′) ·
exp(k′))−1 Ad(τ̄p(t) exp(g) exp(k))(δ). Since g′ and k′ already extend and since
t′t−1 = β(exp(g) exp(k)r̄)a1μ(x) also extends, so does δ′.

The rest are f ′ and h′, that is, to see that Ad(τ̄p(t′))±1a2μ(x) extend real
analytically. We can replace t′ in the last formula with t because t′ = tβ(exp(g) ·
exp(k)r̄)a1(μ(x)). Further, by Section 3.4.7 with the formal construction there,
a2(μ(x)) = c2(g). Hence, it is enough to show that Ad(τ̄p(t))±1c2(g) extend.

Consider the decomposition g =
∑

m∈ZΦ gm (gm ∈ gR(grW )m). Then, by
property (4) of c2 in Section 3.4.7, c2(g) = c2(

∑
gm) is the infinite formal sum of
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l2,r(gm1 ⊗ · · · ⊗ gmr ) (mj ∈ZΦ, gmj ∈ gR(grW )mj (1≤ j ≤ r)). Now the weights
m of l2,r(gm1 ⊗ · · · ⊗ gmr) satisfy m =

∑
ejmj with ej ∈ {1,−1}. Decompose

l2,r(gm1 ⊗ · · · ⊗ gmr) into
∑

m l2,r,m(gm1 ⊗ · · · ⊗ gmr) according to the weights,
where m ranges over such

∑
ejmj . We see that, for each m and j ∈ {1,−1},

τ̄p(t)j l2,r,m(gm1 ⊗ · · · ⊗ gmr) extends over the boundary. We explain the proof
for j = 1. The other case is similar. In this case, we observe that τ̄p(t)l2,r,m(gm1⊗
· · · ⊗ gmr) is (

∏
(tmj )ej )l2,r,m(gm1 ⊗ · · · ⊗ gmr ) = l2,r,m((tm1)e1gm1 ⊗ · · · ⊗

(tmr )ergmr). Since tmgm = fm and t−mgm = hm, the last function extends to a
real analytic map over the boundary. Shrinking U ′ if necessary, we may assume
that f and h are sufficiently near to zero, and the above infinite sum converges,
as desired.

Next, we show that in the ambient product space containing Y II (p,r,R,S),
the image of each element y = (t, f, g, h, k, δ, u) of Y II (p,r, S,U ′) by the extended
coordinate functions in fact belongs to Y II (p,r,R,S), which completes the proof.
For t′ ∈ RΦ

>0 such that t′
j = tj for any j ∈ Φ � J with J = J(t) and for δ′ ∈

L, let y(t′, δ′) = (t′, f ′, g′, h′, k, δ′, u) ∈ Y II
0 (p,r, S), where f ′, g′, h′ ∈ gR(grW ) are

defined as follows. Let m ∈ ZΦ. Then f ′
m = (t′)2mhm, g′

m = (t′)mhm, h′
m = hm

if m(j)≥ 0 for any j ∈ J , f ′
m = fm, g′

m = (t′)−mfm, h′
m = (t′)−2mfm if m(j)≤ 0

for any j ∈ J and m(j) < 0 for some j ∈ J , and f ′
m = g′

m = h′
m = 0 otherwise.

Here (t′)m :=
∏

j∈Φ(t′
j)

m(j), and so on. Then y(t′, δ′)→ y in Y II (p,r, S) when
t′ → t and δ′ → δ.

We have to prove that the limit (t0, f0, g0, . . .) of the image (t′ ′, f ′ ′, g′ ′, . . .)
of y(t′, δ′) in the ambient product space satisfies Section 3.4.2(1)–(4). First,
it is easy to see J := J(t0) = J(t). Conditions (2) and (3) are deduced from
the corresponding conditions on (t′ ′, f ′ ′, g′ ′, . . .). Condition (1) is also seen from
condition (2) on (t′ ′, f ′ ′, g′ ′, . . .). For example, we show that (f0)m = 0 unless
m(j) ≤ 0 for any j ∈ J . We have f ′ ′

m = (t′ ′)mg′ ′
m for any m ∈ ZΦ. Since t′ ′ =

t′β(exp(g′) exp(k)r̄)a1μ(y(t′, δ′)), if there is some j ∈ J such that m(j) > 0,
the above equality implies f ′ ′

m → 0 · (limg′ ′
m) = 0. Hence we have (f0)m = 0.

Finally, (4) is seen as follows. Let k′ be the element of Lie(Kr̄) such that
exp(g) = exp(g0) exp(k′) and k′

m = 0 unless m(j) = 0 for any j ∈ J . Then we
have exp(k0) = exp(k′) exp(k). Hence k0 satisfies (4). �

LEMMA 3.4.14

There are an open neighborhood U ′ of zero in gR(grW )×gR(grW )×gR(grW )×S

and a morphism Y II (p,r, S,U ′) → B := RΦ
≥0 × D(grW ) × L̄ × spl(W ) ×∏

W ′ ∈Φ spl(W ′) whose restriction to Y II
0 (p,r, S,U ′) coincides with the composite

ντ̄p,β ◦ ηII
p,r,S (see Proposition 3.2.6, Section 3.4.3).

Proof
It is enough to show that the composite map from Y II

0 (p,r, S,U ′) extends com-
ponentwise over the boundary. The components except the last ones (Borel-Serre
splittings) are easily treated. For example, the first two were already treated in
the proof of Lemma 3.4.13. The extendability of Borel-Serre splittings is reduced
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to Lemma 3.4.13. In fact, let W ′ ∈ Φ. Then, by Lemmas 3.4.10 and 3.4.13, it
is sufficient to prove that the composite Y II

0 (p,r,R,S,U ′) → Y II
0 (p,r, S,U ′) →

spl(W ′) extends to a real analytic map on Y II (p,r,R,S,U ′) under the assump-
tion R ⊂ Lie(GR(grW )W ′ ). Assuming this, we prove fm ∈ Lie(GR(grW )W ′ )
for any (t, f, g, h, k, δ, u) ∈ Y II (p,r,R,S,U ′) and any m ∈ ZΦ. This is clear if
m(W ′) ≤ 0. If m(W ′) ≥ 0, since fm + h−m ∈ R ⊂ Lie(GR(grW )W ′ ) and h−m ∈
Lie(GR(grW )W ′ ), we have fm ∈ Lie(GR(grW )W ′ ). Thus exp(f) belongs to
GR(grW )W ′ , so that the concerned component is splBS

W ′ (exp(f)τ̄p(t) exp(k)r̄) =
exp(f) splBS

W ′ (r̄) grW ′
exp(f)−1, which real analytically extends over the bound-

ary. �

LEMMA 3.4.15

There exist open neighborhoods U ′ ′ ⊂ U ′ of zero in gR(grW ) × gR(grW ) ×
gR(grW )×S such that, for any y ∈ Y II (p,r, S,U ′ ′), there exists y1 ∈ Y II

1 (p,r, S)∩
Y II (p,r, S,U ′) such that (y1, y) belongs to the closure of Y II

0 (p,r, S)×D Y II
0 (p,r, S)

in Y II
1 (p,r, S)× Y II (p,r, S).

Proof
For any subset J of Φ, take R = RJ as in Section 3.4.1 such that Lie(GR(grW )J,u)⊂
RJ . Here GR(grW )J,u denotes the unipotent part of GR(grW )J . For this R = RJ ,
let UJ be the neighborhood U in Section 3.4.8, and let U ′ be a neighborhood of
zero in gR(grW )× gR(grW )× gR(grW )×S such that Y II (p,r, S,U ′) is contained
in (ηp,r,S)−1

(⋂
J D(UJ )

)
.

Let y = (t, f, g, h, k, δ, u) ∈ Y II (p,r, S,U ′). For t′ ∈RΦ
>0 such that t′

j = tj for
any j ∈ Φ � J with J = J(t) and for δ′ ∈ L, consider y(t′, δ′) in the proof of
Lemma 3.4.13.

Let R = RJ(t). Then, for any (t′, δ′) which is sufficiently near to (t, δ), the
point y1(t′, δ′) := bR,S

(
ηII

p,r,S(y(t′, δ′))
)

is well defined and (y1(t′, δ′), y(t′, δ′)) ∈
Y II

0 (p,r, S) ×D Y II
0 (p,r, S). Furthermore, y1(t′, δ′) converges to an element y1

of Y II (p,r, S) when t′ → t and δ′ → δ by Lemma 3.4.13. We show that the
limit y1 = (t0, f0, g0, h0, . . .) belongs to Y II

1 (p,r, S); that is, (h0)m = 0 if m(j)≥ 0
for any j ∈ J(t) = J(t0) and if m(j) > 0 for some j ∈ J(t0). Fix such an m.
Then we have gR(grW )−m ⊂RJ and gR(grW )m ∩RJ = {0}. Hence the property
(f0)−m + (h0)m ∈RJ implies (h0)m = 0.

Finally, for a sufficiently small U ′ ′ ⊂ U ′, the above correspondence y �→ y1

sends Y II (p,r, S,U ′ ′) into Y II (p,r, S,U ′). �

LEMMA 3.4.16

(i) On the intersection of Y1 = Y II
1 (p,r, S) and Y (U ′) := Y II (p,r, S,U ′), the

map Y (U ′)→B in Lemma 3.4.14 coincides with the restriction of the composite
Y1 →DII

SL(2)(Φ)→B.
(ii) For a sufficiently small U ′, the image of Y (U ′)→ B in Lemma 3.4.14

is contained in the image of DII
SL(2)(Φ).
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Proof
(i) This follows from Section 3.4.12(6). (ii) This follows from (i) and Lemma 3.4.15.

�

LEMMA 3.4.17

Let U be a sufficiently small open neighborhood of r̄ in D(grW ), and let DII
SL(2)(U)

be the inverse image of U under DII
SL(2)(Φ)

μ→D(grW ). Let q ∈DII
SL(2)(U), and let

rq be a point on the torus orbit associated to q. Then the limit limt→0W(q) b(τq(t)rq)
exists in Y II (p,r,R,S) and is independent of the choice of rq.

Proof
We reduce this to Lemma 3.4.13. First, by Section 3.4.12(7), we may assume that
q has the form p(J,r, z, δ, u) such that rq is the point in Section 3.4.12(5). Hence
it is the image of some y1 = (s, f, g, h, k, δ, u) ∈ Y1 by ηII

p,r,S in Section 3.4.12.
Then τq(t)rq is the image of y1(t) :=

(
t′, f,Ad(τ̄p(t′))−1f,Ad(τ̄p(t′))−2f, k, δ′ ′, u

)
,

where t′ ∈RΦ
>0 such that t′

j = tj for any j ∈ J and t′
j = sj for any j ∈Φ � J and

δ′ ′ = δ if δ ∈ L and δ′ ′ = tW ◦ δ′ for δ′ ∈ L in Section 3.4.12(5) if δ ∈ L̄ � L. Since
y1(t) converges to y1, the sequence b(τq(t)rq) converges to the image of y1 by ξ

in Lemma 3.4.13. The last independency is clear. �

Denote this limit by b(q). Thus b in Section 3.4.9 is extended to a map DII
SL(2)(U)→

Y II (p,r,R,S).

3.4.18. Proof of Theorem 3.4.4
Theorem 3.4.4(i) follows from Lemma 3.4.16(ii). We prove Theorem 3.4.4(ii).
We first describe the idea of the proof.

Locally on Y (R,S) := Y II (p,r,R,S), we define an object X of BR(log) which
contains Y (R,S) having the following properties.

(1) The morphism Y (R,S)→ B (defined locally) extends to some explicit
morphism X →B (locally). (It is explained in Section 3.4.19.)

(2) As an object of BR(log), X is isomorphic to the product RΦ
≥0× (a real

analytic manifold) ×L̄. Hence, for any x ∈X , the local ring OX,x is isomorphic
to the ring of convergent power series in n variables over R for some n. Note that
Y (R,S) need not have this last property (because Y (R,S) can have a singularity
of the style t21x = t2y), and this is the reason why we use X here.

(3) The homomorphism OX |Y (R,S) →OY (R,S) is surjective. Here OX |Y (R,S)

is the inverse image of OX on Y (R,S).
(4) The homomorphism OB|X →OX is surjective. Here OB|X denotes the

inverse image of OB on X .

Although (3) is shown easily, (4) is not. But by the property of the local rings
explained in (2), the property (4) is reduced to the surjectivity of mB,y/m2

B,y →
mX,x/m2

X,x, where x ∈X and y is the image of x in B. This is the injectivity
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of the map of tangent spaces Tx(X)→ Ty(B), where Tx(X) and Ty(B) are R-
linear duals of mX,x/m2

X,x and mB,y/m2
B,y , respectively, and this injectivity is

explained in Section 3.4.19.
By (3) and (4), we have the surjectivity of OB |Y (R,S) → OY (R,S). Since

Y (R,S)→B factors (locally) as Y (R,S)→A→B by Lemma 3.4.16(ii), where
A := DII

SL(2)(Φ), we see that the map OA|Y (R,S) →OY (R,S) is surjective.
Since the map Y (R,S)→ A has the inverse map A→ Y (R,S) (locally) by

Lemma 3.4.17, Y (R,S)→A is bijective locally.
Since OA|Y (R,S) →OY (R,S) is injective (they are subsheaves of the sheaves

of functions), we have (Y (R,S),OY (R,S))� (A,OA) locally. It is easy to see that
this isomorphism preserves the log structures with sign.

3.4.19.
We give the definition of X and the proof of the property 3.4.18(4).

Actually X is constructed at each point of Y (R,S). We give the construction
at p̃ = (0Φ,0,0,0,0, δ(r),0) ∈ Y (R,S) and the proof of the property 3.4.18(4) for
the tangent space at p̃. The general case is similar.

We define the set X to be the subset of E := RΦ
≥0 × gR(grW )× gR(grW )×

gR(grW )×S× L̄× gR,u consisting of all elements (t, f, g, h, k, δ, u) satisfying the
following conditions (1)–(3).

(1) If m ∈ZΦ and m(j)≥ 0 for any j ∈Φ, then fm = tmgm and gm = tmhm.
Here tm :=

∏
j∈Φ t

m(j)
j .

(2) If m ∈ ZΦ and m(j) ≤ 0 for any j ∈ Φ, then hm = t−mgm and gm =
t−mfm.

(3) We have g ∈R and fm + h−m ∈R for all m ∈ZΦ.

Define the structure on X as an object of BR(log) by using the embedding
X ⊂ E just as we defined the structure of Y (R,S) as an object of BR(log) by
using the embedding Y (R,S) ⊂ E in Section 3.4.2. Then it is clear that X is
isomorphic to a product RΦ

≥0× (a real analytic manifold) ×L̄ as an object of
BR(log).

We give a morphism X → B which extends Y (R,S)→ B and prove prop-
erty 3.4.18(4) for it. We define the morphism componentwise. Let X0 be the
inverse image of RΦ

>0 × L by the natural map X →RΦ
≥0 × L̄. First, we define

X0 →B′ := RΦ
≥0 ×D(grW )× L̄× spl(W ) as the projection after ντ̄p,β ◦ η, where

η sends (t, f, g, h, k, δ, u) to exp(u)srθ(dr̄,Ad(d)δ) with d = τ̄p(t) exp(g) exp(k).
Then this map X0 →B′ extends to X →B′, as is seen easily in the same way as
in Lemma 3.4.14. Next, for each j = W ′ ∈ Φ, we give an extension to spl(W ′).
Define X0 → spl(W ′) as follows. Consider the decomposition gR(grW ) = g≤ ⊕
g>0, where g≤ =

∑
m(j)≤0 gR(grW )m and g> =

∑
m(j)>0 gR(grW )m. Then there

are a neighborhood V1 of zero in gR(grW ) and a real analytic map (c≤, c>) : V1 →
g≤ × g> such that for any g ∈ V1, we have exp(g) = exp(c≤(g)) exp(c>(g)). Fur-
ther, let M be an R-subspace of

∑
m(j)≥0 gR(grW )m containing g> such that

gR(grW ) = M ⊕ Lie(Kr̄). Then there are a neighborhood V2 of zero in gR(grW )
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and a real analytic map (c′
1, c

′
2) : V2 →M ×Lie(Kr̄) such that for any g′ ∈ V2, we

have exp(g′) = exp(−Cc′
1(g

′)) exp(c′
2(g

′)), where C is the Cartan involution at
r̄. We define X0 → spl(W ′) (locally) as splBS

W ′
(
exp(c≤(f)) exp(−C(c′

1(c>(h))))r̄
)
.

This extends to X → spl(W ′) and gives an extension of Y (R,S)→ spl(W ′) since
Int(τ̄p(t)) exp(g) = exp(f), and so on, on Y (R,S).

We prove the surjectivity of OB |X →OX . We write the proof of the surjec-
tivity for the stalk at p̃. (The general case is similar.) It is sufficient to prove the
injectivity of Tp̃(X)→ Tq(B), where q denotes the image of p̃ in B.

The first tangent space is identified with the vector subspace V of RΦ ×
gR(grW )×gR(grW )×gR(grW )×S×L×gR,u consisting of all elements (t, f, g, h,

k, δ, u) satisfying the following conditions (1) and (2).

(1) fm = gm = 0 if m(j)≥ 0 for any j ∈Φ, and gm = hm = 0 if m(j)≤ 0 for
any j ∈Φ.

(2) We have g ∈R and fm + h−m ∈R for all m ∈ZΦ.

The injectivity of the map of tangent spaces in problem is reduced to the
injectivity of the following map:

V →RΦ ×R× S ×L× gR,u ×
(∏

j∈Φ

gR(grW )
)
,

(t, f, g, h, k, δ, u) �→
(
t, g, k, δ, u, (vj)j∈Φ

)
,

where vj =
∑

m(j)<0

(
fm −C(h−m)

)
.

Assume that the image of (t, f, g, h, k, δ, u) ∈ V under this map is zero. Then
clearly we have t = g = k = δ = u = 0. We have also the following.

(i) If m(j) < 0 for some j ∈Φ, then fm = h−m = 0.

Indeed, if m(j) < 0 for some j ∈ Φ, then fm − C(h−m) = 0. Since h−m +
C(h−m) ∈ Lie(Kr̄), fm + h−m ∈R ∩ Lie(Kr̄) = 0, and consequently we have (i).

This shows that if m(j) < 0 and m(j′) > 0 for some j, j′ ∈ Φ, then fm =
f−m = hm = h−m = 0. If m(j)≤ 0 for any j ∈Φ and if m(j) < 0 for some j ∈Φ,
then fm = h−m = 0 by (i) and f−m = hm = 0 by the definition of V . If m(j)≥ 0
for any j ∈Φ, we have similarly fm = hm = f−m = h−m = 0.

Theorem 3.4.4 is proved. �

3.4.20. Proof of Theorem 3.4.6
We deduce it from Theorem 3.4.4(ii) as follows.

Let Ψ ∈W , and let Φ be the image of Ψ in W (see Section 3.2.2). Take a
distance to Φ-boundary β.

Let E be the subset of RΨ
≥0 × gR,u × gR,u consisting of all elements (t, u, v)

satisfying conditions (5) and (6) (resp., (5′) and (6′)) in Section 3.4.5 in the case
where W /∈Ψ (resp., W ∈Ψ). We regard E as an object of BR(log), similarly to
the case of Y II (p,r,R,S) (see Section 3.4.2).
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Assume first W /∈Ψ. Let DII
SL(2)(Φ)′ be the open set of DII

SL(2)(Φ) consisting
of all elements q such that W /∈W(q). (This condition is equivalent to the con-
dition that the L̄-component of ντ̄p,β(q) (see Proposition 3.2.6(ii)) be contained
in L.) Then DI

SL(2)(Ψ) is the fiber product of

DII
SL(2)(Φ)′ →RΦ

≥0 × gR,u ←E

in B′
R(log), where the first arrow is given by x �→ (β(x), u) with splW (x) =

exp(u)sr, the second arrow sends (t, u, v) to (t, u), and the morphism DI
SL(2)(Ψ)→

E is given by x �→ (β(x), u, v) with splW (x) = exp(u)sr and splW (y) = exp(v)sr

for the D-component y of ντp,β (see Proposition 3.2.6(i)). Since Y I(p,r,R,S) is
the fiber product of Y II (p,r,R,S)→RΦ

≥0× gR,u ←E, Theorem 3.4.6 is reduced
to Theorem 3.4.4.

Next, assume W ∈ Ψ. Let β0 : L̄ � {0} → R>0 be a real analytic func-
tion such that β0(a ◦ δ) = aβ0(δ) for any a ∈R>0 and δ ∈ L̄� {0}. Denote the
composite DII

SL(2)(Φ)nspl → L̄� {0} →R≥0 also by β0, where the first arrow is
the L̄-component of ντp,β (see Proposition 3.2.6(ii)). Then (β0, β) : D→RΨ

>0 =
R>0×RΦ

>0 is a distance to Ψ-boundary. As an object of B′
R(log), DI

SL(2),nspl(Ψ)
is the fiber product of

DII
SL(2),nspl(Φ)→RΨ

≥0 × gR,u ←E,

where the first arrow is given by x �→ ((β0, β)(x), u) with splW (x) = exp(u)sr.
On the other hand, if we denote by Y ∗(p,r,R,S)nspl (∗= I, II) the open set of
Y ∗(p,r,R,S) consisting of all elements satisfying δ �= 0, Y I(p,r,R,S)nspl is the
fiber product of

Y II (p,r,R,S)nspl →RΨ
≥0 × gR,u ←E

in B′
R(log), where the first arrow is given by (t, f, g, h, k, δ, u) �→ ((a, t), u) for

δ = a ◦ δ(1) with δ(1) ∈ L(1) (see Section 3.4.5). From these facts, Theorem 3.4.6
is reduced to Theorem 3.4.4 also in the case W ∈Ψ.

Theorem 3.4.6 is proved. �

3.4.21. Proof of Theorem 3.2.10
We first prove Theorem 3.2.10(ii). Let Φ ∈W . We prove the following.

CLAIM 1

For Φ′ ⊂Φ, the inclusion map DII
SL(2)(Φ

′)→DII
SL(2)(Φ) is an open immersion in

B′
R(log).

Let α be a splitting of Φ, and let β be a distance to Φ-boundary. Since DII
SL(2)(Φ

′)
is the inverse image of {t ∈ RΦ

≥0 | tj �= 0 if j ∈ Φ � Φ′} under the map β :
DII

SL(2)(Φ)→RΦ
≥0, it is an open subset of DII

SL(2)(Φ). Let α′ : GΦ′

m,R →Aut(grW )

be the Φ′-component of α, and let β′ : D(grW )→RΦ′

>0 be the Φ′-component of
β : D(grW )→RΦ

>0. Then we have a commutative diagram
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DII
SL(2)(Φ

′) → RΦ′

≥0 ×D(grW )′ × L̄
∩ ↓

DII
SL(2)(Φ) → RΦ

≥0 ×D(grW )× L̄

where D(grW )′ = {x ∈D(grW ) | β′(x) = 1}, the upper horizontal arrow is induced
by (α′, β′) as in Proposition 3.2.6, the lower horizontal arrow is induced by
(α,β) as in Proposition 3.2.6, and the right vertical arrow sends (t, x, δ) ∈RΦ′

≥0×
D(grW )′ × L̄ to ((t, β(x)), αβ(x)−1x,Ad(αβ(x))−1δ). Here by the fact that
β(x)j = 1 for any j ∈ Φ′, we regard (t, β(x)) as an element of RΦ′

≥0 ×RΦ�Φ′

>0 ⊂
RΦ

≥0. From this, we obtain the following.

CLAIM 2

Let DII,Φ
SL(2)(Φ

′) be the set DII
SL(2)(Φ

′) endowed with the structure of an object
of B′

R(log) as an open set of DII
SL(2)(Φ). Then the canonical inclusion map

DII,Φ
SL(2)(Φ

′)→DII
SL(2)(Φ

′) is a morphism in B′
R(log). This morphism is an iso-

morphism if and only if, for any W ′ ∈Φ, the composite DII
SL(2)(Φ

′)→DII
SL(2)(Φ)→

spl(W ′), where the last arrow is induced by splBS
W ′ , is a morphism in B′

R(log).

By Claim 2 and Theorem 3.4.4, for the proof of Claim 1, it is sufficient to prove
the following.

CLAIM 3

Let p′ ∈ DII
SL(2)(Φ), and let Φ′ = W(p′) ⊂ Φ. Let r′ be a point on the torus

orbit associated to p′. Then, for a sufficiently small open neighborhood U of
(0Φ′

,0,0,0,0, δ(r′),0) in Y II (p′,r′, S) (S is taken for r′), the composite U →
DII

SL(2)(Φ
′)→DII

SL(2)(Φ)→ spl(W ′) is a morphism of B′
R(log).

We prove Claim 3. Take p ∈DII
SL(2)(Φ) such that Φ =W(p). Let α = τ̄p, and take

a distance to Φ-boundary β such that β(Kr̄ · r̄) = 1. Note that such a β exists
(cf. [KU2, Proposition 4.12]). For each w ∈Z, let Q(w) ∈W(grW

w ) be the image
of Φ, and let Q = (Q(w))w. Let DSL(2)(grW )(Q) =

∏
w DSL(2)(grW

w )(Q(w)).
Let μ̄ : DSL(2)(grW )(Q)→D(grW ) be the extension of D(grW )→D(grW ), x �→
αβ(x)−1x, induced by Proposition 3.2.6(ii). Let α′ = τ̄p′ . We first prove the
following.

CLAIM 4

There exists y ∈GR(grW )W ′ such that μ̄(y−1p̄′) ∈Kr̄ · r̄, where p̄′ = p′(grW ).

In fact, by Claim 1 in [KU3, Section 6.4.4], there are z ∈GR(grW )Φ′ and k ∈Kr̄

such that α′ = Int(z)(αΦ′ ) and r̄′ = zkr̄, where αΦ′ is the restriction of α to
Φ′. Write z = z0zu, where z0 commutes with αΦ′ (t) (t ∈ (R×)Φ

′
) and zu ∈

GR(grW )Φ′,u. We can write z0 = yk0, where y and k0 commute with αΦ′ (t) (t ∈
(R×)Φ

′
), y ∈GR(grW )W ′ , and k0 ∈Kr̄. We have μ̄(y−1p̄′) = k0kr̄. In fact, since
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p̄′ = limα′(t)r̄′ = limzα(t)kr̄, μ̄(y−1p̄′) is the limit of μ̄(y−1zα(t)kr̄) = μ̄(α(t) ·
y−1ztkr̄) = μ̄(y−1ztkr̄), where zt = τ̄p(t)−1zτ̄p(t), which converges to
μ̄(y−1z0kr̄) = μ̄(k0kr̄) = k0kr̄ ∈Kr̄ · r̄.

Let y be as in Claim 4. Then, for q ∈D near p′ in DII
SL(2)(Φ

′), splBS
W ′ (q̄) =

y splBS
W ′ (y−1q̄)y(grW ′

)−1, where q̄ = q(grW ). We denote the right-hand side of
the last equation by Int(y) splBS

W ′ (y−1q̄). From this, we may replace p̄′ by y−1p̄′,
and hence we may assume μ̄(p̄′) ∈Kr̄ · r̄.

Take an R-subspace V of Lie(GR(grW )W ′ ) such that gR(grW ) = V ⊕Lie(Kr̄).
For q ∈D near p′ in DII

SL(2)(Φ
′), write μ̄(q̄) ∈ exp(v(q̄)) ·Kr̄ · r̄ with v(q̄) ∈ V , and

write f(q̄) = Int(αβ(q̄))
(
exp(v(q̄))

)
∈ GR(grW )W ′ . Then, since q̄ = αβ(q̄)μ̄(q̄),

we have

splBS
W ′ (q̄) = Int

(
f(q̄)

)(
splBS

W ′ (αβ(q̄)r̄)
)

= Int
(
f(q̄)

)(
splBS

W ′ (r̄)
)
.

Here the last equality follows from Int(α(t)) splBS
W ′ (r̄) = splBS

W ′ (r̄) for any t. By
Theorem 3.4.4 and the real analycity of a1 in Section 3.3.11, v(q̄) extends over
the boundary, and hence so does f(q̄); that is, for a sufficiently small open
neighborhood U of (0Φ′

,0,0,0,0, δ(r′),0) in Y II (p′,r′, S), there is a morphism
U →GR(grW )W ′ which is compatible with the map Y II

0 (p′,r′, S)→GR(grW )W ′

induced by f . Hence splBS
W ′ extends over the boundary. This completes the proof

of Claim 3 and hence the proof of Claim 1.
By Claim 1, on DSL(2), there is a unique structure as an object of B′

R(log) for
which each DII

SL(2)(Φ) (Φ ∈W) is open and whose restriction to DII
SL(2)(Φ) coin-

cides with the structure of DII
SL(2)(Φ) as an object of B′

R(log). By Theorem 3.4.4,
this object DII

SL(2) of B′
R(log) belongs to BR(log).

Next, Theorem 3.2.10(i) follows from Theorem 3.2.10(ii) and Theorem 3.4.6.
We prove Theorem 3.2.10(iii). It is clear that the identity map of DSL(2) is

a morphism DI
SL(2) →DII

SL(2) in BR(log) and that the log structure with sign on
DI

SL(2) is the pullback of that of DII
SL(2). It is also clear that, in the pure case,

this morphism DI
SL(2) →DII

SL(2) is an isomorphism.
It remains to prove that in the pure case, the topology of DSL(2) defined in

[KU2] coincides with the topology defined in this article.
Assume that we are in the pure case.
The topology of DSL(2) defined in [KU2] is characterized by the following

properties (1) and (2) (see [KU3]).

(1) For any Ψ ∈W , DI
SL(2)(Ψ) is open and is a regular space.

(2) Let p ∈DSL(2), let r be a point on the torus orbit associated to p, and let
Ψ =W(p). Then, for a directed family (pλ)λ of points of D, (pλ)λ converges to p

in DSL(2)(Ψ) if and only if there exist tλ ∈RΨ
>0, gλ ∈ gR, kλ ∈ Lie(Kr) such that

pλ = τp(tλ) exp(gλ) exp(kλ)r, tλ → 0Ψ in RΨ
≥0, Ad(τp(tλ))j(gλ)→ 0 for j =±1,0,

and kλ → 0.
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It is sufficient to prove that the topology of DII
SL(2) (i.e., the topology of

DI
SL(2)) in this article satisfies this (1) and (2). Property (1) is clearly satisfied.

We prove (2).
Assume pλ → p for the topology of this article. By Theorem 3.4.4(ii), for

some p̃λ = (tλ, fλ, gλ, hλ, kλ) ∈ Y0(p,r,R,S)⊂RΨ
>0×gR×gR×gR×Lie(Kr) such

that pλ = τp(tλ) exp(gλ) exp(kλ)r, we have p̃λ → (0Ψ,0,0,0,0) in Y (p,r,R,S).
Since fλ = Ad(τp(tλ))(gλ) and hλ = Ad(τp(tλ))−1(gλ), we have tλ → 0Ψ,
Ad(τp(tλ))j(gλ)→ 0 for j =±1,0, and kλ → 0. Conversely, assume pλ = τp(tλ) ·
exp(gλ) exp(kλ)r for some tλ ∈RΨ

>0, gλ ∈ gR, kλ ∈ Lie(Kr) such that tλ → 0Ψ,
Ad(τp(tλ))j(gλ)→ 0 for j =±1,0, and kλ → 0. Then if we put fλ = Ad(τp(tλ))(gλ)
and hλ = Ad(τp(tλ))−1(gλ), (tλ, fλ, gλ, hλ, kλ) converges to (0Ψ,0,0,0,0) in
Y (p,r, S). By Theorem 3.4.4(i), this shows that τp(tλ) exp(gλ) exp(kλ)r con-
verges to p for the topology of this article.

Theorem 3.2.10 is proved. �

3.4.22.
In Propositions 3.4.23 and 3.4.27, we give local descriptions of DII

SL(2) and DI
SL(2)

as topological spaces, respectively. Compared with the real analytic local descrip-
tions in Theorems 3.4.4 and 3.4.6, we have simpler descriptions here.

We define a topological space ZII
top(p,R) as the subspace of RΦ

≥0×R consist-
ing of all elements (t, a) satisfying the following condition (1).

(1) Let m ∈ZΦ. Then am = 0 unless either m(j)≥ 0 for all j ∈ J or m(j)≤ 0
for all j ∈ J .

We define a topological space Y II
top(p,r,R,S) as the subspace of ZII

top(p,R)×
S × L̄ × gR,u consisting of all elements (t, a, k, δ, u) ((t, a) ∈ ZII

top(p,R), k ∈ S,
δ ∈ L̄, u ∈ gR,u) such that (t, k) satisfies condition (4) in Section 3.4.2. Let
Y II

0,top(p,r,R,S) be the open set RΦ
>0 ×R× S ×L× gR,u of Y II

top(p,r,R,S), and
let

ηII
p,r,R,S,top : Y II

0,top(p,r,R,S)→D

be the continuous map

(t, a, k, δ, u) �→ exp(u)srθ
(
dr̄,Ad(d)δ

)
with d = τ̄p(t) exp

( ∑
m∈ZΦ

gm/(tm + t−m)
)

exp(k).

Here tm =
∏

j∈Φ t
m(j)
j .

PROPOSITION 3.4.23

Let the notation be as in Theorem 3.4.4. Then there are an open neighborhood V

of (0Φ,0,0, δ(r),0) in Y II
top(p,r,R,S) and an open immersion V →DII

SL(2)(Φ) of
topological spaces which sends (0Φ,0,0, δ(r),0) to p and whose restriction to V ∩
Y II

0,top(p,r,R,S) coincides with the restriction of ηII
p,r,R,S,top (see Section 3.4.22).
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3.4.24.
This Proposition 3.4.23 follows from Theorem 3.4.4, because we have a homeo-
morphism

Y II (p,r,R,S)∼= Y II
top(p,r,R,S), (t, f, g, h, k, δ, u)↔ (t, a, k, δ, u)

with a = f + h,

f =
∑
m

(1 + t−2m)−1am, g =
∑
m

(tm + t−m)−1am, h =
∑
m

(t2m + 1)−1am,

where, in
∑

m, m ranges over all elements of ZΦ such that either m(j) ≥ 0
for any j ∈ J(t) or m(j) ≤ 0 for any j ∈ J(t). (Note that (1 + t−2m)−1, (tm +
t−m)−1, (t2m + 1)−1 ∈R are naturally defined for such m.)

3.4.25.
REMARK

In the pure case, at the beginning of [KU3, Section 10], it is suggested that
the local homeomorphism with Y II

top(p,r,R,S) in Proposition 3.4.23 may be
used to define a real analytic structure of DSL(2). If we do so, we regard
Y II

top(p,r,R,S) as an object of BR(log) by using the embedding Y II
top(p,r,R,S) ↪→

RΦ
≥0×R×S× L̄× gR,u in the same way as we did so for Y II (p,r,R,S) by using

the injection Y II (p,r,R,S) ↪→ E (see Section 3.4.2). However, the definition of
the real analytic structure of DSL(2) in this article, which is given by the local
homeomorphism with Y II (p,r,R,S), is slightly different from the suggested one
in [KU3, Section 10]. The above map Y II (p,r,R,S) → Y II

top(p,r,R,S) is real
analytic and is a homeomorphism, but the inverse map need not be real analytic
at (0Φ,0,0, δ(r),0).

3.4.26.
We define the topological space Y I

top(p,r,R,S) as follows.
In the case W /∈Ψ, let Y I

top(p,r,R,S) be the subset of Y II
top(p,r,R,S)× gR,u

consisting of all elements (t, a, k, δ, u, v) ((t, a, k, δ, u) ∈ Y II
top(p,r,R,S), v ∈ gR,u)

such that (t, δ, u, v) satisfies conditions (5)–(7) in Section 3.4.5.
Similarly, in the case W ∈ Ψ, let Y I

top(p,r,R,S) be the subset of R≥0 ×
Y II

top(p,r,R,S)× gR,u consisting of all elements (t0, t, a, k, δ, u, v) (t0 ∈R≥0, (t, a,

k, δ, u) ∈ Y II
top(p,r,R,S), v ∈ gR,u) such that (t0, t, δ, u, v) satisfies conditions (5′)–

(7′) in Section 3.4.5.
We define a canonical map Y I

top(p,r,R,S) → Y II
top(p,r,R,S). If W /∈ Ψ,

it is the canonical projection. Otherwise, it is (t0, t′, a, k, δ, u, v) �→ (t′, a, k, t0 ◦
δ, u). Let Y I

0,top(p,r,R,S) be the open set of Y I
top(p,r,R,S) defined by the

inverse image of Y II
0,top(p,r,R,S) by this canonical map. Then Y I

0,top(p,r,R,S)→
Y II

0,top(p,r,R,S) is a homeomorphism. Let ηI
p,r,R,S,top : Y I

0,top(p,r,R,S)→D be
the continuous map obtained from ηII

p,r,R,S,top and the last homeomorphism.
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PROPOSITION 3.4.27

Let the notation be as in Theorem 3.4.6. Assume W /∈Ψ (resp., W ∈Ψ). Then
there is an open neighborhood V of v := (0Ψ,0,0, δ(r),0,0) (resp., (0Ψ,0,0, δ(r)(1),
0,0), where δ(r)(1) ∈ L(1) (see Section 3.4.5) such that δ(r) = 0 ◦ δ(r)(1)) in
Y I

top(p,r,R,S) and an open immersion V →DI
SL(2)(Ψ) of topological spaces which

sends v to p and whose restriction to V ∩Y I
0,top(p,r,R,S) coincides with the restric-

tion of ηI
p,r,R,S,top (see Section 3.4.26).

This follows from Theorem 3.4.6, just as Proposition 3.4.23 follows from Theo-
rem 3.4.4 in Section 3.4.24.

3.4.28. Proof of Proposition 3.2.12
We prove (i). It is sufficient to prove that the topology of DI

SL(2) has property
(2). Let p ∈DSL(2), and let Ψ be the set of weight filtrations associated to p. In
the following, we assume W /∈Ψ. The case where W ∈Ψ is similar. Assume first
that (pλ)λ (pλ ∈D) converges to p. Then clearly (a) and (b) are satisfied. Take
a distance to Ψ-boundary β such that β(r) = 1, and let μ : DI

SL(2)(Ψ)→D be
the extension of x �→ τpβ(x)−1x given in Proposition 3.2.6(i). We show that (c.I)
is satisfied for tλ := β(pλ). We have tλ = β(pλ)→ β(p) = 0Ψ and τp(tλ)−1pλ =
μ(pλ) → μ(p) = r. Next, assume that (a), (b), and (c.I) are satisfied. Take
α = τp, and take β such that β(r) = 1. We prove pλ → p. It is sufficient to prove
that να,β(pλ) converges to να,β(p) =

(
0Ψ,r, splW (r), (splBS

W ′(grW )(r(grW )))W ′ ∈Ψ

)
in RΨ

≥0 ×D × spl(W )×
∏

W ′ ∈Ψ spl(W ′(grW )). The spl(W )-component and the
spl(W ′(grW ))-component of να,β(pλ) converge to splW (r) and to
splBS

W ′(grW )(r(grW )) by (a) and (b), respectively. Let aλ = t−1
λ β(pλ) ∈RΨ

>0. By
taking β of τp(tλ)−1pλ → r, we have aλ → 1. Since tλ → 0Ψ, β(pλ) = tλaλ con-
verges to 0Ψ. Finally, αβ(pλ)−1pλ = τp(aλ)−1τp(tλ)−1pλ → r.

The proof of (ii) is similar to that of (i).
Proposition 3.2.12 is proved. �

PROPOSITION 3.4.29

The following conditions (1)–(3) are equivalent.

(1) The topology of DI
SL(2) coincides with that of DII

SL(2).
(2) DI

SL(2) and DII
SL(2) coincide in BR(log).

(3) For any p ∈DSL(2), for any w,w′ ∈Z such that w > w′, for any member
W ′ of the set of weight filtrations associated to p, and for any a, b ∈Z such that
grW ′

a (grW
w ) �= 0 and grW ′

b (grW
w′ ) �= 0, we have a≥ b.

REMARKS

(i) Assume that the equivalent conditions of Proposition 3.4.29 are satis-
fied. Then, for any Ψ ∈ W and for Ψ̄ = {W ′(grW ) | W ′ ∈ Ψ,W ′ �= W} ∈ W ,
DI

SL(2)(Ψ) = DII
SL(2)(Ψ̄) in BR(log) if W ∈ Ψ, and DI

SL(2)(Ψ) is an open subob-
ject of DII

SL(2)(Ψ̄) in general.
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(ii) As is easily seen from Section 2.3.9, Examples I–IV in Section 1.1.1
satisfy the above condition (3), but Example V does not (see Section 3.6.2).

3.4.30. Proof of Proposition 3.4.29
We first prove that (1) implies (3). Assume that (3) is not satisfied. Then for
some p ∈DSL(2), there exists W ′ ∈W(p) having the following property. There
are w,w′, a, b ∈Z such that grW ′

a (grW
w ) and grW ′

b (grW
w′ ) are not zero, and w > w′

and a < b. There is a nonzero element u of gR,u such that the W ′-component
τp,W ′ satisfies Ad(τp,W ′ (t))u = tb−au for all t ∈ R×. Take any real number c

such that 0 < c < b − a. We have W ′ �= W . For t ≥ 0, let ε(t) be the element
of RΨ

≥0 whose W ′-component is t and whose other components are all 1. Let Φ
be the image of Ψ in W (see Section 3.2.2). Take a point r ∈D on the torus
orbit associated to p, consider an element p′ of Y I(p,r,R,S) of the form p′ =
(ε(0),0,0,0,0, δ,0,0) ∈ Y I(p,r,R,S), let ε̄(t) be the image of ε(t) in RΦ

≥0, and let
p′ ′ = (ε̄(0),0,0,0,0, δ,0) ∈ Y II (p,r,R,S) be the image of p′. When t ∈R>0 tends
to 0, (ε̄(t),0,0,0,0, δ, tcu) ∈ Y II (p,r,R,S) converges to p′ ′. But this element of
Y II (p,r,R,S) is the image of (ε(t),0,0,0,0, δ, tcu, tc+a−bu) ∈ Y I(p,r,R,S) which
does not converge to p′ when t→ 0 because c+a− b < 0. By Theorems 3.4.4 and
3.4.6, this proves that the topology of DI

SL(2) and that of DII
SL(2) are different.

It is clear that (2) implies (1).
It remains to prove that (3) implies (2). Assume that (3) is satisfied. As in

Remark (i) after Proposition 3.4.29, DI
SL(2)(Ψ) is an open set of DII

SL(2)(Φ).
By Theorems 3.4.4 and 3.4.6, it is sufficient to prove the following.

CLAIM

For a splitting α of Ψ, the map RΨ
>0 × gR,u → gR,u, (t, u) �→ Ad(α(t))−1(u)

extends to a real analytic map RΨ
≥0 × gR,u → gR,u.

By (3), for the adjoint action of GΨ
m,R by α, gR,u is the sum of the eigenspaces

(gR,u)m for all m ∈ ZΨ such that m ≤ 0. This proves the claim and completes
the proof of Proposition 3.4.29. �

3.5. Global properties of DSL(2)

In Section 3.5, we prove that the projection DII
SL(2) → spl(W )×DSL(2)(grW ) is

proper (see Theorem 3.5.16). We also prove results on the actions of a subgroup
Γ of GZ on DI

SL(2) and on DII
SL(2) (see Theorem 3.5.17).

Concerning the properness of DII
SL(2) over spl(W )×DSL(2)(grW ), we prove

a more precise result. We define a log modification (see Proposition 3.1.12)
DSL(2)(grW )∼ of DSL(2)(grW ), which is an object of BR(log) and is proper over
DSL(2)(grW ), such that the canonical projection DSL(2) →DSL(2)(grW ) factors as
DSL(2) →DSL(2)(grW )∼ →DSL(2)(grW ). We prove that as an object of BR(log),
DII

SL(2) is an L̄-bundle over spl(W )×DSL(2)(grW )∼ (see Theorem 3.5.15). Here
L = L(F ) for any fixed F ∈ D(grW ), and L̄ is the compactified vector space
associated to L (see Proposition 3.2.6). This is an SL(2)-analogue of the fact
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(see [KNU2, Theorem 8.5]) that DBS is an L̄-bundle over spl(W )×DBS(grW ).
The properness of DII

SL(2) over spl(W )×DSL(2)(grW ) follows from this.

3.5.1.
We define the set DSL(2)(grW )∼.

By an SL(2)-orbit on grW we mean a family (ρw, ϕw)w∈Z, where, for some
n≥ 0, (ρw, ϕw) is an SL(2)-orbit for grW

w in n variables for any w ∈Z satisfying
the following condition (1).

(1) For 1 ≤ j ≤ n, there is w ∈ Z such that the jth component of ρw is
nontrivial.

This n is called the rank of (ρw, ϕw)w.
We say two SL(2)-orbits (ρw, ϕw)w and (ρ′

w, ϕ′
w)w on grW are equivalent if

their ranks coincide, say, n, and furthermore, there is t = (t1, . . . , tn) ∈Rn
>0 such

that

ρ′
w = Int

(
ρ̃w(t)

)
ρw, ϕ′

w = ρ̃w(t)ϕw

for any w ∈Z, where ρ̃w(t) is as in Section 2.5.1.
Let DSL(2)(grW )∼ be the set of all equivalence classes of SL(2)-orbits on grW .
Note that the SL(2)-orbits on grW just defined are in fact what should be

called nondegenerate SL(2)-orbits on grW . We omitted this adjective in the above
definition since we use only nondegenerate ones for the study of DSL(2)(grW )∼.

3.5.2.
The canonical map DSL(2) →DSL(2)(grW ) =

∏
w∈Z DSL(2)(grW

w ) factors as

DSL(2) →DSL(2)(grW )∼ →DSL(2)(grW ),

where the second arrow is

DSL(2)(grW )∼ →DSL(2)(grW ),
(
class of (ρw, ϕw)w

)
�→

(
class of (ρw, ϕw)

)
w
,

and the first arrow is defined as follows. Let p ∈DSL(2) be the class of an SL(2)-
orbit ((ρw, ϕw)w,r) in n variables of rank n, and let Ψ be the associated set of
weight filtrations. Then the image p̃ of p in DSL(2)(grW )∼ is the class of the
following SL(2)-orbit (ρ′

w, ϕ′
w)w on grW . If W /∈Ψ, (ρ′

w, ϕ′
w)w = (ρw, ϕw)w, and

hence p̃ is of rank n. If W ∈Ψ, then (ρ′
w, ϕ′

w)w is an SL(2)-orbit on grW of rank
n− 1 defined by

ρ′
w(g1, . . . , gn−1) = ρw(1, g1, . . . , gn−1), ϕ′

w(z1, . . . , zn−1) = ϕw(i, z1, . . . , zn−1),

for w ∈Z.
The map DSL(2) →DSL(2)(grW )∼ is surjective.
The map DSL(2) →W, p �→W(p) (see Section 3.2.2) factors through DSL(2) →

DSL(2)(grW )∼. For q ∈DSL(2)(grW )∼, we denote by W(q) ∈W the element W(p)
for p an element of DSL(2) with image q in DSL(2)(grW )∼, which is independent
of the choice of p.
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The map DSL(2)(grW )∼ →DSL(2)(grW ) is also surjective. This is shown as
follows. For each w ∈ Z, let (ρw, ϕw) be an SL(2)-orbit on grW

w in n(w) vari-
ables of rank n(w). Let n = max{n(w) | w ∈ Z}, and let (ρ′

w, ϕ′
w) be the SL(2)-

orbit on grW
w in n variables defined by ρ′

w(g1, . . . , gn) = ρw(g1, . . . , gn(w)) and
ϕ′

w(z1, . . . , zn) = ϕw(z1, . . . , zn(w)). Then (class of (ρw, ϕw))w ∈
∏

w DSL(2)(grW
w )

is the image of the element (class of (ρ′
w, ϕ′

w)w) in DSL(2)(grW )∼ (cf. Section
3.5.1).

The map DSL(2)(grW )∼ → DSL(2)(grW ) need not be injective (see Corol-
lary 3.5.12, Example V in Section 3.5.13). There are two reasons for this. The
first reason is as follows. For SL(2)-orbits (ρw, ϕw)w and (ρ′

w, ϕ′
w)w on grW , their

images in DSL(2)(grW ) coincide if and only if (ρw, ϕw) and (ρ′
w, ϕ′

w) are equiva-
lent for all w, and the last equivalences are given by elements of Rn(w)

>0 which can
depend on w ∈ Z (here n(w) = rank(ρw, ϕw) = rank(ρ′

w, ϕ′
w)) not like the equiv-

alence between (ρw, ϕw)w and (ρ′
w, ϕ′

w)w defined as in Section 3.5.1. The second
reason is as follows. For p ∈DSL(2), the image of p in DSL(2)(grW )∼ still remem-
bers W(p) ∈W , but the image of p in DSL(2)(grW ) remembers only the image
of this element of W in

∏
wW(grW

w ) (see Section 3.3.1). As in Lemma 3.3.2,
the map W →

∏
wW(grW

w ) is described as
(
Φ, (Φ(w))w

)
�→ (Φ(w))w and is not

necessarily injective.

3.5.3.
For Q = (Q(w))w∈Z ∈

∏
w∈ZW(grW

w ) (see Section 3.3.1), let DSL(2)(grW )(Q) be
the open set of DSL(2)(grW ) defined by

DSL(2)(grW )(Q) =
∏
w∈Z

DSL(2)(grW
w )(Q(w))⊂DSL(2)(grW ),

as in Section 3.4.21.
Define

DSL(2)(grW )∼(Q)⊂DSL(2)(grW )∼

as the inverse image of DSL(2)(grW )(Q) in DSL(2)(grW )∼. For p ∈DSL(2)(grW )∼,
p belongs to DSL(2)(grW )∼(Q) if and only if Φ :=W(p) satisfies Φ(w) ⊂ Q(w)
for all w ∈Z.

3.5.4.
Let Q = (Q(w))w ∈

∏
w∈ZW(grW

w ), let S = DSL(2)(grW )(Q), and let S =⊕
w∈Z NQ(w). Then we have a canonical surjective homomorphism S →MS/O×

S

characterized as follows. For any distance to Q(w)-boundary βw = (βw,j)j∈Q(w) :
D(grW

w ) → RQ(w)
>0 given for each w ∈ Z, this homomorphism sends m =(

(m(w, j))j∈Q(w)

)
w
∈ S (m(w, j) ∈N) to

(∏
w∈Z,j∈Q(w) β

m(w,j)
w,j

)
modO×

S . This
homomorphism lifts locally on S to a chart S →MS,>0.

In Sections 3.5.5 and 3.5.6 and Proposition 3.5.7, we define and study a
finite rational subdivision ΣQ of the cone Hom(S,Radd

≥0 ) =
∏

w∈Z RQ(w)
≥0 , and in

Theorem 3.5.9 we identify DSL(2)(grW )∼(Q) with the associated log modification
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S(ΣQ) (see Proposition 3.1.12) of S. We see in Section 3.5.10 that there is
a unique structure on DSL(2)(grW )∼ as an object of BR(log) for which each
DSL(2)(grW )∼(Q)

(
Q ∈

∏
w∈ZW(grW

w )
)

is open in DSL(2)(grW )∼ and the induced
structure on it coincides with the structure as the log modification.

3.5.5.
For Q = (Q(w))w∈Z ∈

∏
w∈ZW(grW

w ), we define a finite rational subdivision ΣQ

of the cone
∏

w∈Z RQ(w)
≥0 as follows.

First, we recall that, for a finite set Λ, the barycentric subdivision Sd(Λ) of
the cone RΛ

≥0 is defined as follows (cf. [I, Section 2.8]). Let J(Λ) be the set of all
pairs (n, g), where n is a nonnegative integer and g is a function Λ→{j ∈Z | 0≤
j ≤ n} such that the image of g contains {j ∈ Z | 1≤ j ≤ n}. For (n, g) ∈ J(Λ),
define the subcone C(n, g) of RΛ

≥0 by

C(n, g) =
{
(aλ)λ∈Λ

∣∣ aλ ≤ aμ if g(λ)≤ g(μ), aλ = 0 if g(λ) = 0
}
.

Then the set of cones Sd(Λ) := {C(n, g) | (n, g) ∈ J(Λ)} is a finite rational subdi-
vision of RΛ

≥0 and is called the barycentric subdivision of RΛ
≥0. The map

J(Λ)→ Sd(Λ), (n, g) �→C(n, g)

is bijective. For (n, g) ∈ J(Λ), the dimension of C(n, g) is equal to n.
Let Q = (Q(w))w ∈

∏
w∈ZW(grW

w ). For each w ∈ Z, we regard Q(w) as a
totally ordered set by Proposition 2.1.13.

Let Λ =
⊔

w∈Z Q(w). Define a subcone C of RΛ
≥0 =

∏
w∈Z RQ(w)

≥0 by

C =
{(

(aw,j)j∈Q(w)

)
w
∈

∏
w∈Z

RQ(w)
≥0

∣∣∣ aw,j ≤ aw,j′

if w ∈Z, j, j′ ∈Q(w), and j ≥ j′
}

.

Let

Sd′(Λ) =
{
σ ∈ Sd(Λ)

∣∣ σ ⊂C
}
⊂ Sd(Λ),

J ′(Λ) =
{
(n, g) ∈ J(Λ)

∣∣ g(w, j)≤ g(w, j′) if w ∈Z, j, j′ ∈Q(w) and j ≥ j′}
⊂ J(Λ).

Here and hereafter, g(w,−) denotes the restriction of the map g on Q(w) ⊂ Λ
for any w. Then

Sd′(Λ) =
{
C(n, g)

∣∣ (n, g) ∈ J ′(Λ)
}
,

and Sd′(Λ) is a subdivision of C.
We have an isomorphism of cones

(1) RΛ
≥0 =

∏
w∈Z

RQ(w)
≥0

∼→C, b �→ c,

where cw,j :=
∑

k∈Q(w),k≥j bw,k for w ∈Z and j ∈Q(w).
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Let ΣQ be the subdivision of the cone RΛ
≥0 =

∏
w∈Z RQ(w)

≥0 corresponding to
the subdivision Sd′(Λ) of the cone C via the above isomorphism (1).

3.5.6.
Let W→

∏
w∈ZW(grW

w ) be the map defined in Section 3.3.1.
For Q = (Q(w))w ∈

∏
w∈ZW(grW

w ), let W(Q) ⊂W be the set of all Φ ∈W
such that Φ(w)⊂Q(w) for any w ∈Z.

PROPOSITION 3.5.7

Let Q = (Q(w))w ∈
∏

w∈ZW(grW
w ). Then we have a bijection

W(Q)→ΣQ, Φ �→ σΦ,

where σΦ is the set of all elements ((bw,j)j∈Q(w))w∈Z of
∏

w∈Z RQ(w)
≥0 satisfying

the following condition (1).

(1) Let w,w′ ∈ Z, j ∈Q(w), j′ ∈Q(w′). Assume that, for any M ∈ Φ such
that j ≤M(grW

w ), we have j′ ≤M(grW
w′ ) (see Proposition 2.1.13). Then∑

k∈Q(w),k≥j

bw,k ≤
∑

k∈Q(w′),k≥j′

bw′,k.

REMARK

Condition (1) is equivalent to the following conditions (1a) and (1b):

(1a) bw,j = 0 unless there is an M ∈Φ such that j = M(grW
w );

(1b) bw,j = bw′,j′ if there is an M ∈ Φ such that j = M(grW
w ) and j′ =

M(grW
w′ ).

Proof
By the construction in Section 3.5.5, we have bijections J ′(Λ) � Sd′(Λ) � ΣQ.
Under these bijections, the above σΦ is equal to the element of ΣQ correspond-
ing to the element C(n, g) ∈ Sd′(Λ), where (n, g) is the element of J ′(Λ) (Λ =⊔

w∈Z Q(w)) defined as follows. Let n be the cardinality of Φ, that is, n = dimσΦ.
Let M (1) = (M (1)(w))w, . . . ,M (n) = (M (n)(w))w be all the members of Φ such
that M (1)(w) ≤ · · · ≤ M (n)(w) for any w ∈ Z with respect to the ordering in
Proposition 2.1.13. Then, for w ∈Z and j ∈Q(w), define

g(w, j) = �
{
k

∣∣ 1≤ k ≤ n,M (k)(w)≥ j
}
.

By Lemma 3.3.2, this map W(Q)→ J ′(Λ),Φ �→ (n, g), is bijective. �

LEMMA 3.5.8

Let Q ∈
∏

w∈ZW(grW
w ), let p ∈ S = DSL(2)(grW )(Q), let q be a point of

DSL(2)(grW )∼(Q) lying over p, let Φ =W(q) (see Section 3.2.2), and let σq =
σΦ ∈ ΣQ (see Proposition 3.5.7). Let P ′(σq)⊂Mgp

S,>0,p be as in Section 3.1.13.
That is, for S and S in Section 3.5.4, let S(σq) be the subset of Sgp consisting
of all elements m of Sgp such that the homomorphism Sgp →R defined by any
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element of σq sends m into R≥0, let P (σq) be the image of S(σq) in (Mgp
S /O×

S )p,
and let P ′(σq) be the inverse image of P (σq) in Mgp

S,>0,p. Then we have

P ′(σq) =
{
f ∈Mgp

S,>0,p

∣∣ f
(
τq(t)rq

)
converges in R≥0

}
,(1)

P ′(σq)× =
{
f ∈Mgp

S,>0,p

∣∣ f
(
τq(t)rq

)
converges to an element of R>0

}
.(2)

Here rq is a point on the torus orbit associated to q, τq : RΦ
≥0 →Aut(grW ) is τ̄q′

in Section 3.2.3 for a point q′ ∈DSL(2) lying over q, and t tends to 0Φ.

Proof
In the notation of Section 3.5.4, P ′(σq)⊂Mgp

S,>0,p is written as

P ′(σq) =
⋃

m∈S(σq)

O×
S,>0,p

∏
w∈Z,j∈Q(w)

β
m(w,j)
w,j ,

where m =
(
(m(w, j))j∈Q(w)

)
w∈Z

. This coincides with the right-hand side of (1)
by Proposition 3.2.6(ii). Since P ′(σq)× = P ′(σq)∩ P ′(σq)−1, (2) follows. �

THEOREM 3.5.9

Let Q ∈
∏

w∈ZW(grW
w ).

(i) Let DSL(2)(grW )(ΣQ) be the log modification (see Proposition 3.1.12) of
DSL(2)(grW )(Q) corresponding to the subdivision ΣQ of the cone

∏
w∈Z RQ(w)

≥0 in
Section 3.5.5. Then we have a bijection

DSL(2)(grW )∼(Q)→DSL(2)(grW )(ΣQ)

which sends a point q of DSL(2)(grW )∼(Q) lying over p ∈DSL(2)(grW )(Q) to the
point (p,σq, hq) (see Section 3.1.13) of DSL(2)(grW )(ΣQ) lying over p, where σq

is as in Lemma 3.5.8 and hq is the homomorphism defined by

hq : P ′(σq)× →R>0, f �→ lim
t→0Φ

f
(
τq(t)rq

)
,

where rq, τq and Φ =W(q) are as in Lemma 3.5.8.
(ii) Let Φ ∈W(Q), and let DSL(2)(grW )∼(Φ)⊂DSL(2)(grW )∼ be the image

of DII
SL(2)(Φ). Then DII

SL(2)(Φ) coincides with the inverse image of DSL(2)(grW )∼(Φ)
in DSL(2). Furthermore, let σΦ ∈ ΣQ be as in Proposition 3.5.7; then
DSL(2)(grW )∼(Φ) coincides with the part of DSL(2)(grW )∼(Q) which corresponds
to the part DSL(2)(grW )(σΦ) of DSL(2)(grW )(ΣQ) under the bijection in (i).

Proof
Let p ∈ DSL(2)(grW ), let A be the fiber of DSL(2)(grW )∼ → DSL(2)(grW ) on p,
and let B be the set of all pairs (Φ,Z), where Φ is an element of W whose image
in

∏
wW(grW

w ) is
(
W(p(grW

w ))
)
w

and Z is an RΦ
>0-orbit in D(grW ) contained

in
∏

w Zw, where Zw is the torus orbit associated to p(grW
w ). Then we have a

bijection from A to B given by q �→ (Φ,Z), where Φ =W(q) and Z is the torus
orbit associated to q.



236 Kato, Nakayama, and Usui

Assume that Q(w) =W(p(grW
w )) for all w. Then, once Φ ∈W(Q) is fixed,

the set BΦ of all Z such that (Φ,Z) ∈B is a
((∏

w∈Z RQ(w)
>0

)
/RΦ

>0

)
-torsor. On

the other hand, let σ be the cone corresponding to Φ, and let CΦ be the set of
all homomorphisms P ′(σ)× →R>0 which extend the evaluation O×

>0,p →R>0 at

p. Then CΦ is also a
((∏

w∈Z RQ(w)
>0

)
/RΦ

>0

)
-torsor with respect to the following

action. By the canonical isomorphism Mgp
>0,p/O×

>0,p �
∏

w∈Z ZQ(w), we have an
isomorphism

Hom(Mgp
>0,p/O×

>0,p,R>0)�
∏
w∈Z

RQ(w)
>0

which induces an isomorphism between quotient groups

Hom
(
P ′(σ)×/O×

>0,p,R>0

)
�

( ∏
w∈Z

RQ(w)
>0

)
/RΦ

>0.

Since CΦ is a Hom(P ′(σ)×/O×
>0,p,R>0)-torsor in the evident way, it is a((∏

w∈Z RQ(w)
>0

)
/RΦ

>0

)
-torsor. Let AΦ be the subset of A consisting of all q ∈A

such that W(q) = Φ. Then the bijection A → B induces a bijection AΦ →
BΦ. The map AΦ → CΦ which sends q ∈ AΦ to the homomorphism P ′(σ)× →
R>0, f �→ limt→0Φ f(τq(t)rq) (see Lemma 3.5.8) induces a map BΦ → CΦ which
is compatible with the action of

(∏
w∈Z RQ(w)

>0

)
/RΦ

>0. Since BΦ and CΦ are((∏
w∈Z RQ(w)

>0

)
/RΦ

>0

)
-torsors, this map BΦ → CΦ is bijective. Hence the map

AΦ →CΦ is bijective.
Theorem 3.5.9 follows from this. �

3.5.10.
WeregardDSL(2)(grW )∼ asanobjectofBR(log) as follows. ForQ ∈

∏
w∈ZW(grW

w ),
DSL(2)(grW )∼(Q) is regarded as an object of BR(log) via the bijection in Theorem
3.5.9. If Q′ ∈

∏
w∈ZW(grW

w ) and Q′(w)⊂Q(w) for all w ∈Z, DSL(2)(grW )∼(Q′)
is open in DSL(2)(grW )∼(Q) and the structure of DSL(2)(grW )∼(Q′) as an object
of BR(log) coincides with the one induced from that of DSL(2)(grW )∼(Q), as is
easily seen. Hence there is a unique structure on DSL(2)(grW )∼ as an object
of BR(log) for which DSL(2)(grW )∼(Q) are open and which induces on each
DSL(2)(grW )∼(Q) the above structure as an object of BR(log).

PROPOSITION 3.5.11

Let p ∈DSL(2)(grW ). Then the following two conditions are equivalent.

(1) The fiber of the surjection DSL(2)(grW )∼ →DSL(2)(grW ) over p consists
of one element.

(2) There are at most one w ∈Z such that the element p(w) of DSL(2)(grW
w )

does not belong to D(grW
w ).

Proof
This is seen easily by the proof of Theorem 3.5.9. �
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From this the next corollary follows.

COROLLARY 3.5.12

The following three conditions are equivalent.

(1) The map DSL(2)(grW )∼ →DSL(2)(grW ) is bijective.
(2) The morphism DSL(2)(grW )∼ →DSL(2)(grW ) is an isomorphism of local

ringed spaces over R.
(3) There are at most one w ∈Z such that DSL(2)(grW

w ) �= D(grW
w ).

3.5.13.
Consider DSL(2)(grW )∼ for the five Examples I–V in Section 1.1.1.

For Examples I–IV, we have DSL(2)(grW )∼ = DSL(2)(grW ) by Corollary 3.5.12.

EXAMPLE V

Let M be the increasing filtration on grW
0 defined by

M−3 = 0⊂M−2 = M−1 = Re′
1 ⊂M0 = M1 = M−1 + Re′

2 ⊂M2 = grW
0 .

Let M ′ be the increasing filtration on grW
1 defined by

M ′
−1 = 0⊂M ′

0 = M ′
1 = Re′

4 ⊂M ′
2 = grW

1 .

Let Q = {Q(w)}w∈Z be the following: Q(0) := {M}, Q(1) := {M ′}, and Q(w) is
the empty set for w ∈Z � {0,1}. Let Λ := {M,M ′}.

Then the subdivision ΣQ of RΛ
≥0 =

∏
w∈Z RQ(w)

≥0 in Section 3.5.5 is just the
barycentric subdivision of R2

≥0. In the notation in Section 3.5.5, 0≤ n≤ 2 and g

is a function Λ→{0, . . . , n}, and hence the fan ΣQ consists of the vertex {(0,0)}
and the following cones according to Cases m = 1,2,3,4,5 in Section 2.3.9:

(0) n = 0, g(M) = g(M ′) = 0, and C(0, g) = {(0,0)},
(1) n = 1, g(M) = 1, g(M ′) = 0, and C(1, g) = R≥0 × {0},
(2) n = 1, g(M) = 0, g(M ′) = 1, and C(1, g) = {0} ×R≥0,
(3) n = 1, g(M) = g(M ′) = 1, and C(1, g) = {(aλ)λ ∈R2

≥0 | aM = aM ′},
(4) n = 2, g(M) = 2, g(M ′) = 1, and C(2, g) = {(aλ)λ ∈R2

≥0 | aM ≥ aM ′},
(5) n = 2, g(M) = 1, g(M ′) = 2, and C(2, g) = {(aλ)λ ∈R2

≥0 | aM ≤ aM ′}.

Let B be the closure of R2
>0 in the corresponding blowing up of C2 at (0,0).

Let S = DSL(2)(grW )(Q). Then the inverse image DSL(2)(grW )∼(Q) of S

via the projection DSL(2)(grW )∼ → DSL(2)(grW ) (see Section 3.5.3) is the log
modification S(ΣQ) in Proposition 3.1.12 (see Theorem 3.5.9(i)), and we have
the following commutative diagram:

S(ΣQ) = DSL(2)(grW )∼(Q) � B ×R2 × {±1}
↓ ↓

S = DSL(2)(grW )(Q) � R2
≥0 ×R2 × {±1}.

In the above isomorphism for DSL(2)(grW )∼(Q), the class pm in
DSL(2)(grW )∼(Q) of the SL(2)-orbit in Case m in Section 2.3.9 corresponds to
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the point (bm, (0,0),1) of B ×R2 × {±1}, where bm is the following point of B:
b1 is the limit of (t,1) ∈R2

>0 for t→ 0, b2 is the limit of (1, t) for t→ 0, b3 is
the limit of (t, t) for t→ 0, b4 is the limit of (t0t1, t1) for t0, t1 → 0, and b5 is the
limit of (t0, t0t1) for t0, t1 → 0.

PROPOSITION 3.5.14

The map DII
SL(2) →DSL(2)(grW )∼ is a morphism of BR(log).

The proof is given together with that of Theorem 3.5.15 below.

THEOREM 3.5.15

Fix any F ∈D(grW ), let L = L(F ), and let L̄ be the compactified vector space
associated to the graded vector space L of weights ≤ −2. Then DII

SL(2) is an
L̄-bundle over spl(W )×DSL(2)(grW )∼ in BR(log).

For the definition of the compactified vector space L̄, see the explanation after
Proposition 3.2.6 (see [KNU2, Section 7] for details).

Proof of Proposition 3.5.14 and Theorem 3.5.15
We deduce Proposition 3.5.14 and Theorem 3.5.15 from Theorem 3.4.4.

Let p ∈ DII
SL(2), and let p′ be the image of p in DSL(2)(grW )∼. Let r ∈ D

be a point on the torus orbit associated to p, and let r̄ be the image of r in
D(grW ). It is sufficient to show that for some open neighborhood U of p′ in
DSL(2)(grW )∼, if we denote the inverse image of U in DII

SL(2) by Ũ , then Ũ

is open in DII
SL(2), the projection Ũ → U is a morphism of BR(log), and Ũ is

isomorphic to U × spl(W )× L̄ as an object of BR(log) over U × spl(W ).
For w ∈ Z, let pw = p(grW

w ) and rw = r(grW
w ). Take (Rw, Sw) for (pw,rw)

as a pair in Section 3.4.1. Let Φ =W(p) and Q(w) =W(pw). Let R′ be an R-
subspace of

∏
w Lie(ρ̃w(RQ(w)

>0 )) such that
∏

w Lie(ρ̃w(RQ(w)
>0 )) = Lie(ρ̃(RΦ

>0))⊕
R′. Let R =

(∏
w Rw

)
⊕R′ and S =

∏
w Sw. Then (R,S) is a pair for (p,r) as in

Section 3.4.1.
Let Ȳ (p,r, S) (resp., Ȳ (p,r,R,S)) be the subset of Z(p)×S (resp., Z(p,R)×

S) consisting of all elements (t, f, g, h, k) ((t, f, g, h) ∈ Z(p) (resp., ∈ Z(p,R)),
k ∈ S) which satisfy condition (4) in Section 3.4.2. We define the structure of
Ȳ (p,r, S) (resp., Ȳ (p,r,R,S)) as an object of BR(log) just in the same way as in
the definition for Y II (p,r, S) (resp., Y II (p,r,R,S)) in Section 3.4.2. Note that
we have evident isomorphisms in BR(log),

Y II (p,r, S)� Ȳ (p,r, S)× L̄× gR,u, Y II (p,r,R,S)� Ȳ (p,r,R,S)× L̄× gR,u.

Let Ȳ0(p,r, S) (resp., Ȳ0(p,r,R,S)) be the open set of Ȳ (p,r, S) (resp., Ȳ (p,r,
R,S)) consisting of all elements (t, f, g, h, k) such that t ∈RΦ

>0.
For an open neighborhood U of zero in gR(grW )× gR(grW )× gR(grW )× S

(resp., gR(grW ) × R × gR(grW ) × S), we define Ȳ (p,r, S,U) (resp., Ȳ (p,r,R,

S,U)) as the open set of Ȳ (p,r, S) (resp., Ȳ (p,r,R,S)) consisting of all elements
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(t, f, g, h, k) such that (f, g, h, k) ∈ U . Let Ȳ0(p,r, S,U) = Ȳ0(p,r, S)∩ Ȳ (p,r, S,U)
(resp., Ȳ0(p,r,R,S,U) = Ȳ0(p,r,R,S)∩ Ȳ (p,r,R,S,U)).

CLAIM 1

For a sufficiently small open neighborhood U of zero in gR(grW )×R×gR(grW )×
S, there is an open immersion Ȳ (p,r,R,S,U)→DSL(2)(grW )∼ in BR(log) whose
restriction to Ȳ0(p,r,R,S,U) is given as (t, f, g, h, k) �→ τ̄p(t) exp(g) exp(k)r̄ ∈
D(grW ) and which sends (0Φ,0,0,0,0) ∈ Ȳ (p,r,R,S,U) to p′.

We give the proof of Claim 1 later. We need one more claim.

CLAIM 2

Let q ∈DSL(2), and let (q′, s) ∈DSL(2)(grW )∼ × spl(W ) be the image of q. Then
the fiber on (q′, s) in DSL(2) regarded as a topological subspace of DI

SL(2) (resp.,
DII

SL(2)) is homeomorphic to L̄.

Claim 2 is shown easily.
We show that Proposition 3.5.14 and Theorem 3.5.15 follow from Claims 1

and 2. Let U be a sufficiently small open neighborhood of zero in gR(grW )×
R×gR(grW )×S, let U ′ be the image of the open immersion Y II (p,r,R,S,U)→
DII

SL(2) (see Theorem 3.4.4), and let U ′ ′ be the image of the open immersion
Ȳ (p,r,R,S,U) → DSL(2)(grW )∼ (see Claim 1). Then U ′ → U ′ ′ is a morphism
of BR(log) since Y II (p,r,R,S,U)→ Ȳ (p,r,R,S,U), which is identified with the
projection Ȳ (p,r,R,S,U)×L̄×gR,u → Ȳ (p,r,R,S,U), is a morphism of BR(log).
The map U ′ → U ′ ′ × spl(W ) is a trivial L̄-bundle since Y II (p,r,R,S,U) →
Ȳ (p,r,R,S,U)× spl(W ) is identified with the projection Ȳ (p,r,R,S,U)× L̄×
spl(W )→ Ȳ (p,r,R,S,U)×spl(W ). Hence this morphism is proper. Let V be the
inverse image of U ′ ′ × spl(W ) under the canonical map DII

SL(2) →DSL(2)(grW )∼ ×
spl(W ). We prove V = U ′. Indeed, since U ′ is proper over U ′ ′ × spl(W ), U ′ is
open and closed in V . Since all fibers of V → U ′ ′ × spl(W ) are connected by
Claim 2, and since U ′ → U ′ ′ × spl(W ) is surjective, we have V = U ′. Hence V is
open in DII

SL(2), V → U ′ ′ is a morphism of BR(log), and V → U ′ ′ × spl(W ) is a
trivial L̄-bundle.

We prove Claim 1.
For each w ∈ Z, let Q(w) ∈ W(grW

w ) be the image of Φ. For each w ∈
Z, by Theorem 3.4.4 for the pure case, there is an open neighborhood Uw of
zero in gR(grW

w ) × gR(grW
w ) × gR(grW

w ) × Sw such that we have a morphism
Y II (pw,rw, Sw,Uw) → DSL(2)(grW

w ) which sends (t, f, g, h, k) ∈ Y II
0 (pw,rw, Sw,

Uw) to τpw(t) exp(g) exp(k)rw, which induces an open immersion Y II (pw,rw,Rw,

Sw,U ′
w)→DSL(2)(grW

w ) (U ′
w := Uw∩(gR(grW

w )×Rw×gR(grW
w )×Sw)) and which

sends (0Q(w),0,0,0,0) ∈ Y II (pw,rw,Rw, Sw,U ′
w) to pw. By Lemma 3.4.13 for the

pure case, for some open neighborhood U ′ ′
w ⊂ Uw of zero in gR(grW

w )×gR(grW
w )×

gR(grW
w )× Sw, we have a morphism Y II (pw,rw, Sw,U ′ ′

w)→ Y II (pw,rw,Rw, Sw,

U ′
w) which commutes with the morphisms to DSL(2)(grW

w ). Let Ȳ (p,r, S) →
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Y II (pw,rw, Sw) be the morphism (t, f, g, h, k) �→ (t(grW
w ), f(grW

w ), g(grW
w ), h(grW

w ),
k(grW

w )), where t(grW
w ) denotes the image of t under the homomorphism RΦ

≥0 →
RQ(w)

≥0 of multiplicative monoids induced by the map Φ→Q(w). Then if U is a
sufficiently small open neighborhood of zero in gR(grW )×R× gR(grW )×S, the
image of Ȳ (p,r, S,U) under this morphism is contained in Y II (pw,rw, Sw,U ′ ′

w)
for any w. Hence we have a composite morphism

ξ : Ȳ (p,r, S,U)→
∏
w

Y II (pw,rw, Sw,U ′ ′
w)→

∏
w

Y II (pw,rw,Rw, Sw,U ′
w).

Let P be the fiber product of∏
w

Y II (pw,rw,Rw, Sw,U ′
w)→

∏
w

RQ(w)
≥0 ←RΦ

≥0 ×RΦ
>0

(∏
w

RQ(w)
>0

)

in BR(log). Here RΦ
≥0 ×RΦ

>0
(∏

w RQ(w)
>0

)
is the quotient of RΦ

≥0 ×
(∏

w RQ(w)
>0

)
under the action of RΦ

>0 given by (x, y) �→ (ax,a−1y) (a ∈ RΦ
>0). Then P is

identified with the fiber product of∏
w

Y II (pw,rw,Rw, Sw,U ′
w)→

∏
w

DSL(2)(grW
w )

(
Q(w)

)
←DSL(2)(grW )∼(Φ).

Hence we have an open immersion P →DSL(2)(grW )∼.
We have a unique morphism

ξ∼ : Ȳ (p,r, S,U)→ P

in BR(log) which is compatible with ξ. It is induced from ξ and from the
morphism Ȳ (p,r, S,U)→RΦ

≥0×RΦ
>0

(∏
w RQ(w)

>0

)
which sends (t, f, g, h, k) to tt′,

where t′ ∈
∏

w RQ(w)
>0 is the

(∏
w RQ(w)

>0

)
-component of ξ(1, g, g, g, k).

CLAIM 3

If U is a sufficiently small open neighborhood of zero in T := gR(grW ) × R ×
gR(grW )×S, the morphism Ȳ (p,r,R,S,U)→ P induced by ξ∼ is an open immer-
sion.

By Claim 3, the open immersion stated in Claim 1 is obtained as the composite
Ȳ (p,r,R,S,U)→ P →DSL(2)(grW )∼. It remains to prove Claim 3.

For an open neighborhood U of zero in T , let P (U) be the open set of P con-
sisting of all elements (t, f, g, h, k)

(
t ∈RΦ

≥0 ×RΦ
>0

(∏
w RQ(w)

>0

)
, f,h ∈ gR(grW ),

g ∈
∏

w Rw, k ∈
∏

w Sw

)
such that t = t′ exp(a) for some t′ ∈RΦ

≥0 and for some
a ∈R′ satisfying (f, a + g,h, k) ∈ U . Then, for a given open neighborhood U of
zero in T , there is an open neighborhood U ′ of zero in T such that the map
ξ∼ induces a morphism Ȳ (p,r,R,S,U ′) → P (U). On the other hand, if U is
an open neighborhood of zero in T , then for a sufficiently small open neighbor-
hood U ′ of zero in T , we have a morphism P (U ′)→ Ȳ (p,r,R,S,U). This mor-
phism is obtained as the composite P (U ′) → Ȳ (p,r, S,U ′ ′) → Ȳ (p,r,R,S,U).
Here U ′ ′ is a suitable open neighborhood of zero in T . The first arrow is
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(t′ exp(a), f, g, h, k) �→ (t′, f ′, g′, h′, k), where f ′, g′, h′ are near to f, g, h, respec-
tively, and defined by exp(g′) = exp(a) exp(g), exp(f ′) = exp(f) exp(a), exp(h′) =
exp(2a) exp(g) exp(−a). The second arrow is a morphism constructed in the same
way as in the proof of Lemma 3.4.13. For an open neighborhood U of zero in
T , the composite Ȳ (p,r,R,S,U ′ ′) → P (U ′) → Ȳ (p,r,R,S,U) and the compos-
ite P (U ′ ′)→ Ȳ (p,r,R,S,U ′)→ P (U) are inclusion maps. Here U ′ and U ′ ′ are
open neighborhoods of zero in T , U ′ is sufficiently small relative to U , and U ′ ′

is sufficiently small relative to U ′. This proves Claim 3. �

THEOREM 3.5.16

The canonical map

DII
SL(2) → spl(W )×DSL(2)(grW )

is proper.

Proof
The map DII

SL(2) → spl(W )×DSL(2)(grW )∼ is proper by Theorem 3.5.15. The
map DSL(2)(grW )∼ →DSL(2)(grW ) is proper (see Theorem 3.5.9, Section 3.5.10).

�

THEOREM 3.5.17

Let Γ be a subgroup of GZ. For ∗= I, II , we have the following.

(i) The action of Γ on D∗
SL(2) is proper, and the quotient space Γ\D∗

SL(2)

is Hausdorff.
(ii) Assume that Γ is neat. Let γ ∈ Γ, p ∈DSL(2), and assume γp = p. Then

γ = 1.
(iii) Assume that Γ is neat. Then the quotient Γ\D∗

SL(2) belongs to BR(log),
and the projection D∗

SL(2) → Γ\D∗
SL(2) is a local isomorphism of objects of BR(log).

Here in (iii), we define the sheaf of real analytic functions on Γ\D∗
SL(2) and the log

structure with sign on Γ\D∗
SL(2) in the natural way. That is, for an open set U of

Γ\D∗
SL(2), a real-valued function f on U is said to be real analytic if the pullback

of f on the inverse image of U in D∗
SL(2) is real analytic. The log structure M of

Γ\D∗
SL(2) is defined to be the sheaf of real analytic functions whose pullbacks on

D∗
SL(2) belong to the log structure of D∗

SL(2). The subgroup sheaf Mgp
>0 of Mgp

is defined to be the part of Mgp consisting of the local sections whose pullbacks
to D∗

SL(2) belong to the Mgp
>0 of D∗

SL(2).
Recall that a subgroup Γ of GZ is said to be neat if, for any γ ∈ Γ, the

subgroup of C× generated by all eigenvalues of the action of γ on H0,C is torsion
free. If Γ is neat, then Γ is torsion free. There exists a neat subgroup of GZ of
finite index (see [Bo]).

Proof of Theorem 3.5.17
The proof is similar to [KNU2, Section 9], where we considered DBS.
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(i) DII
SL(2) is Hausdorff because DSL(2)(grW ) is Hausdorff (see [KU2]), and the

map DII
SL(2) → spl(W )×DSL(2)(grW ) is proper (see Theorem 3.5.16). It follows

that DI
SL(2) is also Hausdorff.

Let Γu be the kernel of Γ→Aut(grW ). The properness of the action of Γ on
DII

SL(2) is reduced to the properness of the action of Γ/Γu on DSL(2)(grW ), which
is proved in [KU2], and to the properness of the action of Γu on spl(W ). The
properness of that on DI

SL(2) follows from this because DI
SL(2) is Hausdorff.

Since the action of Γ on D∗
SL(2) for ∗ = I, II is proper, the quotient space

Γ\D∗
SL(2) is Hausdorff.
(ii) The pure case is proved in [KU2]. The general case is reduced to the

pure case since the action of Γu on spl(W ) is fixed point free.
(iii) By (i) and (ii), the map D∗

SL(2) → Γ\D∗
SL(2) is a local homeomorphism.

The assertion (iii) follows from this. �

3.6. Examples
We consider DI

SL(2) and DII
SL(2) for Examples I–V in Section 1.1.1.

3.6.1.
We consider DII

SL(2).
We use the notation in Section 1.1.1. As in Section 1.2.9, we denote by L

the graded vector space L(F ) = L−1,−1
R (F )⊂L with F ∈D(grW ), which is inde-

pendent of the choice of F for Examples I–V. Recall that DII
SL(2) is an L̄-bundle

over spl(W )×DSL(2)(grW )∼ (see Theorem 3.5.15) and that for Examples I–IV,
DSL(2)(grW )∼ = DSL(2)(grW ) (see Corollary 3.5.12). We describe the structure
of the open set DII

SL(2)(Φ) of DII
SL(2) for some Φ ∈W .

Let h̄ = {x + iy | x, y ∈ R,0 < y ≤ ∞} ⊃ h. We regard h̄ as an object of
BR(log) via h̄�R≥0 ×R, x + iy �→ (1/

√
y,x) (cf. Section 3.2.13).

EXAMPLE I

We have a commutative diagram in BR(log),

D � spl(W )×L

∩ ∩
DII

SL(2) � spl(W )× L̄

where the upper isomorphism is that of Section 1.2.9. Here spl(W ) � R,
DSL(2)(grW ) = D(grW ) which is just a one-point set, L � R with weight −2,
and L̄ is isomorphic to the interval [−∞,∞] endowed with the real analytic
structure as in [KNU2, Example 7.5], with w =−2 which contains R = L in the
natural way (see Section 1.2.9).

EXAMPLE II

Let Q = {W ′} ∈W(grW
−1) =

∏
wW(grW

w ), where

W ′
−3 = 0⊂W ′

−2 = W ′
−1 = Re′

1 ⊂W ′
0 = grW

−1 .
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The isomorphism D(grW ) = D(grW
−1)� h extends to DSL(2)(grW )(Q)� h̄.

Let Φ be the unique nonempty element of W(Q). We have a commutative
diagram in BR(log),

D � spl(W )× h

∩ ∩
DII

SL(2)(Φ) � spl(W )× h̄

Recall that spl(W )�R2 (see Section 1.2.9). In this diagram, the upper isomor-
phism is that of Section 1.2.9. The lower isomorphism is induced by the canonical
morphisms DII

SL(2) → spl(W ) and DII
SL(2)(Φ)→DSL(2)(grW )(Q)� h̄.

The specific examples of SL(2)-orbits of rank 1 in Section 2.3.9, Example II
have classes in DII

SL(2)(Φ) whose images in h̄ are i∞.

EXAMPLE III

Let Q = {W ′} ∈W(grW
−3) =

∏
wW(grW

w ), where

W ′
−5 = 0⊂W ′

−4 = W ′
−3 = Re′

1 ⊂W ′
−2 = grW

−3 .

The isomorphism D(grW ) = D(grW
−3)� h extends to DSL(2)(grW )(Q)� h̄.

Let Φ be the unique nonempty element of W(Q). We have a commutative
diagram in BR(log),

D � spl(W )× h×L
(
s,x + iy, (d1, d2)

)
∩ ↓ ↓

DII
SL(2)(Φ) � spl(W )× h̄× L̄

(
s,x + iy, (y−2d1, y

−1d2)
)

Here spl(W ) � R2, L � R2 with weight −3, and (d1, d2) ∈ R2 = L (see Sec-
tion 1.2.9). In this diagram, the upper isomorphism is that of Section 1.2.9. The
lower isomorphism is induced by the canonical morphisms DII

SL(2) → spl(W ) and
DII

SL(2)(Φ)→DSL(2)(grW )(Q) � h̄, and the following morphism DII
SL(2)(Φ)→ L̄.

It is induced by να,β , where α−3 : Gm,R → Aut(grW
−3) is defined by α−3(t)e′

1 =
t−4e′

1, α−3(t)e′
2 = t−2e′

2, and β : D(grW
−3) = h→R>0 is the distance to Φ-boundary

defined by x+ iy �→ 1/
√

y (see Section 3.2.13). Note that the right vertical arrow
is not the evident map, as indicated.

The SL(2)-orbits in Section 2.3.9, Example III, Case 1 (resp., Case 2, resp.,
Case 3) have classes in DII

SL(2)(Φ) whose images in h̄ × L̄ belong to {i∞} × L

(resp., {i} × (L̄ � L), resp., {i∞}× (L̄ � L)).

EXAMPLE IV

Let Q = {W ′} ∈W(grW
−1) =

∏
wW(grW

w ), where

W ′
−3 = 0⊂W ′

−2 = W ′
−1 = Re′

2 ⊂W ′
0 = grW

−1 .

The isomorphism D(grW ) = D(grW
−1)� h extends to DSL(2)(grW )(Q)� h̄.



244 Kato, Nakayama, and Usui

Let Φ be the unique nonempty element of W(Q). We have a commutative
diagram in BR(log),

D � spl(W )× h×L (s,x + iy, d)
∩ ↓ ↓

DII
SL(2)(Φ) � spl(W )× h̄× L̄ (s,x + iy, y−1d)

Here spl(W )�R5, L�R with weight −2, and d ∈R = L (see Section 1.2.9). In
this diagram, the upper isomorphism is that of Section 1.2.9. The lower isomor-
phism is induced from the canonical morphisms DII

SL(2) → spl(W ), DII
SL(2)(Φ)→

DSL(2)(grW )(Q) � h̄ and the following morphism DII
SL(2)(Φ)→ L̄. It is induced

by να,β (see Propositions 3.2.6, 3.2.7, Section 3.2.8, Proposition 3.2.9, Theo-
rem 3.2.10), where α−1 : Gm,R →Aut(grW

−1) is defined by

α−1(t)e′
2 = t−2e′

2, α−1(t)e′
3 = e′

3

and β : D(grW
−1) = h→R>0 is the distance to Φ-boundary defined by x + iy �→

1/
√

y (see Section 3.2.13). Note that the right vertical arrow is not the inclusion
map, as indicated.

The SL(2)-orbits in Section 2.3.9, Example IV, Case 1 (resp., Case 2, resp.,
Case 3) have classes in DII

SL(2)(Φ) whose images in h̄ × L̄ belong to {i∞} × L

(resp., {i} × (L̄ � L), resp., {i∞}× (L̄ � L)).

EXAMPLE V

Let Q ∈
∏

wW(grW
w ), and let the log modification B of R2

≥0 be as in Sec-
tion 3.5.13. The isomorphism D(grW ) � h± × h (see Section 1.2.9) extends to
an isomorphism DSL(2)(grW )(Q) � h̄± × h̄ (h̄± is the disjoint union of h̄+ = h̄

and h̄− = {x + iy | x ∈R,0 > y ≥ −∞} (h+ � h−, x + iy �→ −x− iy)), and this
composite isomorphism is extended to an isomorphism DSL(2)(grW )∼(Q)�B ×
R2 × {±1} (see Section 3.5.13).

Let Φ be the maximal element of W(Q). We have a commutative diagram
in BR(log),

D � spl(W )× h± × h (s,x + iy, x′ + iy′)
∩ ↓ ↓

DII
SL(2)(Φ) � spl(W )×B ×R2 × {±1}

(
s,1/

√
|y|,1/

√
y′, x, x′, sign(y)

)
Here spl(W )�R6 (see Section 1.2.9). In this diagram, the upper isomorphism is
that of Section 1.2.9. The lower isomorphism is induced from the canonical mor-
phisms DII

SL(2) → spl(W ) and DII
SL(2)(Φ)→DSL(2)(grW )∼(Q)�B ×R2 × {±1}.

The SL(2)-orbits in Section 2.3.9, Example V have classes in DII
SL(2)(Φ) whose

images in B are described in Section 3.5.13.

3.6.2.
We consider DI

SL(2). For Examples I–IV, DI
SL(2) = DII

SL(2) by Proposition 3.4.29.
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EXAMPLE V

Let Ψ = {W ′} ∈W , where

W ′
−3 = 0⊂W ′

−2 = W ′
−1 = Re1 ⊂W ′

0 = W ′
−1 + Re2

⊂W ′
1 = W ′

0 + Re4 + Re5 ⊂W ′
2 = H0,R.

(This W ′ is W (1) in Section 2.3.9, Example V, Case 1.) Let Ψ̄ = {W ′(grW )} ∈
W . Then DII

SL(2)(Ψ̄) is the open set of DII
SL(2)(Φ) in Section 3.6.1, Example V

corresponding to the subcone R≥0 × {0} of R2
≥0.

We compare DI
SL(2)(Ψ) and DII

SL(2)(Ψ̄). For j = 1,2,3, let

Aj = HomR(grW
1 ,Rej).

We have an isomorphism of real analytic manifolds

spl(W ) ∼→
3∏

j=1

Aj , s �→ (aj)1≤j≤3,

where s(v)≡
3∑

j=1

aj(v) mod Re4 + Re5 for v ∈ grW
1 .

Let

(A3 × h̄±)′ :=
{
(v,x + iy) ∈A3 × h̄± ∣∣ v = 0 if y =±∞

}
⊂A3 × h̄±.

Then we have a commutative diagram in BR(log),

D �
( 3∏

j=1

Aj

)
× h± × h

∩ ∩

DII
SL(2)(Ψ̄) �

( 3∏
j=1

Aj

)
× h̄± × h

In this diagram, the upper isomorphism is induced by the isomorphism in Sec-
tion 1.2.9 and the above isomorphism spl(W )�

∏3
j=1 Aj . On the other hand, we

have a commutative diagram in BR(log),

D �
( 3∏

j=1

Aj

)
× h± × h (a1, a2, a3, x + iy, τ)

∩ ↓ ↓
DI

SL(2)(Ψ) � A1 ×A2 × (A3 × h̄±)′ × h (a1, a2, |y|1/2a3, x + iy, τ)

In this diagram, the upper isomorphism is the same as in the first diagram. The
lower isomorphism is induced from the canonical morphisms DI

SL(2) → spl(W )→
A1 × A2 and DI

SL(2)(Ψ) → DSL(2)(grW )∼(Ψ̄) � h̄± × h, and the following mor-
phism DI

SL(2)(Ψ)→A3. It is the composite

DI
SL(2)(Ψ)

by να,β−−−−−→D
splW−−−−→ spl(W )�

3∏
j=1

Aj →A3,
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where να,β is the morphism described in Propositions 3.2.6, 3.2.7, Section 3.2.8,
Proposition 3.2.9, and Theorem 3.2.10. Here α : Gm,R →AutR(H0,R,W ) is the
splitting of Ψ defined by α(t)e1 = t−2e1, α(t)e2 = e2, α(t)e3 = t2e3, α(t)e4 = te4,
α(t)e5 = te5, and β : D → R>0 is the distance to Ψ-boundary defined as the
composite D→D(grW

0 )� h± →R>0, where the last arrow is x + iy �→ 1/
√
|y|.

Note that the right vertical arrow of the above commutative diagram is not
the inclusion map, as indicated.

The lower isomorphisms in the above two commutative diagrams form a
commutative diagram in BR(log),

DI
SL(2)(Ψ) � A1 ×A2 × (A3 × h̄±)′ × h  (a1, a2, a3, x + iy, τ)
↓ ↓ ↓

DII
SL(2)(Ψ̄) �

( 3∏
j=1

Aj

)
× h̄± × h  (a1, a2, |y|−1/2a3, x + iy, τ)

Here the left vertical arrow is the inclusion map. The right vertical arrow is not
the evident map, as indicated.

The SL(2)-orbits in Section 2.3.9, Example V, Case 1 have classes in DI
SL(2)(Ψ)

whose images in h̄± × h are (i∞, i).

3.7. DBS,val and DSL(2),val

We outline the definitions of DSL(2),val and DBS,val in the fundamental diagram
in Section 0.2, which connect DSL(2) and DBS. The detailed studies of these
spaces will be given later in this series of articles.

3.7.1.
Let S be an object of BR(log) (see Section 3.1). Then we have a local ringed
space Sval over S with a log structure with sign. This is the real analytic analogue
of the complex analytic theory considered in [KU3, Section 3.6]. In the case when
we have a chart S →MS,>0 with S an fs monoid,

Sval = lim←−
Σ

S(Σ),

where Σ ranges over all finite rational subdivisions of the cone Hom(S,Radd
≥0 )

(see Proposition 3.1.12). The general case is reduced to this case by gluing (cf.
[KU3, Section 3.6]).

3.7.2.
For ∗ = I, II , define D∗

SL(2),val = (D∗
SL(2))val. In the pure case, as topological

spaces they coincide with the topological space DSL(2),val in [KU2].

3.7.3.
DBS,val is defined similarly; that is, DBS,val = (DBS)val. Here we use the log
structure with sign of DBS induced by ĀP �Rn

≥0 and B̄P �Rn+1
≥0 in the notation

in [KNU2, 5.1].
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3.7.4.
A canonical injection D∗

SL(2),val →DBS,val is defined but not necessarily continu-
ous (for both ∗= I and II ). This is a difference from the pure case, and we try
to explain it a little more in the next subsection.

3.8. DBS and DSL(2)

Here in the end of this section, we review some points of our constructions and
compare them with the construction of DBS in [KNU2].

3.8.1.
First, see Proposition 1.2.5, which shows that there are three kinds of coordinate
functions on D, that is, s, F , and δ. Among these, what is new in the mixed
case is s and δ. Thus when we want to endow a partial compactification such as
DSL(2) and DBS with a real analytic structure by extending coordinate functions,
we have to treat s and δ. Among these two, s is more important in applications,
and the methods to treat s are common to the cases of DSL(2) and DBS.

3.8.2.
On the other hand, the treatment of the δ-coordinate for DSL(2) and that for DBS

are considerably different (see Section 3.6.1, Examples III, IV, which illustrate
the situation of DSL(2)). In there, the third components (δ-coordinates) of the
vertical arrows in the diagrams are not the inclusion maps but the twisted ones.
In general, the L̄-component of the function which gives the real analytic struc-
tures on DSL(2) is not the evident one but the one twisted back by torus actions
(cf. Proposition 3.2.6). This twisting is natural in view of the relationship with
nilpotent orbits and crucial in the applications (cf. Section 2.5.7).

3.8.3.
In the case of DBS, the δ-coordinate was also naturally twisted, but there is
a difference between these two twistings, which explains the discontinuity of
DSL(2),val →DBS,val in Section 3.7.4.

More precisely, for example, consider Example III in Section 3.6.1. Let p be
a point of DSL(2),val. Then the L̄-component of the image of p in DII

SL(2) is in the
boundary (i.e., belongs to L̄ � L) if and only if W ∈W(p), but the L̄-component
of its image in DBS is in the boundary if and only if p is not split. Hence some arc
joining a split point and a nonsplit point in DSL(2),val can have a disconnected
image on DBS. These equivalences hold for any Hodge types, and we can even
prove that for some Hodge types, there are no choices of topologies of DSL(2)

satisfying both the crucial property Section 2.5.7(ii) and the continuities of the
maps DSL(2),val →DBS,val, and so on, in the fundamental diagram in Section 0.2.
These topics will be treated later in this series.
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4. Applications

4.1. Nilpotent orbits, SL(2)-orbits, and period maps
In [KNU1], we generalized the SL(2)-orbit theorem in several variables of Cattani,
Kaplan, and Schmid [CKS] for degenerations of polarized Hodge structures to
an SL(2)-orbit theorem in several variables for degenerations of mixed Hodge
structures with polarized graded quotients. Here we interpret it in the style of a
result on the extension of a period map into DSL(2) defined by a nilpotent orbit.

THEOREM 4.1.1

Assume that (N1, . . . ,Nn, F ) generates a nilpotent orbit (see Section 2.4.1) and
the associated W (j)(grW ) is rational (see Section 2.2.2) for any j = 1, . . . , n.
Then there is a sufficiently small open neighborhood U of 0 := (0, . . . ,0) in Rn

≥0

satisfying the following (i) and (ii).

(i) The real analytic map

p : U ∩Rn
>0 →D, t = (t1, . . . , tn) �→ exp

( n∑
j=1

iyjNj

)
F,

where yj =
∏n

k=j t−2
k , is defined and extends to a real analytic map

p : U →DI
SL(2).

(ii) For c ∈ U , p(c) ∈ DSL(2) is described as follows. Let K = {j | 1 ≤ j ≤
n, cj = 0}, and write K = {b(1), . . . , b(m)} with b(1) < · · ·< b(m). Let b(0) = 0.
For 1≤ j ≤m, let N ′

j =
∑

b(j−1)<k≤b(j)

(∏
k≤�<b(j) c−2

�

)
Nk, where

∏
b(j)≤�<b(j) c−2

�

is considered as 1. Let F ′ = exp
(
i
∑

b(m)<k≤n

(∏
k≤�≤n c−2

�

)
Nk

)
F . Then (N ′

1, . . . ,

N ′
m, F ′) generates a nilpotent orbit (see Section 2.4.1), and p(c) is the class of

the SL(2)-orbit associated to (N ′
1, . . . ,N

′
m, F ′) (see Theorem 2.4.2). Hence, when

t ∈ U and t→ c, we have the convergence

exp
( n∑

j=1

iyjNj

)
F →

(
class of the SL(2)-orbit associated to (N ′

1, . . . ,N
′
m, F ′)

)
in DI

SL(2) and hence in DII
SL(2). In particular, p(0) is the class of the SL(2)-orbit

associated to (N1, . . . ,Nn, F ).

Proof
For (N1, . . . ,Nn, F ) ∈Dnilp,n, let τ and ((ρw, ϕw),r1, J) ∈DSL(2),n be as in The-
orem 2.4.2. Write J = {a(1), . . . , a(r)} with a(1) < · · · < a(r). Let W (j) =
M(N1 + · · ·+ Nj ,W ) (0 ≤ j ≤ n), where W (0) := W . Let Ψ = {W (a(j))}1≤j≤r.
Let τJ be the J -component of τ . Take α = τJ as a splitting of Ψ (see Sec-
tion 3.2.3), and take a distance to Ψ-boundary β (see Section 3.2.4).

For t = (tj)1≤j≤n ∈ Rn
>0, let t′

J =
(∏

a(j)≤�<a(j+1) t�
)
j∈J

, where a(r + 1)
means n + 1. Let q(t) =

∏
a(1)≤� τ�(t�)−1p(t). Then q(t) = τJ(t′

J)−1p(t).
First, we show that q(t) extends to a real analytic map on some open neigh-

borhood U of 0 in Rn
≥0. To see this, we may assume that a(1) = 1. Since τ(t)
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here coincides with t(y) in [KNU1, Theorem 0.5], in the notation there, we have

q(t) = τ(t)−1p(t) = eg(y) exp
(
ε(y)

)
r.

Hence, by [KNU1, Theorem 0.5], the assertion follows. The extended map, also
denoted by q, sends 0 to r1 ∈D in Theorem 2.4.2(ii); that is, q(0) = r1.

In case where W ∈ Ψ, since r1 ∈ Dnspl, shrinking U if necessary, we may
assume that p(t) ∈Dnspl for any t ∈ U ∩Rn

>0.

CLAIM 1

After further replacing U , the map

U ∩Rn
>0 →B := RΨ

≥0 ×D× spl(W )×
∏

W ′ ∈Ψ

spl
(
W ′(grW )

)
,

t �→
(
β(p(t)), τJβ(p(t))−1p(t), splW (p(t)), (splBS

W ′(grW )(p(t)(grW )))W ′
)

extends to a real analytic map p′ : U → B sending 0 to (0, τJβ(r1)−1r1, s,

(s(W ′))W ′ ). Here s is the limiting splitting of W in [KNU1, Theorem 0.5(1)],
which coincides with splW (r1) (see Theorem 2.4.2), and s(W ′) is the splitting of
W ′(grW ) given by (ρw, ϕw)w (cf. Proposition 3.2.6(i)).

Since β(p(t)) = β(τJ(t′
J )q(t)) = t′

Jβ(q(t)) (see Section 3.2.4), this extends to a
real analytic map on some open neighborhood of 0 in Rn

≥0 which sends 0 to 0.
Since τJβ(p(t))−1p(t) = τJβ(q(t))−1q(t), this extends to a real analytic map

on some open neighborhood of 0 in Rn
≥0 which sends 0 to τJβ(r1)−1r1.

By [KNU1, Theorem 0.5(2)], splW (p(t)) extends to a real analytic map on
some open neighborhood of 0 in Rn

≥0 which sends 0 to s.
Finally, by [KNU1, Proposition 8.5], splBS

W ′(grW )(p(t)(grW )) extends to a real
analytic map on some open neighborhood of 0 in Rn

≥0 which sends 0 to (s(W ′))W ′ .
Next, it is easy to see that (N ′

1, . . . ,N
′
m, F ′) generates a nilpotent orbit (see

Section 2.4.1) for any c in a sufficiently small U . Since its associated SL(2)-
orbits belong to DI

SL(2)(Ψ), once we prove the following claim the real analytic
map p′ : U → B in Claim 1 factors through the image in B of the map να,β in
Proposition 3.2.7(i).

CLAIM 2

The point exp
(∑n

j=1 iyjNj

)
F converges to the class of the SL(2)-orbit associated

to (N ′
1, . . . ,N

′
m, F ′) in DI

SL(2) when t ∈ U and t→ c.

Thus we reduce both Theorem 4.1.1(i) and (ii) to this claim.
To prove Claim 2, we first consider the case c = 0: In this case, the image

by να,β of the class of the SL(2)-orbit ((ρw, ϕw)w,r1, J) ∈ DSL(2),n associated
to (N1, . . . ,Nn, F ) is limtJ →0J

(tJβ(r1), τJβ(r1)−1r1, s, (s(W ′))W ′ ) by definition
of να,β . On the other hand, p′(0) is (0, τJβ(r1)−1r1, s, (s(W ′))W ′ ) by Claim 1.
Since να,β is injective (see Proposition 3.2.7(i)), the case where c = 0 of Claim 2
follows.
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Now we are in the general case. Let c ∈ U , K be as in (ii). Let t′ ∈ U be the
element defined by t′

j = tj if j ∈K and by tj = cj if j /∈K. Then, by the case
where c = 0, we have the convergence

exp
(∑

j∈J

iy′
jN

′
j

)
F ′ →

(
class of the SL(2)-orbit associated to (N ′

1, . . . ,N
′
m, F ′)

)
.

Together with

να,β

(
lim
t→c

p(t)
)

= p′(c) = lim
t′ →c

p′(t′)

= να,β

(
lim
t′ →c

exp
(∑

j∈J

iy′
jN

′
j

)
F ′

)
,

we have the general case of Claim 2. �

4.2. Hodge metrics at the boundary of DI
SL(2)

We expect that DSL(2) plays a role as a natural space in which real analytic
asymptotic behaviors of degenerating objects are well described. In this sub-
section we illustrate this by taking the degeneration of the Hodge metric as an
example, and we explain our previous result on the norm estimate in [KNU1] via
DI

SL(2).

4.2.1.
Let F ∈D. For c > 0, we define a Hermitian form

( , )F,c : H0,C ×H0,C →C

as follows.
For each w ∈Z, let

( , )F (grW
w ) : grW

w,C×grW
w,C →C

be the Hodge metric 〈CF (grW
w )(•), •̄〉w, where CF (grW

w ) is the Weil operator. For
v ∈H0,C and for w ∈Z, let vw,F be the image in grW

w,C of the w-component of v

with respect to the canonical splitting of W associated to F . Define

(v, v′)F,c =
∑
w∈Z

cw(vw,F , v′
w,F )F (grW

w ) (v, v′ ∈H0,C).

PROPOSITION 4.2.2

Let Ψ be an admissible set of weight filtrations on H0,R (see Section 3.2.2). Let
β be a distance to Ψ-boundary (see Section 3.2.4, Proposition 3.2.5). Assume
W /∈ Ψ (resp., W ∈ Ψ). For each W ′ ∈ Ψ, let βW ′ : D →R>0 (resp., Dnspl →
R>0) be the W ′-component of β. For p ∈D, let

( , )p,β := ( , )p,c with c =
∏

W ′ ∈Ψ

βW ′ (p)−2.

Let m : Ψ→Z be a map, let V = Vm =
⋂

W ′ ∈Ψ W ′
m(W ′),C, and let Her(V ) be

the space of all Hermitian forms on V .
Let ( , )p,β,m ∈Her(V ) be the restriction of

∏
W ′ ∈Ψ βW ′ (p)2m(W ′)( , )p,β to V .
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(i) The real analytic map f : D (resp., Dnspl) → Her(V ), p �→ ( , )p,β,m,
extends to a real analytic map f : DI

SL(2)(Ψ) (resp., DI
SL(2)(Ψ)nspl)→Her(V ).

(ii) For a point p ∈DI
SL(2)(Ψ) (resp., p ∈DI

SL(2)(Ψ)nspl) such that Ψ is the
set of weight filtrations associated to p, the limit of ( , )p,β,m at p induces a positive
definite Hermitian form on the quotient space

V/
( ∑

m′<m

⋂
W ′ ∈Ψ

W ′
m′(W ′),C

)
,

where m′ < m means m′(W ′)≤m(W ′) for all W ′ ∈Ψ and m′ �= m.

Proof
We prove (i). Assume W /∈ Ψ. Fix a splitting α : (R×)Ψ → AutR(H0,R,W ) of
Ψ. Let p ∈ D. Let v, v′ ∈ V . Then we have the weight decompositions v =∑

m′ ≤m vm′ , v′ =
∑

m′ ≤m v′
m′ with respect to α. Since

(v, v′)p,β =
(
αβ(p)(αβ(p))−1v,αβ(p)(αβ(p))−1v′)

αβ(p)(αβ(p))−1p,β

=
(
αβ(p)−1v,αβ(p)−1v′)

αβ(p)−1p,1
,

we have

(v, v′)p,β,m

=
∏

W ′ ∈Ψ

βW ′ (p)2m(W ′)
(
αβ(p)−1v,αβ(p)−1v′)

αβ(p)−1p,1
(1)

=
∑

m′,m′ ′ ≤m

∏
W ′ ∈Ψ

βW ′ (p)(2m−m′ −m′ ′)(W ′)(vm′ , v′
m′ ′ )αβ(p)−1p,1.

This extends to a real analytic function on DI
SL(2)(Ψ) because (2m − m′ −

m′ ′)(W ′)≥ 0 for all W ′ ∈Ψ, and D→D, p �→ αβ(p)−1p, extends to a real ana-
lytic map DI

SL(2)(Ψ)→D (see Theorem 3.2.10(i)).
In the case W ∈Ψ, the argument is analogous.
We prove (ii). Let v, v′ ∈ V be as above. Let {pλ}λ be a sequence in D which

converges to p, and let q = limλ αβ(pλ)−1(pλ) ∈D. Then, by the result of (i), we
have from (1),

(2) lim
λ

(v, v′)pλ,β,m = (vm, v′
m)q,1.

The right-hand side of (2) is nothing but the restriction of the Hermitian metric
at q ∈ D to the m-component with respect to α, which is therefore positive
definite. �

4.2.3.
As will be shown in a later part of our series, the norm estimate in [KNU1] for
a given variation of mixed Hodge structure S →D (cf. [KNU1, Section 12]) is
incorporated in the diagram

U →DI
SL(2)(Ψ) (resp.,DI

SL(2)(Ψ)nspl)
f→Her(V ).
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Here U is an open neighborhood of a point of Slog
val , the first arrow is induced

by an extension of the period map Slog
val → Γ\DI

SL(2), where Γ is an appropriate
group (cf. Section 4.4.9), and f is as in Proposition 4.2.2.

4.2.4.
EXAMPLE V

We consider Example V. Here the norm estimate is not continuous on DII
SL(2).

Let Ψ and Ψ̄ be as in Section 3.6.2. Fix u, v ∈ Ce4 + Ce5 ⊂ W ′
1, and let

u′, v′ be their respective images in grW
1 . Let β : D →R>0 be the distance to

Ψ-boundary which appears in Section 3.6.2.
As in Proposition 4.2.2, the map

f : D→C, p �→ β(p)2(u, v)p,β

extends to a real analytic function f : DI
SL(2)(Ψ)→C. We show, however, that

for some choices of u and v, this map f : DI
SL(2)(Ψ)→C is not continuous with

respect to the topology of DII
SL(2). These can be explained by the following

commutative diagram at the end of Section 3.6.2.(
a1, a2, (a3, x + iy), τ

)
∈ A1 ×A2 × (A3 × h̄±)′ × h � DI

SL(2)(Ψ)
f→ C

↓ ↓ ↓

(a1, a2, |y|−1/2a3, x + iy, τ) ∈
( 3∏

j=1

Aj

)
× h̄± × h � DII

SL(2)(Ψ̄).

Recall that Aj = HomR(grW
1 ,Rej) (j = 1,2,3). The composite

A1 ×A2 × (A3 × h̄±)′ × h�DI
SL(2)(Ψ)

f→C

sends (a1, a2, (a3, x + iy), τ) to(
|y|−3/2a1(u′) + |y|−1/2a2(u′) + a3(u′),

|y|−3/2a1(v′) + |y|−1/2a2(v′) + a3(v′)
)
0,(x+iy)/|y| + (u′, v′)1,τ .

Here ( , )0,(x+iy)/|y| is the Hodge metric on grW
0,C associated to (x+ iy)/|y| ∈ h± =

D(grW
0 ), and ( , )1,τ is the Hodge metric on grW

1,C associated to τ ∈ h = D(grW
1 ).

On the other hand, the composition
3∏

j=1

Aj × h± × h�D
f→C,

where the first arrow is induced by the lower (not upper) horizontal isomorphism
of the above diagram, sends (a1, a2, a3, x + iy, τ) to(

|y|−3/2a1(u′) + |y|−1/2a2(u′) + |y|1/2a3(u′),

|y|−3/2a1(v′) + |y|−1/2a2(v′) + |y|1/2a3(v′)
)
0,(x+iy)/|y| + (u′, v′)1,τ .

For some choices of u and v, as is precisely explained below, the last map is not
extended continuously to the point (0,0,0, i∞, i) of

∏3
j=1 Aj × h̄± × h, for this
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map has the term |y|1/2 which diverges at i∞. Since (0,0,0, i∞, i) is the image
of (0,0, (0, i∞), i) ∈A1 ×A2 × (A3 × h̄±)′ × h under the left vertical arrow, this
shows that for some choices of u and v, f : DI

SL(2)(Ψ)→C is not continuous for
the topology of DII

SL(2).
More precisely, take u and v such that there exists b ∈A3 for which (b(u′),

b(v′))0,i �= 0. Let c be a real number such that 0 < c < 1/2. Then, as y →∞,
(0,0, yc−1/2b, iy, i) ∈

∏3
j=1 Aj × h± × h converges to (0,0,0, i∞, i) ∈

∏3
j=1 Aj ×

h̄± × h. However, f sends the image of (0,0, yc−1/2b, iy, i) in D under the lower
isomorphism of the diagram to (ycb(u′), ycb(v′))0,i + (u′, v′)1,i, which diverges.

4.3. Hodge filtrations at the boundary
4.3.1.
In Section 4.3, let X = DI

SL(2) or DII
SL(2).

Let OX be the sheaf of real analytic functions on X , and let α : MX →OX

be the log structure with sign on X . We define a sheaf of rings O′
X on X by

O′
X :=OX [q−1 | q ∈ α(MX)]⊃OX . Let O′

X,C = C⊗R O′
X . The following theo-

rem shows that the Hodge filtration over O′
X,C extends to the boundary of X .

THEOREM 4.3.2

Let X be one of DI
SL(2), DII

SL(2), and let O′
X be as in Section 4.3.1.

Then, for each p ∈Z, there is a unique O′
X,C-submodule F p of O′

X,C ⊗Z H0

which is locally a direct summand and whose restriction to D coincides with the
filter F p of OX,C ⊗Z H0.

Proof
It is sufficient to prove the case X = DII

SL(2) because the assertion for X = DI
SL(2)

follows from that for X = DII
SL(2) by pulling back.

Assume X = DII
SL(2). Let F be the universal Hodge filtration on D, and write

F = s(θ(F ′, δ)) (s ∈ spl(W ), F ′ ∈D(grW ), δ ∈ L(F ′)) as in Proposition 1.2.5. Let
Φ be an admissible set of weight filtrations on grW (see Section 3.2.2), let α be a
splitting of Φ, and let β be a distance to Φ-boundary as in Proposition 3.2.5(ii).
We observe

(1) s
(
θ(F ′, δ)

)
= s

(
θ(αβ(F ′)(αβ(F ′))−1F ′,Ad(αβ(F ′))Ad(αβ(F ′))−1δ)

)
.

By Proposition 3.2.6(ii), (αβ(F ′)−1F ′,Ad(αβ(F ′))−1δ), and s extend real ana-
lytically over the Φ-boundary. Let G′ =

∏
w Aut(grW

w ), and consider the splitting
α : GΦ

m →G′. Then the section β(F ′) of GΦ
m(O′

X) on DII
SL(2)(Φ) is sent to a sec-

tion αβ(F ′) of G′(O′
X) over DII

SL(2)(Φ). Thus F = s(θ(F ′, δ)) extends uniquely
to a filtration of O′

X,C ⊗H0 consisting of O′
X,C-submodules which are locally

direct summands. �
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4.3.3.
REMARKS

(i) For DSL(2),val, DBS, DBS,val, theorems similar to Theorem 4.3.2 are anal-
ogously proved.

(ii) The Hodge decomposition and the Hodge metric also extend over the
boundary after tensoring with O′

X,C. In the pure case, this together with the
period map Slog

val → Γ\DSL(2) (see Section 4.2.3) explains the existence of the log
C∞ Hodge decomposition in [KMN].

4.4. Example IV and height pairing
We consider Example IV. The space DSL(2) = DI

SL(2) = DII
SL(2) in this example is

related to the asymptotic behavior of the Archimedean height pairing for elliptic
curves in degeneration (see [P2], [C], [Si]). We describe which kind of SL(2)-orbits
appear in such a geometric situation of degeneration.

The following observations were obtained in discussions with Spencer Bloch.

4.4.1.
Recall (see [A]) that the Archimedean height pairing for an elliptic curve E

over C is 〈Z,W 〉 ∈R defined for divisors Z, W on E of degree zero such that
|Z| ∩ |W |= ∅ (|Z| here denotes the support of Z), characterized by the following
properties (1)–(4).

(1) If |Z| ∩ |W |= |Z ′| ∩ |W |= ∅, then 〈Z + Z ′,W 〉= 〈Z,W 〉+ 〈Z ′,W 〉.
(2) We have 〈Z,W 〉= 〈W,Z〉.
(3) If f is a meromorphic function on E such that |(f)| ∩ |W | = ∅ and if

W =
∑

w∈|W | nw(w), then 〈(f),W 〉=−(2π)−1
∑

w∈|W | nw log(|f(w)|).
(4) The map (E(C) � |W |)× (E(C) � |W |)→R, (a, b) �→ 〈(a)− (b),W 〉, is

continuous.

4.4.2.
Consider Example IV.

Let τ ∈ h, and let Eτ be the elliptic curve C/(Zτ + Z).
For divisors Z, W on Eτ of degree zero such that |Z| ∩ |W |= ∅, we define

an element

p(τ,Z,W ) ∈GZ,u\D

as follows.
For τ ∈ h and z ∈C, let

θ(τ, z) =
∞∏

n=0

(1− qnt) ·
∞∏

n=1

(1− qnt−1), where q = e2πiτ , t = e2πiz.

We have

(1) θ(τ, z + 1) = θ(τ, z), θ(τ, z + τ) =−e−2πizθ(τ, z).
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Write

Z =
r∑

j=1

mj(pj), W =
s∑

j=1

nj(qj)

(pj , qj ∈Eτ , mj , nj ∈Z,
∑r

j=1 mj = 0,
∑s

j=1 nj = 0), and write

pj =
(
zj mod (Zτ + Z)

)
, qj =

(
wj mod (Zτ + Z)

)
with zj ,wj ∈C. Define

p(τ,Z,W ) = class of F (τ,w,λ, z) ∈GZ,u\D(2)

with z =
r∑

j=1

mjzj , w =
s∑

j=1

njwj , λ = (2πi)−1 log
(∏

j,k

θ(τ, zj −wk)mjnk

)
,

and with F (τ,w,λ, z) ∈D as in Section 1.1.1, Example IV. This element p(τ,Z,W )
of GZ,u\D is well defined: as is easily seen using (1), the right-hand side of
(2) does not change when we replace ((zj)j , (wj)j) by ((z′

j)j , (w′
j)j) such that

z′
j ≡ zj mod Zτ + Z and w′

j ≡ wj mod Zτ + Z for any j. For example, in the
case where z′

� = z� + τ for some �, z′
j = zj for the other j �= �, and w′

j = wj for
any j, by (1), the right-hand side of (2) given by (z′

j)j , (w′
j)j is the class of

F (τ,w,λ + m�w,z + m�τ) = γF (τ,w,λ, z), where γ is the element of GZ,u which
sends ej (j = 1,2,3) to ej and e4 to e4 −m�e3.

4.4.3.
Let L = L(F ) with F ∈D(grW ), which is independent of F , and let δ : D→ L =
R be the δ-component (see Proposition 1.2.5). Note that

δ
(
F (τ,w,λ, z)

)
= Im(λ)− Im(z) Im(w)/ Im(τ)

(see Section 1.2.9, Example IV).

LEMMA 4.4.4

The map δ : D→R factors through the projection D→GZ,u\D, and we have

δ
(
p(τ,Z,W )

)
= 〈Z,W 〉,

where 〈Z,W 〉 ∈R is the Archimedean height pairing (see Section 4.4.1).

4.4.5.
The equality in Lemma 4.4.4 is well known. It has also the following geometric
(cohomological) interpretation.

Let E be an elliptic curve over C, and let Z and W be divisors of degree
zero on E such that |Z| ∩ |W |= ∅. We assume Z �= 0, W �= 0.

Let U = E � |Z|, V = E � (|Z| ∪ |W |), and let j : V → U be the inclusion
map. Write Z =

∑
z∈|Z| mz(z), W =

∑
w∈|W | nw(w). We have exact sequences

of mixed Hodge structures

0→H1(E,Z)(1)→H1(U,Z)(1)→Z|Z| →H2(E,Z)(1)→ 0,
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0→H0(U,Z)(1)→Z(1)|W | →H1(U, j!Z)(1)→H1(U,Z)(1)→ 0.

Note that the map Z|Z| →H2(E,Z)(1) = Z is identified with the degree map. Let
A⊂B ⊂H1(U, j!Z)(1) be sub mixed Hodge structures defined as follows. A is the
image of {x = (xw)w ∈ Z(1)|W | |

∑
w nwxw = 0} under Z(1)|W | →H1(U, j!Z)(1).

B is the inverse image of {(mzx)z | x ∈Z} under the composition H1(U, j!Z)(1)→
H1(U,Z)(1)→ Z|Z|. Let H = B/A. Then we have the induced injective homo-
morphism a : Z(1)→H , the induced surjective homomorphism b : H → Z, and
Ker(b)/ Im(a) = H1(E,Z)(1). A well-known cohomological interpretation of the
height pairing 〈Z,W 〉 is

〈Z,W 〉= δ(H).

On the other hand, in the case E = Eτ , as is well known,

p(τ,Z,W ) = class(H).

This explains Lemma 4.4.4.

4.4.6.
We consider degeneration.

Let Δ = {q ∈C | |q|< 1}, and let Δ∗ = Δ � {0}. Fix an integer c≥ 1, and
consider the family of elliptic curves over Δ∗ whose fiber over e2πiτ/c (Im(τ) > 0)
is C/(Zτ +Z). This family has a Néron model Ec over Δ whose fiber over 0 ∈Δ
is canonically isomorphic to C× × Z/cZ as a Lie group. If a ∈Q and ca ∈ Z,
and if u is a holomorphic function Δ → C×, there is a section of Ec over Δ
whose restriction to Δ∗ is given by e2πiτ/c �→ (aτ + f(e2πiτ/c)modZτ + Z) with
f = (2πi)−1 log(u) and whose value at 0 ∈Δ is (u(0), camod cZ) ∈C× × Z/cZ.
Any section of Ec over Δ is obtained in this way.

Let Γ⊂GZ be the subgroup consisting of all elements γ which satisfy γ(ej)−
ej ∈

⊕
1≤k<j Zek for j = 1,2,3,4. Note that Γ ⊃ GZ,u. Note also that δ : D →

L = R factors through the projection D→ Γ\D.
Fix mj , nk ∈ Z, aj , bk ∈Q (1 ≤ j ≤ r, 1 ≤ k ≤ s) such that

∑
j mj = 0 and∑

k nk = 0, caj , cbk ∈Z for any j, k, and take holomorphic functions uj , vk : Δ→
C× (1≤ j ≤ r,1≤ k ≤ s). Assume that, for any j, k, the section pj of Ec defined
by (aj , uj) and the section qk of Ec defined by (bk, vk) do not meet over Δ.
Consider the morphism

p : Δ∗ → Γ\D, e2πiτ/c �→
(
p
(
τ,

∑
j

mj(pj),
∑

k

nk(qk)
)

modΓ
)

with

pj :=
(
ajτ + fj(e2πiτ/c)modZτ + Z

)
,

qk :=
(
bkτ + gk(e2πiτ/c)modZτ + Z

)
,

where

fj := (2πi)−1 log(uj), gk := (2πi)−1 log(vk).
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4.4.7.
Let Δlog = |Δ| × S1, where |Δ| := {r ∈R | 0 ≤ r < 1}, S1 := {u ∈C× | |u| = 1}.
We have a projection Δlog →Δ, (r,u) �→ ru (r ∈ |Δ|, u ∈ S1) and an embedding
Δ∗ →Δlog, ru �→ (r,u) (r ∈ |Δ|, r �= 0, u ∈ S1).

We define the sheaf of C∞-functions on Δlog as follows. For an open set U

of Δlog and a real-valued function h on U , h is C∞ if and only if the following
(1) holds. Let U ′ be the inverse image of U in R≥0 ×R under the surjective
map R≥0 ×R→Δlog, (t, x) �→ (e−1/t2 , e2πix).

(1) The pullback of h on U ′ extends, locally on U ′, to a C∞-function on
some open neighborhood of U ′ in R2.

Roughly speaking, a function h on Δlog is C∞ if h(e2πi(x+iy)) (x ∈R,0 <

y ≤∞) is a C∞-function in x and 1/
√

y.
The restriction of this sheaf of C∞-functions on Δlog to the open set Δ∗

coincides with the usual sheaf of C∞-functions on Δ∗.

PROPOSITION 4.4.8

Let Φ ∈W be as in Section 3.6.1, Example IV.

(i) The map p : Δ∗ → Γ\D in Section 4.4.6 extends to a C∞ map Δlog →
Γ\DII

SL(2)(Φ). That is, we have a commutative diagram of local ringed spaces
over R

Δ∗ p→ Γ\D
∩ ∩

Δlog → Γ\DII
SL(2)(Φ).

(ii) Let B2(x) be the second Bernoulli polynomial x2− x + 1/6. For x ∈R,
{x} denotes the unique real number such that 0≤ {x}< 1 and {x} ≡ x mod Z.

Then the composite Δ∗ p→ Γ\D δ→ L = R has the form

e2πi(x+iy)/c �→ 1
2

(∑
j,k

mjnkB2({aj − bk})
)
y + h(e2πi(x+iy)/c)

for some C∞-function h on Δlog.
(iii) Let

DII
SL(2)(Φ)� spl(W )× h̄× L̄

be the lower isomorphism in the commutative diagram in Section 3.6.1, Example IV.
Then the projection DII

SL(2)(Φ) → L̄ factors through DII
SL(2)(Φ) → Γ\DII

SL(2)(Φ),

and the composite Δlog p→ Γ\DII
SL(2)(Φ)→ L̄ sends any point of Δlog � Δ∗ to

1
2

(∑
j,k

mjnkB2({aj − bk})
)
∈R = L⊂ L̄.

In (ii) and (iii), B2(x) can be replaced by the polynomial x2 − x. The constant
term of B2(x) does not play a role, for

∑
j,k mjnk = 0.
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Note that the restriction of the map DII
SL(2)(Φ) → L̄ in (iii) to D is not

δ : D → L but is p �→ Ad
(
αβ(p(grW ))

)−1
δ(p), where α and β are as in Sec-

tion 3.6.1, Example IV.

Proof of Proposition 4.4.8
We may and do assume 0≤ aj < 1 and 0≤ bk < 1. Let J = {(j, k) | 1≤ j ≤ r,1≤
k ≤ s, aj < bk}. Then, for each j and k, the function

e2πiτ/c �→ θ
(
τ, (aj − bk)τ + fj(e2πiτ/c)− gk(e2πiτ/c)

)
on Δ is meromorphic and its order of zero at 0 ∈Δ is (aj−bk)c if (j, k) ∈ J and is
zero otherwise. By using this and by using the description of splW : D→ spl(W )
in Section 1.2.9, Example IV, we see that the composite

Δ∗ p→ Γ\D 1.2.9−−−−→



Γ\
(
spl(W )× h

)
×L

has the property that the part Δ∗ → Γ\(spl(W )× h) extends to a C∞-function
Δlog → Γ\(spl(W )× h̄) and that the part Δ∗ → L = R has the form e2πiτ/c �→(
−

(∑
j mjaj

)(∑
k nkbk

)
+

∑
(j,k)∈J mjnk(aj − bk)

)
Im(τ) + h(e2πiτ/c), where h

is a C∞-function on Δlog. Note that

−
(∑

j

mjaj

)(∑
k

nkbk

)
+

∑
(j,k)∈J

mjnk(aj − bk)

=
1
2

(∑
j,k

mjnkB2({aj − bk})
)
.

Hence, for the lower isomorphism DII
SL(2)(Φ) � spl(W ) × h̄ × L̄ in the diagram

in Section 3.6.1, Example IV, the composite Δ∗ → L̄ is written as e2πiτ/c �→
(1/2)(

∑
j,k mjnkB2({aj − bk})) + (Im(τ))−1h(e2πiτ/c), where (Im(τ))−1h is a

C∞-function on Δlog which has value zero on Δlog � Δ∗. These imply the asser-
tions. �

4.4.9.
The above Proposition 4.4.8 implies a special case of the height estimate by
Pearlstein [P2].

The lower map in the diagram in Proposition 4.4.8(i) is an example of the
extended period map (cf. Section 4.2.3). In a forthcoming part of this series
of articles, the existence of the extended period map X log

val → Γ\DSL(2) (X is
a log smooth fs log analytic space) will be proved generally for a variation of
mixed Hodge structure on U = Xtriv with polarized graded quotients with global
monodromy in an appropriate group Γ which has unipotent local monodromy
along D = X � U and is admissible at the boundary. This will be accomplished
by the CKS map D�

Σ,val → DSL(2) in the fundamental diagram in Section 0.2
(see [KU3, Section 8.4.1], for the pure case), and imply the height estimate of
Pearlstein for more general cases.



Classifying spaces of degenerating mixed Hodge structures, II 259

Correction to Part I. There are some mistakes in calculating examples
in Part I (see [KNU2, Section 10]). First, the r−2’s in Section 10.2.1 should be
r−1. (Note that we gave the real analytic structure on ĀP in the notation in
[KNU2, Section 2.6] by using the fundamental roots.) There are similar mistakes
also in Section 10.3; that is, r should be replaced by r1/2 in the third last line
in p. 219 of [KNU2], which should be (x + ir−1, . . .), in the second line in p. 220:
(s1, s2, x, r, d) �→ x+ ir−1, and in the second last line in p. 220: t(r)(e1) = r−1/2e1,
t(r)(e2) = r1/2e2.
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