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Abstract The F -threshold cJ (a) of an ideal a with respect to an ideal J is a positive
characteristic invariant obtained by comparing the powers of a with the Frobenius pow-
ers of J . We study a conjecture formulated in an earlier article that we authored with
M. Mustaţă, which bounds cJ (a) in terms of the multiplicities e(a) and e(J) when a and
J are zero-dimensional ideals and J is generated by a system of parameters. We prove
the conjecture when a and J are generated by homogeneous systems of parameters in a
Noetherian graded k-algebra. We also prove a similar inequality involving, instead of the
F -threshold, the jumping number for the generalized parameter test submodules.

0. Introduction

Let R be a Noetherian ring of prime characteristic p. For every ideal a in R and
for every ideal J whose radical contains a, one can define asymptotic invariants
that measure the containment of the powers of a in the Frobenius powers of J .
These invariants, dubbed F -thresholds, were introduced in the case of a regular
local ring in [MTW] and in full generality in the article [HMTW]. In this article
we work in the general setting.

A conjecture was made in [HMTW] which connects F -thresholds with the
multiplicities of the ideals a and J (see Conjecture 2.1 below). A second question
was stated in the same article which does not explicitly refer to F -thresholds but
which implies Conjecture 2.1. This second question is easy to state.

QUESTION 0.1

Suppose that a and J are m-primary ideals in a d-dimensional Noetherian local or
Noetherian graded k-algebra (R,m), where k is a field of arbitrary characteristic.
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Further, suppose that J is generated by a system of parameters (homogeneous in
the graded case). If aN+1 ⊆ J for some integer N ≥ 0, then does the inequality

e(a) ≥
( d

d + N

)d

e(J)

hold? Here e(K) denotes the multiplicity of the ideal K.

In [HMTW, Theorem 5.8] this question was answered in the affirmative if R

is a Cohen-Macaulay graded ring and a is generated by a homogeneous system
of parameters. In this article we generalize this result to the case of arbitrary
graded rings.

THEOREM 0.2 (THEOREM 2.8)

The answer to Question 0.1 is yes if R is a graded ring and a is generated by a
homogeneous system of parameters for R.

In fact, we prove that if R is in addition a domain of positive characteristic, then
the power N in the statement of Question 0.1 can be changed to be the least
integer N ≥ 0 such that aN+1 ⊆ J+gr, where J+gr is a certain graded plus closure
of the ideal J (see Discussion 2.11). This result not only removes the Cohen-
Macaulay assumption on R but even strengthens the previous result in the case
when R is a Cohen-Macaulay graded domain of positive characteristic. The
proof of Theorem 0.2 uses reduction to characteristic p > 0 and takes advantage
of the fact that the graded plus closure of a graded Noetherian domain in positive
characteristic is a big Cohen-Macaulay algebra (see [HH1]).

Another ingredient of this article is a comparison of F -thresholds and F -
jumping numbers, jumping numbers for the generalized parameter test submod-
ules of Schwede and Takagi [ST] (see Definition 4.3 for their definition). In
[MTW, Proposition 2.7] and [HMTW, Remark 2.5], it was shown that those two
invariants coincide with each other in cases when the ring is regular but not in
general. In this article, we show that if the ideal J is generated by a full system
of parameters and if the ring is F -rational away from V (a), then the F -jumping
number fjnJ(ωR,a) coincides with the F -threshold cJ(a). Also, when a and J

are ideals generated by full homogeneous systems of parameters in a Noetherian
graded domain R over a field of positive characteristic, we prove an inequality
similar to that of the original conjecture in [HMTW] (Conjecture 2.1), involving
the F -jumping number fjnJ(ωR,a) instead of the F -threshold cJ(a).

The article is structured as follows. In Section 1 we recall some notions
needed throughout the rest of the article and introduce basic facts about F -
thresholds. We prove their existence in a new case in Theorem 1.6. In Section 2
we prove our main result, Theorem 2.8, in positive characteristic, and in Section 3
we prove the case of characteristic zero. In Section 4 we compare F -thresholds
and F -jumping numbers. We give a lower bound on the F -jumping number in
terms of multiplicities in Corollary 4.7.



Multiplicity bounds in graded rings 129

1. Preliminaries and basic results

In this section we review some definitions and notation that are used through-
out the article and state and prove basic results on F -thresholds. All rings are
Noetherian commutative rings with unity unless explicitly stated otherwise. A
particularly important exception is the graded plus closure of a graded Noe-
therian domain, which essentially is never Noetherian. For a ring R, we denote
by R◦ the set of elements of R that are not contained in any minimal prime
ideal. Elements x1, . . . , xr in R are called parameters if they generate an ideal of
height r.

For a real number u, we denote by �u� the largest integer ≤ u and by �u�
the smallest integer ≥ u.

DEFINITION 1.1

Let R be a ring of prime characteristic p.

(i) We always let q = pe denote a power of p. If I is an ideal of R, then I [q]

is the ideal generated by the set of all iq for i ∈ I . The Frobenius closure IF of
I is defined as the ideal of R consisting of all elements x ∈ R such that xq ∈ I [q]

for some q = pe.
(ii) R is F -finite if the Frobenius map R → R sending r to rp is a finite

map.
(iii) R is F -pure if the Frobenius map R → R is pure.

Let R be a Noetherian ring of dimension d and of characteristic p > 0. Let a be
a fixed proper ideal of R such that a ∩ R◦ �= ∅. To each ideal J of R such that
a ⊆

√
J we associate the F -threshold cJ(a) as follows. For every q = pe, let

νJ
a (q) := max{r ∈ N | ar �⊆ J [q]}.

These numbers can be thought of as characteristic p analogues of Samuel’s asymp-
totic function (for example, see [SH, Corollary 6.9.1]). Since a ⊆

√
J , these are

nonnegative integers. (If a ⊆ J [q], then we put νJ
a (q) = 0.) We put

cJ
+(a) = limsup

q→∞

νJ
a (q)
q

, cJ
−(a) = lim inf

q→∞

νJ
a (q)
q

.

When cJ
+(a) = cJ

−(a), we call this limit the F -threshold of the pair (R,a) (or
simply of a) with respect to J , and we denote it by cJ(a). We refer to [BMS1],
[BMS2], [HM], [HMTW], and [MTW] for further information.

REMARK 1.2 (CF. [MTW, REMARK 1.2])

One has

0 ≤ cJ
−(a) ≤ cJ

+(a) < ∞.

REMARK 1.3 ([HMTW, PROPOSITION 2.2])

Let a, J be ideals as above.
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(1) If I ⊇ J , then cI
±(a) ≤ cJ

±(a).
(2) If b ⊆ a, then cJ

±(b) ≤ cJ
±(a). Moreover, if a ⊆ b, then cJ

±(b) = cJ
±(a).

Here b denotes the integral closure of b.
(3) We have cI

±(ar) = (1/r)cI
±(a) for every integer r ≥ 1.

(4) We have cJ [q]

± (a) = qcJ
±(a) for every q = pe.

(5) We have cJ
+(a) ≤ c (resp., cJ

−(a) ≥ c) if and only if for every power q0 of
p, we have a�cq�+q/q0 ⊆ J [q] (resp., a�cq� −q/q0 �⊆ J [q]) for all q = pe � q0.

The F -threshold cJ(a) exists in many cases.

LEMMA 1.4 ([HMTW, LEMMA 2.3])

Let a, J be as above.

(1) If J [q] = (J [q])F for all large q = pe, then the F -threshold cJ(a) exists;
that is, cJ

+(a) = cJ
−(a). In particular, if R is F -pure, then cJ(a) exists.

(2) If a is principal, then cJ(a) exists.

REMARK 1.5

Let a, J be as above. Set Rred := R/
√

(0), and let a, J be the images of a

and J in Rred, respectively. Let μ be the least number of generators for the

ideal a, and let q′ be a power of p such that
√

(0)
[q′]

= 0. Then for all q = pe,
νJ

a (qq′)/qq′ ≤ νJ
a (qq′)/qq′ ≤ νJ

a (q)/q+μ/q. In particular, if the F -threshold cJ(a)
exists, then the F -threshold cJ(a) also exists.

Our first new result is that the F -threshold exists more generally when the ring
is F -pure away from V (a).

THEOREM 1.6

Let (R,m) be a local F-finite Noetherian ring of characteristic p, and let a and
J be ideals such that the radical of J contains a. Assume that RP is F -pure for
all primes P which do not contain a. Then the F -threshold cJ(a) exists, that is,
cJ
+(a) = cJ

−(a).

Proof
We use the following notation. eR is R thought of as an R-module via the eth
iterate of the Frobenius map F . Thus the R-module structure on eR is given by
r · s = rqs for r ∈ R, s ∈ eR, and q = pe.

By Remark 1.5, we may assume that R is reduced. The map from RP to
1(RP ) is split for every prime P not containing a. Since the Frobenius map
commutes with localization and R is F -finite, there exists an R-homomorphism
fP : 1R → R such that fP (1) = uP /∈ P . By [HH1, Lemma 6.21], for each e ≥ 1
there exists an R-linear map eR → R taking 1 to u2

P . (In [HH1, Lemma 6.21] it
is assumed that the element uP ∈ Ro, but that is not used in the proof of this
lemma.)
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Let I be the ideal generated by the set of u2
P for P ranging over all prime

ideals not containing a. We claim that I(J [q])F ⊆ J [q] for all q = pe. Suppose
that r ∈ (J [q])F . Then there exists a power q′ = pe′

of p such that rq′ ∈ J [qq′], and
so r ∈ J [q](e′

R). For each prime P not containing a, there is an R-linear map gP :
e′

R → R such that gP (1) = u2
P /∈ P . Then ru2

P = gP (r · 1) ∈ gP (J [q](e′
R)) ⊆ J [q],

showing that Ir ⊆ J [q] as claimed.
Since uP /∈ P , I is not contained in any prime P which does not contain a.

Hence a ⊆
√

I , and there exists an integer k such that ak ⊆ I . We claim that for
all powers of p, q, and Q,

vJ
a (qQ) + 1

qQ
≥ vJ

a (q)
q

− k

q
.

Since the set of values {(vJ
a (q))/q} is bounded above, this implies that the limit

exists. To prove this claim, fix Q, and write �(vJ
a (qQ) + 1)/Q� = a. Then

(aa)[Q] ⊆ aaQ ⊆ avJ
a (qQ)+1 ⊆ J [qQ],

where the last containment follows from the definition of vJ
a (qQ). Hence aa ⊆

(J [q])F , and the work above shows that aa+k ⊆ I(J [q])F ⊆ J [q]. It follows that
vJ

a (q) ≤ a + k − 1. Since a ≤
(
(vJ

a (qQ) + 1)/Q
)

+ 1, dividing by q gives the
required inequality and finishes the proof. �

2. Connections between F -thresholds and multiplicity

The following conjecture was proposed in [HMTW, Conjecture 5.1].

CONJECTURE 2.1

Let (R,m) be a d-dimensional Noetherian local ring of characteristic p > 0. If
J ⊆ m is an ideal generated by a full system of parameters, and if a ⊆ m is an
m-primary ideal, then

e(a) ≥
( d

cJ
−(a)

)d

e(J).

Given an m-primary ideal a in a regular local ring (R,m), essentially of finite type
over a field of characteristic zero, de Fernex, Ein, and Mustaţă proved in [dFEM]
an inequality involving the log canonical threshold lct(a) and the multiplicity
e(a). Later, Takagi and Watanabe gave in [TW] a characteristic p-analogue of
this result, replacing the log canonical threshold lct(a) by the F -pure threshold
fpt(a). The conjecture above generalizes these inequalities.

We list some known facts.

REMARK 2.2

(1) The condition in Conjecture 2.1 that J is generated by a system of param-
eters is critical; the inequality can fail if we drop this condition (see [HMTW,
Remark 5.2(c)]).
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(2) If (R,m) is a one-dimensional analytically irreducible local domain of
characteristic p > 0, and if a, J are m-primary ideals in R, then

cJ(a) =
e(J)
e(a)

.

In particular, Conjecture 2.1 holds in R (see [HMTW, Proposition 5.5]).
(3) If (R,m) is a regular local ring of characteristic p > 0 and J = (xa1

1 , . . . ,

xad

d ) with x1, . . . , xd a full regular system of parameters for R, and with a1, . . . , ad

positive integers, then Conjecture 2.1 holds (see [HMTW, Theorem 5.6]).
(4) Let R =

⊕
n≥0 Rn be a d-dimensional graded Cohen-Macaulay ring with

R0 a field of characteristic p > 0. If a and J are ideals generated by full homo-
geneous systems of parameters for R, then

e(a) ≥
( d

cJ
−(a)

)d

e(J)

(see [HMTW, Corollary 5.9]).

The next proposition shows that Conjecture 2.1 actually is equivalent to the
special case of itself in which cJ

−(a) ≤ d.

PROPOSITION 2.3

Let (R,m) be a d-dimensional formally equidimensional Noetherian local ring of
characteristic p > 0. Then the following are equivalent:

(1) e(a) ≥ e(J) for all ideals J ⊆ R generated by full systems of parameters
and for all m-primary ideals a ⊆ R with cJ

−(a) ≤ d;
(2) e(a) ≥

(
d/(cJ

−(a))
)d

e(J) for all ideals J ⊆ R generated by full systems of
parameters and for all m-primary ideals a ⊆ R.

Proof
First assume (1). Given any positive ε > 0, choose n and q = pe so that d − ε ≤
q
ncJ

−(a) ≤ d. Since q
ncJ

−(a) = cJ [q]

− (an) by Remark 1.3(3), (4), we get

cJ [q]

− (an) ≤ d,

and then by (1), we obtain nde(a) = e(an) ≥ e(J [q]) = qde(J). Thus we have
shown that for any ε > 0, e(a)/e(J) ≥ ((d − ε)/cJ

−(a))d, proving the inequality
in (2).

On the other hand, assuming (2) immediately gives (1).* �

*In [HMTW, Theorem 3.3.1], it is incorrectly claimed that cJ
+(I) ≤ d implies that I is

integral over J (which in particular forces e(I) ≥ e(J)). This is false. The mistake occurs in

the following section of the proof: “. . . cJ
+(I) ≤ d implies that for all q0 = pe0 and for all large

q = pe, we have Iq(d+(1/q0)) ⊆ J [q]. Hence IqJq(d−1+(1/q0)) ⊆ J [q], . . .” This latter statement

does not follow unless J ⊆ I .
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REMARK 2.4

One can think of the condition (1) in Proposition 2.3 as a converse to the
main point of the tight closure Briançon-Skoda theorem ([HH1, Theorem 5.4]).
Namely, suppose that we are in the special case in which J ⊆ a. If e(a) ≥ e(J),
then a is integral over J by a theorem of Rees. In this case there is a constant l

such that for all q = pe, aqd+l ⊆ J [q]. Hence cJ
−(a) ≤ d. What (1) is claiming in

this case is that the converse holds. If cJ
−(a) ≤ d, then e(a) ≥ e(J), and therefore

a is integral over J (assuming as above that J ⊆ a). This is interesting as it shows
that integrality over parameter ideals can be detected at the level of Frobenius
powers.

REMARK 2.5

In [HMTW], another problem was raised which does not depend upon the charac-
teristic and which implies the conjecture above. We state it here as a conjecture.

CONJECTURE 2.6

Suppose that a and J are m-primary ideals in a d-dimensional Noetherian local or
Noetherian graded k-algebra (R,m), where k is a field of arbitrary characteristic.
Further, assume that J is generated by a full system of parameters (homogeneous
in the graded case). If aN+1 ⊆ J for some integer N ≥ 0, then

e(a) ≥
( d

d + N

)d

e(J).

REMARK 2.7

Conjecture 2.6 reduces to the domain case as follows. Let P1, . . . , Pl be the
minimal primes of R such that the dimension of R/Pi is equal to the dimension
of R. Write ai = (a + Pi)/Pi, Ji = (J + Pi)/Pi. Suppose that the conjecture
holds in each R/Pi. The ideal Ji is generated by parameters in R/Pi since the
dimension of R/Pi is d. Moreover, if aN+1 ⊆ J , then a

N+1
i ⊆ Ji for each i. Hence

e(ai) ≥ (d/(d + N))de(Ji). By [SH, Theorem 11.2.4], we then have

e(a) =
∑

i

e(ai)lR(RPi) ≥
∑

i

( d

d + N

)d

e(Ji)lR(RPi) =
( d

d + N

)d

e(J).

THEOREM 2.8

Let R =
⊕

n≥0 Rn be a d-dimensional Noetherian graded ring with R0 a field of
arbitrary characteristic. Suppose that a (resp., J) is an ideal generated by a full
homogeneous system of parameters of degrees a1 ≤ · · · ≤ ad (resp., b1 ≤ · · · ≤ bd)
for R. If aN+1 ⊆ J for some integer N ≥ 0, then

e(a) ≥
( d

d + N

)d

e(J).

If the equality holds in the above, then (a1, . . . , ad) and (b1, . . . , bd) are propor-
tional, that is, a1/b1 = · · · = ad/bd.
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As in the proof of [HMTW, Corollary 5.9] we can immediately obtain that the
first conjecture holds in this case as well.

COROLLARY 2.9

Let R =
⊕

n≥0 Rn be a d-dimensional Noetherian graded ring with R0 a field of
characteristic p > 0. Suppose that a (resp., J) is an ideal generated by a full
homogeneous system of parameters of degrees a1 ≤ · · · ≤ ad (resp., b1 ≤ · · · ≤ bd)
for R. Then

e(a) ≥
( d

cJ
−(a)

)d

e(J).

If the equality holds in the above, then (a1, . . . , ad) and (b1, . . . , bd) are propor-
tional, that is, a1/b1 = · · · = ad/bd.

Proof
The proof of the former assertion is exactly as in the proof of [HMTW, Corol-
lary 5.9], but we repeat it here for the convenience of the reader since it is quite
short.

Note that each J [q] is again generated by a full homogeneous system of
parameters. It follows from the theorem and from the definition of νJ

a (q) that
for every q = pe we have

e(a) ≥
( d

d + νJ
a (q)

)d

e(J [q]) =
( qd

d + νJ
a (q)

)d

e(J).

On the right-hand side we can take a subsequence converging to
(
d/(cJ

−(a))
)d

e(J);
hence, we get the inequality in the corollary.

For the latter assertion, we postpone the proof to Remark 2.16. �

The proof of the main theorem is in two parts. First we prove it in characteristic p

in this section, and then we do the characteristic zero case in Section 3, by
reducing to characteristic p. Before beginning the proof of the main theorem in
positive characteristic, there are several preliminary results we need to recall as
well as some new results on multiplicity which we need.

An important point for us is that the multiplicity of an ideal generated
by a full homogeneous system of parameters is determined only by the degrees
of the parameters up to a constant which does not depend on the parameters
themselves. This is well known in case the ring is Cohen-Macaulay, and a gener-
alization to the non-Cohen-Macaulay case can be found in [To, Lemma 1.5]. We
give here a more general statement with a short proof.

PROPOSITION 2.10

Let R =
⊕

n≥0 Rn be a Noetherian graded ring of dimension d over an Artinian
local ring R0 = (A,m), and let M = mR+R+ be the unique homogeneous maximal
ideal of R. Let J be an ideal generated by a homogeneous system of parameters
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f1, . . . , fd for R. Let

P (R, t) =
∑
n≥0

lA(Rn)tn

be the Poincaré series of R. Then the multiplicity e(J) of J is given by

e(J) = deg f1 · · · deg fd lim
t→1

(1 − t)dP (R, t).

Proof
We compute the multiplicity e(J) by using Koszul homology of J .* By a theorem
of Auslander and Buchsbaum [AuB, Theorem 4.1] one has e(J) = χ(J), where
χ(J) denotes the Euler characteristic of the Koszul complex K•((f1, . . . , fd),R).

Now let Ki = Ki((f1, . . . , fd),R) (resp., Hi = Hi((f1, . . . , fd),R)) be the com-
ponent of degree i (resp., ith homology module) of the Koszul complex considered
as graded R-modules, and put deg fi = bi for each 1 ≤ i ≤ d. Then the assertion
follows from the theorem of Auslander and Buchsbaum and the following equal-
ities:

χ(J) = lim
t→1

∑
i≥0

(−1)iP (Hi, t) = lim
t→1

∑
i≥0

(−1)iP (Ki, t)

= lim
t→1

d∏
i=1

(1 − tbi)P (R, t)

= b1 · · · bd lim
t→1

(1 − t)dP (R, t).

�

Note that if R is standard graded over a field, then the value limt→1(1 − t)dP (R, t)
can be computed from this theorem by choosing a homogeneous system of pa-
rameters of degree 1. This means all bi = 1, and one sees that limt→1(1 − t)d ×
P (R, t) = e(M), the multiplicity of the irrelevant ideal.

DISCUSSION 2.11

We need some of the results of the article [HH2], which we discuss here. Let R be
an N-graded Noetherian domain over a field R0 = k of positive characteristic p.
Let Ω be an algebraic closure of the fraction field of R, and let R+ be the integral
closure of R in Ω. We refer to an element θ ∈ Ω \ {0} as a homogeneous element of
Ω if θ is a root of a nonzero polynomial F (X) ∈ R[X] such that X can be assigned
a degree in Q making F homogeneous. By [HH2, Lemma 4.1], this condition is
equivalent to saying that the grading on R (uniquely) extends to a grading on
R[θ] indexed by Q. In this way (see [HH2, Lemma 4.1] for the detail), the
homogeneous elements in Ω span a domain graded by Q, extending the grading

*We thank Kazuhiko Kurano for advising us to use the Koszul complex, which makes the

proof much simpler.
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on R. The homogeneous elements of R+ with degrees in N span a subring of R+

graded by N. This ring is denoted by R+gr. The inclusion of R ⊂ R+gr is a graded
inclusion of degree zero. For an ideal I ⊆ R, we let I+gr = IR+gr ∩ R. Note that
by the grading of R+gr, J+gr �= R+gr for every proper homogeneous ideal J of R.
Part of the main theorem of [HH2], Theorem 5.15, gives the following statement.

THEOREM 2.12

Let R be a Noetherian N-graded domain over a field R0 = k of characteristic
p > 0. Every homogeneous system of parameters for R is a regular sequence
in R+gr.

Again, let R be a Noetherian N-graded domain over a field R0 = k of char-
acteristic p > 0, and let x1, . . . , xd be homogeneous elements of R. Set A =
k[X1, . . . ,Xd]. Consider the natural map f : A → R taking Xi to xi. Let I be
an ideal of R generated by monomials in x1, . . . , xd, and let L ⊆ A be the corre-
sponding ideal of monomials in A. Let T• denote the Taylor resolution of A/L

(see [Ei]).
The main fact we need is the following.

LEMMA 2.13

In the situation above, if x1, . . . , xd are a homogeneous system of parameters for
R, and if S = R+gr, then T• ⊗A S is exact. In fact, S is flat over A.

Proof
Since T• is a free A-resolution of A/L, where L is generated by monomials, the
first statement follows from the second statement. The flatness of S over A is
proved as in the discussion in [HH2, 6.7]. See also [Hu, Theorem 9.1] and [Ho,
proof of 2.3]. �

DISCUSSION 2.14

One of the consequences of S being flat over A is that we can compute the
quotient of monomial ideals in the xi in S as if the monomials belong to A.
Specifically, let I and I ′ be two ideals in R generated by monomials in x1, . . . , xd,
which are a homogeneous system of parameters for R. Let L and L′ be the
corresponding ideals in A generated by the same monomials in X1, . . . ,Xd. Then
IS :S I ′ = (L :A L′)S. This follows at once from the flatness of S over A. Note
that we cannot replace S by R in this equality unless R is Cohen-Macaulay.

We can now prove the following.

THEOREM 2.15

Let R =
⊕

n≥0 Rn be a d-dimensional Noetherian graded ring with R0 a field of
characteristic p > 0. Suppose that a and J are ideals each generated by a full
homogeneous system of parameters for R, and put a to be the least degree of
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the generators of a. Let c ∈ R◦ be a homogeneous element of degree n such that
c(R/Pi) �⊆ (JR/Pi)+gr for all i, where the Pi range over the minimal primes of
R with R/Pi having the same dimension as R. If N ≥ 0 is an integer such that
caN+1(R/Pi) ⊆ (JR/Pi)+gr for all i, then

e(a) ≥
( ad

a(d + N) + n

)d

e(J).

In particular, if aN+1(R/Pi) ⊆ (JR/Pi)+gr for all i, then

e(a) ≥
( d

d + N

)d

e(J).

Proof
By Remark 2.7, we may assume without loss of generality that R is a domain.
Throughout the proof, we set S = R+gr.

We chiefly follow the same proof that was given in [HMTW, Theorem 5.8],
making suitable modifications to take advantage of the fact that S is a big Cohen-
Macaulay algebra for R; however, we have a simplification at the end of the proof.

Suppose that a is generated by a full homogeneous system of parameters
x1, . . . , xd of degrees a1 ≤ · · · ≤ ad, and suppose that J is generated by another
homogeneous system of parameters f1, . . . , fd of degrees b1 ≤ · · · ≤ bd.

To prove the theorem it suffices to show that*(
N + d +

n

a1

)d

a1 . . . ad ≥ ddb1 . . . bd.

That this inequality is enough to prove the theorem follows from Proposition 2.10
since e(a)

a1···ad
= e(J)

b1···bd
(this common ratio is limt→1(1 − t)dP (R, t) where P (R, t)

is the Poincaré series of R).
Define positive integers t1, . . . , td inductively as follows: t1 is the smallest

integer t such that cxt
1 ∈ J+gr(= JS ∩ R). If 2 ≤ i ≤ d, then ti is the smallest

integer t such that cxt1−1
1 · · · xti−1−1

i−1 xt
i ∈ J+gr.

We show the following inequality for every i = 1, . . . , d:

(1) t1a1 + · · · + tiai + n ≥ b1 + · · · + bi.

Let Ii be the ideal of R generated by xt1
1 , xt1−1

1 xt2
2 , . . . , xt1−1

1 · · · xti−1−1
i−1 xti

i for
each 1 ≤ i ≤ d. We let Li be the corresponding ideal of monomials in A, where
A = k[X1, . . . ,Xd] is as in the discussion above. Note that the definition of
the integers tj implies that cIiS ⊆ JS. We use the Taylor resolution T• for
A/Li. After tensoring with S, this complex is exact by Lemma 2.13. The
multiplication map by c from S/IiS into S/JS induces a comparison map of
degree n between T• ⊗A S and the Koszul complex on the generators f1, . . . , fd

of J . This Koszul complex is acyclic since the fi form a regular sequence in S by

*In the proof of [HMTW, Theorem 5.8], it is claimed that in the Cohen-Macaulay case the

multiplicity of x1, . . . , xd (resp., f1, . . . , fd) is a1 . . . ad (resp., b1 . . . bd). This is not correct;
however, in that article we used only e(x1, . . . , xd)/a1 . . . ad = e(f1, . . . , fd)/b1 . . . bd. That this

is true is easy to see in the Cohen-Macaulay case and follows more generally by Proposition 2.10.
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Theorem 2.12. Note that the ith step in the Taylor complex T• for the monomials
Xt1

1 ,Xt1−1
1 Xt2

2 , . . . ,Xt1−1
1 · · · Xti−1−1

i−1 Xti
i in A is a free module of rank one with

a generator corresponding to the monomial

lcm(Xt1
1 ,Xt1−1

1 Xt2
2 , . . . ,Xt1−1

1 · · · Xti−1
i−1 Xti

i ) = Xt1
1 · · · Xti−1

i−1 Xti
i

(see [Ei, Exercise 17.11]). It follows that the map of degree n between the ith
steps in the resolutions of S/IiS and S/JS is of the form

S(−t1a1 − · · · − tiai) →
⊕

1≤v1<···<vi ≤d

S(−bv1 − · · · − bvi).

In particular, unless this map is zero, we have

t1a1 + · · · + tiai + n ≥ min
1≤v1<···<vi ≤d

{bv1 + · · · + bvi } = b1 + · · · + bi.

We now show that this map cannot be zero. If it is zero, then also the induced
map

(2) TorS
i (S/IiS,S/bi) → TorS

i (S/JS,S/bi)

is zero, where bi is the ideal in S generated by x1, . . . , xi. On the other hand,
using the Koszul resolution on x1, . . . , xi to compute the above Tor modules
(these elements are a regular sequence in S), we see that the map (2) can be
identified with the multiplication map by c,

(IiS : Sbi)/IiS
×c−−→ (JS : Sbi)/JS.

Since xt1−1
1 · · · xti −1

i ∈ (IiS : bi), if the map in (2) is zero, then it follows that
cxt1−1

1 · · · xti −1
i lies in J+gr, a contradiction. This proves (1).

To finish the proof, we use the following claim, which is a slight modification
of the claim in the proof of [HMTW, Theorem 5.8].

CLAIM

Let αi, βi, γi be real numbers for 1 ≤ i ≤ d, and let ω be a real number. If
1 = γ1 ≤ γ2 ≤ · · · ≤ γd and if γ1α1 + · · · + γiαi + ω ≥ γ1β1 + · · · + γiβi for all
i = 1, . . . , d, then α1 + · · · + αd + ω ≥ β1 + · · · + βd.

Proof
The proof is essentially the same as that of the claim in the proof of [HMTW,
Theorem 5.8]. �

As in [HMTW],* we now set αi = ti, βi = bi/ai and γi = ai/a1 for 1 ≤ i ≤ d. We
put ω = n/a1. Since a1 ≤ · · · ≤ ad, we deduce 1 = γ1 ≤ · · · ≤ γd. Moreover, using
(1), we obtain that γ1α1 + · · · + γiαi + ω ≥ γ1β1 + · · · + γiβi for 1 ≤ i ≤ d. Using

*The end of the proof is simpler here than in [HMTW], due to the fact that we are able to
remove an argument by using linkage. This improvement comes from a suggestion by Hailong

Dao, whom we thank.
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the above claim, we conclude that

t1 + · · · + td +
n

a1
= α1 + · · · + αd + ω ≥ β1 + · · · + βd =

b1

a1
+ · · · +

bd

ad
.

The inductive definition of the ti shows that the monomial cxt1−1
1 · · · xtd −1

d /∈ JS.
Since caN+1 ⊆ JS, we see that N + d ≥ t1 + · · · + td. Comparing the arithmetic
mean with the geometric mean of the bi/ai yields the conclusion that(

N + d +
n

a1

)d

a1 . . . ad ≥ ddb1 . . . bd,

which finishes the proof of Theorem 2.15. �

REMARK 2.16

Let the notation be as in Theorem 2.8. Since we compare the arithmetic mean
with the geometric mean of the bi/ai in the proof of Theorem 2.15, if equality
holds in the inequality of Theorem 2.8, then (a1, . . . , ad) and (b1, . . . , bd) have
to be proportional, that is, b1/a1 = · · · = bd/ad. We also remark that if equality
holds in the inequality of Corollary 2.9, then (a1, . . . , ad) and (b1, . . . , bd) also have
to be proportional. Suppose to the contrary that (a1, . . . , ad) and (b1, . . . , bd) are
not proportional. In this case, the rational number

ε :=
((b1/a1) + · · · + (bd/ad))da1 · · · ad

ddb1 · · · bd
− 1

is strictly positive. For all q = pe, one has(b1q

a1
+ · · · +

bdq

ad

)d

a1 · · · ad = (1 + ε)dd(b1q) · · · (bdq).

By the argument in the proof of Theorem 2.15, this implies that

e(a) ≥ (1 + ε)
( d

νJ
a (q) + d

)d

e(J [q]) = (1 + ε)
( qd

νJ
a (q) + d

)d

e(J)

for all q = pe. Since ε is independent of q, we conclude that

e(a) ≥ (1 + ε)
( d

cJ
−(a)

)d

e(J) �
( d

cJ
−(a)

)d

e(J).

REMARK 2.17

If equality holds in the inequality of Corollary 2.9, we think that a and J are
“equivalent” in the sense of the following conjecture, which is true if d = 2 or,
more generally, if the set {a1, . . . , ad} consists of at most two elements.

CONJECTURE 2.18

Let R, a, and J be as in Corollary 2.9. Suppose that

e(a) =
( d

cJ
−(a)

)d

e(J).

If we put b1/a1 = · · · = bd/ad = t/s, where s and t are positive integers, then at

and Js have the same integral closure.
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3. Main theorem in characteristic zero

In this section we outline the proof of Theorem 2.8 in characteristic zero. The
reduction to characteristic p is fairly standard. We prove the following.

THEOREM 3.1

Let R =
⊕

n≥0 Rn be a d-dimensional Noetherian graded ring with R0 = k a field
of characteristic zero. Suppose that a and J are ideals each generated by a full
homogeneous system of parameters for R. If aN+1 ⊆ J for some integer N ≥ 0,
then

e(a) ≥
( d

d + N

)d

e(J).

Proof
Let a be generated by the homogeneous parameters x1, . . . , xd, and let J be
generated by the homogeneous parameters f1, . . . , fd. Without loss of generality
we may assume that the degree of xi is ai with a1 ≤ a2 · · · ≤ ad and, similarly,
that the degree of fi is bi with b1 ≤ b2 ≤ · · · ≤ bd. As in the proof of Theorem 2.15,
it suffices to prove that

a1 · · · ad ≥
( d

d + N

)d

b1 · · · bd.

We begin by writing R = k[t1, . . . , tn] ∼= B/I , where B = k[T1, . . . , Tn] is a graded
polynomial ring with each Ti having a positive degree, such that I is homogeneous
and the isomorphism of R with B/I is degree preserving, taking each Ti to
the homogeneous algebra generator ti of R. We lift each xi to a homogeneous
polynomial hi ∈ B and each fi to a homogeneous polynomial gi ∈ B. We also
fix homogeneous generators F1, . . . , Fl of I . Furthermore, since the maximal
homogeneous ideal of R has a power contained in the ideal (x1, . . . , xd), there are
equations in B which express this. A typical one, for example, would be of the
form

TM
j =

∑
1≤i≤d

pjihi +
∑

1≤i≤l

qjiFi

for some fixed large power M .
Since the maximal homogeneous ideal of R also has a power contained in the

ideal (f1, . . . , fd), there is another set of equations expressing the fact that the Tj

are nilpotent modulo the ideal I plus the ideal generated by g1, . . . , gd. There are
also equations which express the fact that each monomial of total degree N +1 in
the xi is in J ; these are expressed by equations which give that every monomial
hm1

1 · · · hmd

d in the hi of total degree N +1 = m1 + · · · +md is equal to an element
in the ideal I + (g1, . . . , gd)B.

Now let A be a finitely generated Z-subalgebra of k which has the coefficients
of all polynomials in all the equations and defining ideals above. We let BA =
A[T1, . . . , Tn]. We can assume that IA is generated by F1, . . . , Fl ∈ BA. We let
xiA be the image of hi in RA = BA/IA, and we let fiA be the image of gi in the
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same ring. By the lemma on generic flatness, we can invert one element of A to
make RA free over A. (Here we replace A by the localization of A at that one
element. It is still finitely generated over Z.) Note that R = RA ⊗A k.

Choose any maximal ideal n of A, and let κ = A/n, a finite field. We use κ

as a subscript to denote images after tensoring over A with κ. The dimension d

of R is equal to the dimension of Rκ, and Rκ is a positively graded Noetherian
ring over the field κ. For the proofs and a discussion of the dimension of the
fiber Rκ, see [Hu, Appendix, Section 2] or [HH3, Section 2.3].

The images of the xiA and the fiA in Rκ form homogeneous systems of pa-
rameters generating ideals aκ and Jκ, respectively, and furthermore, aN+1

κ ⊆ Jκ.
Moreover, the degrees of these elements are the same as the degrees of the corre-
sponding elements in characteristic zero. By the main theorem in characteristic p

(Theorem 2.15),

a1 · · · ad ≥
( d

d + N

)d

b1 · · · bd.

�

4. A comparison of F -thresholds and F -jumping numbers

In this section, we compare F -thresholds and jumping numbers for the gener-
alized parameter test submodules, which were introduced by Schwede and Tak-
agi [ST]. Throughout this section, we use the following notation.

NOTATION 4.1

Let (R,m) be a d-dimensional Noetherian excellent reduced ring of equal char-
acteristic satisfying one of the following conditions:

(a) R is a complete local ring with the maximal ideal m;
(b) R =

⊕
n≥0 Rn is a graded ring with R0 a field and m =

⊕
n≥1 Rn.

Then R admits a (graded) canonical module ωR: in case (a), ωR is the finitely
generated R-module HomR(Hd

m(R),ER(R/m)), where ER(R/m) is the injective
hull of the residue field R/m. In case (b), ωR is the finitely generated graded
R-module HomR0

(Hd
m(R),R0) :=

⊕
n∈Z

HomR0([H
d
m(R)]−n,R0).

Also, in dealing with graded rings, we assume that all the ideals and systems
of parameters considered are homogeneous.

First we recall the definition of a generalization of tight closure introduced by
Hara and Yoshida [HY].

DEFINITION 4.2

Assume that R is a ring of characteristic p > 0. Let a be an ideal of R such that
a ∩ R◦ �= ∅, and let t ≥ 0 be a real number.
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(i) For any ideal I ⊆ R, the at-tight closure I∗ of I is defined to be the ideal
of R consisting of all elements x ∈ R for which there exists c ∈ R◦ such that

ca�tq�xq ⊆ I [q]

for all large q = pe. When a = R, we denote this ideal simply by I∗ (see [HY,
Definition 6.1]).

(ii) The at-tight closure 0∗a
t

Hd
m(R) of the zero submodule in Hd

m(R) is defined
to be the submodule of Hd

m(R) consisting of all elements ξ ∈ Hd
m(R) for which

there exists c ∈ R◦ such that

ca�tq�ξq = 0

in Hd
m(R) for all large q = pe, where ξq := F e(ξ) ∈ Hd

m(R) denotes the image of
ξ via the induced e-times iterated Frobenius map F e : Hd

m(R) → Hd
m(R). When

a = R, we denote this submodule simply by 0∗
Hd

m(R) (see [HY, Definition 6.1]).
(iii) An element c ∈ R◦ is called a parameter at-test element if, for every

ideal I generated by a system of parameters for R, one has ca�tq�xq ⊆ I [q] for
all q = pe whenever x ∈ I∗a

t

. When a = R, we call such an element simply a
parameter test element (see [ST, Definition 6.6]).

(iv) R is said to be F -rational if I∗ = I for every ideal I ⊆ R generated by
a system of parameters for R. This is equivalent to saying that R is Cohen-
Macaulay and 0∗

Hd
m(R) = 0 (see [FW]).

Now we are ready to state the definitions of generalized parameter test submod-
ules and their jumping numbers.

DEFINITION 4.3

Assume that R is a ring of characteristic p > 0, and let a be an ideal of R such
that a ∩ R◦ �= ∅.

(i) For every real number t ≥ 0, the generalized parameter test submodule
τ(ωR,at) associated to the pair (R,at) is defined to be

τ(ωR,at) = AnnωR
(0∗a

t

Hd
m(R)) ⊆ ωR

(see [ST, Remark 6.4]).
(ii) For every ideal J ⊆ R such that a ⊆

√
J , the F -jumping number fjnJ(ωR,

a) of a with respect to JωR is defined to be

fjnJ(ωR,a) = inf
{
t ≥ 0

∣∣ τ(ωR,at) ⊆ JωR

}
(see [ST, Definition 7.9]).

REMARK 4.4

(1) For every real number t ≥ 0, there exists ε > 0 such that τ(ωR,at) =
τ(ωR,at+ε). In particular,

fjnJ(ωR,a) = min
{
t ≥ 0

∣∣ τ(ωR,at) ⊆ JωR

}
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(see [ST, Lemma 7.10]).
(2) In the case when R is a regular ring, the F -jumping number fjnJ(ωR,a)

coincides with the F -threshold cJ(a) for all ideals a and J such that a ⊆
√

J (see
[MTW, Proposition 2.7]).

(3) In general, the F -jumping number fjnJ(ωR,a) disagrees with the F -
threshold cJ(a) (see [HMTW, Remark 2.5]).

If J is generated by a full system of parameters and if the ring is F -rational
away from V (a), then the F -jumping number fjnJ(ωR,a) coincides with the F -
threshold cJ(a).

THEOREM 4.5

Suppose that R is an integral domain of characteristic p > 0. Let a be a nonzero
ideal of R and J be an ideal generated by a full system of parameters for R.
Assume in addition that RP is F -rational for all prime ideals P not containing a.
Then

fjnJ (ωR,a) = cJ
+(a).

Proof
Suppose that J is generated by a full system of parameters x1, . . . , xd for R. Let
ξ = [1/x1 · · · xd] ∈ Hd

m(R). It is clear that ξ ∈ (0 :Hd
m(R) JωR).

Suppose that τ(ωR,at) ⊆ JωR. Since ξ ∈ (0 :Hd
m(R) JωR) ⊆ 0∗a

t

Hd
m(R), there

exists c ∈ R◦ such that ca�tq�ξq = 0 in Hd
m(R) for all large q = pe. This implies

that there exists s ∈ N such that ca�tq�(x1 · · · xd)s ⊆ (xq+s
1 , . . . , xq+s

d ). We then
use the colon-capturing property of tight closure (see [HH1, Theorem 7.15(a)])
to have ca�tq� ⊆ (xq

1, . . . , x
q
d)

∗. Hence, for any parameter test element c′ ∈ R◦,
one has cc′a�tq� ⊆ (xq

1, . . . , x
q
d) = J [q] for all large q = pe, so that 1 ∈ J ∗a

t

. By the
definition of parameter at-test elements, c′ ′a�tq� ⊆ J [q] for all parameter at-test
elements c′ ′ ∈ R◦ and for all q = pe. Since RP is F -rational for all prime ideals
P not containing a, the localized ring Ra is F -rational for every nonzero element
a ∈ a. It then follows from [ST, Lemma 6.8] that there exists an integer n ≥ 1
such that every nonzero element of an is a parameter at-test element. Therefore
a�tq�+n ⊆ J [q]; that is, νJ

a (q) ≤ �tq� + n − 1 for all q = pe. By dividing by q and
taking the limit as q goes to the infinity, we have t ≥ cJ

+(a). Thus, fjnJ(ωR,a) ≥
cJ
+(a).

To prove the converse inequality, suppose that t > cJ
+(a). Fix any η ∈

(0 :Hd
m(R) JωR). Here note that (0 :Hd

m(R) JωR) = (0 :Hd
m(R) J), because ωR ×

Hd
m(R) → Hd

m(ωR) is the duality pairing. Hence J [q]ηq = 0 for all q = pe. Since
a�tq� ⊆ J [q] for all large q = pe by the definition of cJ

+(a), one has a�tq�ηq = 0
for all large q = pe; that is, η ∈ 0∗a

t

Hd
m(R). Thus, (0 :Hd

m(R) JωR) ⊆ 0∗a
t

Hd
m(R) or,

equivalently, JωR ⊇ τ(ωR,at). Taking the infimum of such t’s, we conclude that
fjnJ(ωR,a) ≤ cJ

+(a). �
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QUESTION 4.6

Does the equality in Theorem 4.5 still hold true if R is not F -rational away from
V (a)? We have seen in the proof of Theorem 4.5 that the inequality fjnJ(ωR,a) ≤
cJ
+(a) holds even in this case.

We can replace the F -threshold cJ(a) with the F -jumping number fjnJ(ωR,a) in
the inequality of Corollary 2.9. The following is a corollary of Theorem 2.15.

COROLLARY 4.7

Let R =
⊕

n≥0 Rn be a d-dimensional Noetherian equidimensional reduced graded
ring with R0 a field of characteristic p > 0. Suppose that a (resp., J) is an ideal
generated by a full homogeneous system of parameters of degrees a1 ≤ · · · ≤ ad

(resp., b1 ≤ · · · ≤ bd) for R. Then

e(a) ≥
( d

fjnJ(ωR,a)

)d

e(J).

If the equality holds in the above inequality, then (a1, . . . , ad) and (b1, . . . , bd) are
proportional; that is, a1/b1 = · · · = ad/bd.

Proof
Suppose that τ(ωR,at) ⊆ JωR. By the same argument as the proof of The-
orem 4.5, there exists a homogeneous element c ∈ R◦ of degree n such that
ca�tq� ⊆ J [q] for all q = pe. Here note that each J [q] is again generated by a full
homogeneous system of parameters for R. It follows from Theorem 2.15 that for
all large q = pe, we have

e(a) ≥
( a1d

a1(d + �tq� − 1) + n

)d

e(J [q]) =
( a1dq

a1(d + �tq� − 1) + n

)d

e(J).

The right-hand side converges to (d/t)de(J) as q goes to the infinity. Taking the
infimum of such t’s, we obtain the inequality in the corollary.

The latter assertion follows from an argument similar to Remark 2.16. �

In general, fjnJ(ωR,a) disagrees with the F -jumping number

fjnJ(a) = fjnJ (R,a) := inf
{
t ≥ 0 | τ(R,at) ⊆ J

}
of a with respect to J. (See [HY] for the definition of the generalized test ideal
τ(R,at)).

EXAMPLE 4.8

Let S = k[x, y] be the two-dimensional polynomial ring over an F-finite field k,
and let R = S(3) be the third Veronese subring of S. Let J = (x3, y3) be a
parameter ideal of R, and let mS = (x, y) (resp., mR = (x3, x2y,xy2, y3)) be a
maximal ideal of S (resp., R). Note that

τ(R,J t) = τ(R,mt
R) = τ(S,m3t

S ) ∩ R = m
�3t
 −1
S ∩ R
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for t ≥ 1/3, where the second equality follows from [HT, Theorem 3.3]. Since
m2

R ⊆ J , we have fjnJ(J) = 5/3 < 2 = cJ(J) = fjnJ(ωR,a). This example also
shows that we cannot replace fjnJ(ωR,a) with fjnJ(a) in Corollary 4.7.

We can define a geometric analogue of the F -jumping number fjnJ(ωR,a).

DEFINITION 4.9

Assume that R is a normal domain essentially of finite type over a field of char-
acteristic zero, and let a be a nonzero ideal of R such that a ∩ R◦ �= ∅.

(i) Let π : X̃ → X := SpecR be a log resolution of a such that aO
X̃

=
O

X̃
(−F ). For every real number t ≥ 0, the multiplier submodule J (ωR,at) asso-

ciated to the pair (R,at) is defined to be

J (ωR,at) = π∗
(
ω

X̃
⊗ O

X̃
(�−tF �)

)
⊆ ωR

(see [Bl, Definition 2]).
(ii) For every ideal J ⊆ R such that a ⊆

√
J , the jumping number λJ(ωR,a)

of a with respect to JωR is defined to be

λJ(ωR,a) = inf
{
t ≥ 0

∣∣ J (ωR,at) ⊆ JωR

}
.

By virtue of [ST, Remark 6.12], we obtain the following inequality between jump-
ing numbers and F -jumping numbers.

PROPOSITION 4.10

Let R,a, J be as in Definition 4.9, and let (Rp,ap, Jp) be a reduction of (R,a, J)
to sufficiently large characteristic p � 0. Then

fjnJp(ωRp ,ap) ≤ λJ(ωR,a).

The following can be viewed as a strengthening of [dFEM, Theorem 0.1] in the
graded case.

COROLLARY 4.11

Let R =
⊕

n≥0 Rn be a d-dimensional Noetherian normal graded domain with R0

a field of characteristic zero. Suppose that a (resp., J) is an ideal generated by a
full homogeneous system of parameters of degrees a1 ≤ · · · ≤ ad (resp., b1 ≤ · · · ≤
bd) for R. Then

e(a) ≥
( d

λJ(ωR,a)

)d

e(J).

If the equality holds in the above, then (a1, . . . , ad) and (b1, . . . , bd) are propor-
tional; that is, a1/b1 = · · · = ad/bd.

Proof
We use an argument similar to the proof of Theorem 3.1. The assertion is then
immediate from Corollary 4.7 and Proposition 4.10. �
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REMARK 4.12

Let R =
⊕

n≥0 Rn be a d-dimensional Noetherian normal graded domain with
R0 a field of positive characteristic (resp., a field of characteristic zero). Suppose
that a and J are ideals each generated by a full homogeneous system of param-
eters for R. By a Skoda-type theorem for τ(ωR,at) (resp., J (ωR,at); see [ST,
Lemma 7.10(3)]), we have

τ(ωR,at) = aτ(ωR,at−1) (resp., J (ωR,at) = aJ (ωR,at−1))

for all real numbers t ≥ d. Hence, if aN+1 ⊆ J for some integer N ≥ 0, then

τ(ωR,ad+N ) = aN+1τ(ωR,ad−1) ⊆ JωR,

(resp., J (ωR,ad+N ) = aN+1J (ωR,ad−1) ⊆ JωR)

so that fjnJ(ωR,a) ≤ d + N (resp., λJ(ωR,a) ≤ d + N ). Thus, we can think of
Corollaries 4.7 and 4.11 as a strengthening of Theorem 2.8 when the ring is a
normal domain.
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