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Abstract The purpose of this article is to show that under a part of the generalized
Arthur’s A-packet conjecture, locally generic cuspidal automorphic representations of
a quasi-split group over a number field are of Ramanujan type, that is, are tempered at
almost all places. The A-packet conjecture allows one to reduce the problem to a special
case of a general local question about the components of the corresponding Langlands
L-packet which is then answered here in its generality.

1. Introduction

Among cuspidal representations of a quasi-split reductive group G over a number
field are those whose Whittaker Fourier coefficients are nonzero. Such represen-
tations are usually called globally generic (see Definition 2.9 via equation (2.8)).
For GLn, every cuspidal automorphic form is such (see [57]), while for other
groups there are examples of cuspidal representations which do not have such
nonvanishing coefficients, such as Siegel modular forms.

Besides their applications in the theory of automorphic forms and L-functions
(see [20], [53], [56]), generic representations play an extra role in the context of
L-packets. These are disjoint subsets of irreducible admissible representations of
either G(k) or G(Ak), according as k is local or global, respectively. They are
crucial to the analysis of the trace formula (see [6], [7], [36], [37], [42]). Moreover,
members of an L-packet are either all tempered or none are (see [6], [36], [42]).
The crucial global issue is which members of an L-packet are automorphic, that
is, appear in L2(G(k)\G(Ak)).

It has been conjectured that, when k is local, every tempered L-packet con-
tains a unique generic representation with respect to a fixed generic character of
U(k), where U is the unipotent radical of a Borel subgroup of G over k (see [56]).
Many cases of this conjecture are now proved (see [17], [19], [28], [34], [56], [59],
[60]). In particular, for every fixed generic character of U(k), the corresponding
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generic tempered representations are in one-to-one correspondence with tem-
pered L-packets. More precisely, they parameterize local tempered L-packets
and can be used as base points (see [37]).

On the other hand, starting with the complementary series for SL2(k), one
sees that there are many irreducible generic unitary but nontempered represen-
tations for G(k), where k is local. The purpose of this article is to show that
under the validity of a part of Arthur’s A-packet conjecture (Conjecture 6.1 here)
on automorphic representations (see [2]–[4]), as generalized by Clozel [12, Con-
jecture 2A], this will never happen for automorphic cuspidal representations of
G(Ak), where k is a number field. In other words: If Conjecture 6.1 is valid,
then locally generic cuspidal automorphic representations of G(Ak) are always
tempered (see Theorem 6.2 and Corollary 6.5). In particular, this shows that the
locally generic cuspidal representations of G(Ak) obtained by putting together
the locally generic ones in each local tempered L-packet, if automorphic, exhaust
all the automorphic generic representations. In conclusion, generic representa-
tions also parameterize global tempered L-packets.

What actually follows from Arthur’s conjecture is that almost all the com-
ponents of a locally generic automorphic form are tempered. One expects that
this extends to all places as we state in Conjecture 6.4 and give reasons for its
validity.

Appealing to Arthur’s upcoming book [7] (see also [14]) and the automorphic
descent of Ginzburg, Rallis, and Soudry [20], [58], in (6.8) we sketch an argument
for all these conjectures for quasi-split classical groups, under the assumption of
validity of the Ramanujan conjecture for GLN which requires that the cuspidal
representations on GLN (Ak) be all tempered. At present, all that we know for
a general n is the estimates in [48]. Incidentally, our Theorem 6.2 implies that
if Conjecture 6.1 is true, then so is the Ramanujan conjecture for GLN since
cusp forms on GLN (Ak) are all generic (see [57]). This shows how deep Arthur’s
A-packet conjecture and its generalization are.

There are several consequences of such a result. The first is that the general
belief (see [27], [51], [55]) that globally generic cuspidal representations, which are
automatically locally generic, are tempered is in fact correct if Arthur’s conjecture
is. There was no conceptual reason previously for why this should be true. In
fact, it was believed that being globally generic, that is, having a nonvanishing
Whittaker Fourier coefficient, is important for the form to be tempered, where
as our result shows it is being locally generic which matters and is enough.

The second is that there should be no difference between the locally and
globally generic representations (see Conjecture 2.10). In fact, all the conjectured
restrictions seem to be of relevance only if the representation is not tempered (see
[21, Conjecture 2.6]; see the discussion at the end of paragraph (6.8) for classical
groups, and see [18, Conjecture 24.2]).

The trace formula is not sensitive to detecting globally generic representa-
tions, and in practice one usually has to use a Poincaré series to construct them
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(see [56]). On the other hand, in view of the connection of locally generic cuspi-
dal automorphic representations with tempered L-packets and our Theorem 6.2,
they may be more amenable to detection by Arthur’s trace formula. In particular,
we hope to rule out the existence of locally generic representations which are not
generic with respect to local components of any generic character of U(k)\U(Ak)
by means of multiplicity formulas in [36], [40], and [42] (see also [3], [4]). We
plan to take up such questions in a future article.

The proof relies on an analysis of the Langlands L-packet for the parameter
φψv attached to the Arthur parameter ψv for an unramified component of the
automorphic representation π =

⊗
v πv of G(Ak). We refer to Section 3 for the

definitions and basic properties of these parameters. Using representation theory
developed within our method, we then show that the parameter φψv is tempered
if its packet has a generic member (see [11], [56] and particularly [11, Proposition
5.4]).

Our arguments are quite general and are applicable to any φψ whenever the
local Langlands conjecture is valid for proper Levi subgroups of G to the effect
of equality of Artin L-functions with the corresponding ones defined through the
Langlands-Shahidi method for the k-points of these Levi subgroups, where k is
any local field (see Theorem 5.1, Proposition 4.14). More precisely, let G be a
quasi-split connected reductive group over a local field k, and let P = MN be a
proper parabolic subgroup of G defined over k. Fix a quasi-tempered irreducible
generic representation σ of M(k). Let r be the adjoint action of LM , the L-group
of M , on Ln, the Lie algebra of the L-group of N . Let L(s,σ, r) be the L-function
attached to σ and r through the Langlands-Shahidi method defined in [56]. Our
working assumption is then through the local Langlands correspondence to the
effect that

L(s, r · φ) = L(s,σ, r̃),

where the L-function on the left-hand side is the Artin L-function attached to
the representation r · φ, if φ is the homomorphism of the Weil-Deligne group
into LM parameterizing σ. There are a number of instances in which this has
already been established (see [25], [29], [32], [33], [51]). Under this assumption
our proof then uses [11, Proposition 5.4] together with the so-called standard
modules conjecture and the tempered L-functions conjecture which are now fully
proved in [24] (and [23]). We refer to Section 4 for a discussion of their statements
and history.

When k = R (or C), the equality of these factors through the local Langlands
correspondence (see [43]) was established in [54]. Consequently, Corollary 5.3 of
our Theorem 5.1 implies that every φψ whose packet contains a generic member
is in fact tempered whenever k = R (or C). As was pointed out to us by Vogan
[60], this may also be proved by other methods in the case of real groups.

In certain cases of classical groups over p-adic fields, Theorem 5.1 was proved
in [9] and [47] by using a subtle application of classification theorems. Since the
local Langlands conjecture for generic representations to the effect of equality of
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these L-functions is now established (also used in [9], [47]) in a number of cases
of classical groups (see [22], [25], [28]), our theorem also gives a new proof of the
aforementioned results in [9], [47].

This is an example of how the parameterization established by the local Lang-
lands conjecture allows us to prove results in representation theory of reductive
groups over local fields by means of properties of corresponding Artin L-functions.
As our Proposition 4.12 shows, the necessary harmonic analytic data is, in fact,
encapsulated in the poles of these L-functions.

The article is organized as follows. Basic definitions and conjectures are dis-
cussed in Section 2. Arthur parameters ψ, their attached Langlands parameters
φψ , and their properties are explained in Section 3. If ψ = (φ,ρ), where ρ is the
SL2(C)-component of ψ, then Proposition 3.30 gives a characterization of the
image of ρ if ρ �= 1, that is, if ψ is not tempered, which is essential to the proof of
Theorem 4.1 which covers the unramified cases. The general case is stated and
proved as Proposition 3.31.

Section 4 discusses the main representation-theoretic tools that we need to
prove our main local Theorem 5.1 from which Theorem 4.1 (see Corollary 5.4)
follows as a special case. These results and techniques are mainly extracted from
our method since the representations involved are generic. The main tool here
is [11, Proposition 5.4] and the two conjectures now completely proved in [24].
Here they are stated as Theorem 4.2 and statement (4.3).

Theorem 5.1 is then proved by putting together Proposition 3.31 and the
material in Section 4, particularly Proposition 4.14. The global consequences
and our main global result, Theorem 6.2, is then proved in Section 6. We finish
the section by giving more evidence for each of the conjectures involved.

2. Preliminaries

Let k be a number field, and denote by Ak its ring of adeles. For each place
v of k, we let kv be the completion of k at v. Let Ov and Pv be the ring of
integers and its maximal ideal, respectively. We let �v be a generator of Pv and
normalize an absolute value so that |�v | = q−1

v , where qv is the cardinality of the
field Ov/Pv .

Let G be a quasi-split connected reductive group over k. We fix a Borel
subgroup B over k and write B = TU , where T is a maximal k-torus of G

isomorphic to the quotient B/U , where U is the unipotent radical of B.
We then have G(kv) and G(Ak) for the kv- and Ak-points of G as well as for

any of subgroups of G defined over k.
We remark that for almost all v, G is defined over Ov and splits over an

unramified extension of kv . Then G(Ov) is a hyperspecial maximal compact
subgroup of G(kv).

The choice of the Borel subgroup defines a set of positive roots of G, that is,
roots of T on Lie(U). We let Δ̃ = Δ̃(T,G) be the set of simple (nonrestricted)
roots among them. Let {Xα | α ∈ Δ̃} be a choice of root vectors in Lie(U). This
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means that there exists a map

(2.1) φ : U −→
∏

Ga,

where the product runs over all the roots in Δ̃, sending exp(xαXα) to xα, xα ∈ k,
whose kernel contains the derived group of U . Composing φ with the map

(2.2) Σ :
∏
α∈Δ̃

Ga −→ Ga

defined by

(2.3) Σ
(
(xα)α

)
�→

∑
α∈Δ̃

xα,

we then get a map Σ · φ from U to Ga. If the Galois group Γ = Gal(k/k) fixes
the splitting {Xα}α as a set, then Σ · φ is defined over k and the splitting is said
to be defined over k. For a quasi-split group such splittings exist from which we
fix one from now on. This definition is valid for k as well as each kv , and in fact,
a splitting over k is also one over kv for each v.

According as k is local or global, we fix a nontrivial character ψv or ψ of kv

or k\Ak, respectively. We then define a generic character χv or χ of U(kv) or
U(k)\U(Ak) by

(2.4) χ = ψ · Σ · φ,

respectively. When k is global, then ψ =
⊗

v ψv , and thus χ =
⊗

v χv , where
χv |U(Ov) = 1 for almost all places v.

Now, let π =
⊗

v πv be a cuspidal automorphic representation of G(Ak). We
assume that π is unitary. This simply means that its central character ωπ is
unitary.

A representation σ of G(kv) on a complex vector space H(σ) is called χv-
generic if there exists a functional λv on the continuous dual H(σ)′ of H(σ) such
that

(2.5) λv

(
σ(u)w

)
= χv(u)λv(w)

for every w ∈ H(σ). When kv is Archimedean, one requires the continuity to
be with respect to the seminorm topology on the space of differentiable vectors
H(σ)∞, the span of σ(f)w, f ∈ C∞

c (G(kv)), w ∈ H(σ). For this, one requires that
the topology on H(σ) be defined by either Banach or, more generally, Frechét
space norms or seminorms, respectively. In particular, the Hilbert norm may be
used when σ is unitary. It is well known (see [57]) that if σ is irreducible, then
the space of such functionals is at most one-dimensional.

If σ is χv-generic, then one can fix a χv-Whittaker functional λv on H(σ);
and for each vector x ∈ H(σ)∞, define a Whittaker function Wx(g) on G(kv) by

(2.6) Wx(g) = λv

(
σ(g)x

)
.

Up to a complex multiple, the model is unique.
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DEFINITION 2.7

A cuspidal representation π =
⊗

v πv is called locally generic if each πv is generic
with respect to a generic character χv of U(kv). Note that we are not requiring
χv to be a local component of a global character χ of U(k)\U(Ak).

There is also a notion of a globally generic cusp form. Let χ be a generic character
of U(k)\U(Ak). Assume that π is a cuspidal representation of G(Ak), and let ϕ

be a cusp form in the space of π. Let

(2.8) Wϕ(g) =
∫

U(k)\U(Ak)

ϕ(ug)χ(u)du,

which converges for all ϕ. We then define the following.

DEFINITION 2.9

A cuspidal representation π =
⊗

v πv is called globally generic with respect to
χ =

⊗
v χv if Wϕ(e) �= 0 for some ϕ ∈ H(π). Note that π is then automatically

locally generic.

Being globally generic seems to be a much stronger condition. One goal of this
article is to provide enough evidence for the following conjecture.

CONJECTURE 2.10

Assume that π =
⊗

v πv is locally generic with respect to local components of a
generic character χ =

⊗
v χv of U(k)\U(Ak). Then π is globally generic. More

precisely, the isotypic constituent of the space of cusp forms containing π is
globally generic, that is, (2.8) is nonvanishing on it.

REMARK 2.11

The conjecture is a well-known theorem for G = GLn, since all the cusp forms on
GLn(Ak) are globally generic ([57]), and it seems to agree with [18, Conjecture
24.2] as well as the discussion in paragraph (6.8) here. It is true even when mul-
tiplicity one fails (e.g., [10], [45]), which could happen as predicted by the trace
formula (see [3], [37]; see also Remark 2.13). On the other hand, there are many
examples of nongeneric cuspidal representations for other groups (see [41], [52]).
Among them are the so-called CAP representations: cuspidal representations
associated to parabolics, as coined by Piatetski-Shapiro. They include the exam-
ples of Saito and Kurokawa [38] and of Howe and Piatetski-Shapiro [27]. What
is special about CAP representations is that none are tempered. As explained in
the introduction, one may look at the problem in terms of L-packets, and here
is where one can expect that generic representations completely parameterize
global tempered L-packets. What is surprising is that the converse seems also
to be true. In fact, in this article, using a part of a conjecture of Arthur on
global A-packets and a natural rigidity conjecture, we prove the following (see
Theorem 6.2, Corollary 6.5):
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(2.12) Assume the validity of Conjectures 6.1 and 6.4. Then locally generic
cuspidal automorphic representations for G(Ak) are tempered.

This is purely global. There are irreducible generic unitary spherical repre-
sentations of even GL2(kv) which are not tempered, the complementary series.

Statement (2.12) guarantees that there are no global obstructions for the equiv-
alence of locally and globally generic cuspidal representations, at least up to iso-
morphisms, since these obstructions are automatically satisfied for tempered rep-
resentations. These obstructions are usually stated in terms of adjoint L-functions
for the cuspidal representation. Note that isomorphic irreducible admissible rep-
resentations of G(Ak) have the same L-functions.

REMARK 2.13

Assume that multiplicity one fails for a cuspidal generic representation π of
G(Ak). Let A1 and A2 be two linearly independent embeddings of π. Let λ be
the global Whittaker functional on the space of cusp forms, that is,

λ(ϕ) =
∫

U(k)\U(Ak)

ϕ(ug)χ(u)du,

as in (2.8). Choose c �= 0 such that

λ · A1 = cλ · A2.

Then λ · (A1 − cA2) = 0. Thus A1 − cA2 provides a (nonzero) embedding of
π which is not globally generic. (We were reminded of this construction by
D. Prasad.) The content of Conjecture 2.10 is that π still appears as a globally
generic representation. In particular, any locally generic cuspidal representa-
tion should also embed as a globally generic one, and therefore the theory of
L-functions developed through different methods for globally generic representa-
tions is valid whether π embeds as a globally or locally generic representation.

3. Arthur parameters

We continue to assume that G is quasi-split as this greatly reduces the notation
and is sufficient for the purposes of this article.

We first assume that k is local. Let Lk be either W ′
k, the Weil-Deligne

group of k, if k is non-Archimedean, that is, if W ′
k = Wk × SL2(C), or the Weil

group otherwise. Let Φ(G) = Φ(G/k) be the set of Langlands parameters, that
is, equivalence classes of homomorphisms

φ : Lk −→ LG = Ĝ � Lk

under conjugation by elements in Ĝ, satisfying the following conditions:

(3.1) φ factors through LK/k for some finite extension K/k, where LK/k is
the corresponding Weil-Deligne or Weil group defined by K/k; that is, LK/k =
WK/k × SL2(C) = W ′

K/k or LK/k = WK/k according as k is non-Archimedean or
not;
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(3.2) φ is continuous on WK/k and complex analytic on SL2(C);
(3.3) the diagram

Lk

φ
LG = Ĝ � Lk

Proj2

LK/k

commutes;
(3.4) the image of WK/k consists of only semisimple elements.

We note that (3.1) and (3.2) mainly address the continuity of φ.
We finally let Φtemp(G) = Φtemp(G/k) denote those φ ∈ Φ(G) whose image

in Ĝ is bounded.
We now define Arthur parameters. Let Ψ(G) = Ψ(G/k) be the set of Ĝ-orbits

of maps

(3.5) ψ : Lk × SL2(C) −→ LG = Ĝ � Lk

such that the projection of ψ(Lk) onto Ĝ is bounded. Moreover, we assume that
φ = ψ|Lk ∈ Φtemp(G), that is, that in addition it satisfies (3.1)–(3.4).

Finally, for each such ψ ∈ Ψ(G), define a Langlands parameter φψ ∈ Φ(G)
by

(3.6) φψ(w) = ψ

(
w,

(
|w|1/2 0

0 |w| −1/2

))
.

We now recall an argument from [2] which implies that

(3.7) The map

ψ �→ φψ

is an injection from Ψ(G) into Φ(G).

By Jacobson and Morozov (and Kostant), there is a one-to-one correspon-
dence between unipotent conjugacy classes in a complex semisimple (or reductive)
group and conjugacy classes of maps from SL2(C) to the group (see [16]).

Each such conjugacy class of unipotent elements then determines a distin-
guished semisimple conjugacy class (see [16]) as the orbit of the semisimple mem-
ber H of the SL2(C)-triple which gives the map.

One then attaches a weighted Dynkin diagram to each such orbit by num-
bering the simple roots α by α(H), where H is dominant with respect to the set
of simple roots. It can be shown that α(H) ∈ {0,1,2} and that weighted Dynkin
diagrams are in one-to-one correspondence with unipotent conjugacy classes or
conjugacy classes of maps from SL2(C) into the group (see [16]).

Now each ψ ∈ Ψ(G) can be decomposed as (see [2])

(3.8) ψ(w,g) = φ(w)ρ(g),
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where φ = ψ|Lk ∈ Φtemp(G), and if

(3.9) Cφ = Cent
(
Im(φ), Ĝ

)
,

then

(3.10) ρ : SL2(C) −→ Cφ.

By the earlier discussion, weighted Dynkin diagrams, which are defined by
the distinguished orbits, are in one-to-one correspondence with unipotent conju-
gacy classes in Ĝ, or with orbits of maps from SL2(C) to Ĝ. In particular, for ρ

as in (3.10), the restriction of ρ to{(
t 0
0 t−1

)∣∣∣t ∈ C
∗
}

determines the conjugacy class of ρ. Thus φψ determines ψ and thus the injection
in (3.7).

Next, we recall that for each such ψ over a local field k, Arthur conjectured
the existence of a finite set Π(ψ) of irreducible admissible representations of G(k),
satisfying a number of properties (cf. [2]–[4]). In particular, he demanded that
the L-packet Π(φψ) defined by the Langlands parameter φψ be included in Π(ψ);
that is,

(3.11) Π(φψ) ⊂ Π(ψ).

Note that while the members of Π(ψ) are rather mysterious and are there to
supplement those in Π(φψ) to produce suitable stable distributions (see [2]–[4]),
those in Π(φψ) are readily available through Langlands classification (see [43])
so long as the local Langlands conjecture (LLC) is known for the defining Levi
subgroup M for Π(φψ) as we now review. We recall (see [2], [3]) that a member
φ of Φ(G) always determines a commuting pair φ0 ∈ Φtemp(G) and a φ+ ∈ Φ(G)
such that

(3.12) φ(w) = φ0(w)φ+(w) (w ∈ Lk)

and so that φ ∈ Φtemp(G) whenever φ+ = 1. The centralizer of the image of φ+

in LG is a Levi subgroup LM . The subgroup LM is what we have chosen to call
the defining Levi subgroup of the packet Π(φ). We note that it is possible to
have LM = LG.

We point out that when k = R, candidates for Arthur packets have been
proposed for any connected reductive real group in [1]. All the conjectured
properties of these packets are also verified in [1], except for the most difficult.

(3.13) Every member of each Arthur packet Π(ψ), ψ ∈ Ψ(G/R), is unitary.

For p-adic groups, except for the upcoming work of Arthur on classical
groups, these packets are known only sporadically. Still one can make some
assertions which have global consequence.

Let I ′
k ⊂ Lk be I ′

k = Ik × SL2(C), where Ik is the inertia subgroup of Wk.
Fix ψ ∈ Ψ(G). Decompose ψ as in (3.8): ψ = (φ,ρ). Assume that φ|I ′

k ≡ 1.
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Then φψ |I ′
k ≡ 1 and conversely. Consequently, Π(φψ) consists of unramified rep-

resentations of G(k), each for a hyperspecial maximal compact subgroup of G.
We recall that they constitute all the unramified constituents of a principal series
whose inducing character is parameterized by φψ , which up to conjugation now
factors through LT :

(3.14) φψ : Lk −→ LT.

If G is defined over O = Ok, the ring of integers of k, then Π(φψ) has a
unique unramified representation with respect to G(O).

Now assume that k is a number field. We then use Lk to denote the hypo-
thetical global Langlands group (see [5], [36]). Then there should be maps

(3.15) Lkv −→ Lk.

We again let ψ(G) = ψ(G/k) be the set of equivalence classes of maps

(3.16) ψ : Lk × SL2(C) −→ LG

for which the image of Lk in Ĝ is bounded. This time equivalence between two
maps ψi, i = 1,2, means that there exists an element g ∈ Ĝ such that

(3.17) g−1ψ1(w,x)g = ψ2(w,x)zw,

where zw is a 1-cocycle of Lk in the center Z(Ĝ) of Ĝ whose class in H1(Lk,Z(Ĝ))
is locally trivial. This then agrees with local equivalence.

We can then consider the map

ψ �→ φψ

from Ψ(G/k) into Φ(G/k), the set of global Langlands parameters (see [4]).
The maps from each Lkv to Lk then allow us to define ψv ∈ Ψ(G/kv) and

φψv ∈ Φ(G/kv).
Given ψ ∈ Ψ(G/k), we define the global Arthur packet to be

(3.18) Π(ψ) =
{

π =
⊗

v

πv

∣∣∣πv ∈ Π(ψv)
}

,

where for almost all v, πv = π0
v , the unique G(Ov)-spherical representation in

Π(φψv ), the L-packet attached to φψv .
Arthur’s conjecture then states that every automorphic representation must

belong to Π(ψ) for some ψ ∈ Ψ(G/k).
For simplicity of notation we now assume that k is local and drop the sub-

script v.
Given the parameter φψ attached to a ψ ∈ Ψ(G/k), the pair φ0 and φ+ in

(3.12) are φ and

(3.19) φ+ : w �→ ρ

((
|w|1/2 0

0 |w| −1/2

))
,

respectively, with φ and ρ as in (3.8). Both φ and φ+ have their images in LT

upon conjugation.
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If ρ �= 1, then there exists a positive root α̂ of T̂ in Lie(Û) such that for each
t > 0,

logt

(
α̂

(
ρ

(
t1/2 0
0 t−1/2

)))
= 1,(3.20)

while the adjoint action of φ(Lk) on Xα̂ is trivial(3.21)

since the nilpositive element X of the sl2(C)-triple attached to ρ lies in the
centralizer Cφ of Im(φ). We then say that Xα̂ contributes to the nilpositive
element X . This simply means that if X is written as a linear combination
of Xβ̂ , β̂ > 0, which is possible upon conjugation, then the coefficient of Xα̂ is
nonzero.

Next, let

(3.22) μ : T (k) −→ C
∗

be the character of T (k) attached to φ by Langlands (see [39], [44]). Similarly,
let

(3.23) ν : T (k) −→ C
∗

be the one attached to φ+.
Let � be a uniformizer in k, and denote by Hγ the coroot at a root γ. The

simple roots γ of A0, the split component of T , in Lie(U) for which

(3.24)
∣∣ν(

Hγ(�)
)∣∣ = 1

generate a Levi subgroup M of G, M ⊃ T , whose connected L-group M̂ = LM0

contains Im(φ) in Ĝ.
Let P = MN be the parabolic subgroup of G with M as a Levi subgroup

and N ⊂ U . Let UM = U ∩ M . Then the representation

(3.25) τ = IndM(k)
T (k)UM (k) μ

is a tempered representation of M(k), which may not be irreducible. Write

(3.26) τ =
n⊕

i=1

τi

for a decomposition of τ to its irreducible subrepresentations. We first observe
the following:

(3.27) The root α for which Xα̂ contributes to the nilpositive element in
the sl2(C)-triple attached to ρ may be chosen not to be in Lie(UM ) since the
restriction of α̂ · ρ to diagonal elements in SL2(C) equals α̂ · φ+, which is non-
trivial.

Next, we note that replacing ν, τi and M with a W (G,A0)-conjugate, we
may assume that

(3.28) I(ν, τi) = IndG(k)
P (k) τi ⊗ ν
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is in the Langlands setting and is thus a standard module. Assertion (3.27) still
remains valid. The members of Π(φψ) are now the unique Langlands quotients
J(ν, τi) of each I(ν, τi), 1 ≤ i ≤ n, that is,

(3.29) Π(φψ) =
{
J(ν, τi)

∣∣1 ≤ i ≤ n
}
.

This is part of the local Langlands conjecture (see [43], for example) which is
automatic for unramified representations.

We have therefore shown the following.

PROPOSITION 3.30

Assume that k is a non-Archimedean local field. Fix ψ ∈ Ψ(G/k), and consider
the Langlands parameter φψ attached to ψ. Decompose ψ = (φ,ρ) as in (3.8).
Assume that φ is trivial on I ′

k. Let Π(φψ) be the L-packet attached to φψ. Assume
that ρ �= 1. Then

Π(φψ) =
{
J(ν, τi)

∣∣1 ≤ i ≤ n
}
,

where each τi is an irreducible tempered representation of a proper Levi subgroup
M(k) of G(k) for which there exists a root α with Xα ∈ Lie(N(k)), N ⊂ U , where
Xα̂ ∈ Lie(Û) contributes to the nilpositive member of the sl2(C)-triple defined by
ρ. Moreover,

logq

(
α̂

(
ρ

(
q1/2 0
0 q−1/2

)))
= 1,

while the adjoint action of φ(Lk) on Xα̂ is trivial; that is, (3.20) and (3.21) are
valid with t = q, where q is the number of elements in the residue field.

REMARK 3.31

We point out that although the representations in φψ are all spherical, their
Langlands data are not necessarily induced from a Borel subgroup. The fact
that Xα̂ ∈ Lie(N̂) and not only Lie(Û) is crucial for the proof of our main result.

Let us now consider the general case and thus remove the condition φ|I ′
k = 1.

Write φψ = φ0φ+ as before. Again φ0 = φ and φ+ is as in (3.19). Let LM be the
centralizer of Im(φ+) in LG, a Levi subgroup of LG. Let M be the corresponding
Levi subgroup of G which we may assume, upon conjugation, to contain T . The
parameter φ+ is a map into LT and in fact LA, where A is the split component of
M . It defines a positive quasi-character ν of M(k). Moreover, φ ∈ Φtemp(M/k).
Let ΠM

φ = ΠM (φ) be the L-packet of M(k) attached to the tempered parameter
φ which we assume exists by assuming local Langlands conjecture for M . This
is always the case when k = R (or C) (see [60]) and is also true in certain special
cases when k is p-adic. We discuss this assumption further in later sections.

The L-packet Π(φψ) of G(k) attached to φψ then consists of Langlands
quotients J(ν, τ) as τ ranges in ΠM

φ . Again (3.20) and (3.21) are valid. We
therefore have the following.
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PROPOSITION 3.32

Assume that ψ ∈ Ψ(G/k) is arbitrary, and choose φ,ρ,φ+,M , and ν as above.
Assume that ΠM

φ is defined. Then by LLC,

Π(φψ) =
{
J(ν, τ)

∣∣ τ ∈ ΠM
φ

}
,

where

I(ν, τ) = IndG(k)
M(k)N(k)(τ ⊗ ν) ⊗ 1

are the corresponding standard modules with N ⊂ U . Assume that ρ �= 1. Then
there exists a root α with Xα ∈ Lie(N(k)), where Xα̂ ∈ Lie(Û) contributes to the
nilpositive member of the sl2(C)-triple defined by ρ. Moreover, (3.20) and (3.21)
are valid.

4. Some representation theory

In this section we review the main tools from representation theory that we need
in order to prove the main step in the proof of (2.12), namely, the following.

THEOREM 4.1

If a member of the L-packet defined by φψ is unramified and generic, then it is
tempered.

The unramified condition in Theorem 4.1 can be removed whenever the local
Langlands conjecture holds for the Levi subgroup defined by the tempered para-
meter φ, as we explain later.

To proceed, we assume that k is a local field, Archimedean or non-Archime-
dean. Our group G continues to be quasi-split over k with a Borel subgroup
B = TU defined over k. We fix a generic character χ of U(k) by means of our
splitting as in Section 2.

Let I(ν,σ) be a standard module for G(k) defined by a parabolic subgroup
P = MN , where N ⊂ U and T ⊂ M . Then ν is in the Langlands setting; that is,
ν is in the positive Weyl chamber, and σ is an irreducible tempered representation
of M(k). We let J(ν,σ) be the corresponding (unique) Langlands quotient. It
follows from Rodier’s theorem that J(ν,σ) is χ-generic only if σ is χM -generic,
where χM = χ|UM (k) with UM = U ∩ M .

There is more to be said. The following theorem is now completely proved
in the case of a p-adic field k in a recent manuscript of Heiermann and Opdam
[24, Corollary 1.2].

THEOREM 4.2

J(ν,σ) is χ-generic if and only if I(ν,σ) is irreducible and σ is χM -generic.

This is true for any local field, and the case when k = R (or C) was first proved
by Vogan more than 30 years ago in [60], using a characterization of generic
representations by Kostant [35].
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Before [24], the p-adic case was proved in many instances in a number of
articles by other authors (see [8], [11], [23], [30], [31], [50], [56]). Its proof is
reduced to another conjecture, sometimes called the tempered L-functions con-
jecture, which was conjectured in [56] and demands the following.

(4.3) All the L-functions L(s,σ, ri) defined in [56] are holomorphic for Re(s) >

0 whenever σ is tempered.

The progress on this conjecture followed the same path, for which one can
refer to the references above.

This conjecture, which is now a theorem in [24, Theorem 1.1] as well, is also
needed in our argument, and we therefore quickly review both of them.

We start by recalling what a local coefficient is. For simplicity, let us consider
only the case of a standard module I(ν,σ), although these objects can be defined
very generally.

Let W (G,A0) be the Weyl group of A0 in G. If M is defined by a subset
θ of simple roots Δ of A0 in U , we let w̃ be an element in W (G,A0) such that
w̃(θ) ⊂ Δ. Although it is not relevant here, we let w be a representative for w̃ as
in [54], [56].

We let A(ν,σ,w) be the standard intertwining operator

(4.4) A(ν,σ,w)f(g) =
∫

Nw̃

f(w−1ng)dn

from I(ν,σ) to I(w(ν),w(σ)), where f is in the space of I(ν,σ), g ∈ G(k), and
Nw̃ = U ∩ wNw−1 with N the unipotent subgroup opposed to N .

Next, let w0 = w	 · w−1
	,θ , where w	 and w	,θ are the representatives for the

long elements w̃	 and w̃	,θ of W (G,A0) and W (M,A0), respectively.
We now assume that σ is generic with respect to χM . Let λM be a Whittaker

functional for σ, that is, so that

(4.5) λM

(
σ(u)v

)
= χM (u)λM (v),

u ∈ UM (k), v ∈ H(σ). The functional is also supposed to be appropriately con-
tinuous when k = R (see [57]). Let M ′ = Mw̃0(θ), and let P ′ = M ′N ′ be the cor-
responding standard parabolic subgroups of G and thus N ′ ⊂ U . The induced
Whittaker functional is then defined by

(4.6) λ(f) =
∫

N ′(k)

λM

(
f(w−1

0 n′)
)
χ−1(n′)dn′.

We define similarly the induced functional λ′ for I(w(ν),w(σ)). The local coef-
ficient Cχ(ν,σ,w) is the complex number defined by

(4.7) Cχ(ν,σ,w)λ′(A(ν,σ,w)f
)

= λ(f).

It is a meromorphic function of ν which becomes a product of rational functions
of one variable each given in the exponentials defined by ν (see [53], [56]), if k is
p-adic. When k = R, Cχ(ν,σ,w) becomes a ratio of products of Γ-functions (see
[54]).
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Poles and zeros of this function play a crucial role in determining the reducibi-
lity of I(ν,σ) for a generic σ (see [11], [53], [56]).

For our purposes and in view of Theorem 4.2, we need to determine the
reducibility of the standard module I(ν,σ), and for that we use [11, Proposi-
tion 5.4], which we now recall as follows.

PROPOSITION 4.8 (CF. [11])

Let k be a local field of characteristic zero, and let I(ν,σ) be a standard module
for G(k), where σ is a χM -generic representation of M(k). Then I(ν,σ) is
irreducible if and only if Cχ(ν,σ,w0)−1 �= 0.

There are a number of cases for which Cχ(ν,σ,w0) is computed in terms of the
Langlands parameter for σ. For example, when k = R (or C) the local coefficients
are explicitly computed in terms of Artin L-functions in [43], [54]. More precisely,
let σν = σ ⊗ exp〈ν,HM (·)〉, where

HM : M(R) −→ a = Hom
(
X(M)R,R

)
is the natural map. Let

(4.9) φν : Lk −→ LM

denote the Langlands parameter for σν in Φ(G/R). Next, let Ln be the Lie
algebra of LN , the L-group of N , and denote by r the adjoint action of LM on
Ln. Then

(4.10) Cχ(ν,σ,w0)−1 ∼ L(0, r · φν)/L(1, r̃ · φν),

where r̃ is the contragredient of r, which can be realized as the adjoint action
of LM on Ln, the Lie algebra of LN . Here ∼ signifies the equivalence up to an
exponential in ν.

As explained earlier, since ν is in the positive Weyl chamber and r · φ is a
unitary representation, σ being tempered,

(4.11) L(0, r · φν)−1 �= 0

by (4.3) (or its Artin L-function version; see [22], [25], [26], [28], [29]). Therefore
the zeros of L(1, r̃ · φν)−1 become precisely those of Cχ(ν,σ,w0)−1 for a positive
ν. In view of Proposition 4.8, we now conclude the following.

PROPOSITION 4.12

The standard module I(ν,σ) = J(ν,σ), that is, I(ν,σ) is irreducible, if and only
if L(1, r̃ · φν)−1 �= 0.

The same is true when k is non-Archimedean and σ is an irreducible generic
tempered representation of M(k) defined by a unitary character μ of T (k) as in
(3.22), (3.25), and (3.26), through induction. This is a case of the unramified
version of Proposition 4.12 for which local Langlands conjecture is automatic.
We therefore have the following.
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PROPOSITION 4.13

Assume that k is non-Archimedean, and assume that σ is generic, tempered, and
unramified whose Langlands parameter is φ. Then the standard module I(ν,σ)
is irreducible if and only if L(1, r̃ · φν)−1 �= 0.

Finally, we can state the following general result. It is under the assumption
of equality of L-functions through the local Langlands conjecture as discussed
earlier.

PROPOSITION 4.14

Assume that k is non-Archimedean, and assume that σ is an irreducible, generic,
tempered, representation of M(k) whose Langlands parameter is φ for which

L(s, r · φν) = L(s,σν , r̃),

where r is the adjoint action of LM on Ln and the L-function on the right is the
one defined in [56]. Then the standard module I(ν,σ) is irreducible if and only
if L(1, r̃ · φν)−1 �= 0.

5. Proof of the main results

In this section we prove Theorem 4.1, which we now generalize even further.

THEOREM 5.1

Assume the validity of the local Langlands conjecture for every proper Levi sub-
group M of G to the extent that every irreducible generic tempered representation
σ of M(k) is parameterized by a homomorphism φ from Lk to LM with a bounded
image in M̂ such that

(5.2) L(s, r · φν) = L(s,σν , r̃),

where r and ν are as in Section 4. Let ψ ∈ Ψ(G/k), and let Π(φψ) be the packet
attached to φψ defined by (3.6). Suppose that Π(φψ) has a generic member. Then
φψ is tempered.

COROLLARY 5.3

Assume k = R (or C). Let ψ ∈ Ψ(G/R). Then every generic member of Π(φψ)
is tempered. In particular, if Π(φψ) has a generic member, then it is a tempered
L-packet.

Proof
This follows immediately from Theorem 5.1 since the full local Langlands con-
jecture for real groups is a theorem in [43]. Equality (5.2) is proved in [54]. �

Since unramified representations always satisfy local Langlands conjecture, the
following corollary of Theorem 5.1 is immediate.
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COROLLARY 5.4

Theorem 4.1 is valid.

Proof of Theorem 5.1
Let π be a generic member of Π(φψ). Assume π = J(ν, τ), τ ∈ ΠM

φ , as in Propo-
sition 3.32. Then by Theorem 4.2, I(ν, τ) is irreducible.

It now follows from Proposition 4.14 that

(5.5) L(1, r̃ · φψ)−1 �= 0.

Now assume that the ρ-component of ψ as defined in (3.8) is nontrivial, that
is, that the L-packet Π(φψ) is nontempered. Then by Proposition 3.32, equation
(3.20), and statement (3.21), the restriction r̃ψ,α̂ := r̃ · φψ |Xα̂ acts like w �→ |w| −1.
Consequently,

L(1, r̃ · φψ |Xα̂)−1 = ζk

(
0, |w| · r̃ψ,α̂(w)

)−1

= ζk(0,1)−1(5.6)

= 0,

where ζk(s,χ) denotes the Artin (or Hecke) L-function attached to a character χ

of Lk. This contradicts (5.5). Thus ρ = 1 and Π(φψ) is tempered. This completes
the proof. �

(5.7) There are a number of cases where the local Langlands conjecture is
proved (see [22], [25], [28]). The cases include certain cases of classical groups.
Consequently, our Theorem 5.1 is valid with no assumptions in those cases. In
particular, our proof of Theorem 5.1 gives a new proof of these results origi-
nally proved in [9] and [47], without appealing to classification theorems. The
unramified case (Theorem 4.1) can also be proved using the results in [46].

6. Ramanujan conjecture

We now assume that k is a number field and G is a quasi-split connected reductive
algebraic group over k. Let π =

⊗
v πv be a cuspidal automorphic representation

of G(Ak). Going back to the discussions in Section 3, we now assume the following
statement from a generalization of Arthur’s A-packet conjecture due to Clozel
[12, Conjecture 2A]. In fact, our Conjecture 6.1 came out of our discussions
with Arthur. On the other hand, after consulting Clozel’s article [12], which was
suggested to us by Dihua Jiang after a talk given on these results, it became clear
that the question was already confronted by Clozel, who then conjectured it as
[12, Conjecture 2A] by stating it as follows. Suppose ψv = (φv, ρv) and φv |I ′

kv
≡ 1.

Then the unramified members of Π(ψv) are precisely those in Π(φψv ).

CONJECTURE 6.1 (ARTHUR; CLOZEL [12, CONJECTURE 2A])

For almost all finite primes v,πv ∈ Π(φψv ), where ψv is the Arthur parameter of πv.
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We now assume further that π is locally generic. Then each πv is generic with
respect to a generic character χv of U(kv). The characters χv may or may
not be a local component of a global character of U(k)\U(Ak). Appealing to
Theorem 4.1 we immediately conclude the following.

THEOREM 6.2

Assume Conjecture 6.1. Let π =
⊗

v πv be a locally generic cuspidal automorphic
representation of G(Ak). Then πv is tempered for almost all places v of k.

REMARK 6.3

Since globally generic representations are locally generic, one may drop “locally”
from our statement in this case.

Note that one can try to include more places in the tempered set whenever
one can apply Theorem 5.1, but instead we make the following conjecture, for
which we produce some evidence.

CONJECTURE 6.4

Let π =
⊗

v πv be a cuspidal automorphic representation of G(Ak). Assume that
πv is tempered for almost all or even infinitely many places. Then π is tempered;
that is, πv is tempered for all v.

CONJECTURE 6.5

Assume Conjectures 6.1 and 6.4. Let π be a locally generic cuspidal automorphic
representation of G(Ak). Then π is tempered.

Conjecture 6.4 is clearly valid for cuspidal representations attached to represen-
tations of the Galois group Γk, and using its validity for grössencharacters, for
those parameterized by admissible homomorphisms from Wk into LG, whenever
they exist. One hopes that heuristic reasons can be given for the validity of
Conjecture 6.5 in general if one adopts the formalism of the global Langlands
group Lk (see [5], [36]) and appeals to Arthur’s global A-packet conjecture dis-
cussed in Section 3 (see [2]–[4]). A much stronger conjecture is due to Clozel
([12, Conjecture 4]).

As another piece of evidence, we should mention the cases of classical groups.
Assuming the Ramanujan conjecture for GLN , that is, that all the unitary cus-
pidal representations of GLN (Ak) are tempered, one can show that the same is
true for the generic spectrum of all the quasi-split classical groups. This follows
from the functorial transfer of generic cuspidal representations of such groups to
appropriate GLN , which was established in [13]–[15], [32]. In fact, one knows
that the transfers are always isobaric sums of unitary cuspidal representations
of possibly smaller GLN -groups and are therefore all tempered, assuming the
Ramanujan conjecture for GLN . Thus, if π =

⊗
v πv is a globally generic cuspi-

dal representation of G(Ak), where G is a quasi-split classical group over k, let
Π =

⊗
v Πv be its functorial transfer to GLN (Ak). We then conclude that πv is
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tempered for almost all v if Π satisfies the Ramanujan conjecture. This extends
to all v as the work in [14, Section 7] shows; only a tempered πv can transfer to a
tempered Πv . We refer to [14, Section 10] for details. We collect this as follows.

(6.6) Assume the validity of the Ramanujan conjecture for GLN (Ak). Then
globally generic cuspidal representations of G(Ak) are all tempered.

(6.7) Finally, we note that Corollary 6.5 in fact implies the Ramanujan con-
jecture for GLN (Ak) since cuspidal representations of GLN (Ak) are (locally)
generic.

(6.8) We now address Conjecture 2.10 (and Conjectures 6.1, 6.4) in the
case of classical groups by sketching a proof. Here we start by assuming the
Ramanujan-Selberg conjecture for GLN (Ak). Arthur’s upcoming book [7] then
allows us to define tempered packets for classical groups by transfering automor-
phic representations from G(Ak) through functoriality to GLN (Ak). In view of
Corollary 6.5, all the generic representations are tempered, and in particular,
so are globally generic ones. On the other hand, by the automorphic descent of
Ginzburg, Rallis, and Soudry [20], [58], globally generic representations of G(Ak)
are parameterized by certain self-dual isobaric automorphic representations of
GLN (Ak), and the parameterization map is the inverse of the functoriality map
from globally generic cusp forms to GLN (Ak) established in [14]. This transfer
agrees with that of Arthur, and in fact, its image in GLN (Ak) is the image of
the transfer of the whole tempered L-packet established in [7]. Since every tem-
pered packet is transferred to a self-dual isobaric automorphic representation of
GLN (Ak), all the generic ones in the same packet transfer to the same represen-
tation on GLN (Ak). In particular, the locally generic one in the packet must be
the same as the globally generic one by uniqueness.

We finally remark that Conjectures 6.1 and 6.4, on which the validity of
Corollary 6.5 relies, should be immediate consequences of the transfer established
in [13]–[15], [32]. In fact, a cuspidal representation π whose local components
are tempered at almost all places has no choice but to transfer to an isobaric
automorphic representation of GLN (Ak) which is tempered at every place by
the Ramanujan conjecture for GLm(Ak), 1 ≤ m ≤ N . This then forces all the
components of π to be tempered. The validity of Conjecture 6.1 is readily avail-
able from the same transfer and the characterization of the residual spectrum
for GLN (Ak) by Moeglin and Waldspurger [49]. We remark that this also gives
a sketch of an argument for the validity of [18, Conjecture 24.2].
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