A sufficient condition for well-posedness for systems with time-dependent coefficients

Marcello D'Abbicco

Abstract

We consider linear, smooth, hyperbolic systems with time-dependent coefficients and size N. We give a condition sufficient for the well-posedness of the Cauchy Problem in some Gevrey classes. We present some Levi conditions to improve the Gevrey index of well-posedness for the scalar equation of order N, using the transformation in [DAS] and following the technique introduced in [CT]. By using this result and adding some assumptions on the form of the first-order term, we can improve the well-posedness for systems. A similar condition has been studied in [DAT] for systems with size 3 .

1. Introduction

In this article we study the well-posedness of the Cauchy Problem for first-order ($N \times N$)-systems whose coefficients depend only on the time variable,

$$
\begin{cases}L\left(t, \partial_{t}, \partial_{x}\right) U(t, x)=f(t, x), & (t, x) \in[0, T] \times \mathbb{R}^{n} \tag{1.1}\\ U(0, x)=U_{0}(x), & x \in \mathbb{R}^{n}\end{cases}
$$

where

$$
L U=\partial_{t} U-\sum_{j=1}^{n} A_{j}(t) \partial_{x_{j}}-B(t) U, \quad A_{j}(t) \in M_{N}(\mathbb{R}), B(t) \in M_{N}(\mathbb{C}) ;
$$

by $M_{N}(\mathbb{R})\left(\right.$ resp., $\left.M_{N}(\mathbb{C})\right)$ we denote the space of the $(N \times N)$-matrices with entries valued in \mathbb{R} (resp., \mathbb{C}). We assume that

$$
A(t, \xi):=|\xi|^{-1} \sum_{j=1}^{n} A_{j}(t) \xi_{j}
$$

is (weakly) hyperbolic; that is, its eigenvalues are real (not necessarily distinct) for any $\xi \in \mathbb{R}^{n} \backslash\{0\}$. We remark that A is real valued, whereas B may be complex valued. In the following, we assume that $A \in \mathcal{C}^{N}$; that is, each entry of A_{j} belongs to $\mathcal{C}^{N}([0, T])$, for $j=1, \ldots, n$. We assume also that $B \in \mathcal{C}^{N-1}$.

NOTATION
Let $f(t)$ and $g(t)$ be defined in $[0, T]$; we write $f \lesssim g$, meaning that there exists a positive constant C such that

$$
f(t) \leq C g(t) \quad \text { for } t \in[0, T] .
$$

Analogously, if $f(t, \xi)$ and $g(t, \xi)$ are symbols defined in $[0, T] \times \mathbb{R}^{n}$, we write $f \lesssim g$, meaning that there exists a positive constant C such that

$$
f(t, \xi) \leq C g(t, \xi) \quad \text { for }(t, \xi) \in[0, T] \times \mathbb{R}^{n}
$$

In both cases, we write $f \approx g$, meaning that $f \lesssim g$ and $g \lesssim f$.

NOTATION
We denote with γ^{d} the Gevrey class with index $d \in(1, \infty)$, that is, the class of functions in $\mathcal{C}^{\infty}\left(\mathbb{R}^{n}\right)$ such that for any compact $K \subset \mathbb{R}^{n}$, there exists C_{K} such that

$$
\left|\partial_{x}^{\alpha} f(x)\right| \leq C_{K}^{|\alpha|+1}(|\alpha|!)^{d} \quad \text { for any } x \in K \text { and } \alpha \in \mathbb{N}^{n} .
$$

NOTATION
We put $I:=\{1, \ldots, N\}$. We denote by I_{M} the identity matrix of size M. We denote by $\|A\|:=\max _{i, j}\left|a_{i j}\right|$ the norm of a matrix $A=\left(a_{i j}\right)_{i, j}$.

DEFINITION 1

The Cauchy problem (1.1) is said to be well posed in γ^{d} with $1<d<\infty$ if, for any choice of the data $f \in \mathcal{C}\left([0, T], \gamma^{d}\left(\mathbb{R}^{n}, \mathbb{C}^{N}\right)\right)$ and $U_{0} \in \gamma^{d}\left(\mathbb{R}^{n}, \mathbb{C}^{N}\right)$, it admits a unique solution $U \in \mathcal{C}^{1}\left([0, T], \gamma^{d}\left(\mathbb{R}^{n}, \mathbb{C}^{N}\right)\right)$.

In this article, we say that (1.1) is strongly well posed in γ^{d} to mean that it is well posed for any choice of the lower-order term $B(t) \in C^{N-1}([0, T])$.

We refer the interested reader to [CI], [CJS], [CO], [D], [DAK], and [Y] for questions related to the well-posedness of weakly hyperbolic equations and systems.

It is acknowledged (see [B2]) that the Cauchy problem (1.1) for a system is well posed in γ^{d} for

$$
\begin{equation*}
1<d<d_{B} \equiv d_{B}(r):=1+\frac{1}{r-1}, \tag{1.2}
\end{equation*}
$$

where r is the maximum multiplicity of the eigenvalues of A. If the multiplicities of the eigenvalues are not constant, then this Gevrey index may be improved. In this note, we consider matrices $A(t, \xi)$ whose eigenvalues have variable multiplicity and such that $A(0, \xi)$ has a unique eigenvalue with multiplicity N; hence, Bronšteĭn's index is

$$
d_{B}(N)=1+\frac{1}{N-1} .
$$

By Bronšteĭn's Lemma [B1, Theorem 2] the eigenvalues of $A(t, \xi)$, counted with their multiplicities, namely,

$$
\left\{\lambda_{i}(t, \xi): i=1, \ldots, N\right\},
$$

are Lipschitz-continuous functions. In this article, we assume that $\lambda_{1}, \ldots, \lambda_{N}$ satisfy the following.

ASSUMPTION 1

For any $i, j=1, \ldots, N$, there exists $\kappa_{i j} \in[1, \infty]$, such that either

$$
\begin{align*}
& \left|\lambda_{i}-\lambda_{j}\right| \approx t^{\kappa_{i j}} \quad \text { if } \kappa_{i j} \in[1, \infty), \text { or } \\
& \left|\lambda_{i}-\lambda_{j}\right| \lesssim t^{m} \quad \text { for any } m \in \mathbb{N} \quad \text { if } \kappa_{i j}=\infty \tag{1.3}
\end{align*}
$$

We remark that $\kappa_{i j}=\kappa_{j i}$ and that $\kappa_{j j}=\infty$; that is, $\kappa=\left(\kappa_{i j}\right)_{i, j}$ is a symmetric matrix with ∞ as diagonal entries.

REMARK 1.1
If $\kappa_{i j}<\kappa_{j k}$ for some i, j, k, then $\kappa_{i k}=\kappa_{i j}$; indeed, in such a case, it holds that

$$
t^{\kappa_{i j}} \lesssim\left|\lambda_{i}-\lambda_{j}\right|-\left|\lambda_{j}-\lambda_{k}\right| \leq\left|\lambda_{i}-\lambda_{k}\right| \leq\left|\lambda_{i}-\lambda_{j}\right|+\left|\lambda_{j}-\lambda_{k}\right| \lesssim t^{\kappa_{i j}} .
$$

We look for a sufficient condition for the well-posedness of the Cauchy problem (1.1) in γ^{d} for any $1<d<d^{*}$, for some $d^{*}>d_{B}(N)$.

It is easy to check that, if the system has size $N=2$ and

$$
\left|\lambda_{1}-\lambda_{2}\right| \approx t^{\alpha}, \quad 1<\alpha<\infty
$$

then the Cauchy problem (1.1) is well posed in γ^{d} for any $1<d<d^{*}$, where

$$
d^{*}=1+\frac{\alpha+1}{\alpha-1}=2+\frac{2}{\alpha-1} .
$$

We remark that $d^{*}>2=d_{B}(2)$. On the other hand, if $\left|\lambda_{1}-\lambda_{2}\right| \approx t$, then (1.1) is well posed in any $\gamma^{d}, d>1$, and in \mathcal{C}^{∞}.

For the sake of brevity, in this article we assume $N \geq 3$ (in particular, for systems with size 2 or 3 , see also [DAT]). F. Colombini and G. Taglialatela [CT] stated a condition for the well-posedness of the equation of order N in Gevrey classes; in $[\mathrm{CT}]$ the functions λ_{j} represent the roots of the characteristic equation.

With the notation in Assumption 1, they assumed the existence of κ_{1}, \ldots, $\kappa_{N-1} \geq 1$, such that

$$
\begin{align*}
& \kappa_{1} \leq \kappa_{2} \leq \cdots \leq \kappa_{N-1}<\infty \quad \text { and } \\
& \kappa_{i j}=\kappa_{i}, \quad \text { for any } j=i+1, \ldots, N, \tag{1.4}
\end{align*}
$$

and they proved, in [CT, Theorem 1.2], that the Cauchy problem for the equation of order N is strongly well posed in γ^{d} for any $1<d<d^{*}$ with

$$
\begin{equation*}
d^{*}=1+\frac{\kappa_{h}+1}{(N-h-1) \kappa_{h}+s_{h}-1}, \tag{1.5}
\end{equation*}
$$

where

$$
s_{p}=\kappa_{1}+\cdots+\kappa_{p} \quad \text { and } \quad h:=\min \left\{p: s_{p}+p \geq N\right\} .
$$

Condition (1.4) on the structure of $\kappa=\left(\kappa_{i j}\right)_{i, j}$ is very restrictive; in fact,

$$
\kappa=\left(\begin{array}{ccccc}
\infty & \kappa_{1} & \kappa_{1} & \ldots & \kappa_{1} \\
\kappa_{1} & \infty & \kappa_{2} & \ldots & \kappa_{2} \\
\kappa_{1} & \kappa_{2} & \infty & \ldots & \kappa_{3} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\kappa_{1} & \kappa_{2} & \kappa_{3} & \ldots & \infty
\end{array}\right) .
$$

In order to get a similar result of well-posedness without condition (1.4) on the matrix κ, we have to construct a suitable sequence $\kappa_{1}, \ldots, \kappa_{N-1}$, which depends on the structure of the matrix $\kappa=\left(\kappa_{i j}\right)$.

DEFINITION 2

Let $k \in[1, \infty]$. Then there exist a unique integer $m \leq N$ and a unique partition $P_{k}(I)=\left\{I_{1}, \ldots, I_{m}\right\}$ of the set $I=\{1, \ldots, N\}$, namely,

$$
I=\bigcup_{p=1}^{m} I_{p} \quad \text { with } I_{p} \neq \emptyset \text { and } I_{p} \cap I_{q}=\emptyset \text { for } p \neq q
$$

such that $\kappa_{i j}>k$ if and only if $i, j \in I_{p}$ for some p. We call such a partition the k-partition of the set I. We define

$$
\alpha=\min \left\{\kappa_{i j}: i, j=1, \ldots, N\right\},
$$

and we call the minimum partition of the set I the partition $P_{\min }(I)=P_{\alpha}(I)$.

REMARK 1.2

Let $k \in[1, \infty]$; then the k-partition of I is the trivial partition $P_{k}(I)=\{I\}$ if and only if $k<\alpha$. On the other hand, for $k=\infty$, the ∞-partition of I is the trivial partition $P_{\infty}(I)=\{\{1\},\{2\}, \ldots,\{N\}\}$.

We remark that if $k_{i j}=\alpha$ for any $i \neq j$, then $P_{\text {min }}(I)=P_{\alpha}(I)=\{\{1\},\{2\}, \ldots$, $\{N\}\}$, too.

REMARK 1.3
Let $P_{\text {min }}(I)=\left\{I_{1}, \ldots, I_{m}\right\}$ be the minimum partition of I. After a permutation on I, we can write

$$
\begin{aligned}
I_{1} & =\left\{1, \ldots, \#\left(I_{1}\right)\right\}, \quad I_{2}=\left\{\#\left(I_{1}\right)+1, \ldots, \#\left(I_{1}\right)+\#\left(I_{2}\right)\right\}, \ldots, \\
I_{m} & =\left\{N-\#\left(I_{m}\right)+1, \ldots, N\right\} .
\end{aligned}
$$

Therefore (see Remark 1.1) the matrix $\kappa=\left(\kappa_{i j}\right)$ can be represented in the block form

$$
\kappa=\left(\begin{array}{ccccc}
\kappa^{(1)} & C_{\alpha} & C_{\alpha} & \ldots & C_{\alpha} \tag{1.6}\\
C_{\alpha} & \kappa^{(2)} & C_{\alpha} & \ldots & C_{\alpha} \\
C_{\alpha} & C_{\alpha} & \kappa^{(3)} & \ldots & C_{\alpha} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
C_{\alpha} & C_{\alpha} & C_{\alpha} & \ldots & \kappa^{(m)}
\end{array}\right),
$$

where C_{α} are blocks with suitable size and each entry equal to α, and $\kappa^{(p)}=$ $\left(\kappa_{i j}\right)_{i, j \in I_{p}}$ are square blocks with size $\#\left(I_{p}\right)$ and $\kappa_{i j}^{(p)}>\alpha$.

REMARK 1.4

Let $P_{\text {min }}(I)=\left\{I_{1}, \ldots, I_{m}\right\}$ be the minimum partition of I; if there exist two different subsets I_{p}, I_{q} with $\#\left(I_{p}\right), \#\left(I_{q}\right) \geq 2$, then condition (1.4) cannot be satisfied.

EXAMPLE 1.5

Let $N=4$, and assume that

$$
\kappa_{12}=\beta_{1}, \quad \kappa_{34}=\beta_{2}, \quad \kappa_{13}=\alpha
$$

with $\alpha<\beta_{1}, \beta_{2}$; that is,

$$
\kappa=\left(\begin{array}{cccc}
\infty & \beta_{1} & \alpha & \alpha \\
\ldots & \infty & \alpha & \alpha \\
\ldots & \cdots & \infty & \beta_{2} \\
\ldots & \cdots & \cdots & \infty
\end{array}\right) .
$$

It is clear that condition (1.4) is not satisfied. Nevertheless, in [CT, Theorem 1.3], it is proved that the Cauchy problem is strongly well posed in γ^{d} for any $1<d<$ d^{*}, where d^{*} is determined as in (1.5), provided that we put

$$
\kappa_{1}=\kappa_{2}=\alpha, \quad \kappa_{3}=\max \left\{\beta_{1}, \beta_{2}\right\} .
$$

Hence (1.5) gives

$$
d^{*}=1+\frac{\alpha+1}{3 \alpha-1} .
$$

We are ready to state the following.

THEOREM 1

We assume that, for any $t>0$, the matrix $A(t, \xi)$ has m distinct eigenvalues μ_{1}, \ldots, μ_{m}, that each eigenvalue μ_{p} has constant multiplicity M_{p}, and that

$$
\left|\mu_{i}-\mu_{j}\right| \approx t^{\alpha}, \quad i \neq j
$$

Let $M=\max _{p} M_{p}$. Then the Cauchy problem (1.1) is strongly well posed in γ^{d} for any $1<d<d^{*}$ with

$$
d^{*}:= \begin{cases}1+\frac{\alpha+1}{(N-1) \alpha-1} & \text { if }(N-M) \alpha \geq M, \tag{1.7}\\ 1+\frac{1}{M-1} \equiv d_{B}(M) & \text { if }(N-M) \alpha \leq M .\end{cases}
$$

REMARK 1.6

More in general, if we assume that $A(t, \xi)$ verifies Assumption 1 and we put

$$
M=\max _{p} \#\left(I_{p}\right),
$$

where $P_{\min }(I)=P_{\alpha}(I)=\left\{I_{1}, \ldots, I_{m}\right\}$ is the minimum partition of I as in Definition 2, then the Cauchy problem (1.1) is strongly well posed in γ^{d} for any $1<d<d^{*}$ with d^{*} as in (1.7).

However, in this case the Gevrey index d^{*} may be improved (see Theorem 2) by adding further assumptions on the blocks $\kappa^{(p)}$ in (1.6). In fact, the proof is an immediate consequence of Theorem 2 .

EXAMPLE 1.7
Let

$$
A=A_{1} \oplus A_{2}=\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right)
$$

where the matrix A_{2} has a unique eigenvalue

$$
\mu=\lambda_{(N-M)+1}=\cdots=\lambda_{N}
$$

with multiplicity $M \geq N / 2$, and assume that

$$
\begin{aligned}
\left|\mu-\lambda_{j}\right| \approx t^{\alpha} & \text { for any } j=1, \ldots, N-M \\
\left|\lambda_{i}-\lambda_{j}\right| \lesssim t^{\alpha} & \text { for any } i, j=1, \ldots, N-M
\end{aligned}
$$

Then Remark 1.6 gives $d^{*}=d_{B}(M)$, provided that α is sufficiently small, namely,

$$
\alpha \leq \frac{M}{N-M} .
$$

We remark that $A_{2}(t, \xi)$ has a unique eigenvalue with constant multiplicity M.

EXAMPLE 1.8

We can apply Theorem 1 to Example 1.5. Indeed, we have

$$
P_{\min }(I)=P_{\alpha}(I)=\left\{I_{1}, I_{2}\right\} \quad \text { with } I_{1}=\{1,2\} \text { and } I_{2}=\{3,4\} ;
$$

hence we get the expected Gevrey index:

$$
d^{*}=1+\frac{\alpha+1}{3 \alpha-1} .
$$

We notice that $d^{*}=d_{B}(2)=2$ as in Example 1.7 if and only if $\alpha=1$ since $N=4$ and $M=2$.

In order to improve the Gevrey index d^{*} in Theorem 1, we need to refine the partition of I.

DEFIIITION 3

Let $J \subset I$, and let

$$
\alpha_{J}:=\min \left\{\kappa_{i j}: i, j \in J\right\} .
$$

We call the minimum partition of J the α_{J}-partition of J (see Definition 2): $P_{\alpha_{J}}(J)=\left\{J_{1}, \ldots, J_{m}\right\}$. Now we define by induction

$$
\Sigma_{h}[J]:=\max _{p} s_{h}\left[J_{p}, \#\left(J \backslash J_{p}\right)\right], \quad h=1, \ldots, \#(J)-1,
$$

where

$$
s_{h}\left[J_{p}, l\right]:= \begin{cases}h \alpha_{J} & \text { if } h \leq l, \\ l \alpha_{J}+\Sigma_{h-l}\left[J_{p}\right] & \text { if } h>l .\end{cases}
$$

We put $\Sigma_{h}:=\Sigma_{h}[I]$; it is clear that $\Sigma_{1}[J]=\alpha_{J}$.

EXAMPLE 1.9

We consider Example 1.5; with the notation introduced in Definition 3, we easily get

$$
\Sigma_{1}=\alpha=\kappa_{1}, \quad \Sigma_{2}=2 \alpha=\kappa_{1}+\kappa_{2},
$$

since $\#\left(I \backslash I_{1}\right)=\#\left(I \backslash I_{2}\right)=2$, whereas

$$
\Sigma_{3}=\max \left\{s_{3}\left[I_{1}, 2\right], s_{3}\left[I_{2}, 2\right]\right\}=2 \alpha+\max \left\{\Sigma_{1}\left[I_{1}\right], \Sigma_{1}\left[I_{2}\right]\right\}=2 \alpha+\max \left\{\beta_{1}, \beta_{2}\right\}
$$

LEMMA 1.10

Let $J \subset I$. We assume that for some permutation on the set I, we have $J=$ $\{1, \ldots, M\}$ with $M=\#(J)$, and J satisfies condition (1.4); that is,

$$
\kappa_{1} \leq \cdots \leq \kappa_{M-1}<\infty \quad \text { and } \quad \kappa_{i j}=\kappa_{i}, \quad \text { for any } j=i+1, \ldots, M .
$$

Then

$$
\Sigma_{h}[J]=s_{h} \equiv \kappa_{1}+\cdots+\kappa_{h}, \quad h=1, \ldots, M-1 .
$$

Proof
We can prove the statement by induction on M. It is trivially true for $M=2$; we assume that the thesis holds for $M-1$, and we prove it for M. Let $m \geq 2$ be such that

$$
\kappa_{1}=\cdots=\kappa_{m-1}<\kappa_{m} ;
$$

that is, $s_{p}=p \alpha_{J}$ for any $p \leq m-1$ and $\kappa_{m}>\alpha_{J}$. Then J is partitioned in

$$
J=\{1\} \cup \cdots \cup\{m-1\} \cup J_{m} \quad \text { with } \quad J_{m}=\{m, \ldots, M\},
$$

with the notation introduced in Definition 3. Hence it holds that

$$
\Sigma_{h}=\max \left\{h \alpha_{J}, \sigma_{h}\left[J_{m}, m-1\right]\right\}= \begin{cases}s_{h} & \text { if } h \leq m-1, \\ s_{m-1}+\Sigma_{h-(m-1)}\left[J_{m}\right] & \text { if } m \leq h \leq M-1\end{cases}
$$

Since $\#\left(J_{m}\right) \leq M-1$, we can apply the hypothesis of induction and

$$
\Sigma_{h-(m-1)}\left[J_{m}\right]=\kappa_{m}+\cdots+\kappa_{h} .
$$

This concludes the proof.

We proved that Definition 3 is consistent with the one given in (1.4). Moreover, it is easy to check that each $J \subset I$ with $\#(J) \leq 3$ satisfies (1.4).

REMARK 1.11
With the notation in Definition 2, let $P_{\min }(I)=\left\{I_{1}, \ldots, I_{m}\right\}$, and let $M=$ $\max \#\left(I_{p}\right)$; then

$$
\Sigma_{h}=h \alpha \quad \text { for any } h \leq N-M
$$

Indeed, it holds that

$$
s_{h}\left[I_{p}, \#\left(I \backslash I_{p}\right)\right]=h \alpha, \quad p=1, \ldots, m
$$

since $N-\#\left(I_{p}\right) \geq N-M$.

DEFINITION 4

We define $\kappa_{1}:=\Sigma_{1}=\alpha$, and we put, for any $h \geq 2$,

$$
\kappa_{h}:= \begin{cases}\Sigma_{h}-\Sigma_{h-1} & \text { if } \Sigma_{h}<\infty \\ \infty & \text { if } \Sigma_{h}=\infty\end{cases}
$$

Thanks to Lemma 1.10, Definition 4 is consistent with the one given in (1.4).

EXAMPLE 1.12

Let $N=5$; with the notation in Definition 2, we assume that

$$
P_{\min }(I)=P_{\alpha}(I)=\left\{I_{1}, I_{2}\right\} \quad \text { with } I_{1}=\{1,2\} \text { and } I_{2}=\{3,4,5\}
$$

The set I_{2} satisfies (1.4) since $\#\left(I_{2}\right) \leq 3$; hence we can assume with no restriction that

$$
\kappa=\left(\begin{array}{llllc}
\infty & \beta_{1} & \alpha & \alpha & \alpha \\
\beta_{1} & \infty & \alpha & \alpha & \alpha \\
\alpha & \alpha & \infty & \beta_{2} & \beta_{2} \\
\alpha & \alpha & \beta_{2} & \infty & \gamma \\
\alpha & \alpha & \beta_{2} & \gamma & \infty
\end{array}\right), \quad \alpha<\beta_{1}, \beta_{2}, \beta_{2} \leq \gamma
$$

With the notation in Definitions 3 and 4, we get

$$
\begin{aligned}
& \Sigma_{1}=\alpha, \quad \Sigma_{2}=2 \alpha, \quad \Sigma_{3}=\max \left\{3 \alpha, 2 \alpha+\beta_{2}\right\}=2 \alpha+\beta_{2} \\
& \Sigma_{4}=\max \left\{3 \alpha+\beta_{1}, 2 \alpha+\beta_{2}+\gamma\right\}=2 \alpha+\beta_{2}+\max \left\{\gamma, \beta_{1}-\left(\beta_{2}-\alpha\right)\right\}
\end{aligned}
$$

hence

$$
\kappa_{1}=\kappa_{2}=\alpha, \quad \kappa_{3}=\beta_{2}, \quad \kappa_{4}=\max \left\{\gamma, \beta_{1}-\left(\beta_{2}-\alpha\right)\right\}
$$

In particular, if $\beta_{1}>\beta_{2}+\gamma-\alpha$, then κ_{4} can be different from any of $\kappa_{i j}$. We remark that in such a case, it holds that $\gamma<\kappa_{4}<\beta_{1}$.

Now we are ready to state our main result.

THEOREM 2
If Assumption 1 is satisfied, then the Cauchy problem (1.1) is strongly well posed
in γ^{d} for any $1<d<d^{*}$ with

$$
d^{*}:= \begin{cases}1+\frac{\kappa_{h}+1}{(N-h-1) \kappa_{h}+\Sigma_{h}-1} & \text { if } \kappa_{h}<\infty \tag{1.8}\\ 1+\frac{1}{N-h}=d_{B}(N-(h-1)) & \text { if } \kappa_{h}=\infty\end{cases}
$$

where

$$
\begin{equation*}
h:=\min \left\{p=1, \ldots, N-1: \Sigma_{p}+p \geq N\right\} \tag{1.9}
\end{equation*}
$$

We remark that $\Sigma_{p} \geq p$; hence $h \leq(N+1) / 2$ in Theorem 2. Moreover, the Gevrey index d^{*} is greater than or equal to $d_{B}(N)$, and the equality holds if and only if $\alpha=\infty$.

REMARK 1.13

If $\alpha \geq N-1$, then $h=1$; hence

$$
d^{*}=1+\frac{\alpha+1}{(N-1) \alpha-1} .
$$

On the other hand, if $\alpha<N-1$, that is, $h \geq 2$, then from (1.9) it follows that

$$
\Sigma_{h-1}+(h-1)<N \leq \Sigma_{h}+h
$$

hence

$$
d_{B}(N-(h-1)) \leq d^{*} \leq d_{B}(N-h)
$$

This shows that d^{*} is increasing with respect to h.

By using Theorem 2, we can prove Theorem 1.

Proof of Theorem 1

We assume first that $(N-M) \alpha \geq M$; that is,

$$
(N-M)(\alpha+1) \geq N
$$

Then in Theorem 2 we get $h \leq N-M$ since, thanks to Remark 1.11,

$$
\Sigma_{p}+p=p(\alpha+1) \quad \text { for any } p \leq N-M
$$

Hence $\kappa_{h}=\alpha$ and

$$
d^{*}=1+\frac{\alpha+1}{(N-h-1) \alpha+h \alpha-1}=1+\frac{\alpha+1}{(N-1) \alpha-1} .
$$

On the other hand, if $(N-M) \alpha<M$, then $h \geq N-M+1$. Hence, thanks to
Remark 1.13, Theorem 2 gives

$$
d^{*} \geq d_{B}(N-(N-M+1-1))=d_{B}(M)
$$

This concludes the proof.

EXAMPLE 1.14

Let $N=3 M$, and assume that $A(t, \xi)$ has three eigenvalues $\mu_{1}, \mu_{2}, \mu_{3}$, each one
with multiplicity M for $t>0$, such that

$$
\left|\mu_{1}-\mu_{2}\right|,\left|\mu_{1}-\mu_{3}\right| \approx t^{\alpha}, \quad\left|\mu_{2}-\mu_{3}\right| \approx t^{\beta}, \quad \beta \geq \alpha \geq 1
$$

Then we can apply Theorem 2 ; the matrix κ can be written as

$$
\kappa=\left(\begin{array}{ccc}
C_{\infty} & C_{\alpha} & C_{\alpha} \\
C_{\alpha} & C_{\infty} & C_{\beta} \\
C_{\alpha} & C_{\beta} & C_{\infty}
\end{array}\right)
$$

where C_{α} (resp., C_{β}, C_{∞}) is an $(M \times M)$-block with each entry equal to α (resp., β, ∞). We get

$$
\Sigma_{h}= \begin{cases}h \alpha & \text { if } h \leq M \\ M \alpha+(h-M) \beta & \text { if } M+1 \leq h \leq 2 M \\ \infty & \text { if } 2 M+1 \leq h\end{cases}
$$

Hence

$$
d^{*}= \begin{cases}1+\frac{\alpha+1}{(3 M-1) \alpha-1} & \text { if } \alpha \geq 2, \\ 1+\frac{\beta+1}{(2 M-1) \beta+(M-1)} & \text { if } \alpha=1 .\end{cases}
$$

Under additional assumptions on the form of $A(t, \xi)$ and on κ, we can improve Theorem 2.

ASSUMPTION 2

We consider the Cauchy problem (1.1) and Assumption 1 to be true. Moreover, we assume that there exists $0<\gamma \leq \alpha$ such that

$$
\begin{equation*}
\|\widetilde{A}(t, \xi)\| \lesssim t^{\gamma}, \quad \text { where } \widetilde{A}=A-\left(\frac{\operatorname{tr} A}{N}\right) \mathrm{I}_{N} \tag{1.10}
\end{equation*}
$$

REMARK 1.15
Condition (1.10) is equivalent to

$$
\left\|A(t, \xi)-\lambda_{i}(t, \xi) \mathrm{I}_{N}\right\| \lesssim t^{\gamma} \quad \text { for some } i
$$

Indeed,

$$
\left\|A(t, \xi)-\lambda_{i}(t, \xi) \mathrm{I}_{N}\right\| \leq\|\widetilde{A}(t, \xi)\|+\left|\frac{\operatorname{tr} A}{N}-\lambda_{i}\right| \lesssim\|\widetilde{A}(t, \xi)\|+t^{\alpha}
$$

since $\gamma \leq \alpha$; analogously, we can prove the inverse inequality.

REMARK 1.16
Let $A(t, \xi)$ be a triangular matrix; that is, let $a_{i j}=0$ for $j<i$. Then, since $a_{i i}=\lambda_{i}$, condition (1.10) is equivalent to

$$
\left|a_{i j}\right| \lesssim t^{\gamma} \quad \text { for } j>i
$$

Thanks to Assumption 2 we can state the following.

THEOREM 3

We consider the Cauchy problem (1.1) and Assumptions 1 and 2 to be true. We assume that (1.4) is satisfied. Let

$$
h=\min \left\{p=1, \ldots, N-1: \Sigma_{p}+p \geq N+(N-2) \gamma\right\} .
$$

Then the Cauchy Problem is well posed in γ^{d} for any $1<d<d^{*}$, where

$$
d^{*}= \begin{cases}1+\frac{\kappa_{h}+1}{(N-h-1) \kappa_{h}+\Sigma_{h}-(N-2) \gamma-1} & \text { if } \kappa_{h}<\infty \\ 1+\frac{1}{N-h}=d_{B}(N-(h-1)) & \text { if } \kappa_{h}=\infty\end{cases}
$$

The proof of Theorem 3 follows as a corollary of Theorem 6 stated in Section 4.
Under additional assumptions on the Jordan canonical form of $A(t, \xi)$, we can improve Theorem 1.

ASSUMPTION 3

We assume that there exists a matrix $C \in \mathcal{C}^{N}$, homogeneous of degree zero in ξ and with $|\operatorname{det} C(t, \xi)| \geq c>0$, such that

$$
C(t, \xi) A(t, \xi) C^{-1}(t, \xi)=J_{A}(t, \xi)
$$

is a Jordan matrix, that is, a block diagonal matrix whose blocks are Jordan blocks. The matrix J_{A} is the Jordan canonical form of A.

If Assumption 3 is satisfied, then J_{A} is smooth; that is, each nondiagonal term is constantly equal to 1 or zero. In particular, if $\lambda_{i}(t, \xi) \neq \lambda_{j}(t, \xi)$ for any $t>0$, $\xi \neq 0$, and $i \neq j$, then A is uniformly diagonalizable. Moreover, if Assumption 3 is satisfied, by the subsitution $W=C V$ the Cauchy problem (2.1) is equivalent to

$$
\left\{\begin{array}{l}
W^{\prime}=i|\xi| J_{A}(t, \xi) W+B_{1}(t, \xi) W \tag{1.11}\\
W(0, \xi)=C^{-1}(0, \xi) V_{0}(\xi)
\end{array}\right.
$$

where

$$
B_{1}=\left(C^{\prime}(t, \xi)+C(t, \xi) B(t)\right) C^{-1}(t, \xi) \in \mathcal{C}^{N-1}
$$

Hence the strong well-posedness for $\partial_{t}-i|\xi| A$ is equivalent to the strong wellposedness for $\partial_{t}-i|\xi| J_{A}$. We are ready to state the following result, which improves Theorem 1.

THEOREM 4

We assume that for any $t>0$, the matrix $A(t, \xi)$ has m distinct eigenvalues μ_{1}, \ldots, μ_{m}, each one with constant multiplicity M_{p}, and that

$$
\left|\mu_{i}-\mu_{j}\right| \approx t^{\alpha}, \quad i \neq j
$$

for some $\alpha \geq 1$. Let $M=\max _{p} M_{p}$, with $M \geq 2$, be the maximum multiplicity of the eigenvalues of $A(t, \xi)$ for $t>0$. If Assumption 3 is satisfied, then the Cauchy
problem (1.1) is strongly well posed in γ^{d} for any $1<d<d^{*}$ with

$$
d^{*}:= \begin{cases}1+\frac{\alpha+1}{(N-m-1) \alpha-1} & \text { if }(N-M-m) \alpha \geq M, \tag{1.12}\\ 1+\frac{1}{M-1} \equiv d_{B}(M) & \text { if }(N-M-m) \alpha \leq M,\end{cases}
$$

provided that $M+m \leq N-1$.
On the other hand, if $M+m \geq N-1$, then the Cauchy problem (1.1) is strongly well posed in γ^{d} for any $1<d<d^{*}$ with

$$
d^{*}:= \begin{cases}1+\frac{\alpha+1}{M \alpha-1} & \text { if } \alpha \geq M \tag{1.13}\\ 1+\frac{1}{M-1} \equiv d_{B}(M) & \text { if } \alpha \leq M .\end{cases}
$$

The proof of Theorem 4 follows from Theorem 6, stated in Section 4.

2. Proof of Theorem 2

Let U be a solution of the system (1.1), and let $V(t, \xi):=\widehat{U}(t, \xi)$ (resp., $V_{0}(\xi)=$ $\left.\widehat{U_{0}}(\xi)\right)$ be the Fourier transform with respect to the x-variable of U (resp., U_{0}); using the Duhamel principle, we can assume $f \equiv 0$. Then V satisfies the system

$$
\left\{\begin{array}{l}
V^{\prime}=i A(t, \xi)|\xi| V+B(t) V \tag{2.1}\\
V(0, \xi)=V_{0}(\xi)
\end{array}\right.
$$

First, we assume that $A(t, \xi)$ is a Sylvester matrix; that is,

$$
A(t, \xi)=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & \tag{2.2}\\
0 & 0 & 1 & 0 & \ldots \\
& & \ddots & \ddots & \\
0 & 0 & \ldots & 0 & 1 \\
a_{N} & a_{N-1} & \ldots & \ldots & a_{1}
\end{array}\right), \quad a_{j}=(-1)^{j-1} \sigma_{j},
$$

where by σ_{j} we denote the elementary symmetric function

$$
\begin{align*}
\sigma_{j} \equiv & \equiv \sigma_{j}[I]=\sum_{I^{[j]}} \prod_{m=1}^{j} \lambda_{p(m)}, \tag{2.3}\\
& I^{[j]}=\{p(1), \ldots, p(j) \in I: p(1)<\cdots<p(j)\} .
\end{align*}
$$

Let

$$
\omega[I]:=-\left(a_{N}, \ldots, a_{1}\right)=\left((-1)^{N} \sigma_{N},(-1)^{N-1} \sigma_{N-1}, \ldots,-\sigma_{1}\right) .
$$

We remark that $-\omega[I]$ is the N th row of A.

DEFINITION 5

For any $K \subset I$ and $j \leq \#(K)$, we define the symmetric function

$$
\sigma_{j}[K]:=\sum_{K^{[j]}} \prod_{m=1}^{j} \lambda_{p(m)}, \quad K^{[j]}=\{p(1), \ldots, p(j) \in K: p(1)<\cdots<p(j)\} .
$$

We put $\sigma_{0}[K]=1$, and $\sigma_{j}[K]=0$ for any $j>\#(K)$.
In order to establish our energy estimates by using the symmetric functions in Definition 5, we prepare some tools. It is clear that

$$
\sigma_{j}[K]= \begin{cases}\lambda_{i} \sigma_{j-1}[K \backslash\{i\}] & \text { for } j=\#(K), \tag{2.4}\\ \sigma_{j}[K \backslash\{i\}]+\lambda_{i} \sigma_{j-1}[K \backslash\{i\}] & \text { for any } 1 \leq j<\#(K),\end{cases}
$$

for any choice of $i \in K$. Moreover, $\partial_{t} \sigma_{0}[K]=0$, whereas

$$
\begin{equation*}
\partial_{t} \sigma_{j}[K]=\sum_{i \in K}\left(\partial_{t} \lambda_{i}\right) \sigma_{j-1}[K \backslash\{i\}] \quad \text { for any } 1 \leq j \leq \#(K) \tag{2.5}
\end{equation*}
$$

Now, for any $K \subsetneq I$, we put $k=\#(K)$ and we define the row vector

$$
\omega[K]:=\left((-1)^{k} \sigma_{k}[K],(-1)^{k-1} \sigma_{k-1}[K], \ldots,-\sigma_{1}[K], 1,0, \ldots, 0\right) ;
$$

that is,

$$
\omega[K]= \begin{cases}(1,0, \ldots) & \text { if } K=\emptyset \tag{2.6}\\ \left(-\lambda_{i}, 1,0, \ldots\right) & \text { if } K=\{i\} \\ \left(\lambda_{i} \lambda_{j},-\left(\lambda_{i}+\lambda_{j}\right), 1,0, \ldots\right) & \text { if } K=\{i, j\} \\ \vdots & \vdots\end{cases}
$$

We denote also $\omega[K]=\omega_{i_{1} \cdots i_{k}}$, where $K=\left\{i_{1}, \ldots, i_{k}\right\}$ and $\omega[\emptyset]=\omega$.
We can use (2.4) to prove that $\omega[I \backslash\{i\}]$ is the left eigenvector of A related to λ_{i}, that is, that

$$
\omega[I \backslash\{i\}] A=\lambda_{i} \omega[I \backslash\{i\}] \quad \text { for any } i \in I
$$

On the other hand, using again (2.4), we can prove that for any $K \subsetneq I$, we have

$$
\begin{equation*}
\omega[K \backslash\{i\}] A=\omega[K]+\lambda_{i} \omega[K \backslash\{i\}] \quad \text { for any } i \in K \tag{2.7}
\end{equation*}
$$

It is clear that $\partial_{t} \omega=0$, whereas we can use (2.5) to prove that if $K \neq \emptyset$, then

$$
\begin{equation*}
\partial_{t} \omega[K]=\left((-1)^{k} \partial_{t} \sigma_{k}[K], \ldots,-\partial_{t} \sigma_{1}[K], 0, \ldots, 0\right)=-\sum_{i \in K}\left(\partial_{t} \lambda_{i}\right) \omega[K \backslash\{i\}] . \tag{2.8}
\end{equation*}
$$

DEFINITION 6

For any vector $V \in \mathbb{C}^{N}$, we define

$$
[V]_{l}^{2}:=\sum_{\#(K)=l}|\omega[K] V|^{2}, \quad l=0, \ldots, N-1 .
$$

REMARK 2.1
Now let $K \subsetneq I$ with $\#(K) \leq N-2$. It is clear that

$$
\omega[K \cup\{i\}]-\omega[K \cup\{j\}]=\left(\lambda_{j}-\lambda_{i}\right) \omega[K] \quad \text { for any } i, j \notin K ;
$$

hence for any vector $V \in \mathbb{C}^{n}$, we get

$$
|\omega[K] V| \lesssim \frac{|\omega[K \cup\{i\}] V|+|\omega[K \cup\{j\}] V|}{t^{\kappa_{i j}}},
$$

provided that $\kappa_{i j}<\infty$.

We are ready to state the following.

LEMMA 2.2

Let $K \subsetneq I$ with $k=\#(K)$; we put $J=I \backslash K$. Then for any vector $V \in \mathbb{C}^{n}$, we have

$$
\begin{equation*}
|\omega[K] V| \lesssim \frac{[V]_{l}}{t^{\Sigma_{l-k}[J]}}, \quad l=k, \ldots, N-1 \tag{2.9}
\end{equation*}
$$

To prove Lemma 2.2, we need the following.

LEMMA 2.3

Let $J \subset I$, and let $J^{\prime}=J \backslash\{j\}$ for some $j \in J$. Then we have

$$
\Sigma_{h+1}[J] \geq \alpha_{J}+\Sigma_{h}\left[J^{\prime}\right], \quad h=0, \ldots, \#(J)-2
$$

Proof
We prove the statement by induction on $M=\#(J)$. It is trivially true for $M=2$ since $\Sigma_{1}[J]=\alpha_{J}$. We assume that the thesis is satisfied for some $M-1$, and we prove it for M.

With the notation introduced in Definition 3, let

$$
P_{\min }(J)=P_{\alpha_{J}}(J)=\left\{J_{1}, \ldots, J_{m}\right\}
$$

Now $j \in J_{p}$ for some p, say, $p=1$. We recall that

$$
\Sigma_{h+1}[J]=\max _{p} \sigma_{h+1}\left[J_{p}, \#\left(J \backslash J_{p}\right)\right] ;
$$

we have

$$
\begin{aligned}
\sigma_{h+1}\left[J_{p}, \#\left(J \backslash J_{p}\right)\right] & =\sigma_{h+1}\left[J_{p}, M-\#\left(J_{p}\right)\right] \\
& =\alpha_{J}+\sigma_{h}\left[J_{p},(M-1)-\#\left(J_{p}\right)\right] \\
& =\alpha_{J}+\sigma_{h}\left[J_{p}, \#\left(J^{\prime} \backslash J_{p}\right)\right]
\end{aligned}
$$

for any $p \geq 2$, whereas if we put $l=M-\#\left(J_{1}\right)$, then

$$
\sigma_{h+1}\left[J_{1}, l\right]= \begin{cases}(h+1) \alpha_{J} & \text { if }(h+1) \leq l \\ l \alpha_{J}+\Sigma_{h+1-l}\left[J_{1}\right] & \text { if }(h+1) \geq l+1\end{cases}
$$

Now, being $\#\left(J_{1}\right) \leq M-1$, we can apply the hypothesis of induction; hence

$$
\Sigma_{h+1-l}\left[J_{1}\right] \geq \alpha_{J}+\Sigma_{h-l}\left[J_{1}^{\prime}\right]
$$

where we put $J_{1}^{\prime}=J_{1} \backslash\{j\}$. We remark that

$$
\sigma_{h+1}\left[J_{1}, l\right] \geq \alpha_{J}+ \begin{cases}h \alpha_{J} & \text { if } h \leq l \\ l \alpha_{J}+\Sigma_{h-l}\left[J_{1}^{\prime}\right] & \text { if } h \geq l+1\end{cases}
$$

that is,

$$
\sigma_{h+1}\left[J_{1}, l\right] \geq \alpha_{J}+\sigma_{h}\left[J_{1}^{\prime}, \#\left(J^{\prime} \backslash J_{1}^{\prime}\right)\right] .
$$

This concludes the proof.

Proof of Lemma 2.2
We proceed by induction on $n=l-\#(K)$. If $n=0$, then (2.9) is trivial. We assume that (2.9) is satisfied for some n, and we prove it for $n+1$.

We put $J=I \backslash K$. Let α_{J} and

$$
P_{\min }(J)=P_{\alpha_{J}}(J)=\left\{J_{1}, \ldots, J_{m}\right\}
$$

be as in Definition 3. Let $i_{1} \in J_{1}$ and $i_{2} \in J_{2}$; then

$$
\begin{equation*}
|\omega[K] V| \lesssim \frac{\left|\omega\left[K \cup\left\{i_{1}\right\}\right] V\right|+\left|\omega\left[K \cup\left\{i_{2}\right\}\right] V\right|}{t^{\alpha_{J}}} . \tag{2.10}
\end{equation*}
$$

Now we can apply the hypothesis of induction to the term $\left|\omega\left[K \cup\left\{i_{p}\right\}\right] V\right|$ since

$$
l-\#\left(K \cup\left\{i_{p}\right\}\right)=n .
$$

We get

$$
\left|\omega\left[K \cup\left\{i_{p}\right\}\right] V\right| \lesssim \frac{[V]_{l}}{t^{\Sigma_{l-(k+1)}\left[J^{\prime}\right]}},
$$

where $J^{\prime}=J \backslash\left\{i_{p}\right\}$. Thanks to Lemma 2.3, we have

$$
\alpha_{J}+\Sigma_{l-(k+1)}\left[J^{\prime}\right] \leq \Sigma_{l-k}[J] .
$$

This concludes the proof.

We show how Lemma 2.2 works with the following.

EXAMPLE 2.4

We consider Example 1.12:

$$
P_{\min }(I)=\left\{I_{1}, I_{2}\right\}, \quad I_{1}=\{1,2\}, I_{2}=\{3,4,5\},
$$

with

$$
\kappa=\left(\begin{array}{ccccc}
\infty & \beta_{1} & \alpha & \alpha & \alpha \\
\beta_{1} & \infty & \alpha & \alpha & \alpha \\
\alpha & \alpha & \infty & \beta_{2} & \beta_{2} \\
\alpha & \alpha & \beta_{2} & \infty & \gamma \\
\alpha & \alpha & \beta_{2} & \gamma & \infty
\end{array}\right),
$$

and we directly prove the estimate

$$
|\omega V| \lesssim[V]_{3} \cdot t^{-\Sigma_{3}} .
$$

In fact, we have

$$
|\omega[\emptyset] V| \lesssim \frac{\left|\omega_{1} V\right|+\left|\omega_{3} V\right|}{t^{\alpha}} \lesssim \frac{\left|\omega_{12} V\right|+\left|\omega_{13} V\right|}{t^{2 \alpha}}+\frac{\left|\omega_{31} V\right|+\left|\omega_{34} V\right|}{t^{2 \alpha}}
$$

$$
\begin{aligned}
& =\frac{\left|\omega_{12} V\right|+2\left|\omega_{13} V\right|+\left|\omega_{34} V\right|}{t^{2 \alpha}} \\
& \lesssim \frac{\left|\omega_{123} V\right|+\left|\omega_{124} V\right|}{t^{2 \alpha+\beta_{2}}}+\frac{2\left|\omega_{123} V\right|+2\left|\omega_{134} V\right|}{t^{3 \alpha}}+\frac{\left|\omega_{134} V\right|+\left|\omega_{345} V\right|}{t^{3 \alpha}} \\
& \lesssim[V]_{3} t^{-\max \left\{2 \alpha+\beta_{2}, 3 \alpha\right\}} .
\end{aligned}
$$

LEMMA 2.5
If $V(t, \xi)$ satisfies (2.1), then we have the following estimates:

$$
\begin{align*}
\partial_{t}[V]_{0}^{2} & \lesssim\left(|\xi|[V]_{1}+|B V|\right)[V]_{0}, \\
\partial_{t}[V]_{l}^{2} & \lesssim\left([V]_{l-1}+|\xi|[V]_{l+1}+|B V|\right)[V]_{l}, \quad l=1, \ldots, N-2, \tag{2.11}\\
\partial_{t}[V]_{N-1}^{2} & \lesssim\left([V]_{N-2}+|B V|\right)[V]_{N-1}
\end{align*}
$$

Proof
We fix l and $K \subset I$ to be such that $\#(K)=l$, as in Definition 6 . We have to estimate

$$
\begin{align*}
\partial_{t}|\omega[K] V|^{2} & =2 \operatorname{Re}\left(\partial_{t}(\omega[K] V), \omega[K] V\right) \tag{2.12}\\
& =2 \operatorname{Re}\left(i|\xi| \omega[K] A V+\omega[K] B V+\left(\partial_{t} \omega[K]\right) V, \omega[K] V\right)
\end{align*}
$$

Let $j \in I \backslash K$; thanks to (2.7), we get
$\operatorname{Re}(i|\xi| \omega[K] A V, \omega[K] V)=\operatorname{Re}\left(i|\xi| \lambda_{j} \omega[K] V, \omega[K] V\right)+\operatorname{Re}(i|\xi| \omega[K \cup\{j\}] V, \omega[K] V) ;$
since λ_{j} is real valued, the first term vanishes, whereas

$$
|\xi||\omega[K \cup\{j\}] V| \cdot|\omega[K] V| \lesssim|\xi|[V]_{l+1}[V]_{l}
$$

For the second term of (2.12), we simply estimate $|\omega[K] B V| \lesssim|B V|$, whereas for the third one, thanks to (2.8), we get

$$
\left|\left(\partial_{t} \omega[K]\right) V\right| \leq \sum_{i \in K}\left|\partial_{t} \lambda_{i}\right||\omega[K \backslash\{i\}] V| \lesssim[V]_{l-1}
$$

since λ_{i} is Lipschitz continuous.

DEFINITION 7

Let $K^{1}=\emptyset$. We define by induction a sequence of sets $K^{k} \subsetneq I$ with $\#\left(K^{k}\right)=$ $k-1$, such that

$$
K^{1} \subset K^{2} \subset \cdots \subset K^{N}
$$

It is clear that there exists a (unique) permutation π over I such that

$$
K^{k}=\{\pi(1), \pi(2), \ldots, \pi(k-1)\}
$$

We define the vectors

$$
w_{k}:=\omega\left[K^{k}\right] \equiv \omega_{\pi(1), \pi(2), \ldots, \pi(k-1)}, \quad k=1, \ldots, N
$$

REMARK 2.6

With the notation in Definition $7,\left(w_{1}, \ldots, w_{N}\right)$ is a base of the vector space \mathbb{C}^{n} over \mathbb{C}.

Moreover, if we denote by $\left(e_{1}, \ldots, e_{N}\right)$ the canonical base, that is,

$$
e_{1}=(1,0, \ldots), \quad e_{2}=(0,1,0, \ldots), \quad \ldots,
$$

then it can be proved that

$$
\begin{align*}
& w_{i}=\sum_{j=1}^{i}(-1)^{i-j} \sigma_{i-j}\left[K^{i}\right] e_{j}, \quad i=1, \ldots, N, \tag{2.13}\\
& e_{j}=\sum_{k=1}^{j} \widetilde{\sigma}_{j-k}\left[K^{k+1}\right] w_{k}, \quad j=1, \ldots, N, \tag{2.14}
\end{align*}
$$

where for any $K \subset I$ we define the symmetric functions

$$
\widetilde{\sigma}_{j}[K]:=\sum_{\widetilde{K^{[j]}}} \prod_{m=1}^{j} \lambda_{p(m)}, \quad \widetilde{K^{[j]}}=\{p(1), \ldots, p(j) \in K: p(1) \leq \cdots \leq p(j)\} .
$$

DEFINITION 8

Let $|\xi| \geq 1$. We set the energy

$$
E_{1}(t, \xi):=|V|^{2} .
$$

We remark that for any $t \geq 0$ and $\xi \in \mathbb{R}^{n}$, the energy $E_{1}(t, \xi)$ represents a norm for the vector $V(t, \xi) \in \mathbb{C}^{N}$. Since

$$
\partial_{t} E_{1}(t, \xi) \lesssim|\xi||V|^{2}=|\xi| E_{1}(t, \xi),
$$

by applying Grönwall's lemma for $t \leq t_{1}(\xi)$, where we put

$$
\begin{equation*}
t_{1}(\xi):=|\xi|^{-1+\left(1 / d^{*}\right)}, \tag{2.15}
\end{equation*}
$$

we get

$$
\begin{equation*}
E_{1}(t, \xi) \lesssim \exp \left(\int_{0}^{t_{1}(\xi)} C_{1}|\xi| d s\right) E_{1}(0, \xi) \lesssim \exp \left(C_{1}|\xi|^{1 / d^{*}}\right) E_{1}(0, \xi) \tag{2.16}
\end{equation*}
$$

DEFINITION 9

For any $t \in\left[t_{1}(\xi), T\right]$, we set the energy

$$
E_{2}(t, \xi):=\sum_{l=0}^{N-1}\left(\frac{t_{1}(\xi)}{t}\right)^{2(N-(l+1))}[V]_{l}^{2} .
$$

For any $t \in\left[t_{1}(\xi), T\right]$ and $\xi \in \mathbb{R}^{n}$, the energy $E_{2}(t, \xi)$ represents a norm for $V(t, \xi) \in \mathbb{C}^{N} ;$ moreover, thanks to Remark 2.6,

$$
\left\{\begin{align*}
E_{2}(t, \xi) & \lesssim E_{1}(t, \xi) \tag{2.17}\\
E_{1}(t, \xi) & \lesssim\left(t_{1}(\xi)\right)^{-2(N-1)} E_{2}(t, \xi) \\
& =|\xi|^{C} E_{2}(t, \xi), \quad C=2(N-1)\left(1-\frac{1}{d^{*}}\right) .
\end{align*}\right.
$$

We get

$$
\begin{equation*}
\partial_{t} E_{2}(t, \xi)=-\frac{2(N-(l+1))}{t} E_{2}(t, \xi)+\sum_{l=0}^{N-1}\left(\frac{t_{1}(\xi)}{t}\right)^{2(N-(l+1))} \partial_{t}[V]_{l}^{2}, \tag{2.18}
\end{equation*}
$$

and we claim that the second term in (2.18) is estimated by

$$
|\xi|^{1 / d^{*}} \frac{1}{t} E_{2}(t, \xi) .
$$

This is sufficient to conclude the proof since, by applying Grönwall's lemma,

$$
\begin{align*}
E_{2}(t, \xi) & \lesssim \exp \left(\int_{t_{1}}^{T} C_{1}|\xi|^{1 / d^{*}} \frac{1}{s} d s\right) E_{2}\left(t_{1}(\xi), \xi\right) \\
& =\exp \left(C_{1}|\xi|^{1 / d^{*}} \log \frac{t}{t_{1}}\right) E_{2}\left(t_{1}(\xi), \xi\right) \tag{2.19}\\
& \lesssim \exp \left(C_{1}|\xi|^{1 / d^{*}}\left(\log T+\left(1-\frac{1}{d^{*}}\right) \log |\xi|\right)\right) E_{2}\left(t_{1}(\xi), \xi\right) \\
& t \in\left[t_{1}(\xi), T\right] .
\end{align*}
$$

Therefore we should prove the following.

LEMMA 2.7

For any $t \in\left[t_{1}(\xi), T\right]$, we have

$$
\left(\frac{t_{1}(\xi)}{t}\right)^{2(N-(l+1))} \partial_{t}[V]_{l}^{2} \lesssim|\xi|^{1 / d^{*}} \frac{1}{t} E_{2}(t, \xi), \quad l=0, \ldots, N-1 .
$$

Before proving Lemma 2.7, we need the following.

DEFINITION 10

Let

$$
\omega:=\max \left\{\kappa_{i j}: i \neq j\right\} \in[\alpha, \infty] ;
$$

we put

$$
d_{\max }:= \begin{cases}\infty & \text { if } \omega=1 \tag{2.20}\\ 2+\frac{2}{\omega-1} & \text { if } 1<\omega<\infty \\ 2 & \text { if } \omega=\infty\end{cases}
$$

REMARK 2.8

The Gevrey index given by Theorem 2 satisfies $d^{*} \leq d_{\text {max }}$.
In particular, if $N \geq 4$, then Theorem 2 gives $d^{*} \leq 2 \leq d_{\max }$, whereas if $N=3$, then $\kappa_{2}=\omega$ and Theorem 2 (see also [DAT]) gives

$$
d^{*}= \begin{cases}1+\frac{\alpha+1}{2 \alpha-1} & \text { if } \alpha \geq 2 \\ 2 & \text { if } \alpha=1 \text { and } \omega=\infty \\ 2+\frac{1}{\omega} & \text { if } \alpha=1 \text { and } \omega<\infty\end{cases}
$$

Proof of Lemma 2.7

Thanks to (2.11), it is sufficient to prove the following:

$$
\begin{align*}
\left(\frac{t_{1}(\xi)}{t}\right)^{N-(l+1)}[V]_{l-1} & \lesssim|\xi|^{1 / d^{*}} \frac{1}{t} \sqrt{E_{2}}, \quad l=1, \ldots, N-1, \tag{2.21}\\
\left(\frac{t_{1}(\xi)}{t}\right)^{N-(l+1)}|\xi|[V]_{l+1} & \lesssim|\xi|^{1 / d^{*}} \frac{1}{t} \sqrt{E_{2}}, \quad l=0, \ldots, N-2, \tag{2.22}\\
|B V| & \lesssim|\xi|^{1 / d^{*}} \frac{1}{t} \sqrt{E_{2}} . \tag{2.23}
\end{align*}
$$

In order to prove (2.21), we set

$$
t_{2}(\xi):=|\xi|^{-1 / 2 \omega}
$$

for $\omega<\infty$, and $t_{2}(\xi)=T$ for $\omega=\infty$. First, we assume that $t_{1}(\xi) \leq t_{2}(\xi)$. Then, for any $t \in\left[t_{1}, t_{2}\right]$,

$$
\frac{t^{2}}{t_{1}(\xi)} \leq \frac{t_{2}^{2}}{t_{1}}=|\xi|^{-1 / \omega}|\xi|^{\left(d^{*}-1\right) / d^{*}} \leq|\xi|^{1 / d^{*}}
$$

since

$$
-\frac{1}{\omega} \leq-1+\frac{2}{d^{*}}, \quad \text { where } d^{*} \leq d_{\max }=\frac{2 \omega}{\omega-1} .
$$

Hence we get (2.21) in $\left[t_{1}, t_{2}\right]$; indeed,

$$
\left(\frac{t_{1}(\xi)}{t}\right)^{N-(l+1)}[V]_{l-1}=\frac{t^{2}}{t_{1}(\xi)} \cdot \frac{1}{t}\left(\frac{t_{1}(\xi)}{t}\right)^{N-l}[V]_{l-1} \leq|\xi|^{1 / d^{*}} \frac{1}{t} \sqrt{E_{2}} .
$$

On the other hand, for any $t \in\left[t_{2}, T\right]$, by applying Lemma 2.2 we can estimate

$$
\begin{equation*}
[V]_{l-1} \lesssim \frac{1}{t^{\omega}}[V]_{l} \leq \frac{1}{t_{2}^{\omega-1}} \frac{1}{t}[V]_{l}=|\xi|^{(\omega-1) / 2 \omega} \frac{1}{t}[V]_{l} \leq|\xi|^{1 / d^{*}} \frac{1}{t}[V]_{l} . \tag{2.24}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left(\frac{t_{1}(\xi)}{t}\right)^{N-(l+1)}[V]_{l-1} \lesssim\left(\frac{t_{1}(\xi)}{t}\right)^{N-(l+1)}|\xi|^{1 / d^{*}} \frac{1}{t}[V]_{l} \leq|\xi|^{1 / d^{*}} \frac{1}{t} \sqrt{E_{2}} \tag{2.25}
\end{equation*}
$$

On the other hand, if $t_{2}(\xi) \leq t_{1}(\xi)$, then for any $t \in\left[t_{1}, T\right]$ we can estimate

$$
[V]_{l-1} \lesssim \frac{1}{t^{\omega}}[V]_{l} \leq \frac{1}{t_{1}^{\omega-1}} \frac{1}{t}[V]_{l} \leq \frac{1}{t_{2}^{\omega-1}} \frac{1}{t}[V]_{l},
$$

and the proof follows from (2.24) and (2.25).
In order to prove (2.22), it is sufficient to notice that $|\xi| t_{1}(\xi)=|\xi|^{1 / d^{*}}$; hence

$$
\left(\frac{t_{1}(\xi)}{t}\right)^{N-(l+1)}|\xi|[V]_{l+1}=t_{1}(\xi)|\xi| \frac{1}{t}\left(\frac{t_{1}(\xi)}{t}\right)^{N-(l+2)}[V]_{l+1} \lesssim|\xi|^{1 / d^{*}} \frac{1}{t} \sqrt{E_{2}} .
$$

We consider now (2.23). With the notation in Definition 7 we get

$$
\begin{equation*}
|B V| \lesssim|V| \lesssim \sum_{p=1}^{N}\left|\omega\left[K^{p}\right] V\right| . \tag{2.26}
\end{equation*}
$$

It is immediate that

$$
\left|\omega\left[K^{N}\right] V\right| \leq[V]_{N-1} \leq \sqrt{E_{2}} .
$$

Let $p \leq N-1$. Thanks to Lemma 2.2, if we put $J^{p}=I \backslash K^{p}$, then

$$
\begin{aligned}
& \left|\omega\left[K^{p} V\right]\right| \lesssim \frac{[V]_{l}}{t^{\Sigma_{l-(p-1)}\left[J^{p}\right]}} \leq\left(\frac{t}{t_{1}(\xi)}\right)^{N-(l+1)} \frac{1}{t^{\Sigma_{l-(p-1)}\left[J^{p}\right]-1}} \times \frac{1}{t} \sqrt{E_{2}(t, \xi)}, \\
& \quad l=p-1, \ldots, N-1
\end{aligned}
$$

From Lemma 2.3, since \# $\left(J^{p}\right)=N-(p-1)$, it follows that

$$
\Sigma_{l-(p-1)}\left[J^{p}\right] \leq \Sigma_{l}
$$

hence, for fixed l, we get

$$
\begin{equation*}
\left|\omega\left[K^{p}\right] V\right| \lesssim\left(\frac{t}{t_{1}(\xi)}\right)^{N-(l+1)} \frac{1}{t^{\Sigma_{l}-1}} \times \frac{1}{t} \sqrt{E_{2}(t, \xi)} \quad \text { for any } p \leq l+1 \tag{2.27}
\end{equation*}
$$

Moreover, (2.27) is trivially satisfied for $p>l+1$, too, since

$$
\left|\omega\left[K^{p}\right] V\right| \leq[V]_{p-1} \leq\left(\frac{t}{t_{1}(\xi)}\right)^{N-p} \sqrt{E_{2}(t, \xi)} \lesssim\left(\frac{t}{t_{1}(\xi)}\right)^{N-(l+1)} \sqrt{E_{2}(t, \xi)}
$$

Let h be as in (1.9). We set

$$
\begin{equation*}
t_{2}(\xi):=\left(t_{1}(\xi)\right)^{1 /\left(\kappa_{h}+1\right)} \equiv|\xi|^{-\left(d^{*}-1\right) /\left(\kappa_{h}+1\right) d^{*}} \tag{2.28}
\end{equation*}
$$

for $\kappa_{h}<\infty$ and $t_{2}(\xi)=T$ for $\kappa_{h}=\infty$. For any $t \in\left[t_{1}, t_{2}\right]$, we take $l=h-1$ in (2.27); hence, thanks to (1.9), we obtain

$$
\begin{equation*}
|B V| \lesssim t_{1}^{-(N-h)} t_{2}^{N-h+1-\Sigma_{h-1}} \frac{1}{t} \sqrt{E_{2}} . \tag{2.29}
\end{equation*}
$$

By using (2.28), since

$$
\begin{aligned}
-(N-h)+\frac{N-h+1-\Sigma_{h-1}}{\kappa_{h}+1} & =-\frac{(N-h) \kappa_{h}+\left(\Sigma_{h-1}-1\right)}{\kappa_{h}+1} \\
& =-\frac{1}{d^{*}-1},
\end{aligned}
$$

we get

$$
\begin{equation*}
|V| \lesssim t_{1}^{-1 /\left(d^{*}-1\right)} \frac{1}{t} \sqrt{E_{2}}=|\xi|^{1 / d^{*}} \frac{1}{t} \sqrt{E_{2}} . \tag{2.30}
\end{equation*}
$$

For any $t \in\left[t_{2}, T\right]$, we take $l=h$ in (2.27); hence, thanks to (1.9), we get

$$
\begin{equation*}
|B V| \lesssim t_{1}^{-(N-(h+1))} t_{2}^{N-(h+1)+1-\Sigma_{h}} \frac{1}{t} \sqrt{E_{2}} . \tag{2.31}
\end{equation*}
$$

By using again (2.28), we find the same estimate in (2.30) since

$$
-(N-h-1)+\frac{N-h-\Sigma_{h}}{\kappa_{h}+1}=-\frac{(N-h) \kappa_{h}+\left(\Sigma_{h-1}-1\right)}{\kappa_{h}+1}=-\frac{1}{d^{*}-1} .
$$

This concludes the proof.
Now we are ready to prove Theorem 2.
Proof of Theorem 2
As in [DAS, Section 4], we transform the first-order system (1.1) into an N thorder system whose principal part is a block Sylvester matrix. Using the Duhamel
principle, we can assume $f \equiv 0$. Let

$$
\begin{aligned}
& L(t, \tau, i \xi)=\tau-i|\xi| A(t, \xi)-B(t), \quad \chi(t, \tau, i \xi):=\tau-i|\xi| A(t, \xi), \\
& \Lambda(t, \tau, i \xi):=(\chi(t, \tau, i \xi))^{\text {adj }}
\end{aligned}
$$

where $\chi\left(t, \partial_{t}, \partial_{x}\right)$ is the principal part of $L\left(t, \partial_{t}, \partial_{x}\right)$, and with the notation $F^{\text {adj }}$ we denote the classical adjoint (or adjugate) matrix of F, that is, the transpose of the matrix of cofactors.

It is clear that the well-posedness for the systems

$$
\begin{align*}
& \mathcal{L}_{1}\left(t, \partial_{t}, \partial_{x}\right)=\Lambda\left(t, \partial_{t}, \partial_{x}\right) L\left(t, \partial_{t}, \partial_{x}\right), \tag{2.32}\\
& \mathcal{L}_{2}\left(t, \partial_{t}, \partial_{x}\right)=L\left(t, \partial_{t}, \partial_{x}\right) \Lambda\left(t, \partial_{t}, \partial_{x}\right)
\end{align*}
$$

implies the well-posedness for $L\left(t, \partial_{t}, \partial_{x}\right)$. The systems $\mathcal{L}_{1}\left(t, \partial_{t}, \partial_{x}\right)$ and $\mathcal{L}_{2}(t$, $\left.\partial_{t}, \partial_{x}\right)$ are N th-order systems with diagonal principal part $P\left(t, \partial_{t}, \partial_{x}\right) \mathrm{I}_{N}$, where $P(t, \tau, i \xi)$ is the characteristic polynomial of $\chi(t, \tau, i \xi)=\tau-i|\xi| A(t, \xi)$. Let

$$
\mathcal{W}:=\left(\begin{array}{c}
W^{(1)} \\
W^{(2)} \\
\vdots \\
W^{(N)}
\end{array}\right) \in \mathbb{C}^{N^{2}} \quad \text { with } W^{(j)}:=\left(\begin{array}{c}
(i|\xi|)^{N-1} V^{(j)} \\
(i|\xi|)^{N-2} \partial_{t} V^{(j)} \\
\vdots \\
\partial_{t}^{N-1} V^{(j)}
\end{array}\right) ;
$$

then the Cauchy problem for $\mathcal{L}_{1}\left(t, \partial_{t}, i \xi\right) V(t, \xi)=0\left(\right.$ or $\left.\mathcal{L}_{2}\left(t, \partial_{t}, i \xi\right) V(t, \xi)=0\right)$ is equivalent to the Cauchy problem for

$$
\begin{equation*}
\partial_{t} \mathcal{W}-i|\xi| \mathcal{A}(t, \xi) \mathcal{W}-\mathcal{B}(t, \xi) \mathcal{W}=0 \tag{2.33}
\end{equation*}
$$

where

$$
\mathcal{A}(t, \xi)=\bigoplus_{i=1}^{N} A_{\mathrm{syl}}(t, \xi)
$$

and by $A_{\text {syl }}(t, \xi)$ we denote the Sylvester matrix with eigenvalues $\left\{\lambda_{j}(t, \xi)\right\}$, namely, (2.2), whereas \mathcal{B} is an $\left(\left(N^{2}\right) \times\left(N^{2}\right)\right)$-matrix with the following block structure:

$$
\mathcal{B}=\left(\begin{array}{cccc}
\mathcal{B}_{[1,1]} & \mathcal{B}_{[1,2]} & \ldots & \mathcal{B}_{[1, N]} \tag{2.34}\\
\mathcal{B}_{[2,1]} & \mathcal{B}_{[2,2]} & \ldots & \mathcal{B}_{[2, N]} \\
\vdots & \vdots & \ddots & \vdots \\
\mathcal{B}_{[N, 1]} & \mathcal{B}_{[N, 2]} & \ldots & \mathcal{B}_{[N, N]}
\end{array}\right)
$$

each $(N \times N)$-block $\mathcal{B}_{[j, k]}$ has nonzero elements only on the last row and is bounded (for $|\xi| \geq 1$).

We remark that $W^{(j)}$ satisfies the $(N \times N)$-system

$$
\begin{equation*}
W_{t}^{(j)}-i|\xi| A_{\mathrm{syl}}(t, \xi) W^{(j)}-\mathcal{B}_{[j, j]}(t, \xi) W^{(j)}=\sum_{k \neq j} \mathcal{B}_{[j, k]}(t, \xi) W^{(k)} ; \tag{2.35}
\end{equation*}
$$

hence we may regard $\sum_{k \neq j} \mathcal{B}_{[j, k]}(t, \xi) W^{(k)}$ as a second member.
Let $|\xi| \geq 1$, and let $E_{1}\left[W^{(j)}\right](t, \xi)$ and $E_{2}\left[W^{(j)}\right](t, \xi)$ be the energies of the solution $W^{(j)}$ of (2.35), as in Definitions 8 and 9 ; we define the energies for the
solution \mathcal{W} of (2.33),

$$
\mathcal{E}_{1}(t, \xi):=\sum_{j=1}^{N} E_{1}\left[W^{(j)}\right](t, \xi), \quad \mathcal{E}_{2}(t, \xi):=\sum_{j=1}^{N} E_{2}\left[W^{(j)}\right](t, \xi) .
$$

For any $j=1, \ldots, N$, we have

$$
E_{1}\left[W^{(j)}\right]^{\prime}(t, \xi) \lesssim|\xi| E_{1}\left[W^{(j)}\right](t, \xi)+\left[\sum_{k \neq j} \mathcal{B}_{[j, k]}(t, \xi) W^{(k)}\right]^{2},
$$

and using

$$
\left[\sum_{k \neq j} \mathcal{B}_{[j, k]}(t, \xi) W^{(k)}\right]^{2} \lesssim \sum_{k \neq j}\left[W^{(k)}\right]^{2} \lesssim \sum_{k \neq j} E_{1}\left[W^{(j)}\right]
$$

we derive

$$
\mathcal{E}_{1}^{\prime}(t, \xi) \lesssim|\xi| \mathcal{E}_{1}(t, \xi) .
$$

Therefore, from (2.16) we obtain

$$
\mathcal{E}_{1}(t, \xi) \lesssim \exp \left(C_{1}|\xi|^{1 / d^{*}}\right) \mathcal{E}_{1}(0, \xi), \quad t \in\left[0, t_{1}(\xi)\right],
$$

and, analogously, from (2.19) we get

$$
\mathcal{E}_{2}(t, \xi) \lesssim \exp \left(C_{1}|\xi|^{1 / d^{*}}\left(\log T+\left(1-\frac{1}{d^{*}}\right) \log |\xi|\right)\right) \mathcal{E}_{2}\left(t_{1}(\xi), \xi\right), \quad t \in\left[t_{1}(\xi), T\right]
$$

By using (2.17), we can prove that

$$
\mathcal{E}_{1}(t, \xi) \lesssim|\xi|^{C} \exp \left(C_{1}|\xi|^{1 / d^{*}}\left(\log T+\left(1-\frac{1}{d^{*}}\right) \log |\xi|\right)\right) \mathcal{E}_{1}(0, \xi), \quad t \in[0, T]
$$

Therefore, for any $1<d<d^{*}$,

$$
\mathcal{E}_{1}(t, \xi) \lesssim \exp \left(C^{\prime}|\xi|^{\frac{1}{d}}\right) \mathcal{E}_{1}(0, \xi), \quad t \in[0, T] .
$$

We conclude the proof by standard methods using a Paley-Wiener-Schwartztype theorem (see $[\mathrm{H}]$) for the characterization of functions in Gevrey classes via estimates of their Fourier-Laplace transforms.

3. Levi conditions for the N th order scalar equation

We consider the Cauchy problem

$$
\left\{\begin{array}{l}
L\left(t, \partial_{t}, \partial_{x}\right) u(t, x)=\sum_{j=0}^{N-1} M_{j}\left(t, \partial_{t}, \partial_{x}\right) u(t, x), \tag{3.1}\\
\partial_{t}^{i} u(0, x)=u_{i}(x), \quad i=0, \ldots, N-1,
\end{array}\right.
$$

where

$$
L\left(t, \partial_{t}, \partial_{x}\right)=\partial_{t}^{N}+\sum_{0 \leq k \leq N-1} a_{k}\left(t, \partial_{x}\right) \partial_{t}^{k}
$$

with $a_{k}(t, \xi)$ homogeneous of degree $N-k$ in ξ, is an N th-order homogeneous operator in normal form and

$$
M_{j}\left(t, \partial_{t}, \partial_{x}\right)=\sum_{0 \leq l \leq j} b_{j, l}\left(t, \partial_{x}\right) \partial_{t}^{l},
$$

with $b_{j, l}(t, \xi)$ homogeneous of degree $j-l$ in ξ, is a lower-order term.
We assume that the roots λ_{j} of the characteristic equation $L\left(t, \lambda_{j}(t, \xi)\right.$, $\xi /|\xi|)=0$ verify Assumption 1 .

We define the following vector functions, homogeneous of degree zero in ξ :

$$
b_{j}(t, \xi):=\sum_{l=0}^{j} b_{j, l}(t, \xi /|\xi|) e_{l+1}=\sum_{l=0}^{j}|\xi|^{-(j-l)} b_{j, l}(t, \xi) e_{l+1},
$$

where $\left(e_{l}\right)$ denotes the canonical basis of \mathbb{C}^{N}.
Let u be a solution of the scalar equation in (3.1), and let $v(t, \xi):=\widehat{u}(t, \xi)$ (resp., $v_{i}(\xi)=\widehat{u_{i}}(\xi)$) be the Fourier transform with respect to the x-variable of u (resp., u_{i}); then v satisfies the system

$$
\left\{\begin{array}{l}
L\left(t, \partial_{t}, i \xi\right) v(t, \xi)=\sum_{j=0}^{N-1} M_{j}\left(t, \partial_{t}, i \xi\right) v(t, \xi) \tag{3.2}\\
\partial_{t}^{i} v(0, \xi)=v_{i}(\xi), \quad i=0, \ldots, N-1
\end{array}\right.
$$

We put, for $|\xi| \geq 1$,

$$
V:=\left(\begin{array}{c}
(i|\xi|)^{N-1} v \\
(i|\xi|)^{N-2} \partial_{t} v \\
\cdots \\
\partial_{t}^{N-1} v
\end{array}\right)
$$

then the scalar equation in (3.2) is equivalent to the first-order $(N \times N)$-system

$$
\partial_{t} V-i|\xi| A_{\mathrm{syl}}(t, \xi) V-B(t, \xi) V=0,
$$

where $A_{\text {syl }}(t, \xi)$ is the Sylvester matrix in (2.2) and B is an $(N \times N)$-matrix with nonzero elements only on the last row, which can be written in the following form:

$$
(B)_{N .}=\sum_{j=0}^{N-1}(i|\xi|)^{-(N-1-j)} b_{j}(t, \xi) .
$$

In order to refine the estimate of $|B V|$ in Lemma 2.5 by using some Levi conditions, we introduce the following.

DEFINITION 11

Let $b=\sum_{l=1}^{N} b_{l} e_{l}$ be a vector in \mathbb{C}^{N}. We define by induction

$$
\begin{aligned}
\Delta_{0}[b](\tau) & =\sum_{l=1}^{N} b_{l} \tau^{l-1}, \\
\Delta_{1}[b]\left(\tau_{0}, \tau_{1}\right) & =\frac{\Delta_{0}[b]\left(\tau_{0}\right)-\Delta_{0}[b]\left(\tau_{1}\right)}{\tau_{0}-\tau_{1}}, \\
\Delta_{2}[b]\left(\tau_{0}, \tau_{1}, \tau_{2}\right) & =\frac{\Delta_{1}[b]\left(\tau_{0}, \tau_{1}\right)-\Delta_{0}[b]\left(\tau_{0}, \tau_{2}\right)}{\tau_{1}-\tau_{2}}, \\
\cdots & =\cdots
\end{aligned}
$$

$$
\begin{aligned}
& \Delta_{k}[b]\left(\tau_{0}, \ldots, \tau_{k-2}, \tau_{k-1}, \tau_{k}\right) \\
& \quad=\frac{\Delta_{k-1}[b]\left(\tau_{0}, \ldots, \tau_{k-3}, \tau_{k-2}, \tau_{k-1}\right)-\Delta_{k-1}[b]\left(\tau_{0}, \ldots, \tau_{k-3}, \tau_{k-2}, \tau_{k}\right)}{\tau_{k-1}-\tau_{k}} .
\end{aligned}
$$

We remark that $\Delta_{k}[b]\left(\tau_{0}, \ldots, \tau_{k-2}, \tau_{k-1}, \tau_{k}\right)$ is bounded for any $k \geq 0$ and that

$$
\Delta_{0}[b](\tau)=b \cdot V(\tau), \quad \text { where } V(\tau)=\left(1, \tau, \tau^{2}, \ldots, \tau^{N-1}\right) .
$$

LEMMA 3.1

Let $b \in \mathbb{C}^{N}$ be as in Definition 11; we have

$$
b \equiv \sum_{l=1}^{N} b_{l} e_{l}=\sum_{k=1}^{N}\left(\sum_{l=k}^{N} b_{l} \widetilde{\sigma}_{l-k}\left[K^{k+1}\right]\right) w_{k}=\sum_{k=1}^{N} \Delta_{k-1}[b]\left(\lambda_{\pi(1)}, \ldots, \lambda_{\pi(k)}\right) w_{k},
$$

where we use the notation introduced in Definition 7.
Proof
See [CT, Proposition 3.2].

REMARK 3.2
We remark that

$$
\left(b_{k}=\cdots=b_{N}=0\right) \Longrightarrow\left(\Delta_{k-1}[b]=\cdots=\Delta_{N-1}[b]=0\right) .
$$

Thanks to Lemma 3.1, we can write the vector $b_{j}(t, \xi) \in \mathbb{C}^{N}$ in the form

$$
b_{j}(t, \xi)=\sum_{k=1}^{N} \Delta_{k-1}\left[b_{j}(t, \xi)\right]\left(\lambda_{\pi(1)}, \ldots, \lambda_{\pi(k)}\right) w_{k}
$$

hence it follows that

$$
\begin{align*}
|B V| & \leq \sum_{j=0}^{N-1}|\xi|^{-(N-1-j)}\left|b_{j} V\right| \tag{3.3}\\
& \leq \sum_{j=0}^{N-1}|\xi|^{-(N-1-j)} \sum_{k=1}^{j+1}\left|\Delta_{k-1}\left[b_{j}\right]\left(\lambda_{\pi(1)}, \ldots, \lambda_{\pi(k)}\right)\right|\left|w_{k} V\right|,
\end{align*}
$$

where π is the permutation introduced in Definition 7. We introduce the following.

ASSUMPTION 4

Fix a permutation π in Definition 7, and let $\gamma_{j, k} \in[0, \infty)$ be such that

$$
\begin{equation*}
\left|\Delta_{k-1}\left[b_{j}\right]\left(\lambda_{\pi(1)}, \ldots, \lambda_{\pi(k)}\right)\right| \lesssim t^{\gamma_{j, k}}, \quad j=0, \ldots, N-1, k=1, \ldots, j+1 . \tag{3.4}
\end{equation*}
$$

LEMMA 3.3
If we assume that

$$
\begin{equation*}
\left|\Delta_{0}\left[b_{j}\right]\left(\lambda_{\pi(l)}\right)\right| \lesssim t^{\gamma_{j}} \quad \text { for any } l=1, \ldots, j+1, \tag{3.5}
\end{equation*}
$$

then condition (3.4) is satisfied by

$$
\begin{equation*}
\gamma_{j, k}=\left[\gamma_{j}-\bar{\Sigma}_{k-1}\right]^{+}, \quad 1 \leq k \leq j+1, \tag{3.6}
\end{equation*}
$$

where $[a]^{+}:=\max \{a, 0\}$ is the positive part of a, and

$$
\begin{aligned}
\bar{\Sigma}_{k-1} & :=\sum_{m=1}^{k-1} \max _{m+1 \leq l \leq k} \kappa_{\pi(m) \pi(l)} \\
& =\kappa_{\pi(k-1), \pi(k)}+\max \left\{\kappa_{\pi(k-2), \pi(k-1)}, \kappa_{\pi(k-2), \pi(k)}\right\}+\cdots+\max _{2 \leq l \leq k} \kappa_{\pi(1) \pi(l)} .
\end{aligned}
$$

Proof

For the sake of brevity, let π be the identical permutation on I.
If $\gamma_{j} \leq \bar{\Sigma}_{k-1}$, then $\gamma_{j, k}=0$ and (3.6) follows from the boundedness of $\Delta_{k-1}\left[b_{j}\right]$. If $\gamma_{j}>\bar{\Sigma}_{k-1}$, thanks to Definition 11, it is clear that

$$
\begin{aligned}
\left|\Delta_{k-1}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right| & \leq \frac{\left|\Delta_{k-2}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-1}\right)\right|+\left|\Delta_{k-2}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-2}, \lambda_{k}\right)\right|}{\left|\lambda_{k-1}-\lambda_{k}\right|} \\
& \lesssim \frac{\left|\Delta_{k-2}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-1}\right)\right|+\left|\Delta_{k-2}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-2}, \lambda_{k}\right)\right|}{t^{\kappa_{k-1, k}}} ;
\end{aligned}
$$

on the other hand,

$$
\begin{aligned}
& \left|\Delta_{k-2}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-2}, \lambda_{k-1}\right)\right| \\
& \quad \leq \frac{\left|\Delta_{k-3}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-2}\right)\right|+\left|\Delta_{k-3}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-3}, \lambda_{k-1}\right)\right|}{\left|\lambda_{k-2}-\lambda_{k-1}\right|} \\
& \quad \lesssim \frac{\left|\Delta_{k-3}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-2}\right)\right|+\left|\Delta_{k-3}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-3}, \lambda_{k-1}\right)\right|}{t^{\kappa_{k-2, k-1}}}, \\
& \left|\Delta_{k-2}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-2}, \lambda_{k}\right)\right| \\
& \quad \leq \frac{\left|\Delta_{k-3}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-2}\right)\right|+\left|\Delta_{k-3}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-3}, \lambda_{k}\right)\right|}{\left|\lambda_{k-2}-\lambda_{k}\right|} \\
& \quad \lesssim \frac{\left|\Delta_{k-3}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-2}\right)\right|+\left|\Delta_{k-3}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-3}, \lambda_{k}\right)\right|}{t^{\kappa_{k-2, k}}} .
\end{aligned}
$$

Hence we may estimate $\left|\Delta_{k-1}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right|$ with

$$
\begin{aligned}
& \left(2\left|\Delta_{k-3}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-2}\right)\right|+\left|\Delta_{k-3}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-3}, \lambda_{k-1}\right)\right|\right. \\
& \left.+\left|\Delta_{k-3}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k-3}, \lambda_{k}\right)\right|\right) / t^{\kappa_{k-1, k}+\max \left\{\kappa_{\left.k-2, k-1, \kappa_{k-2, k}\right\}}\right.} .
\end{aligned}
$$

By applying induction arguments, thanks to (3.5) we can prove

$$
\left|\Delta_{k-1}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right| \lesssim \cdots \lesssim \frac{\sum_{l=1}^{k}\left|\Delta_{0}\left[b_{j}\right]\left(\lambda_{\pi(l)}\right)\right|}{t^{\bar{\Sigma}_{k-1}}} \lesssim \frac{t^{\gamma_{j}}}{t^{\Sigma_{k-1}}}
$$

that is, we have proved (3.6).

REMARK 3.4
If condition (1.4) is satisfied, then

$$
\bar{\Sigma}_{k-1}=\Sigma_{k-1}=\kappa_{1}+\cdots+\kappa_{k-1}
$$

by taking the identical permutation in Definition 7; that is, $K^{k}=\{1, \ldots, k-1\}$.
REMARK 3.5
With the notation in Definition 2, let $P_{\min }(I)=P_{\alpha}(I)=\left\{I_{1}, \cdots, I_{m}\right\}$. Then one can take a permutation π in Definition 7 such that

$$
\bar{\Sigma}_{k-1}=(k-1) \alpha=\Sigma_{k-1} \quad \text { for } k \leq m .
$$

Indeed, it is sufficient to take $\pi(p) \in I_{p}$ for $p \leq m$.

DEFINITION 12
Let Assumptions 1 and 4 be satisfied. For any $1 \leq k \leq j+1 \leq N$, we put

$$
J^{k}:=I \backslash K^{k} ;
$$

we remark that $\#\left(J^{k}\right)=N-(k-1)$. For any $p \geq k$, we denote

$$
\begin{align*}
\Sigma_{p}^{j, k} & :=\Sigma_{p-(k-1)}\left[J^{k}\right]-\gamma_{j, k}, \tag{3.7}\\
\kappa_{p}^{j, k} & := \begin{cases}\Sigma_{1}\left[J^{k}\right]-\gamma_{j, k} & \text { if } p=k, \\
\Sigma_{p}^{j, k}-\Sigma_{p-1}^{j, k} & \text { if } p>k \text { and } \Sigma_{p}^{j, k}<\infty, \\
\infty & \text { otherwise. }\end{cases} \tag{3.8}
\end{align*}
$$

Now, let

$$
\begin{equation*}
h^{j, k}=\min \left\{p=k, \ldots, N-1: \Sigma_{p}^{j, k}+p \geq N\right\} \tag{3.9}
\end{equation*}
$$

if the minimum exists, and let $h^{j, k}=N$ otherwise. We define

$$
\begin{equation*}
\Gamma^{j}=\max _{1 \leq k \leq j+1} \Gamma^{j, k} \tag{3.10}
\end{equation*}
$$

where

$$
\Gamma^{j, k}:= \begin{cases}\frac{(N-h) \kappa_{h}^{j, k}+\Sigma_{h}^{j, k}}{\kappa_{h}^{j, k}+1} & \text { if } \kappa_{h}^{j, k}<\infty, \tag{3.11}\\ N-(h-1) & \text { if } \kappa_{h}^{j, k}=\infty .\end{cases}
$$

For the sake of brevity, we omitted the apexes in $h^{j, k}$ in (3.11).

REMARK 3.6

We remark that for any j, k, it holds that

$$
N-h^{j, k} \leq \Gamma^{j, k} \leq N-\left(h^{j, k}-1\right)
$$

that is, $\Gamma^{j, k}$ is decreasing with respect to $h^{j, k}$. It is clear that if we put

$$
h^{j}:=\min _{k} h^{j, k}
$$

then

$$
\max _{1 \leq k \leq j+1} \Gamma^{j, k}=\max _{\mathcal{H}_{j}} \Gamma^{j, k}, \quad \mathcal{H}_{j}:=\left\{k: h^{j, k}=h^{j}\right\} ;
$$

it follows that

$$
N-h^{j} \leq \Gamma^{j} \leq N-\left(h^{j}-1\right) .
$$

Moreover, once we have fixed h^{j}, then for any $k \in \mathcal{H}_{j}$ we can write $\Gamma^{j, k}$ as

$$
\Gamma^{j, k}=N-\left(h^{j}-1\right)-\frac{N-\left(h^{j}-1\right)-\Sigma_{h^{j}-1}^{j, k}}{\kappa_{h j}^{j, k}+1} ;
$$

hence it is increasing with respect to $\Sigma_{h^{j}-1}^{j, k}$ and $\kappa_{h{ }^{j}}^{j, k}$.

REMARK 3.7

Let (1.4) and (3.5) be satisfied; thanks to Remark 3.4, with the notation in Definition 12, we get

$$
K^{k}=\{1, \ldots, k-1\}, \quad J^{k}=I \backslash K^{k}=\{k, \ldots, N\} .
$$

Hence it holds that

$$
\begin{aligned}
\Sigma_{p}^{j, k} & =\Sigma_{p-(k-1)}\left[J^{k}\right]-\left[\gamma_{j}-\bar{\Sigma}_{k-1}\left[K^{k}\right]\right]^{+} \\
& \leq \kappa_{k}+\cdots+\kappa_{p}-\gamma_{j}+\Sigma_{k-1}=\Sigma_{p}-\gamma_{j}=\Sigma_{p}^{j, 1}
\end{aligned}
$$

It follows that $h^{j, k} \geq h^{j, 1}$; that is, $h^{j}=h^{j, 1}$. Moreover, $\kappa_{p}^{j, k} \leq \kappa_{p}^{j, 1}$. Therefore, from Remark 3.6, it follows that $\Gamma^{j}=\Gamma^{j, 1}$.

We are ready to state the following.

THEOREM 5

Let Assumptions 1 and 4 be satisfied. Then the Cauchy problem (3.1) is well posed in γ^{d} for any $1<d<\min \left\{d^{*}, d_{\max }\right\}$, where $d_{\max }$ is defined in (2.20), and

$$
\begin{align*}
d^{*} & =\min \left\{d_{j}: j=1, \ldots, N-1\right\}, \tag{3.12}\\
d_{j} & := \begin{cases}\infty & \text { if } \Gamma^{j} \leq N-j, \\
1+\frac{N-j}{\Gamma^{j}-(N-j)} & \text { otherwise. }\end{cases} \tag{3.13}
\end{align*}
$$

REMARK 3.8
We remark that $d_{j}=\infty$, that is $\Gamma^{j} \leq N-j$, if and only if either $h^{j} \geq j+1$, or $h^{j}=j$ and $\Sigma_{j}^{j, k}+j=N$ for any $k \in \mathcal{H}^{j}$, that is

$$
\Sigma_{j}^{j, k}+j \leq N, \quad \text { for any } k
$$

REMARK 3.9
We notice that d_{j} can be written as

$$
d_{j}=1+\frac{1}{\frac{\Gamma_{j}}{N-j}-1}=d_{B}\left(\frac{\Gamma_{j}}{N-j}\right) .
$$

From Remark 3.6, being $\Gamma^{j} \leq N$, it follows that

$$
d_{j} \geq d_{B}\left(\frac{N}{N-j}\right)
$$

namely, $d_{N-1} \geq d_{B}(N), d_{N-2} \geq d_{B}(N / 2), \ldots$

In particular, if $h^{N-1} \leq N / 2-1$, then $d^{*}=d_{N-1}$, since

$$
d_{N-1} \leq 1+\frac{1}{N / 2-1} \leq d_{j} \quad \text { for any } j \leq N-2 .
$$

Proof of Theorem 5

The proof is based on the same energies $E_{1}(t, \xi)$ and $E_{2}(t, \xi)$ introduced in Definitions 8 and 9 , but we have to replace (2.26) with (3.3) in the proof of Lemma 2.7. Therefore, in order to derive (2.23), we have to control the terms

$$
\begin{aligned}
& |\xi|^{-(N-1-j)}\left|\Delta_{k-1}\left[b_{j}(t, \xi)\right]\left(\lambda_{\pi(1)}(t, \xi), \ldots, \lambda_{\pi(k)}(t, \xi)\right)\right|\left|w_{k} V\right|, \\
& \quad j=0, \ldots, N-1,1 \leq k \leq j+1,
\end{aligned}
$$

in $t \in\left[t_{1}(\xi), T\right]$, where $t_{1}(\xi)=|\xi|^{-1+\frac{1}{d^{*}}}$ as in (2.15).
For the sake of brevity, let π be the identical permutation in Definition 7 . We fix j, k. Thanks to (3.4) and to Lemma 2.2, we get

$$
\begin{align*}
\left|\Delta_{k-1}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right|\left|w_{k} V\right| & \lesssim t^{\gamma_{j k}}\left|\omega\left[K^{k}\right] V\right| \lesssim \frac{[V]_{l}}{t^{\Sigma_{l-(k-1)}\left[J^{k}\right]}} t^{\gamma_{j, k}} \tag{3.14}\\
& \lesssim\left(\frac{t}{t_{1}(\xi)}\right)^{N-(l+1)} \frac{1}{t^{\Sigma_{l}^{j, k}-1}} \times \frac{1}{t} \sqrt{E_{2}(t, \xi)}
\end{align*}
$$

for any $l \geq k-1$, where $\Sigma_{l}^{j, k}$ is defined in (3.7) for $p=l$.
Let $h=h^{j, k}$ be as in (3.9); we assume $\Gamma^{j, k}>N-j$, with the other case being trivial, and we set $t_{2}(\xi)$ as in (2.28); that is,

$$
\begin{equation*}
t_{2}(\xi):=\left(t_{1}(\xi)\right)^{1 /\left(\kappa_{h}^{j, k}+1\right)} \equiv|\xi|^{-\left(d^{*}-1\right) /\left(\kappa_{h}^{j, k}+1\right) d^{*}} \tag{3.15}
\end{equation*}
$$

for $\kappa_{h}^{j, k}<\infty$ and $t_{2}(\xi)=T$ for $\kappa_{h}^{j, k}=\infty$, where $\kappa_{h}^{j, k}$ are defined in (3.8) for $p=h$.
For any $t \in\left[t_{1}, t_{2}\right]$, we take $l=h-1$ in (3.14) (we remark that $h^{j, k}-1 \geq k-1$ in (3.9)); hence, thanks to (3.9), analogously to (2.29), we get

$$
\left|\Delta_{k-1}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right|\left|w_{k}\right| \lesssim t_{1}^{-(N-h)} t_{2}^{N-h-\Sigma_{h-1}^{j, k}+1} \times \frac{1}{t} \sqrt{E_{2}} .
$$

We notice that

$$
(N-h)-\frac{N-h-\Sigma_{h-1}^{j, k}+1}{\kappa_{h}+1}=\frac{(N-h) \kappa_{h}+\Sigma_{h-1}^{j, k}-1}{\kappa_{h}+1}=\Gamma^{j, k}-1 ;
$$

hence, using (3.15), we get

$$
\begin{equation*}
|\xi|^{-(N-1-j)}\left|\Delta_{k-1}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right|\left|w_{k}\right| \lesssim|\xi|^{-(N-1-j)} t_{1}^{1-\Gamma^{j, k}} \frac{1}{t} \sqrt{E_{2}} . \tag{3.16}
\end{equation*}
$$

For any $t \in\left[t_{2}, T\right]$, we take $l=h$ in (3.14); hence, thanks to (3.9) and analogously to (2.31), we get

$$
\left|\Delta_{k-1}\left[b_{j}\right]\left(\lambda_{1}, \ldots, \lambda_{k}\right)\right|\left|w_{k}\right| \lesssim t_{1}^{-(N-(h+1))} t_{2}^{N-(h+1)+1-\Sigma_{h}^{j, k}} \frac{1}{t} \sqrt{E_{2}} .
$$

By using (2.28) again we find the same estimate in (3.16) since

$$
-(N-h-1)+\frac{N-h-\Sigma_{h}^{j, k}}{\kappa_{h}+1}=-\frac{(N-h) \kappa_{h}+\Sigma_{h-1}^{j, k}-1}{\kappa_{h}+1}=1-\Gamma^{j, k} .
$$

Now, from

$$
d^{*} \leq d_{j}=1+\frac{N-j}{\Gamma^{j}-(N-j)} \leq 1+\frac{N-j}{\Gamma^{j, k}-(N-j)}=: d_{j, k},
$$

it follows that

$$
\begin{aligned}
|\xi|^{-(N-j-1)} t_{1}^{1-\Gamma^{j, k}} & =|\xi|^{-(N-j-1)+\left(\Gamma^{j, k}-1\right)\left(d^{*}-1\right) / d^{*}} \\
& \leq|\xi|^{-(N-j-1)+\left(\Gamma^{j, k}-1\right)(N-j) / \Gamma^{j, k}} \\
& =|\xi|^{1 / d_{j, k}} \leq|\xi|^{1 / d_{j}} \leq|\xi|^{1 / d^{*}} .
\end{aligned}
$$

This concludes the proof.

4. Proof of Theorems 3 and 4

We come back to the the Cauchy problem (2.33), and we study more in detail the $\left(\left(N^{2}\right) \times\left(N^{2}\right)\right)$-matrix \mathcal{B} in (2.34). In order to describe explicitly the last row of each $(N \times N)$-block $\mathcal{B}_{[j, k]}$ of \mathcal{B} (the other rows are zero), we study more in detail the systems \mathcal{L}_{1} and \mathcal{L}_{2}.

DEFINITION 13

We recall that

$$
\Lambda(t, \tau, i \xi)=\chi^{\operatorname{adj}}(t, \tau, i \xi), \quad \chi=\tau \mathrm{I}_{N}-i|\xi| A(t, \xi),
$$

and we define

$$
\begin{aligned}
\Lambda^{\{j\}}(t, \tau, i \xi) & :=\frac{1}{j!} \partial_{\tau}^{j} \Lambda(t, \tau, i \xi), \quad j=1, \ldots, N, \\
\Lambda^{\prime}(t, \tau, i \xi) & :=\partial_{t} \Lambda(t, \tau, i \xi) .
\end{aligned}
$$

We remark that $\Lambda^{\{N\}} \equiv 0$ and that $\Lambda^{\{N-1\}} \equiv \mathrm{I}_{N}$.

Now, since

$$
L\left(t, \partial_{t}, i \xi\right)=\partial_{t}-i|\xi| A(t, \xi)-B(t)
$$

with the notation in (2.32) and in Definition 13, we get

$$
\mathcal{L}_{1}\left(t, \partial_{t}, i \xi\right)=\Lambda\left(t, \partial_{t}, i \xi\right) L\left(t, \partial_{t}, i \xi\right)=\mathrm{I}_{N} P\left(t, \partial_{t}, i \xi\right)-\sum_{j=0}^{N-1} M_{j}\left(t, \partial_{t}, i \xi\right)
$$

where

$$
\begin{aligned}
M_{j}(t, \tau, i \xi)= & i|\xi| \Lambda^{\{N-j\}}(t, \tau, i \xi) A^{(N-j)}(t, \xi) \\
& +\Lambda^{\{N-1-j\}}(t, \tau, i \xi) B^{(N-1-j)}(t) .
\end{aligned}
$$

Now, each of the N^{2} entries of $M_{j}(t, \tau, i \xi)$, say, the (r, s) th, can be written in the form

$$
\sum_{0 \leq l \leq j} b_{j, l}[r, s](t, i \xi) \tau^{l},
$$

where $b_{j, l}[r, s](t, \xi)$ is homogeneous of degree $j-l$ in ξ. We put

$$
\begin{aligned}
b_{j}[r, s](t, \xi) & :=\sum_{l=0}^{j} b_{j, l}[r, s](t, \xi /|\xi|) e_{l+1} \\
& =\sum_{l=0}^{j}|\xi|^{-(j-l)} b_{j, l}[r, s](t, \xi) e_{l+1}
\end{aligned}
$$

where $\left(e_{l}\right)$ denotes the canonical basis of \mathbb{C}^{N}. Therefore the last row of the (r, s) th block of \mathcal{B} is

$$
\left(\mathcal{B}_{[r, s]}\right)_{N .}=\sum_{j=0}^{N-1}|\xi|^{-(N-1-j)} b_{j}[r, s](t, \xi),
$$

and we have to estimate

$$
|\xi|^{-(N-1-j)}\left|b_{j}[r, s](t, \xi) W^{(s)}\right|, \quad j=0, \ldots, N-1, r, s=1, \ldots, N,
$$

as in (3.3). In order to apply Lemma 3.3 to the Cauchy problem (2.33) for \mathcal{L}_{1}, we look for indexes γ_{j}, not depending on r, s, such that (3.5) is satisfied for $b_{j}=b_{j}[r, s]$, for any $j=0, \ldots, N-1$, and for any $r, s=1, \ldots, N$. It is easy to check that

$$
\begin{equation*}
\Delta_{0}\left[b_{j}[r, s](t, \xi)\right]\left(\lambda_{\pi(l)}\right)=\left(M_{j}\left(t, \lambda_{\pi(l)}, \xi /|\xi|\right)\right)_{r, s} \tag{4.1}
\end{equation*}
$$

for any $j=0, \ldots, N-1$; hence we have to look for indexes γ_{j} such that

$$
\left\|M_{j}\left(t, \lambda_{\pi(l)}, \xi /|\xi|\right)\right\| \lesssim t^{\gamma_{j}}, \quad \text { for any } l=1, \ldots, j+1
$$

with no assumption on the derivatives of $A(t, \xi)$ and $B(t)$, the estimate above is satisfied if

$$
\begin{align*}
& \left\|\Lambda^{\{N-j\}}\left(t, \lambda_{\pi(l)}, \xi /|\xi|\right)\right\|+\left\|\Lambda^{\{N-1-j\}}\left(t, \lambda_{\pi(l)}, \xi /|\xi|\right)\right\| \lesssim t^{\gamma_{j}} \tag{4.2}\\
& \quad \text { for any } l=1, \ldots, j+1 .
\end{align*}
$$

Similarly, with the notation in (2.32) and in Definition 13, we get

$$
\mathcal{L}_{2}\left(t, \partial_{t}, i \xi\right)=L\left(t, \partial_{t}, i \xi\right) \Lambda\left(t, \partial_{t}, i \xi\right)=\mathrm{I}_{N} P\left(t, \partial_{t}, i \xi\right)-M_{N-1}\left(t, \partial_{t}, i \xi\right)
$$

with $M_{N-1}=-\Lambda^{\prime}+B \Lambda$. In order to apply Lemma 3.3 to the Cauchy problem (2.33) for \mathcal{L}_{1}, we look for an index γ_{N-1}, not depending on r, s, such that (3.5) is satisfied for $b_{N-1}=b_{N-1}[r, s]$, for any $r, s=1, \ldots, N$. Thanks to the equality (4.1) for $j=N-1$, and with no assumption on $B(t)$, we have to look for an index γ_{N-1} such that

$$
\begin{align*}
& \left\|\Lambda^{\prime}\left(t, \lambda_{\pi(l)}, \xi /|\xi|\right)\right\|+\left\|\Lambda\left(t, \lambda_{\pi(l)}, \xi /|\xi|\right)\right\| \lesssim t^{\gamma_{N-1}} \tag{4.3}\\
& \quad \text { for any } l=1, \ldots, j+1 .
\end{align*}
$$

We have proved the following corollary of Theorem 5.

THEOREM 6

Let Assumption 1 be satisfied, and assume that

$$
\left\{\begin{array}{l}
\left\|\Lambda^{\prime}\left(t, \lambda_{l}, \xi /|\xi|\right)\right\|+\left\|\Lambda^{\{1\}}\left(t, \lambda_{l}, \xi /|\xi|\right)\right\|+\left\|\Lambda\left(t, \lambda_{l}, \xi /|\xi|\right)\right\| \lesssim t^{\gamma_{N-1}} \tag{4.4}\\
\left\|\Lambda^{\{N-j\}}\left(t, \lambda_{l}, \xi /|\xi|\right)\right\|+\left\|\Lambda^{\{N-1-j\}}\left(t, \lambda_{l}, \xi /|\xi|\right)\right\| \lesssim t^{\gamma_{j}} \\
\quad j=1, \ldots, N-2
\end{array}\right.
$$

for any $l=1, \ldots, N$, with the notation in Definition 13. Moreover, as in (3.6), let

$$
\gamma_{j, k}=\left[\gamma_{j}-\bar{\Sigma}_{k-1}\right]^{+} .
$$

Then the Cauchy problem (1.1) is strongly well posed in γ^{d} for any $1<d<$ $\min \left\{d^{*}, d_{\max }\right\}$, with the notation in Theorem 5.

By adding assumptions on the structure of A, we can obtain (4.4) and then apply Theorem 6.

LEMMA 4.1
If Assumptions 1 and 2 are satisfied, then we get (4.4) for

$$
\gamma_{j}=(j-1) \gamma .
$$

Proof
We notice that

$$
\Lambda=\chi^{\mathrm{adj}}=\sigma_{N-1}^{*} \mathrm{I}_{N}-\sigma_{N-2}^{*} \chi+\cdots+(-1)^{N-2} \sigma_{1}^{*} \chi^{N-2}+(-1)^{N-1} \chi^{N-1}
$$

where $\sigma_{j}^{*}(t, \tau, \xi)$ for $j=1, \ldots, N-1$ is the j th elementary symmetric function introduced in (2.3) associated to the eigenvalues of the matrix $\chi(t, \tau, i \xi)$, namely,

$$
\sigma_{j}^{*}(t, \tau, \xi)=\sum_{I^{[j]}} \prod_{m=1}^{j}\left(\tau-\lambda_{p(m)}\right), \quad I^{[j]}=\{p(1), \ldots, p(j) \in I: p(1)<\cdots<p(j)\} .
$$

As in Definition 13, let

$$
\sigma_{N-1-r}^{*\{p\}}(t, \tau, \xi)=\frac{1}{p!} \partial_{\tau}^{p} \sigma_{N-1-r}^{*}(t, \tau, \xi), \quad\left(\chi^{r}\right)^{\{q\}}=\frac{1}{q!} \partial_{\tau}^{q} \chi^{r} ;
$$

it is clear that

$$
\begin{aligned}
\Lambda^{\{s\}} & =\frac{1}{s!} \partial_{\tau}^{s} \chi^{\text {adj }}=\frac{1}{s!} \sum_{r=0}^{N-1}(-1)^{r}\left(\sum_{q+p=s} \frac{s!}{p!q!}\left(\partial_{\tau}^{p} \sigma_{N-1-r}^{*}\right)\left(\partial_{\tau}^{q} \chi^{r}\right)\right) \\
& =\sum_{r=0}^{N-1}(-1)^{r}\left(\sum_{q+p=s} \sigma_{N-1-r}^{*\{p\}}\left(\chi^{r}\right)^{\{q\}}\right) .
\end{aligned}
$$

We fix $l=1, \ldots, j+1$. For any $p \leq N-1-r$, we have

$$
\left|\sigma_{N-1-r}^{*\{p\}}\left(t, \lambda_{l}, \xi /|\xi|\right)\right| \lesssim\left(t^{\alpha}\right)^{N-1-r-p} .
$$

To estimate the other terms we use (1.10); for any $q \leq r$, we obtain

$$
\left|\left(\chi^{r}\right)^{\{q\}}\left(t, \lambda_{l}, \xi /|\xi|\right)\right| \lesssim\left\|\chi\left(t, \lambda_{l}, \xi /|\xi|\right)\right\|^{r-q} \lesssim t^{(r-q) \gamma}
$$

since

$$
\left|\frac{\operatorname{tr} A}{N}-\lambda_{l}\right| \lesssim t^{\alpha} \lesssim t^{\gamma}
$$

Therefore we have proved (4.2) for $\gamma_{j}=((N-1)-(N-j)) \gamma=(j-1) \gamma$. Similarly, we prove (4.3) for $\gamma_{N-1}=(N-2) \gamma$. This concludes the proof.

Thanks to Lemma 4.1, we can prove Theorem 3 as a consequence of Theorem 6.

Proof of Theorem 3

Thanks to Remark 3.7, we know that $\Gamma^{j}=\Gamma^{j, 1}$. We claim that

$$
\begin{equation*}
\Gamma^{N-1}-1 \geq \Gamma^{j}-(N-j) \tag{4.5}
\end{equation*}
$$

for any j; hence $d_{N-1} \leq d_{j}$. We prove (4.5) for $j=N-2$; that is, $\Gamma^{N-2} \leq$ $\Gamma^{N-1}+1$, the other cases being analogous.

Let $h=h^{N-1}$ and $h^{\prime}=h^{N-2}$. It is clear that either $h^{\prime}=h$ or $h^{\prime}=h-1$ since

$$
0 \leq \gamma_{N-1}-\gamma_{N-2}=\gamma \leq \alpha
$$

If $h^{\prime}=h$, then it trivially holds that

$$
\Gamma^{N-2} \leq N-(h-1)=(N-h)+1 \leq \Gamma^{N-1}+1 .
$$

Let $h^{\prime}=h-1$. From (1.4), it follows that $\kappa_{h} \geq \kappa_{h-1}$ and hence that

$$
\kappa_{h}^{N-1,1} \geq \kappa_{h-1}^{N-2,1}
$$

moreover, we have

$$
\Sigma_{h}^{N-1,1}=\kappa_{h}+\Sigma_{h-1}^{N-2,1}-\gamma .
$$

Therefore

$$
\begin{aligned}
\Gamma^{N-1} & =\frac{(N-h) \kappa_{h}+\Sigma_{h}-(N-2) \gamma}{\kappa_{h}+1} \\
& =\frac{(N-(h-1)) \kappa_{h}+\Sigma_{h-1}-(N-3) \gamma-\gamma}{\kappa_{h}+1} \\
& \geq \Gamma^{N-2}-\frac{\gamma}{\kappa_{h}+1} \geq \Gamma^{N-2}-1 .
\end{aligned}
$$

In order to conclude the proof, we show that $d^{*} \leq d_{\max }$, where d^{*} is as in Theorem 3. We distinguish two possibilities: if $h \leq N-2$, then

$$
d^{*} \leq d_{B}(N-(N-2))=2 \leq d_{\max }
$$

whereas if $h=N-1$, then $\kappa_{h}=\omega$; therefore

$$
d^{*}=1+\frac{\omega+1}{\Sigma_{N-1}-(N-2) \gamma-1} \leq 1+\frac{\omega+1}{\omega-1}=d_{\max }
$$

since

$$
\Sigma_{N-1}=\kappa_{1}+\cdots+\kappa_{N-2}+\omega \geq(N-2) \alpha+\omega \geq(N-2) \gamma+\omega .
$$

This concludes the proof.
In order to prove Theorem 4, we apply Theorem 6 to the Cauchy problem (1.11).
Proof of Theorem 4
Let J_{A} be the Jordan canonical form of A. Because $\mu_{p}-\mu_{q} \neq 0$ for any $t>0$ and thanks to Assumption 3, we can write

$$
J_{A}=\bigoplus_{q=1}^{m} J_{q}
$$

where J_{q} is the Jordan block matrix related to the eigenvalue μ_{q}, and it has size M_{q}. If we put

$$
\nu_{p}(t, \tau, \xi)=\tau-\mu_{p}(t, \xi), \quad p=1, \ldots, m
$$

then

$$
\Lambda(t, \tau, \xi /|\xi|)=\left(\tau \mathrm{I}_{N}-J_{A}\right)^{\mathrm{adj}}=\bigoplus_{q=1}^{m}\left(\left(\tau \mathrm{I}_{M_{q}}-J_{q}\right)^{\mathrm{adj}} \prod_{p \neq q} \nu_{p}^{M_{p}}(t, \tau, \xi)\right)
$$

Therefore, for any $l=1, \ldots, m$, since $\nu_{l}\left(t, \mu_{l}, \xi\right) \equiv 0$, we have

$$
\begin{aligned}
\Lambda\left(t, \mu_{l}, \xi /|\xi|\right)= & 0_{M_{1}} \oplus \cdots \oplus 0_{M_{l-1}} \oplus\left(\mu_{l} \mathrm{I}_{M_{l}}-J_{l}\right)^{\text {adj }} \prod_{p \neq l}\left(\mu_{l}-\mu_{p}\right)^{M_{p}} \\
& \oplus 0_{M_{l+1}} \oplus \cdots \oplus 0_{M_{m}}
\end{aligned}
$$

where we denote by $0_{M_{p}}$ a block with size M_{p} such that all entries are zero. Now, because $M=\max M_{p}$, it is easy to check that

$$
\begin{aligned}
\left\|\Lambda\left(t, \mu_{l}, \xi /|\xi|\right)\right\| & \lesssim t^{(N-M) \alpha} \\
\left\|\Lambda^{\prime}\left(t, \mu_{l}, \xi /|\xi|\right)\right\| & \lesssim t^{(N-M-1) \alpha}, \\
\left\|\Lambda^{\{N-j\}}\left(t, \mu_{l}, \xi /|\xi|\right)\right\| & \lesssim t^{(j-M) \alpha} \quad \text { for any } j \geq M .
\end{aligned}
$$

Thanks to Remark 3.5, we have

$$
\bar{\Sigma}_{k-1}= \begin{cases}(k-1) \alpha & \text { if } k \leq m \\ \infty & \text { otherwise }\end{cases}
$$

hence

$$
\gamma_{j, k}= \begin{cases}{\left[[j-M]^{+}-(k-1)\right]^{+} \alpha} & \text { if } k \leq m, \\ 0 & \text { if } k>m .\end{cases}
$$

We can apply Theorem 6 . Since

$$
\Sigma_{p}=\left\{\begin{array}{cl}
p \alpha & \text { if } p \leq N-M \\
\infty & \text { otherwise }
\end{array}\right.
$$

we get $\Sigma_{p}^{j, 1}=\infty$ for $p \geq N-M+1$, that is,

$$
\max _{k \leq p} \Sigma_{p}^{j, k}=\Sigma_{p}^{j, 1}=\infty, \quad p \geq N-M+1
$$

On the other hand, for any $k \leq p \leq N-M$,

$$
\Sigma_{p}^{j, k}=(p-(k-1)) \alpha-\gamma_{j, k},
$$

and analogously to Remark 3.7 , it is easy to show that for any $k \leq p \leq N-M$, it holds that

$$
\Sigma_{p}^{j, k} \leq \Sigma_{p}^{j, 1}=\left(p-[j-M]^{+}\right) \alpha \quad \text { for } k \leq m,
$$

whereas

$$
\Sigma_{p}^{j, k} \leq \Sigma_{p}^{j, m+1}=(p-m) \alpha \quad \text { for } m+1 \leq k
$$

Thus we get

$$
\max _{k \leq p} \Sigma_{p}^{j, k}= \begin{cases}\left(p-[j-M]^{+}\right) \alpha & \text { if } p \leq m \\ \operatorname{cr}\left(p-[j-M]^{+}\right) \alpha & \text { if } m \leq p \leq N-M \text { and } j \leq M+m \\ (p-m) \alpha & \text { if } m \leq p \leq N-M \text { and } M+m \leq j, \\ \infty & \text { if } N-M+1 \leq p\end{cases}
$$

We distinguish three cases.
(1) Let $j \geq M+m$. Then $h^{j}=N-M+1$ if

$$
(N-M-m) \alpha+(N-M)<N, \quad \text { that is, if }(N-M-m) \alpha<M,
$$

whereas $h^{j} \leq N-M$ otherwise. In the first case, it follows that

$$
\Gamma^{j}=N-(N-M)=M,
$$

whereas in the second one we get

$$
\Gamma^{j}=\frac{(N-h) \alpha+(h-m) \alpha}{\alpha+1}=\frac{(N-m) \alpha}{\alpha+1} .
$$

(2) Let $M \leq j \leq M+m$. Then $h^{j}=N-M+1$ if

$$
((N-M)-(j-M)) \alpha+(N-M)<N, \quad \text { that is, if }(N-j) \alpha<M,
$$

whereas $h^{j} \leq N-M$ otherwise. In the first case, it follows $\Gamma^{j}=M$ again, whereas in the second one we get

$$
\Gamma^{j}=\frac{(N-h) \alpha+(h-(j-M)) \alpha}{\alpha+1}=\frac{(N-j+M) \alpha}{\alpha+1} .
$$

(3) Let $j \leq M$. Then $\Gamma^{j}=M$ if $(N-M) \alpha<M$, whereas

$$
\Gamma^{j}=\frac{N \alpha}{\alpha+1}
$$

if $N \alpha \geq M(\alpha+1)$.
We assume first that $M+m \leq N-1$. We distinguish three cases.

- If $(N-M) \alpha<M$, then $\Gamma^{j}=M$ for any j; hence

$$
d^{*}=d_{N-1}=d_{B}(M) .
$$

- If there exists j^{*}, with $M \leq j^{*} \leq M+m-1$, such that

$$
\begin{equation*}
\left(N-\left(j^{*}+1\right)\right) \alpha<M \leq\left(N-j^{*}\right) \alpha, \tag{4.6}
\end{equation*}
$$

then $\Gamma^{j}=M$ for any $j \geq j^{*}+1$, whereas

$$
\begin{aligned}
& \Gamma^{j}=\frac{(N-j+M) \alpha}{\alpha+1}, \quad M \leq j \leq j^{*}, \\
& \Gamma^{j}=\frac{N \alpha}{\alpha+1}, \quad j \leq M .
\end{aligned}
$$

It follows that $d_{j^{*}} \leq d_{j^{*}-1} \leq \cdots$ since

$$
\Gamma^{j^{*}} \geq \Gamma^{j^{*}-1}-1 \geq \cdots
$$

On the other hand, from (4.6) it follows that

$$
\Gamma^{j^{*}}<\frac{(M+1) \alpha+M}{\alpha+1}=M+\frac{\alpha}{\alpha+1} \leq M+1=\Gamma^{j^{*}+1}+1 .
$$

Therefore $d^{*}=d_{N-1}=d_{B}(M)$.

- If $(N-M-m) \alpha \geq M$, then

$$
\Gamma^{j}=\frac{(N-m) \alpha}{\alpha+1}, \quad M+m \leq j
$$

and

$$
\Gamma^{N-1}=\cdots=\Gamma^{M+m} \geq \Gamma^{M+m-1}-1 \geq \cdots .
$$

Therefore

$$
d^{*}=d_{N-1}=1+\frac{\alpha+1}{(N-m-1) \alpha-1} .
$$

We have proved (1.12). Now we assume that $M+m \geq N$, and we prove (1.13).
Case (1) is verified for no j; hence we have to distinguish three cases.

- If $(N-M) \alpha<M$, then $\Gamma^{j}=M$ for any j; hence

$$
d^{*}=d_{N-1}=d_{B}(M) .
$$

- If there exists $M \leq j^{*} \leq N-2$ such that

$$
\left(N-\left(j^{*}+1\right)\right) \alpha<M \leq\left(N-j^{*}\right) \alpha,
$$

we obtain again

$$
M+1 \geq \Gamma^{j^{*}} \geq \Gamma^{j^{*}-1}-1 \geq \cdots
$$

Therefore $d^{*}=d_{N-1}=d_{B}(M)$.

- If $\alpha \geq M$, then

$$
\Gamma^{j}=\frac{(N-j+M) \alpha}{\alpha+1}, \quad M \leq j ;
$$

hence

$$
\cdots \leq \Gamma^{N-2}-1 \leq \Gamma^{N-1}=\frac{(M+1) \alpha}{\alpha+1} .
$$

Therefore

$$
d^{*}=d_{N-1}=1+\frac{\alpha+1}{M \alpha-1} .
$$

This concludes the proof.

References

[B1] M. D. Bronšteĭn, Smoothness of roots of polynomials depending on parameters, Sibirsk. Mat. Zh. 20 (1979), 493-501; English translation in Siberian Math. J. 20 (1980), 347-352.
[B2] , The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity (in Russian), Trudy Moskov. Mat. Obshch. 41 (1980), 83-99.
[CI] F. Colombini and H. Ishida, Well-posedness of the Cauchy problem in Gevrey classes for some weakly hyperbolic equations of higher order, J. Anal. Math. 90 (2003), 13-25.
[CJS] F. Colombini, E. Jannelli, and S. Spagnolo, Well posedness in the Gevrey classes of the cauchy problem for a nonstrictly hyperbolic equation with coefficients depending on time, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4) 10 (1983), 291-312.
[CO] F. Colombini and N. Orrú, Well-posedness in \mathcal{C}^{∞} for some weakly hyperbolic equations, J. Math. Kyoto Univ. 39 (1999), 399-420.
[CT] F. Colombini and G. Taglialatela, Well-posedness for hyperbolic higher order operators with finite degeneracy, J. Math. Kyoto Univ. 46 (2006), 833-877.
[D] M. D'Abbicco, Some results on the Well-Posedness for Second Order Linear Equations, Osaka J. Math. 46 (2009), 739-767.
[DAK] P. D'Ancona and T. Kinoshita, On the wellposedness of the Cauchy problem for weakly hyperbolic equations of higher order, Math. Nachr. 278 (2005), 1147-1162.
[DAS] P. D'Ancona and S. Spagnolo, Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Unione Mat. Ital., Sez. B Artic. Ric. Mat. (8) 1 (1998), 169-185.
[DAT] M. D'Abbicco and G. Taglialatela, Some results on the well-posedness for systems with time-dependent coefficients, Ann. Fac. Sci. Toulouse Math. (6) 18 (2009), 247-284.
[H] L. Hörmander, Linear Partial Differential Operators, Grundlehren Math. Wiss. 116 Springer, Berlin, 1963.
[Y] H. Yamahara, Cauchy problem for hyperbolic systems in Gevrey class: A note on Gevrey indices, Ann. Fac. Sci. Toulouse Math. (6) 9 (2000), 147-160.

Dipartimento di Matematica, Università di Bari, via E. Orabona 4, 70125 Bari, Italy

