3-graded decompositions of exceptional
Lie algebras g and group realizations of
Hevr 90 and Dedr : G = Eg

Toshikazu Miyashita and Ichiro Yokota

Abstract In the articles [4] and [7], we completed the determination of group realiza-
tions ge, and go of 2-graded decompositions g =g_2® g—1 D go D g1 P g2 of exceptional
Lie algebras g for the universal exceptional Lie groups. In the present article, which is a
continuation of [5] and [8], we determine group realizations of subalgebras gev, go and
geq of 3-graded decompositions of exceptional Lie algebras g for the universal exceptional
Lie groups of type Eg.

Introduction

The 3-graded decompositions of simple Lie algebras g,

g=9g3Pg2Pg1DPg DI D2Dg3, [Ik %) C Gri,

are classified, and the types of subalgebras gey, = g_2 P go D g2, 90 and geq =
g_3 D go P g3 are determined. Table 1 shows the results of ge,, g0, and geq for
the exceptional Lie algebras of type Eg (see [3]).

In the articles [5] and [8], we gave the group realizations of gey, g0, and geq
for the connected exceptional universal linear Lie groups G of type Ga, Fy,
FEg, and E7. In this article, for the connected exceptional universal linear Lie
groups G of type Eg, we realize the subgroups G.,, Gy, and G4 of G correspond-
ing to ey, o, and geg of g =LieG. Our results are shown in Table 2.

This article is a continuation of [5] and [8], and we use the same notation as
in [5] and [8]. So the numbering of sections and theorems starts from Section 5.

Together with the preceding articles [5] and [8] and the present article, the
group realization of Hara’s table (see [3]) with respect to 3-graded decompositions
of exceptional simple Lie algebras by the connected exceptional universal linear
Lie groups has been completed.
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Table 1
Case 1 g Gev go
fed dimgl,dimgz,dimgg
es” s1(2,C) @ er€ 51(2,C) & C @ e6©
5((3,0) ® es© 54, 27, 2
e(8) sl(2, R) @ e(r) sl(2, R) © R® eo (o)
sl(3, R) ® eq(6) 54, 27, 2
€8(—24) sl(2, R) @ er(_2s) sl(2, R) © R ® es(—26)
sl(3,R) & 6(—26) 54, 27, 2
Case 2 g Jev go
Jed dim g1, dim g2, dim g3

¢ 50(16,C) CPsl(8,0)
s1(9,C) 56, 28, 8

ess) 950(8,8) RDsl(8,R)
sI(9,R) 56, 28, 8

Table 2
Case 1 G Gev Go
Ged
Es© (SL(2,C) x E:°)/Z (SL(2,C) x C* x Es©)/ Zs
(SL(3,C) x Es©)/Z3
Eg(g) (SL(Q,R) X E7(7))/ZQ X 2 (SL(Q,R) X RJr X EG(G)) X 2

SL(37R) X E6(6)
Es(_24) (SL( ,R) X E7(_25))/Z2 X 2 (SL(Q,R) X 12+ X EG(—QG)) X 2
SL(3,R) X E6(726)
Case 2 G Gey Go
Ged
EsC  Ss(16,0) (C* x SL(8,C))/Z24
SL(9,C)/Zs
Egs)y Ss(8,8)x2 (RT x SL(8,R)) x3
SL(9,R) x 3

5. Group Ej

5.1. Lie groups of type Es and their Lie algebras
In a C-vector space es© and R-vector spaces €3(8) s €8(—24)5

s’ =e;“opepocaecac,
sy =y @P P PRORDR,
eg(—24) = ¢7(—25) D PO PO RO ROD R,
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we define a Lie bracket [Ry, Ro] by

[(¢1;P17Q17r15817t1)7 (¢2>P27Q27r27827t2)]
= (¢7P7Q,7',S,t),

D =[P, Do) + P1 X Q2 — P2 x Q1

Q=D1Po — PP + 1Py — 1P, +51Q2 — 52Q1,
P=91Qs — P2Q1 —11Q2 +12Q1 + 11 P2 — 12 P,
r=—3{P1,Q2} + §{P, Q1} + s1t2 — sat1,

s =1{P1, P2} + 2r155 — 2ras1,
t=—2{Q1,Q2} — 2rits + 2raty;

then this becomes a simple Lie algebra of types EgC, Eg(g), and Eg(_ay), respec-
tively.
We define a C-linear transformation vy of eg® by

Y(@,P,Q,r,5,t) = (v@v,vP,yQ, 1, 5,t),

where 7 of the right-hand side is the same as v € G2¢ c F,¢ ¢ BsC c E;¢, and
the complex conjugation in eg® is denoted by 7:

(P, P,Q,r,s,t) = (@7, 7P, 7Q, 71, TS, T1).

The connected universal linear Lie groups EC, Eg(s), and Eg(_ay4) of type Es
are given, respectively, by

Es® = {aelsoc(esC) | a[Ri, Ro] = [aRy, aRy]},
Eg(s) = {a € Isog(es(s)) | @[R1, Ro] = [aR1,aRy]},
Eg(_24) = {a € Isop(eg(—24)) ’ a[R1, Ry = [aRy, aRs]}.
The group EgC is simply connected. From the definitions of the groups above,

we have the following.

PROPOSITION 5.1
We have

Egs) = (Es©)™, Eg(_2ay = (E5°)".

¢ — ¢gC is defined by

For o € E7%, the mapping @ : es
a(®7 P7 Q? r, S’ t) = (a@a717 aP? aQ? ’r7 87 t);

then & € B39, so a and & are identified. The group Es® contains F;¢ as a
subgroup by

E.°={aeFE|aec EY.

Especially, elements v, A, and ¢ of E;¢ w(X,Y,&n) =(—-X,-Y, =& —n), \M(X,Y,
&n) =Y, -X,n,-8),uX,Y,&,n) = (—iX,iY,—i&, in)) are also elements of EgC.
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5.2. Subgroups of type A, E7C,fllc & C @ EsC, and 4,¢ & EgC of B¢
We define C-linear transformations A and w of eg® = ¢;¢ @ &BC @ ‘BC eCoCal
by

X(st P,Q,T,S,t) = ()\@)\*1’)\@7 _>\Pa =, _tv _S)a
U}(@,P,Q,T,S,t) = 'LU(@((,ZS,A,B,I/% (X7Ya€7’r])a (Z,VV,C,,U),T,S,t)
= (¢(¢’MA7W2B>V)7 (anw2K§7n)7 ((UZ7W2W<,,U/),T757t)7

w = e2™/3  respectively. Then X, w e Eg and 22 = 1w =1.
In the Lie algebra eg©, let
Z = (@(0,0,0, —3),0,070,0,0).

Hereafter (see Theorems 5.2.1 and 5.4.1) in P and e, we use the following
notation:

X =(X,0,0,0, Y=(0,Y,0,0), £=(0,0,£0), 75=1(0,0,0,),
@:(¢7070707070)7 P_ :(07P30707070)7 Q, :(OaOuQ707070)7
7=(0,0,0,7,0,0), s~ =1(0,0,0,0,s,0), t_=(0,0,0,0,0,1).

Moreover, we mix and combine the above notation. For example,

X~ =(0,(X,0,0,0),0,0,0,0), W_ = (0,0,(0,,0,0),0,0,0).

THEOREM 5.2.1
The 3-graded decomposition of the Lie algebra egg) = (es€)™ (or eg?),

e38) =9-3DPg2DPg-1 DY D1 D g2 D g3
with respect to ad Z, Z = (9(0,0,0,—3),0,0,0,0,0), is given by
iGo1, 0<k<4<I1<7 Gy otherwise,

Ay(ex), As(ex), As(er), Fi(ex), Falex), Fa(er), 0<k<3,
iAl(ek),iAg(ek),iAg(ek),iFl (ek),iFg(ek),iFg(ek), 4 S k’ S 7,

(El7E2)~7(E27E3)N717171771—7 82,

go =

E;7E27,E37,F1(6k)7,FQ(ek)77F3(€k)i7 0§k§37

iFy(er) iFy(er) ,iFs(er) , 4<k<T,
El_,EQ_,Eg_,Fl(ek-)_7F2(€k)_,F3(€k)_, 0< k<3,
iFy(ey)_,iFy(er)_,iFs(er) , 4<k<T7, 54,

- EAl,EmE?Qﬁ(ek),Aﬁz(ek)aE(ek), 0<k<3,
? iFy(er),iFy(ex),iF3(er), 4<k<T, 27,

g-3= {.1_5 1_} 2,

g1 =Ag-1),02=A(g-2),03 = \(g-3)-
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Since (exp®(0,0,0,—31))(X,Y,&,n) = (e¥ X, e "Y,e ?¢,e3n),v € C, we have

exp(%Z) =, exp(%Z) =L, exp(Q;mZ)

Now, let
29 = €X (@adZ) Z4 = €X <@adZ) 23 = €X (@adZ)
2 — p 2 ) 4 — p 4 ) 3 = p 3 .
Then, since (es)er = (es9)™ = (e39), (es%)o = (e59)** = (es)"", (e8%)ea =
(Bgc)z3 = (egc)“’, we determine the structures of groups
(Bs)ew = (Bs©)™ = (E5°)",
(Es®)o = (Bs®)* = (Bs“)™,
(Es)ea = (Bs©)™ = (BEs)".

We define a mapping v : SL(2,C) — Es®, A — ¢(A), where 9(A) is the C-
linear transformation of eg® defined by

1 0 O 0 0 0
0 al bl 0 0 0
a B\\ |0 e a1 o 0 0
w((c d>) 0 0 0 ad+bc —ac bd |’
0 0 0 —2ab a? b2
0 0 O 2cd -2 d?

and we define a mapping ¢: C* — E;%.0 — @(0), where ¢(0) is the C-linear
transformation of ‘BC defined by

$(0)(X,Y,€,0) = (0X,07'Y,07°¢,0%).

THEOREM 5.2.2
We have the following:

(1) (ES )(’v*(SL( ,C) XE7C)/Z2;Z2:{(Evl)a(vail)};
(2) (Bs)o = (SL(2,C) x C* x E“)/Zs,Zs = Za x Z3,Z = {(E,1,1),
(7E77131)}3Z3:{(E 171)7 vaa¢(w2))ﬂ(va2a¢(w))}}

(3) (Bs)ea = (SL(3,C) x Es“)/ Z3, Z3 = {(E, 1), (wE, 1), (w?E,wl)}.

~

Proof
(1) We define a mapping @e, : SL(2,C) x B¢ — (Es©)? = (Es%)e, by

soev(A ﬁ) = ’(/)(A)ﬁ,

Yev is well defined because 1h(A) € (Eg®)v. Slnce Y(A) and § € E;¢ commute,
Yep 18 a homomorphism. Ker g, = {(E 1),(-E,—1)} = Z,. Since (Egc)'“ is
connected and dimg(sl(2,0) @ ¢;9) = 3 + 133 =136 = 82 4 27 x 2 =
dime ((e59)ey) = dime ((es€)Y) (see Theorem 5.2.1), pey is surjective. Thus we
have the isomorphism (Fg)., = (Es“)" = (SL(2,C) x E;)/Z,.
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(2) Since the group E;“ has subgroups C* and Eg® (see [6, Theorem 4.4.4]),

we define a mapping ¢o : SL(2,C) x C* x Eg® — (Es®)"* = (Es)o by
po(A,0,8) =1 (A)p(0)5

as the restriction mapping of ¢,. So g is well defined and a homomorphism.
Since (v)? =wv, (Es9)" is a subgroup of (Es®)". Now, for a € (Es®)v
(Es©)?, there exist A € SL(2,C) and ' € E;“ such that a = ¢, (A, 3') from (1).
Moreover, from the condition (vi)a(ve)™! = a, that is, (vi)@ey(A,3)(ve)~! =
Ven(A,B3"), we have pe, (A, 13'171) = ey (A, 3'). Hence

A=A, A=—-A,
or
Lﬁ/Liliﬂ/, Lﬁ/Lilifﬂ/.

In the former case, A € SL(2,C),3 € (B;%) = (C* x Es“)/Z3,Z5={(1,1), (w,
d(w?)), (W?,¢(w))} (see [6, Theorem 4.4.4]), so (3’ is expressed as 3 = p(0)3,0 €
C*, 3 € E€. The latter case is impossible because 4 = 0. It is easy to see that
Kergpo = {(E,1,1),(E,w,$(w?)), (E,w? ¢(w)),
(_Ea _]-7 ]-)7 (Ea —w, ¢(w2))7 (_Ev _w27 ¢(w))}
={(E,1,1),(-E,-1,1)}

x {(B,1,1), (B,w,¢(w?), (B,w, ¢(w) }
=Zo X Z3.
Thus we have the isomorphism (Eg®)o = (Eg9)"* 2 (SL(2,C) x C* x E¢9) /(Z4 x
Zs).

(3) The determination of the group (Eg®)™ is essentially done in Gomyo [1].
However, we write the result again. We construct one more C-Lie algebra &€ of
type EgC.

We first consider a 27 x 3 = 81 dimensional C-vector space

X1
(9?2 ={X=|x:]|Xie3°
X3

In (30)37 we define an inner product (X,Y’), a Hermitian inner product (X,Y),
a cross product X x Y, an element X - Y of s((3,C), and an element X VY of
¢6C, respectively, by

(X,Y) = (Xl,Yl) + (X27Y2) + (Xg,Yg) S C,
<X,Y> = <X1,Y1> + <X27Y2> + <X3,Y3> eC,

XQXYE;-Y&XXg
XxY=[XyxY-YaxX; | €3,
X1 xYy -V x Xy
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(X1,1) (X1,Y2) (X1,¥5)\
X Y=[(XoY) (oY) (Xa¥5) |- o(X.Y)E€s((3.0),
(X, Y1) (Xa,Y2) (Xs,Y3)

XVY =X1VYi+XoVYa+ X3V Y;€e6C,

X1 Y
where X = [ X, |, Y = [ Y3 | € (3%)3. Further, for ¢ € Homg (3), D = (dy;) €
X3 Y3
X1
M(3,0), and X = | X5 | € (39)3, we define X, DX € (3°)? naturally by
X3
¢ X1 d11 X1 + d1oXs + d13X3
HX)=|0X2], DX =|d2X1+daXs+dXs
»X3 d31 X1 + d32Xs + d33 X3

PROPOSITION 5.2.3 (GOMYO [1, Theorem 3.1])
In an 8 + 78 4+ 81 4 81 = 248 dimensional C'-vector space

9 =5l(3,0) @ e @ (39 @ (39)%,
we define a Lie bracket [Ry, Ra] by
[(D15¢17X17Y1)a(D27¢2aX27Y2)]:(Da(baXaY)a
D=[Dy,D]+ 31X Yo—1X,-Y,
d=[p1, ) +1 X1 VY, —1X, VY],
X=01X2— 92 X1+ D1 X2 - D2 X1 -Y 1 XYy,
Y =—"01Y o+ 'Y 1 —'D1Y 2 +'DoY 1 4+ X1 x Xp;

then €€ becomes a C-Lie algebra of type EC.

Proof
Let es€ = ¢ @ P @ PC & C & C @ C be the usual C-Lie algebra of type Eg©.

We define a mapping f : es© — &3¢ by
f(¢(¢7 A7 B7 Ij)? (X7-}/v7§717)7 (Z7 W C?/’L)7T7 S,t)

2 1 1
3 -3¢ 5¢ —2A —2B
= %‘LL 7%1/ -r t 7¢7 Z ) Y 5
in s f%y +7r X -w
then we can prove that f is an isomorphism as Lie algebras by straightforward
calculations. Thus we have the isomorphism eg® 2 €. O

Now, let Eg€ be the automorphism group of és©, that is,

Es© ={a€eTsoc(8) | a[R1, Re] = [aR1,aRs]}.
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The group EsC is isomorphic to the group Es€ by the correspondence o € E¢ —
faf~' e FEg®. Then the transformation w of eg® is transfered to the following
transformation w of ¢

w(D,¢,X,Y) = (D,p,wX,w?Y).

So, we determine the structure of the group (Egc)w instead of the group (Eg“)™.
We first define a mapping ¢ : SL(3,C) — (Eg®)™ by

¢01(A)(D,¢, X,Y)=(ADA ¢, AX,'A7'Y).
We have to prove that ¢;(A) € (Eg®)®. Indeed, since the action of D; =
(D1,0,0,0) €5(3,0) C (¢°) is given by

(ad(D1))(D,9,X,Y) = ((ad D1)D,0,D: X,—"'D1Y),
we have
(expad(Dl))(D,(b,X,Y)

= ((eXle)D(eXle) , 0, (expD1) X, (exle)_lY).
Hence, for A = exp Dy € SL(3,C), we have ¢1(A) = (e Xpad(Dl)) € Fx©. Evi-
dently, we;(A) = ¢1(A)w; hence we have ¢(A) € (Fg®)?. Next, we define a
mapping ¢, : Eg¢ — (Es)™ by

p2(B)(D, ¢, X,Y) = (D, 65", 5X,'671Y).

We have to prove that oy(3) € (Es©)™. Indeed, since the action of ¢’ = (0, ¢, 0,
0) € ()" is given by

(ad¢')(D,¢,X,Y) = (0,(ad¢')¢,¢' X, ~¢'Y),
we have

(expad(¢'))(D,¢, X, Y) = (D, (exp¢')p(exp¢’) ™", (exp¢) X, (exp¢') T'Y).

Hence, for = exp¢’, we have @o() = (expad(¢’)) € Fs®. Evidently, wys(f) =

@ (B)w; hence we have py(3) € (Eg€)™.
Now, we define a mapping @.q : SL(3,C) x Eg® — (EsC)% = (Fg)eq by

ved(A, B) = p1(A)pa(B).

Since ¢1(A) and ¢2(F) commute, .4 is a homomorphism. It is not difficult
to show that Kerp.q = {(E,1),(wE,w?1), (w?F,wl)} = Z3. Since (Fg)* is
connected and dimc(sl(3,C) @ ¢6%) = 8 + 78 = 86 = dimc((¢s”)eq) (see Theo-
rem 5.2.1) = dime ((63€)"), @eq is surjective. Thus we have (Es)eq 2 (FsC)eq =
(EsC)w = (SL(3,C) x Es©)/Z3, Z3={(E,1),(wE,w1), (w?E,wl)}. O

5.3. Subgroups of type A; © Er(7), A1 © R® Egs), and Ax @ Egg) of Egs)
In this section, we use Lie algebras egs), ¢s” and Lie groups Eg(s),EgC defined
in Section 5.1 and Eg® defined in Section 5.2.

Since (eg(s))er = (e8%)eo N (e59)™7 = (28 )Y N (es9)™, (es(s))o = (es)o N
(es)™ = (es9)" N (e59)77, (es(8)Jea = (e8%)ea N (es7) ™7 = (esc) N (es”)™, we
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determine the structures of groups
(Bs(s))ew = (Bs)ew N (Bs©)™ = (B5©)" N (B5)™,
(Bgs))o = (Es)o N (Bs)™ = (Bs)" N (Bs©)™,
(Bg(s))ed = (Es)ea N (Es9)™ = (Bs©)" N (Bs©)™.

THEOREM 5.3.1

We have the following:
(1) (ES(S))EU = (SL(QvR) X E7(7))/Z2 X {131}7Z2 = {(Ev 1)3 (7E7 *1)}:
(2) (Eses))o = (SL(2, R) x RT x Eg()) x {1,1o},
(3) (Eg(g))ed = SL(.?), R) X E6(6)-

Proof

(1) For a € (Bgg))ew C (Bs)ew = (Es“)?, there exist A € SL(2,C) and
B € E7“ such that o = @, (A, B) = ¥(A)S (see Theorem 5.2.2(1)). From the con-
dition 7yayT = a, that is, 7y (A) By =¥ (A) 3, we have V(T A)Ty [y = (A4)0.

Hence
TA=A, TA=—-A,
or
TYByT =P, TYPyT = =P

In the former case, from 7A = A, we have A € SL(2, R), and from 7Sy = 3, we
have 3 € (E;9)7 = E7(7y (see [6, Theorem 4.3.2]). In the latter case, A=1diI(I =
diag(1,—1)), 8 = satisfy the conditions, and we denote ., (il,¢) by . Thus we
have the isomorphism (Eg(s))eo = ((SL(2, R) X E7(7)) UI(SL(2, R) X E7(7y))/ Z2 =
(SL(QaR) X E?(?))/Z2 X {lal}7Z2 = {(E’ 1)7 (_E’ _1)}'

(2) For a € (Eg))o C (Es®)o = (Es“)", there exist A € SL(2,C),0 € C*
and 3 € EgC such that a = ¢y(A,0,3) = ¥(A)p(0)S (see Theorem 5.2.2(2)).
From the condition 7yayT = «, that is, 7y (A)p(0) By = Y (A)p(0)5, we have
V(T A)p(r0)TyByT =9 (A)p(0)5. Hence

TA=A, TA=A,
i){ro=0, (i) { 70 = wo,

BT =0, TPy = $(w?)B,
TA=A, TA=—A,

(iii) < 70 = w26, (iv) § 70 = —0,
TYBYT = d(w)B, BT =1,
TA=—A, TA=—A,

(V) 70 = —wh, (vi) { 70 = —w?4,
TPy = p(w?)B, TYBYT = p(w)B.
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Case (i). From 74 = A,70 =0, we have A € SL(2,R),0 € R*, and from
TyByT = 3, we have [ € (EGC)T"Y = Fg(6)- Hence the group of case (i) is isomor-
phic to

(SL(2,R) x R* x Eg4))/Z2,Z2={(E,1,1),(—E,—1,1)}.
The mapping g : SL(2, R) x R* x Eg) — SL(2, R) x R" X Egg),

(4,0,8)  if 6>0,

g(A’H’ﬁ):{(_A,—e,ﬁ) it 9<0

induces the isomorphism SL(2, R) x R" x Eg) = (SL(2, R) x R* x Eg))/ Z>.
Therefore the group of case (i) is isomorphic to SL(2, R) x Rt x Eg6)-

Case (ii). We have ¢po(E,w, ¢p(w?)) = (E)p(w)d(w?) = 1.

Case (iii). We have pg(E,w?, ¢(w)) =¥ (E)¢(w?)p(w) = 1.

Case (iv). We have ¢o(il,i,1) =y (hereafter we denote po(il,4,1) by lo).
( (

Case (v). We have (il iw, d(w?)) = po(il,i,1)po(E,w, dp(w?)) = lo.

Case (vi). We have oo (il,iw?, ¢(w)) = po(il,i,1)po(E,w?, ¢(w)) = lo.
Thus we have the isomorphism (Egs))o = (SL(2, R) x R* x Eg(6)) Ulo(SL(2, R) x
R" x Eg5)) = (SL(2, R) x R* x Eg(6)) x {1, 1o}

(3) Under the isomorphism between eg® and ¢ given in the proof of Theo-
rem 5.2.2(3), the transformation v and the complex conjugation 7 of e are

transfered to the following transformation v and the complex conjugation 7
of Egci

v(D,9,X,Y) = (D,v¢v,7X,7Y),
7(D,¢,X,Y)=(rD,7¢7,7X,7Y),

respectively. Hence instead of (Eg(s))ea = (Es9)ea N (Es©)™, we consider
(Ess))ed = (Es)ea N (Es€)™. Now, for a € (Egs))ea C (Es)ea = (E59)",
there exist A € SL(3,C) and 3 € E such that a = peq(A, B) = p1(A)p2(B) (see
Theorem 5.2.2(3)). From the condition yrary = «, that is, y7¢1(A)p2(8)Ty =
©1(A)2(B), we have @1 (T A)pa2(77877) = p1(A)p2(f). Hence

L |TA=A, L TA=wA, L rA=w?A,
(1) (ii) or (iii)
TYByT =0, TYBYT =wB, TYBYT = wp.

Case (i). From 7A = A, we have A € SL(3, R), and from 7y3~yT = /3, we have
B € (Es®)™ = Ege).

Case (ii). We have @eq(wE,w?1)(D,¢,X,Y) = (wDw 1t w?¢pw=2 ww?X,
wlw™2Y) = (D, ¢, X,Y), that is, peq(wE,w?1) =1.

Case (iii). We have peq(w?E,wl)(D,¢, X,Y) = (w?Dw™ 2, wpw™!, w?wX,
w2wTlY) = (D, ¢, X,Y); that is, peg(w?E,wl) =1.
Thus we have the isomorphism (Fgs))eq = (Es(g))ed = SL(3, R) x Eg(g)- O
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5.4. Subgroups of type A; @ E7(_a5), A1 © R @ Eg(_26),and Az © Eg(_2)

of Eg(_o4)
In this section, we use Lie algebras 28(724),680 and Lie groups Eg(_24), Eg¢
defined in Section 5.1 and Fg¢ defined in Section 5.2.

THEOREM 5.4.1

The 3-graded decomposition of the Lie algebra eg(_o4) = (es€)™ (or eg©)

e3(—24) =9-3DFg2Dg-1DPPgoDPg1 D P2 D g3
with respect to ad Z, Z = (#(0,0,0,—3),0,0,0,0,0), is given by
inl, 0<k<I<T,
go =< Ai(er), As(ex), As(er), ( 1), Faler), Fs(er), 0<k<T,

(B, — E3)™,(By — E3)~,1,1,17,1_, 82,

g1= E17E27E37F1(6k) 7F2(.ek)7;F3(.€k)77 0<k<T,
Ei_ By B3 Fi(ex)_, Fa(en)—. Faler)-, 0<k<T, [ 54

~

g_2= {El,EQ,E&ﬁl(ek%E(@k% 3(er), 0<k<T} 27,
g-3= {1_7 1—} 27

g1 =Ag-1), 82 = M(g_2), 95 = M(g_3).

Since (es(—24))er = (68)ew N (es9)™ = (e57)” N (es)7, (eg(—24))0 = (es)o N
(es9)™ = (es9) " N (es9)7, (es(—24))ea = (e8%)ea N (es9)7 = (es9)™ N (es9)7, we
determine the structures of groups

(Eg(—24))ev = (Bs)ew N (EsC) = (Es9)Y N (E$E)7,

(Bg(—a1))o = (Es)o N (Es9)™ = (Es©)" N (EsC)",

(Bg(—24))ea = (Bs®)ea N (Es©)™ = (Bs©)" N (EC)".

THEOREM 5.4.2

We have the following:
(1) (Es(—24))e0 = (SL(2, R) X Er(_25))/ Z2 x {1,1}, Z2 = {(E,1),(—E,—1)},
(2) (Bs(—24))0 = (SL(2, R) x R" x Eg(_s6)) x {1, 10},
(3) (E8(724))ed >~ SL(3,R) x E6(726)-

Proof

(1) For a € (Eg(—24))ev C (Egc)ev = (Egc)“7 there exist A € SL(2,C) and
B € E;° such that o = @, (A, 3) = ¢¥(A)S (see Theorem 5.2.2(1)). From the
condition Tar = «, that is, 7¥(A)BT = Y (A)B, we have Y(TA)T0T = p(A)0.

Hence
TA=A, TA=—A,
or
TBT =03, TOT = —[.
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In the former case, from 7A = A, we have A € SL(2,R), and from 757 = (3,
we have (€ (E;9)7 = E7(—95) (see [6, Theorem 4.3.2]). In the latter case, A=
oI, (I =diag(1,—1)), 8 = satisfy the conditions, and | = ¢(iI)c. Thus we have
the isomorphism (FEg_24))ev = ((SL(2, R) X E7(_25)) UI(SL(2, R) X Er(_25)))/
Zs = (SL(2.R) x B/ Zo x {11y, Zs — {(E.1) (—E, 1)}

(2) For a € (Eg(_a4))o C (Es)o = (Es°)v", there exist A € SL(2,C),0 € C*,
and € F¢® such that a = ¢o(A4,0,3) = ¥(A)(A)S (see Theorem 5.2.2(2)).
From the condition 7ar = «, that is, 7¢(A)p(0)fT = (A)p(0)5, we have
(7 A (r8) 57 = (A)$(8)F. Hence

TA=A, TA=A,
(i) r8=6, (ii) 70 = wh,

BT =B, BT = $(w?)B,
TA=A, TA=—-A,

(i) 760 = w20, (iv) < 70 = -6,
AT = ¢(w)P, BT =03,
TA=—A, TA=—-A,

(V) 70 = —wb, (vi) { 70 = —w?0),
BT = ¢(w?)B, 7T = ¢(w)B.

Case (i). From 74 = A,70 =0, we have A € SL(2,R),0 € R*, and from
731 = f3, we have § € (E¢“)" = Fg(—26). Hence the group of case (i) is (SL(2 R) x
R* X Eg(_26))/Z2,Z> = {(F,1,1),(-E,—1,1)}. By the analogous argument
in the proof of Theorem 5.3.1(2), we have (SL(2,R) x R" x Eg(_26))/Z2 =
SL(2, R) x R* x Eg(_s).

Case (ii). We have ¢o(FE,w, ¢p(w?)) = (E)d(w)d(w .

Case (iii). We have ¢o(FE,w?, ¢(w )) P(E)p(w?)p(w) = 1.

Case (iv). We have ¢o(il,i,1) =

Case (v). We have ¢o(il,iw, d(w )) = o (il,i,1)po(E,w, p(w?)) = lo.

Case (vi). We have ¢q(il,iw?, ¢p(w)) = po(il,i,1)po(E,w?, ¢p(w)) = lo.

Thus we have the isomorphism (Es(_24))0 = (SL(2, R) x R" x Eg(_a6)) Ulo(SL(2,
R) x R" x Eg(_a6)) = (SL(2, R) x R" x Eg(_s6)) x {1, 10}

(3) From the opening statement in the proof of Theorem 5.3.1(3), we use
(Es(—24))ea = (Es%)ea N (Es©)7 = (Eg©)" N (Es©)7 instead of the group
(Es(-20))ed = (Es“)ea N (Es“)™ = (Es“)" N (Es®)". Now, for a € (Es(_1))ed C
(E€)®, there exists A € SL(3,C) and B € E¢“ such that a = @.q(4,[) =
v1(A)p2(B) (see Theorem 5.2.2(3)). From the condition 7ar = «, that is,
To1(A)p2(B8)T = ¢1(A)p2(B), we have p1(TA)p2(77) = p1(A)p2(5). Hence

(0 TA=A, (i) TA=WA, (i) TA=w?A,
' 701 =0, " 0T = w?p, o o TOT = wp.

[N~}
N>
|
—_ =
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Case (i). From 74 = A, we have A € SL(3, R), and from 7087 = (3, we have
B € (Ee”) = Eg(_20)-
Case (ii). We have ¢4(wE,w?1)(D,¢,X,Y) = (wDw™ ! w?¢pw=2, ww?X,
wlw™?Y) = (D,¢,X,Y), that is, eq(wFE,w?1) = 1.
Case (iii). We have pqq(w?E,wl)(D,¢,X,Y) = (w?Dw™ 2, wpw™!,w?wX,
w2wTlY) = (D, ¢, X,Y), that is, peq(w?E,wl) =1.
Thus we have the isomorphism (Eg(_o4))ed = (Es(—24))ea = SL(3, R) X Eg(_26).-
O

5.5. Subgroups of type C' @& A;“ and As® of Es“
In this section, we use another C-Lie algebra e}c of type Es© constructed by
Gomyo [1]. We review notation in the definition of .

Let eq,...,e, be the canonical C-basis of n-dimensional C-vector space C",
and let (z,y) be the inner product in C™ satisfying (e;, e;) = d;;. In the exterior
C-vector space A¥(C™), we define an inner product by

(wl/\/\wlmyl/\/\yk):det((wlayj))a k217
(a,b) =ab, a,bec A°(C™)=C.

Then e;, A---Ae;,, 1 <iy <--- <ip <n, form an orthonormal C-basis of A*(C™).
For u € AF(C™), we define an element xu € A"~*(C™) satisfying

(+u,v) = (uAv,e; A---Aey), veEAFO™).
Then * induces a C-linear isomorphism * : A¥(C™) — A"=k(C™).
The group SL(n,C) naturally acts on A*(C™) as
A(@i A ANag)=Axzy A NAxyg, Al=1.

Hence the Lie algebra sl(n,C) acts on A¥(C™) as

k
D(@y A Awp) =Y &1 A--ADzj A Azy, D1=0.
j=1

LEMMA 5.5.1

For Ac SL(n,C),D €sl(n,C), and u,v € A*(C™), we have
(1) (Au,'A"') = (u,v), (Du,v)+ (u,—'Dv) =0,
(2) *(Au) ='A"1(xu), *(Du) = —'D(xu).

For u,v € A*(C™) (1 <k <n), we define a C-linear mapping u x v of C" by

n—kn_k

(uxv)z=xvA*x(uAx))+(-1) (u,v)x, xzeC".

Since tr(u x v) =0, u X v can be regarded as an element of sl(n,C') with respect
to the canonical C-basis of C".

LEMMA 5.5.2
For A€ SL(n,C),D €sl(n,C), and u,v € A*(C™), we have
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(1) A(uxv)A™ = Aux A" v, [D,u x v] = Du x v +u x (- Dv),
(2) Huxv)=vxu, 7(uxv)=TuU X TV,
(3) tr(D(u x v)) = (=1)""%(Du,v).

Now, we construct a C-Lie algebra e~gc of type Eg©.
PROPOSITION 5.5.3 (GOMYO [1, Theorem 3.2])
In an 80 + 84 + 84 = 248 dimensional C-vector space
& =51(9,0) @ 43(C%) @ A3(C?),
we define a Lie bracket [Ry, Ra] by
[(D1,u1,v1), (D2, u2,v2)] = (D, u,v),
D =[Dy,D3]+uj X v3 —ug X v1,

u=Dius — Douy + *(’Ul A\ ’UQ),

v=—'Divy + ' Dovy — x(u1 A uy);
then E{gc becomes a simple C-Lie algebra.
~ —~C
This C-Lie algebra egc has to be type EsC. Let Es  be the automorphism group
of e}cs
—~C —C
Ey = {a € Isoc(es ) ’ a[Ry, Ro] = [aRl,aRg]}.

~C
Then Es is also a simply connected complex Lie group of type Es©.
We define a C-linear transformation A of e~80 by

AD,u,v) = (-'D,—v, —u).

~ —~C ~ ~
Then A € B and A% =1. The complex conjugation of egc is usually denoted
by 7:

7(D,u,v) = (7D, 7u,T0).
LEMMA 5.5.4 (see GOMYO [1])
The Killing form Bg of the Lie algebra e}c s given by
E;((Dhuhm), (D2, u2,v2)) = 60(tr(D1D2) + (u1,v2) + (v1,u2)).

We shall find an R-Lie algebra of type Eg). We define an R-Lie algebra es by
& =sl(9.R) & A°(R) & A*(R") = (&)

with the Lie bracket the same as that of eAéC.

PROPOSITION 5.5.5
We have that ¢5' is an R-Lie algebra of type Egs)-
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Proof
We find the signature of the Killing form Bs' = By [es’ of €s’. Decompose ¢g’ into
eigenspaces relative to \:

es’ = (es')5 @ (es”) _3,
(%) ={Ree| AR=R}= {(D,u,—u) | D€esl(9,R),'D=—-D,ue AR},
(') 5 ={Re€& | \R=—R}={(D,u,u)| Desl(9,R),'D=D,uc A*(R’))}.

Then, from Lemma 5.5.4, we see that the Killing form Bg’ on (eg')5 is negative
definite and Bg’ on (eg’) _5 is positive definite. Therefore the number of negative
eigenvalues of By is dlm((eg )5) =44 + 84 =128, and the number of positive
cigenvalues of By’ is dim((%s') 5) = 36 + 84 = 120. Therefore the signature of
Bg is 128 — 120 = 8. Hence the type of Bs is Eg(g)- O

— ~
Let Eg be the automorphism group of et
— -
Es = {04 S ISOR(QSI) ‘ Ot[Rl,RQ] = [aR1,0{R2]}.
Although we cannot give any explicit isomorphism between ¢s© and ééc, €s(8)

~ ~C ~1 =C ~
and eg/, instead of egc, s, Fs ,and Eg/, we use the same notation as eg®, €3(8) s
Es, and FEg(s) of Sections 5.1.

In the C-Lie algebra es® =51(9,0) @ A3(C?) @ A3(C?), let

= %(diag(—&1,1,1,1,1,1,1,1),0,0).
THEOREM 5.5.6
The 3-graded decomposition of the Lie algebra es(s) = (es)™ (or es©),
e38) =9-3Dg 209 1P90D o1 Pe2D g3

with respect to ad Z,Z = %(diag(—& 1,1,1,1,1,1,1,1),0,0), is given by

g0 = {(Eii — Fo9,0,0),1<i <8, (Ey,0,0),2<k<9,2<1<9,k#1} 64,
g-1=1{(0,0,e; Nej Nex),2<i<j<k<9} 56,
go={(0,e1AejNe0),2<)j<k<9} 28,
g-3={(E1;,0,0),2<;j <9} 8,

(g

=Xg-1),92 = A(g_2), 83 = A(g_3)-

For the characteristic element Z = %(diag(—& 1,1,1,1,1,1,1,1),0,0), we set
omi
z4:exp<—adZ) 23:exp(%ad2);

then we have

24(D,u,v) = (AyDA " Agu, " Ay M), Ay = diag(wiz®,wiz,wia, ... wiz),
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Zg(D,’U,'U) = (AgDAgil,Agu,tAgil’U), A3 = ng,

= (D,CUQU,WQ_IU),

where (D, u,v) € eg®,wip = ?7/12 2mi/9,
Since (es)o = (es9)*, (e5%)eq = (es“)**, we determine the structures of

groups

,Wg =€

(Es9)o = (BEs©)™, (Bs)ea = (Bs©)™.

THEOREM 5.5.7

(1) As for (Es)e., we will study this later.

(2) We have (Es®)o = (C* x SL(8,C))/ Za4, Zos = Zs x Zg, Z3 = {(1,E),
(w,E), (W, E)}, Zg = {(ws",ws"E) |k =0,1,...,7},w=e>"/3 g = e2m/8,

(3) We have (Es)eq = SL(9,C)/Z3, Z3 = {E,wE,w?E},w = e*/3,

Proof
(2) We define a mapping ¢ : S(GL(1,0) x GL(8,C)) — (Es®)* = (FE:%)o
by

20(A)(D,u,v) = (ADA™", Au,'A~"v);
o is well defined. Indeed, by using Lemmas 5.5.1 and 5.5.2, we have
@o(A)[(D1,u1,v1), (D2, uz,v2)] = [po(A) (D1, w1, v1), 9o (A) (D2, u2,v2)];

that is, po(4) € Es®. Next, since z4 = wo(Ayg) and z400(A) = po(As)po(A) =
p0(A44) = po(AAs) = po(A)po(As) = o(A)z4, we get o(A) € (Eg“)*. Obvi-
ously g is a homomorphism. It is easy to see that Ker gy = {F,wE,w?E} = Z3,
(Es®)# is connected, Ker g is discrete, and dim¢ (s(gl(1,C) d gl(8,0))) = (1+
64) — 1 =64 = dimc((es“)o) = dime((es“)**) (see Theorem 5.5.6), so ¢ is sur-
jective. Hence we have

(Es©)* = S(GL(1,C) x GL(8,C))/Z3, Z3={E,wE,w’E}.
Further, the mapping h: C* x SL(8,C) — S(GL(1,C) x GL(8,C)),

=7 5)

induces the isomorphism S(GL(1,C) x GL(8,C)) = (C* x SL(8,C))/Zs, Zg =
{(ws®, ws®E) | k=0,1,...,7}, and h satisfies h(w,E) = wE. Thus we have the
isomorphism  (Es“)o = (Es“)™ = (C* x SL(8,0))/(Zs x Zs),Z3 = {(1,E),
(w,E), (W%, E)}, Zg = {(ws*,ws*E) | k=0,1,...,7}.

(3) We define a mapping @eq : SL(9,C) — (Eg9)* = (Eg9)eq by

Yea(A)(D,u,v) = (ADA™!, Au, ' A" v).

Then we see that ¢.q induces the isomorphism (Egc)ed = (ESC)ZS >~ SI(9,C)/
Z3,Z3={FE,wE,w?E} in a way similar to (2) above. O
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5.6. Subgroups of type R © A7(7) and Ag) of Fg s
In this section, we use Lie algebras eg®, eg(g) and Lie groups EgC,ES(g) defined
in Section 5.5.

Since (eg(s))o = (es“)o N (es9)™ = (es©)™ N (es)", (es(s))ea = (e8%)ea N
(es9)7 = (es9)** N (eg®)™, we determine the structures of groups

(Bgs))o = (Es)o N (Es®)" = (Es9)* n (Es°)",
(Bs(s))ed = (Bs9)ea N (Bs9)™ = (Bs9)* N (Bs©)".

THEOREM 5.6.1
(1) As for (Eg(s))ev, we will study this later.
(2) We have (Ess))o = (R* x SL(8,R)) x {1,¢,¢?}.
(3) We have (Egs))eqd = SL(9, R) x {1,¢,¢%}.

Proof

(2) For a € (Egs))o C (Es9)o = (Es)*, there exists A € S(GL(1,C) x
GL(8,C)) such that a = po(A) (see Theorem 5.5.7(2)). From the condition
TaT = «, that is, 704 (A)T = p4(A), we have o(7A) = po(A). Hence

yrA=A i) TA=wA or iil) TA = w?A.
(i) ; (ii) ; (iii)

Case (i). From the condition 7A = A, we have A € S(GL(1, R) x GL(8, R)).
The mapping h: R* x SL(8, R) — S(GL(1,R) x GL(8, R)),

wn-(y )

induces the isomorphism S(GL(1,R) x GL(8,R)) = (R* x SL(8,R))/Z2,Z> =
{(1,E),(~1,—E)}. Further, the mapping k : R* x SL(8, R) — R" x SL(8, R),

K(r, B) (r,B) if r>0,
7"’ =
(—r,—B) ifr<o0

induces the isomorphism R x SL(8,R) = (R* x SL(8,R))/Z2,Z+ = {(1,E),
(—1,—E)}. Hence we have S(GL(1,R) x GL(8,R)) = R" x SL(8, R).
Case (ii). Since A =wE satisfies the condition 7A =wA, we have

wo(wWE)(D,u,v) = ((wE)D(wE)*l, (wE)u,t(wE)*l'v)
= (D,wu,w?v) = ((D,u,v);

that is, ¢ is defined by ¢q(wE).

Case (iii). Since A =w?FE satisfies the condition 74 = w?A4, in a way similar
to case (ii), we have @g(w?E) = (2.
Thus we have the isomorphism (Ess))o = (R" x SL(8, R)) UC(R' x SL(8, R)) U
C3(RT x SL(8,R)) = (R" x SL(8,R)) x {1,¢,¢?}.

(3) For a € (Eg(s))ea C (Egc)ed = (ESC)Z3, there exists A € SL(9,C) such
that o= peq(A) (see Theorem 5.5.7(3)). From the condition Tar = «, that is,
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TYed(A)T = pea(A), we have p3(7A) = p3(A). Hence
(i) TA= A, (il) TA=wA, or (iil) 74 = w?A.

Case (i). From the condition 7A = A, we have A € SL(9, R).

Case (ii). Since A = wE satisfies the condition 74 = wA, we have peq(wFE) =
¢ as in Case of (2).

Case (iii). Since A = w?E satisfies the conditions 74 = w?A, we have
@ed(W?E) = ¢* as in Case (2). Thus we have the isomorphism (Egg))eq =
(Es©)? = SL(9, R) UC(SL(9, R)) U C2(SL(9, R)) = SL(9, R) x {1,¢,¢?}. O

5.7. Subgroup of type D5 of Eg¢ and subgroup of type Dgs) of Ey(s)
In this section, we determine the structures of the groups (Es®)e, (see The-
orem 5.5.7(1)) and (Eg(s))ev (see Theorem 5.6.1(1)). As we use a realization
of semispinor groups Ss(16,C) in E© and S5(8,8) in Egs)y by Gomyo [2], we
review here one more Lie algebra eg€ constructed by Gomyo [2].

Let eg,e1,...,er be the canonical C-basis of the C-vector space ¢¢ which is
the complexification of the R-Calyley algebra €. In a 16-dimensional C-vector
space (€9)2, denote

a=( &= (" A

1— 0 ) 2 — 0 g €8 — 0 9

€9 = ) €10 = ooy €16 = .
€p €1 (&rd

We give an inner product (@,b) in (€°)2 so that &;,,,...,¢16 are an orthonormal
C-basis of (€7)2. Let CI((¢9)?) be the C-Clifford algebra with a C-basis

17g1>€27"'75167"'7gk1 "'gk,(kl << kl)>~~-7€1€2"'516
with relations €2 = —1 and eye; = —€;€), (k #1). Now, the complex spinor group

Spin(16,C) is defined by

~ C\2 (% =y _
Spin(16,C) = {5152...52qe ci((eCy)| % € (&) ’(“’““’“)_1’}.
q=1,2,3,...

It is known that the group Spin(16,C) is connected and is a double covering
group of SO(16,C) = SO((€%)?) by the projection p : Spin(16,C) — SO(16,C),
p(@)T=aza"t, Fe(c9)>2

So Spin(16,C) is simply connected. In CI((€%)?2), let

(=eiez - €15€16.
Then Ze Spin(16,C) and 62 =1. The center of the group Spin(16,C) is given
by
2(Spin(16,C)) = {1,-1,{, —C}.
The complex semispinor group Ss(16,C) is defined by
S5(16,C) = Spin(16,C)/{1,C}.
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It is known that Spin(16,C)/{1,—1} = SO(16,C) and Ss(16,C) % SO(16,C).
In the C-Lie algebra so(8,C) = s0(¢°) = {X € Hom¢(¢Y) | (Xx,y) + (x,
Xy)=0,2,yc €}, G (0<k<7,0<1<7,k+#1) is defined as a C-endomor-
phism of ¢¢ satisfying
Grier = ex, Grier = —ey, Grie; =0 otherwise,

then Gy, 0 <k <1<7is C-basis of 0(8,C). (These Gy; are already used in
Theorems 5.2.1 and 5.4.1.) Next, Fj; € 50(8,C) (0<k<7,0<I<T7k#I)is
defined as

1
Fux = §ek(élx), ree’.
Now, we define C-linear transformations u, x, and v of s0(8,C) by
uGrr = Fyy, (kX)r = X7, zee’, V= UK.

Then p, k, and v are outer automorphisms of s0(8,C).
For z,y € €, we define a C-linear transformation z X y of € by

(xxy)z=(y,2)z— (z,2)y, zecC.

Let 50(16,C) = {D € Hom((¢%)?) | (DZ,9) + (&, D7) =0,7,5 € (¢9)?} ={D ¢
M (16,C) | 'D + D = 0}. We define a C-bilinear mapping x : (€¢ ® ¢%) x (¢“ ®
¢%) = 50(16,C) by

(21 ® 1,0) X (22 @ s, 0) = ((y17y2)7réx1 X Tg) - m2)7r0(y1 o y2)> )
Uy, U V2 21 X 22
(0,21 ®u1) x (0,22 @ up) = (( ) ()( * ) (z1 22)1/20(@61 X U2)>

(z®y,0) x (0,z@u) = (_%( 0 %(ﬁ)t(yﬂ))

i)' @z 0
(0,z®u) x (r®y,0) = (%(yﬂ())t(xz) _5(30?75(11@)) )

We define a representation p of Spin(16,C) on (€€ ®¢%) @ (€ @ €%) (called
the half-spinor representation of Spin(16,C)) by

(G ))rrenm

1(@2) @y — 2 @b (bay), @12 ® boy — Aoz @ bry),

() @) een
= (-

a12 @ bou + agz @ byu, —a1 (az2) @u — 2 @ by (bgu)),

plaias - - dom—102m) = p(a1az) - - - p(A2m—1G2m)-
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Then the differential representation dp of s0(16,C) on (€€ ® €%) @ (¢€ @ ¢%)
has the following property:

dp ((‘i)( 3)) (z0y,z0u) = ((pX)z@y+z® (1Y )y, vX)z@u+2@ VY )u).

Under preliminaries above, we have the following proposition.

PROPOSITION 5.7.1 (GOMYO [2, Theorem 3.4])
In a 120 4 64 4 64 = 248 dimensional C'-vector space

%% =50(16,0) @ (¢ @ ¢ @ (¢ © ¢Y),
we define a Lie bracket [Ry, Ra] by
(D1, P1),(D2, P2)] = ([D1, D2] — P1 X Py, dp(D1) Py — dp(D2) P1);

then ¢s€ becomes a simple C-Lie algebra.

This C-Lie algebra ¢s® has to be of type Es®. Let Egc be the automorphism
group of ¢g¢":

Es€ = {aelsoc(eC) | a[R1, Ra] = [aR1,aRs]}.

Then Egc is also a simply connected complex Lie group of type Es©. So we use
notations eg® and Egc instead of eg¢ and EgC.
In the C-algebra es® = 50(16,C) @ (¢“ ® €)@ (€9 ® ), let

1
Z = (diag(iJ,iJ,iJ,iJ, —iJ,iJ,iJ,iJ),0,0), J= <_01 0> )
Let Gy be an element of s0(16,C) = {D € M(16,C) | *D + D = 0} such that
Ggi = Exi — By, (where Ej; is a matrix of M(16,C) when the (k,l)-entry is 1
and the others are zero). Then Gj;,0 < k <1< 15 is a C-basis of s0(16,C). The

C

complex conjugation in eg™ is usually denoted by 7:

T(D,2®y,z@u)= (7D, 72 @ Ty, 72 @ Tu).

THEOREM 5.7.2
The 3-graded decomposition of the Lie algebra esC = s0(16,C) & (¢ ® ¢9) @
(€ we),
s =g 3Dg DI 1 DG Do Dg2 D Y3
with respect to ad Z, Z = (diag(iJ, iJ,iJ,iJ,—iJ,iJ,iJ,iJ),0,0), is given by

(Gk,k+15070)7k = 0a2745 sy 145

(G k+j + Grt1,k+1+5,0,0),
E=0,2,4,...,14,j =k + 2,k +4,...,14,k,j #38,

go = (Gk,g — Gk+1,9,0,0), k= 0, 2,4,67 GS,k’ — Gg,k_._l, k= 10, 12, 14,

(Grk+14j — Grs1,k+5,0,0),
k=0,2,4,...,14,j=k+2,k+4,...,14,k, j #8,

(Gk,g + C'rY,ICJrLg,O,O)7 k= 0,2,4,6, G&k + Gg,k+1, k=10, 12,14 64,
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(0,(eo ®eg+ €1 ®er1) —i(eg ®er —e1 R ep),0),
(07 (61 Xer+e® 6k+1) - i(eo Xer—e1 ® ek+1),0),
k=246,
(0, (61 ® 60) +i(€l & 61),0)7 (0, (61 (9 €k) — i(el & 6k+1),0),
B k=2,4,61=23,...7,
§-1= (0,0,(e0®ep+e1®er)+i(eg®er — e Reg)),
(0,0, (er, ®eg — epy1®e1) + (ex ®e1 + epy1 Dep)),
k=2,4,6,
(0,0,(e; ®@eq) +i(er @er), (€1 @ er) —i(e; @ epy1)),
k=2,4,6,1=2,3,...7 58,
(Gri— Grt1.41 + 1(Gri+1 + Gre1,),0,0),
e k=0,2,... 12,1 =k+2,k+4,... 14,k [+8
-2 (Grs — Git1,90 — 1(Gro + Gry1,8),0,0),
k=0,2,...,14,k£8 28,
(0, (60 ®Reyg—e1® 61) + i(eo ®e1+e1® 60),0),
(0,(e0 @ e, —eg ® epr1) —i(eo @ ext1 + €1 @ ey),0),
B k=2,4,6,
-3 = (0,0,(e0®eg—e1 ®e1) +ileg®@er +e1 Rep)),
(0,0, (er ® eg+ ext+1 ®e1) —iler1 ®ep — e D er)),
k=2,4,6, 8,

g1 =7(g-1), g2 =T7(g-2), 93 =7(g-3).
Proof
Noting that
1(i(Gor + Gas + Gas + Ger)) = 2iGo,
1(i(—=Go1 + Gaz + Gas + Ger)) = i(Gor — Gas — Gas — Ger),
v(i(Gor + Gas + Gus + Ger)) = i(Gor — Ga3 — Gas — Ger),
v(i(—=Go1 + Gas + Gas + Ger)) = 2iGo,

we can prove this theorem by direct calculations. O

We define a C-linear transformation e of ¢s® by
E(Dax@)y)z@u) = (Da_x®ya_z®u)'
Then ¢ € Egc and e2=1.

Now, for the characteristic element Z = (diag(iJ,¢J,iJ,iJ, —iJ,iJ,iJ,iJ),0,
0), we have the following proposition.

PROPOSITION 5.7.3
We have

211

exp(7 adZ) =e.
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Proof
Since Z is a central element of (s0(16,C),0,0), the action of exp(miad Z) on
(s0(16,C),0,0) is trivial. Next,

tad Z(z®y,0) = (*M(Gm +Gaz +Gus +Ger)z @y
— % 1(Go1 + Ga3 + Gas + Ger)y, 0)
= (—2Go12 @y — 2 ® (Gor — Ga3 — Gus — Ge7)y,0)
= (diag(2J,0,0,0)z @ y + = ® diag(J, —J, —J, —J)y,0).
Hence, for t € R, we have
(exp(tiad Z))(z ®y,0)
= (diag(R(2t), E, E, E)z @ diag(R(t), R(—t), R(—t), R(—t))y,0),
where R(t) = (%! Zzintt) Setting ¢t = 7, we have
(exp(miad 2))(z ®y,0)
= (diag(E, E, E, E)x ® diag(—E, —E,—E,—E)y,0)
= (z®(-y),0) = (—z®y,0).
Similarly, we obtain
(exp(miad 2))(0,z®@u) = (0,2 ® (—u)) = (0, —z @ u).
Thus we have
(exp(miad 2))(D,z ®y,z @ u)
=D,—2Qy,—2Qu)=¢c(D,zQy,zQu),
that is, exp((27i/2)ad Z) =«. O

Set zo = exp((27i/2)ad Z) = . Then since (eg)ep = (e59)?*2 = (e37)°, we deter-
mine the structure of the group

(Bs)ew = (Bs“)™ = (Es)°.
THEOREM 5.7.4
We have
(Es%)en = S5(16,C).
Proof
We define a mapping ¢, : Spin(16,C) — (Es©) = (Es9)o by
$eu(@)(D, P) = (p(@) Dp(&)~", p(@) P).

Since e (—1) =€, for @ € Spin(16,C) we have @e,(X)e = Qe (@) @ey(—1) =

Pev(A(=1)) = e ((—1)@) = eu(—1)pen (@) = epev (@), that is, p(a) € (E8C)E-
Hence ., is well defined. Since (Es®)¢ is connected and dime((es©)e) =
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dime((es9)ey) = 64 + 28 x 2 (see Theorem 5.7.2) = 120 = dim¢ (spin(16,C)),
Ker @, is discrete, so Ker ¢, is contained in the center of Spin(16,C): Ker ., C
z(Spin(16,C)) ={1,-1,¢,—C}. However

Peu(l) = 0eu(¢) =1 and Vev(—1) = @eo(—C) =¢,

so Kerp = {1,5}. Again, since (Egc)s is connected and dimc((egc)s) =
dime (spin(16,C)), ¢ is surjective. Thus we have the isomorphism (Egc)ev =
(Es©)® = Spin(16,C) /{1,(} = 55(16,0). 0

Next, we define the semispinor group Ss(8,8). Let Is = (_OE g) , EeM(8,C),
and define Spin(8,8) by
Spin(8,8) = {@& € Spin(16,C) | (tIs)a = a},

where 7 is the complex conjugation in CI((¢)?). Then Spin(8,8) is a connected
(but not simply connected) group, and Ss(8,8) is defined by

Ss(8,8) = Spin(8,8)/{1,(},

which is a double-covering group of the identity-connected component group
SO(8,8)° of SO(8,8) ={A€ S50(16,C) | T(IgAlg) = A}.

We define C-linear transformations €, and €5 of eg® by
e1(D,z®y,z@u) = (IgDIs,—x ®y,z @ u),
eo(Dyx®@y,z@u) = (IsDIg,x @y, —2 @ u).

Then e1,e5 € Egc7812 =52 =1, and €,¢e1,e2 commute with each other.
We find an R-Lie algebra of type Eg(s). We define an R-Lie algebra es’ by

s’ =50(8,8) B (ICRC) B (CRC) = (eg”)™

with the Lie bracket the same as that of eg€.

LEMMA 5.7.5 (GOMYO [2, Proposition 3.5])
The Killing form Bg of the Lie algebra es€ is given by
Bs((D1, (z1 ® y1,21 ® u1)), (D2, (22 ® Y2, 22 ® u2)))
= 30tr(D1D2) - 60(($1, IL’Q)(yl, yg) + (Zl, ZQ)(Ul,UQ)) .

PROPOSITION 5.7.6
We have that es" is an R-Lie algebra of type Eg(s).

Proof
We find the signature of the Killing form Bg’ = Bg | es’ of es’. Decompose eg’
into eigenspaces relative to 7:

es’ = (es’)r @ (es)—r,
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(28/)7— = {RE&SI |TR:R}
={(D,0,Q)| D€s0(8,8),7D=D,Q eC®},

(88/)_-,— = {RG 28/ | TR = *R}
={(D,iP,0) | D €50(8,8),7D=—-D,P €€ ®¢}.

Then, from Lemma 5.7.5, we see that the Killing form Bg’ on (es’), is positive
definite and Bg’ on (es’)_, is negative definite. Therefore the number of positive
eigenvalues of Bg' is dim((es’),) = 54 + 64 = 120, and the number of negative
eigenvalues of Bg' is dim((es’)—,) = 64+ 64 = 128. Therefore the signature of Bg’
is 128 — 120 = 8. Hence the type of By’ is Eg(s). O

Let Eg’ be the automorphism group of eg':
Es' = {a €Isor(es') | a[R1, Ro] = [aRy, Ry] }.

Although we cannot give any explicit isomorphism between Eg’ and Eg) of
Section 5.1, hereafter we denote e’ by egsy and Eg’ by Egs).

PROPOSITION 5.7.7
The involution T¢1 leaves (eg€)e, invariant.

Proof
We can easily check that (eg)e, = g_2 D go ® g2 of Theorem 5.7.2 is left invariant
under the action of 7¢1 of s0(16,C). So we have this proposition. O

From Proposition 5.7.7, we have (eg(g))ev = (es)ew N (es) ™ = (es9)° N (e5”) 7.
So we determine the structure of the group

(E8(S))ev = (ESC)ev N (ESC)TEI = (E8C)E N (ESC)TEI'
THEOREM 5.7.8
We have
(ES(S))eU = 88(8,8) X {1, JEQ}.
Proof
For a € (Eg(s))ew C (Es®)ew = (Es©)?, there exists & € Spin(16,C) such that

a = pey(@) (see Theorem 5.7.5). From the condition Tejae;T = a, that is,
TE1Per (Q)E1T = Qe (@), We have @, (T(I3)) = @ep (). Hence

() (rIs)a=a or (i) (rls)a=Ca.

Case (i). From the condition (7Ig)a = &, we have a € Spin(8,8).
Case (ii). We easily obtain that & = j satisfies condition (ii), where

" ieo Lel Le7
G={ R ) € Spin(16,0).
vat) \ a4 Ve



3-graded decompositions of exceptional Lie algebras g 305

Here we define a transformation J of e by

JD, xRy, z0u)=(JgDJs Ly@z,u® z),

where Jg = (g _OE>, E € M(8,C). Then we have @¢,(j) = Jea.

Thus we have the isomorphism (Egs))o = ((Es©)me1) = S5(8,8) U Jeo(Ss(8,
8)) = Ss(8,8) x {1, Jea}. O
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