
3-graded decompositions of exceptional
Lie algebras g and group realizations of
gev, g0 and ged, III: G = E8

Toshikazu Miyashita and Ichiro Yokota

Abstract In the articles [4] and [7], we completed the determination of group realiza-
tions gev and g0 of 2-graded decompositions g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 of exceptional
Lie algebras g for the universal exceptional Lie groups. In the present article, which is a
continuation of [5] and [8], we determine group realizations of subalgebras gev , g0 and
ged of3-gradeddecompositions of exceptionalLie algebrasg for theuniversal exceptional
Lie groups of type E8.

Introduction

The 3-graded decompositions of simple Lie algebras g,

g = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3, [gk,gl] ⊂ gk+l,

are classified, and the types of subalgebras gev = g−2 ⊕ g0 ⊕ g2,g0 and ged =
g−3 ⊕ g0 ⊕ g3 are determined. Table 1 shows the results of gev,g0, and ged for
the exceptional Lie algebras of type E8 (see [3]).

In the articles [5] and [8], we gave the group realizations of gev,g0, and ged

for the connected exceptional universal linear Lie groups G of type G2, F4,
E6, and E7. In this article, for the connected exceptional universal linear Lie
groups G of type E8, we realize the subgroups Gev,G0, and Ged of G correspond-
ing to gev,g0, and ged of g = LieG. Our results are shown in Table 2.

This article is a continuation of [5] and [8], and we use the same notation as
in [5] and [8]. So the numbering of sections and theorems starts from Section 5.

Together with the preceding articles [5] and [8] and the present article, the
group realization of Hara’s table (see [3]) with respect to 3-graded decompositions
of exceptional simple Lie algebras by the connected exceptional universal linear
Lie groups has been completed.
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Table 1

Case 1 g gev g0

ged dimg1,dimg2,dimg3

e8
C

sl(2,C) ⊕ e7
C

sl(2,C) ⊕ C ⊕ e6
C

sl(3,C) ⊕ e6
C 54, 27, 2

e8(8) sl(2,R) ⊕ e7(7) sl(2,R) ⊕ R ⊕ e6(6)

sl(3,R) ⊕ e6(6) 54, 27, 2

e8(−24) sl(2,R) ⊕ e7(−25) sl(2,R) ⊕ R ⊕ e6(−26)

sl(3,R) ⊕ e6(−26) 54, 27, 2

Case 2 g gev g0

ged dimg1,dimg2,dimg3

e8
C

so(16,C) C ⊕ sl(8,C)

sl(9,C) 56, 28, 8

e8(8) so(8,8) R ⊕ sl(8,R)

sl(9,R) 56, 28, 8

Table 2

Case 1 G Gev G0

Ged

E8
C (SL(2,C) × E7

C)/Z2 (SL(2,C) × C∗ × E6
C)/Z6

(SL(3,C) × E6
C)/Z3

E8(8) (SL(2,R) × E7(7))/Z2 × 2 (SL(2,R) × R+ × E6(6)) × 2

SL(3,R) × E6(6)

E8(−24) (SL(2,R) × E7(−25))/Z2 × 2 (SL(2,R) × R+ × E6(−26)) × 2

SL(3,R) × E6(−26)

Case 2 G Gev G0

Ged

E8
C Ss(16,C) (C∗ × SL(8,C))/Z24

SL(9,C)/Z3

E8(8) Ss(8,8) × 2 (R+ × SL(8,R)) × 3

SL(9,R) × 3

5. Group E8

5.1. Lie groups of type E8 and their Lie algebras
In a C-vector space e8

C and R-vector spaces e8(8), e8(−24),

e8
C = e7

C ⊕ P
C ⊕ P

C ⊕ C ⊕ C ⊕ C,

e8(8) = e7(7) ⊕ P
′ ⊕ P

′ ⊕ R ⊕ R ⊕ R,

e8(−24) = e7(−25) ⊕ P ⊕ P ⊕ R ⊕ R ⊕ R,
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we define a Lie bracket [R1,R2] by

[(Φ1, P1,Q1, r1, s1, t1), (Φ2, P2,Q2, r2, s2, t2)]

= (Φ,P,Q, r, s, t),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Φ = [Φ1,Φ2] + P1 × Q2 − P2 × Q1,

Q = Φ1P2 − Φ2P1 + r1P2 − r2P1 + s1Q2 − s2Q1,

P = Φ1Q2 − Φ2Q1 − r1Q2 + r2Q1 + t1P2 − t2P1,

r = − 1
8 {P1,Q2} + 1

8 {P2,Q1} + s1t2 − s2t1,

s = 1
4 {P1, P2} + 2r1s2 − 2r2s1,

t = − 1
4 {Q1,Q2} − 2r1t2 + 2r2t1;

then this becomes a simple Lie algebra of types E8
C ,E8(8), and E8(−24), respec-

tively.
We define a C-linear transformation γ of e8

C by

γ(Φ,P,Q, r, s, t) = (γΦγ, γP, γQ, r, s, t),

where γ of the right-hand side is the same as γ ∈ G2
C ⊂ F4

C ⊂ E6
C ⊂ E7

C , and
the complex conjugation in e8

C is denoted by τ :

τ(Φ,P,Q, r, s, t) = (τΦτ, τP, τQ, τr, τs, τ t).

The connected universal linear Lie groups E8
C ,E8(8), and E8(−24) of type E8

are given, respectively, by

E8
C =

{
α ∈ IsoC(e8C)

∣∣ α[R1,R2] = [αR1, αR2]
}
,

E8(8) =
{
α ∈ IsoR(e8(8))

∣∣ α[R1,R2] = [αR1, αR2]
}
,

E8(−24) =
{
α ∈ IsoR(e8(−24))

∣∣ α[R1,R2] = [αR1, αR2]
}
.

The group E8
C is simply connected. From the definitions of the groups above,

we have the following.

PROPOSITION 5.1

We have

E8(8)
∼= (E8

C)τγ , E8(−24) = (E8
C)τ .

For α ∈ E7
C , the mapping α̃ : e8

C → e8
C is defined by

α̃(Φ,P,Q, r, s, t) = (αΦα−1, αP,αQ, r, s, t);

then α̃ ∈ E8
C , so α and α̃ are identified. The group E8

C contains E7
C as a

subgroup by

E7
C = {α̃ ∈ E8

C | α ∈ E7
C }.

Especially, elements υ,λ, and ι of E7
C (υ(X,Y, ξ, η) = (−X, −Y, −ξ, −η), λ(X,Y,

ξ, η) = (Y, −X,η, −ξ), ι(X,Y, ξ, η) = (−iX, iY, −iξ, iη)) are also elements of E8
C .
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5.2. Subgroups of type A1
C ⊕ E7

C ,A1
C ⊕ C ⊕ E6

C , and A2
C ⊕ E6

C of E8
C

We define C-linear transformations λ̃ and w of e8
C = e7

C ⊕ P
C ⊕ P

C ⊕ C ⊕ C ⊕ C

by

λ̃(Φ,P,Q, r, s, t) = (λΦλ−1, λQ, −λP, −r, −t, −s),

w(Φ,P,Q, r, s, t) = w
(
Φ(φ,A,B, ν), (X,Y, ξ, η), (Z,W, ζ,μ), r, s, t

)
=
(
Φ(φ,ωA,ω2B,ν), (ωX,ω2Y, ξ, η), (ωZ,ω2W,ζ,μ), r, s, t

)
,

ω = e2πi/3, respectively. Then λ̃,w ∈ E8
C and λ̃2 = 1,w3 = 1.

In the Lie algebra e8
C , let

Z =
(
Φ(0,0,0, −3),0,0,0,0,0

)
.

Hereafter (see Theorems 5.2.1 and 5.4.1) in P
C and e8

C , we use the following
notation:

Ẋ = (X,0,0,0), Y. = (0, Y,0,0), ξ̇ = (0,0, ξ,0), η. = (0,0,0, η),

Φ = (Φ,0,0,0,0,0), P − = (0, P,0,0,0,0), Q− = (0,0,Q,0,0,0),

r̃ = (0,0,0, r,0,0), s− = (0,0,0,0, s,0), t− = (0,0,0,0,0, t).

Moreover, we mix and combine the above notation. For example,

Ẋ− =
(
0, (X,0,0,0),0,0,0,0

)
, W. − =

(
0,0, (0,W,0,0),0,0,0

)
.

THEOREM 5.2.1

The 3-graded decomposition of the Lie algebra e8(8) = (e8C)τγ (or e8
C),

e8(8) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ,Z = (Φ(0,0,0, −3),0,0,0,0,0), is given by

g0 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
iG01, 0 ≤ k < 4 ≤ l ≤ 7,Gkl otherwise,
Ã1(ek), Ã2(ek), Ã3(ek), F̃1(ek), F̃2(ek), F̃3(ek), 0 ≤ k ≤ 3,

iÃ1(ek), iÃ2(ek), iÃ3(ek), iF̃1(ek), iF̃2(ek), iF̃3(ek), 4 ≤ k ≤ 7,

(E1 − E2)∼, (E2 − E3)∼,1, 1̃,1−,1−,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ 82,

g−1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ė−

1 , Ė−
2 , Ė−

3 , Ḟ1(ek)
−

, Ḟ2(ek)
−

, Ḟ3(ek)
−

, 0 ≤ k ≤ 3,

iḞ1(ek)
−

, iḞ2(ek)
−

, iḞ3(ek)
−

, 4 ≤ k ≤ 7,

Ė1−, Ė2−, Ė3−, Ḟ1(ek)−, Ḟ2(ek)−, Ḟ3(ek)−, 0 ≤ k ≤ 3,

iḞ1(ek)−, iḞ2(ek)−, iḞ3(ek)−, 4 ≤ k ≤ 7,

⎫⎪⎪⎪⎬⎪⎪⎪⎭ 54,

g−2 =

{
Ê1, Ê2, Ê3, F̂1(ek), F̂2(ek), F̂3(ek), 0 ≤ k ≤ 3,

iF̂1(ek), iF̂2(ek), iF̂3(ek), 4 ≤ k ≤ 7,

}
27,

g−3 = {1.
−,1. − } 2,

g1 = λ̃(g−1),g2 = λ̃(g−2),g3 = λ̃(g−3).
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Since (expΦ(0,0,0, −3ν))(X,Y, ξ, η) = (eνX,e−νY, e−3νξ, e3νη), ν ∈ C, we have

exp
(2πi

2
Z
)

= υ, exp
(2πi

4
Z
)

= υι, exp
(2πi

3
Z
)

= w.

Now, let

z2 = exp
(2πi

2
adZ

)
, z4 = exp

(2πi

4
adZ

)
, z3 = exp

(2πi

3
adZ

)
.

Then, since (e8C)ev = (e8C)z2 = (e8C)υ, (e8C)0 = (e8C)z4 = (e8C)υι, (e8C)ed =
(e8C)z3 = (e8C)w, we determine the structures of groups

(E8
C)ev = (E8

C)z2 = (E8
C)υ,

(E8
C)0 = (E8

C)z4 = (E8
C)υι,

(E8
C)ed = (E8

C)z3 = (E8
C)w.

We define a mapping ψ : SL(2,C) → E8
C ,A → ψ(A), where ψ(A) is the C-

linear transformation of e8
C defined by

ψ

((
a b

c d

))
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 a1 b1 0 0 0
0 c1 d1 0 0 0
0 0 0 ad + bc −ac bd

0 0 0 −2ab a2 −b2

0 0 0 2cd −c2 d2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

and we define a mapping φ : C∗ → E7
C , θ → φ(θ), where φ(θ) is the C-linear

transformation of P
C defined by

φ(θ)(X,Y, ξ, θ) = (θX, θ−1Y, θ−3ξ, θ3η).

THEOREM 5.2.2

We have the following:
(1) (E8

C)ev
∼= (SL(2,C) × E7

C)/Z2,Z2 = {(E,1), (−E, −1)},
(2) (E8

C)0 ∼= (SL(2,C) × C∗ × E6
C)/Z6,Z6 = Z2 × Z3,Z2 = {(E,1,1),

(−E, −1,1)},Z3 = {(E,1,1), (E,ω,φ(ω2)), (E,ω2, φ(ω))},
(3) (E8

C)ed
∼= (SL(3,C) × E6

C)/Z3,Z3 = {(E,1), (ωE,ω21), (ω2E,ω1)}.

Proof
(1) We define a mapping ϕev : SL(2,C) × E7

C → (E8
C)υ = (E8

C)ev by

ϕev(A,β) = ψ(A)β;

ϕev is well defined because ψ(A) ∈ (E8
C)υ . Since ψ(A) and β ∈ E7

C commute,
ϕev is a homomorphism. Kerϕev = {(E,1), (−E, −1)} = Z2. Since (E8

C)υ is
connected and dimC(sl(2,C) ⊕ e7

C) = 3 + 133 = 136 = 82 + 27 × 2 =
dimC((e8C)ev) = dimC((e8C)υ) (see Theorem 5.2.1), ϕev is surjective. Thus we
have the isomorphism (E8

C)ev = (E8
C)υ ∼= (SL(2,C) × E7

C)/Z2.
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(2) Since the group E7
C has subgroups C∗ and E6

C (see [6, Theorem 4.4.4]),
we define a mapping ϕ0 : SL(2,C) × C∗ × E6

C → (E8
C)υι = (E8

C)0 by

ϕ0(A,θ,β) = ψ(A)φ(θ)β

as the restriction mapping of ϕev . So ϕ0 is well defined and a homomorphism.
Since (υι)2 = υ, (E8

C)υι is a subgroup of (E8
C)υ . Now, for α ∈ (E8

C)υι ⊂
(E8

C)υ , there exist A ∈ SL(2,C) and β′ ∈ E7
C such that α = ϕev(A,β′) from (1).

Moreover, from the condition (υι)α(υι)−1 = α, that is, (υι)ϕev(A,β′)(υι)−1 =
ϕev(A,β′), we have ϕev(A, ιβ′ι−1) = ϕev(A,β′). Hence{

A = A,

ιβ′ι−1 = β′,
or

{
A = −A,

ιβ′ι−1 = −β′.

In the former case, A ∈ SL(2,C), β′ ∈ (E7
C)ι ∼= (C∗ × E6

C)/Z3,Z3 = {(1,1), (ω,

φ(ω2)), (ω2, φ(ω))} (see [6, Theorem 4.4.4]), so β′ is expressed as β′ = ϕ(θ)β, θ ∈
C∗, β ∈ E6

C . The latter case is impossible because A = 0. It is easy to see that

Kerϕ0 =
{
(E,1,1), (E,ω,φ(ω2)), (E,ω2, φ(ω)),

(−E, −1,1), (E, −ω,φ(ω2)), (−E, −ω2, φ(ω))
}

=
{
(E,1,1), (−E, −1,1)

}
×
{
(E,1,1), (E,ω,φ(ω2)), (E,ω2, φ(ω)

}
= Z2 × Z3.

Thus we have the isomorphism (E8
C)0 = (E8

C)υι ∼= (SL(2,C) × C∗ × E6
C)/(Z2 ×

Z3).
(3) The determination of the group (E8

C)w is essentially done in Gomyo [1].
However, we write the result again. We construct one more C-Lie algebra ě8

C of
type E8

C .
We first consider a 27 × 3 = 81 dimensional C-vector space

(JC)3 =

⎧⎨⎩X =

⎛⎝X1

X2

X3

⎞⎠ ∣∣∣Xi ∈ J
C

⎫⎬⎭ .

In (JC)3, we define an inner product (X,Y ), a Hermitian inner product 〈X,Y 〉,
a cross product X × Y , an element X · Y of sl(3,C), and an element X ∨ Y of
e6

C , respectively, by

(X,Y ) = (X1, Y1) + (X2, Y2) + (X3, Y3) ∈ C,

〈X,Y 〉 = 〈X1, Y1〉 + 〈X2, Y2〉 + 〈X3, Y3〉 ∈ C,

X × Y =

⎛⎝X2 × Y3 − Y2 × X3

X3 × Y1 − Y3 × X1

X1 × Y2 − Y1 × X2

⎞⎠ ∈ (JC)3,
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X · Y =

⎛⎝(X1, Y1) (X1, Y2) (X1, Y3)
(X2, Y1) (X2, Y2) (X2, Y3)
(X3, Y1) (X3, Y2) (X3, Y3)

⎞⎠− 1
3
(X,Y )E ∈ sl(3,C),

X ∨ Y = X1 ∨ Y1 + X2 ∨ Y2 + X3 ∨ Y3 ∈ e6
C ,

where X =

⎛⎝X1

X2

X3

⎞⎠ ,Y =

⎛⎝Y1

Y2

Y3

⎞⎠ ∈ (JC)3. Further, for φ ∈ HomC(JC),D = (dij) ∈

M(3,C), and X =

⎛⎝X1

X2

X3

⎞⎠ ∈ (JC)3, we define φX,DX ∈ (JC)3 naturally by

φ(X) =

⎛⎝φX1

φX2

φX3

⎞⎠ , DX =

⎛⎝d11X1 + d12X2 + d13X3

d12X1 + d22X2 + d23X3

d31X1 + d32X2 + d33X3

⎞⎠ .

PROPOSITION 5.2.3 (GOMYO [1, Theorem 3.1])

In an 8 + 78 + 81 + 81 = 248 dimensional C-vector space

ě8
C = sl(3,C) ⊕ e6

C ⊕ (JC)3 ⊕ (JC)3,

we define a Lie bracket [R1,R2] by

[(D1, φ1,X1,Y 1), (D2, φ2,X2,Y 2)] = (D,φ,X,Y ),⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D = [D1,D2] + 1

4X1 · Y 2 − 1
4X2 · Y 1,

φ = [φ1, φ2] + 1
2X1 ∨ Y 2 − 1

2X2 ∨ Y 1,

X = φ1X2 − φ2X1 + D1X2 − D2X1 − Y 1 × Y 2,

Y = − tφ1Y 2 + tφ2Y 1 − tD1Y 2 + tD2Y 1 + X1 × X2;

then ě8
C becomes a C-Lie algebra of type E8

C .

Proof
Let e8

C = e7
C ⊕ P

C ⊕ P
C ⊕ C ⊕ C ⊕ C be the usual C-Lie algebra of type E8

C .
We define a mapping f : e8

C → ě8
C by

f
(
Φ(φ,A,B, ν), (X,Y, ξ, η), (Z,W, ζ,μ), r, s, t

)
=

⎛⎝⎛⎝ 2
3ν − 1

2ξ 1
2ζ

1
2μ − 1

3ν − r t
1
2η s − 1

3ν + r

⎞⎠ , φ,

⎛⎝−2A

Z

X

⎞⎠ ,

⎛⎝−2B

Y

−W

⎞⎠⎞⎠ ;

then we can prove that f is an isomorphism as Lie algebras by straightforward
calculations. Thus we have the isomorphism e8

C ∼= ě8
C . �

Now, let Ě8
C be the automorphism group of ě8

C , that is,

Ě8
C =

{
α ∈ IsoC(ě8C)

∣∣ α[R1,R2] = [αR1, αR2]
}
.
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The group E8
C is isomorphic to the group Ě8

C by the correspondence α ∈ E8
C →

fαf −1 ∈ Ě8
C . Then the transformation w of e8

C is transfered to the following
transformation w of ě8

C :

w(D,φ,X,Y ) = (D,φ,ωX, ω2Y ).

So, we determine the structure of the group (Ě8
C)w instead of the group (E8

C)w.
We first define a mapping ϕ1 : SL(3,C) → (Ě8

C)w by

ϕ1(A)(D,φ,X,Y ) = (ADA−1, φ,AX, tA−1Y ).

We have to prove that ϕ1(A) ∈ (Ě8
C)w. Indeed, since the action of D1 =

(D1,0,0,0) ∈ sl(3,C) ⊂ (ě8C)w is given by(
ad(D1)

)
(D,φ,X,Y ) =

(
(adD1)D,0,D1X, − tD1Y

)
,

we have (
expad(D1)

)
(D,φ,X,Y )

=
(
(expD1)D(expD1)−1, φ, (expD1)X, t(expD1)−1Y

)
.

Hence, for A = expD1 ∈ SL(3,C), we have ϕ1(A) = (expad(D1)) ∈ Ě8
C . Evi-

dently, wϕ1(A) = ϕ1(A)w; hence we have ϕ1(A) ∈ (Ě8
C)w. Next, we define a

mapping ϕ2 : E6
C → (Ě8

C)w by

ϕ2(β)(D,φ,X,Y ) = (D,βφβ−1, βX, tβ−1Y ).

We have to prove that ϕ2(β) ∈ (Ě8
C)w. Indeed, since the action of φ′ = (0, φ′,0,

0) ∈ (ě8C)w is given by

(adφ′)(D,φ,X,Y ) =
(
0, (adφ′)φ,φ′X, − tφ′Y

)
,

we have(
expad(φ′)

)
(D,φ,X,Y ) =

(
D, (expφ′)φ(expφ′)−1, (expφ′)X, t(expφ′)−1Y

)
.

Hence, for β = expφ′, we have ϕ2(β) = (expad(φ′)) ∈ Ě8
C . Evidently, wϕ2(β) =

ϕ2(β)w; hence we have ϕ2(β) ∈ (Ě8
C)w.

Now, we define a mapping ϕed : SL(3,C) × E6
C → (Ě8

C)w = (Ě8
C)ed by

ϕed(A,β) = ϕ1(A)ϕ2(β).

Since ϕ1(A) and ϕ2(β) commute, ϕed is a homomorphism. It is not difficult
to show that Kerϕed = {(E,1), (ωE,ω21), (ω2E,ω1)} = Z3. Since (Ě8

C)ω is
connected and dimC(sl(3,C) ⊕ e6

C) = 8 + 78 = 86 = dimC((e8C)ed) (see Theo-
rem 5.2.1) = dimC((ě8C)w), ϕed is surjective. Thus we have (E8

C)ed
∼= (Ě8

C)ed =
(Ě8

C)w ∼= (SL(3,C) × E6
C)/Z3,Z3 = {(E,1), (ωE,ω21), (ω2E,ω1)}. �

5.3. Subgroups of type A1 ⊕ E7(7),A1 ⊕ R ⊕ E6(6), and A2 ⊕ E6(6) of E8(8)

In this section, we use Lie algebras e8(8), e8
C and Lie groups E8(8),E8

C defined
in Section 5.1 and Ě8

C defined in Section 5.2.
Since (e8(8))ev = (e8C)ev ∩ (e8C)τγ = (e8C)υ ∩ (e8C)τγ , (e8(8))0 = (e8C)0 ∩

(e8C)τγ = (e8C)υι ∩ (e8C)τγ , (e8(8))ed = (e8C)ed ∩ (e8C)τγ = (e8C)w ∩ (e8C)τγ , we
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determine the structures of groups

(E8(8))ev = (E8
C)ev ∩ (E8

C)τγ = (E8
C)υ ∩ (E8

C)τγ ,

(E8(8))0 = (E8
C)0 ∩ (E8

C)τγ = (E8
C)υι ∩ (E8

C)τγ ,

(E8(8))ed = (E8
C)ed ∩ (E8

C)τγ = (E8
C)w ∩ (E8

C)τγ .

THEOREM 5.3.1

We have the following:
(1) (E8(8))ev

∼= (SL(2,R) × E7(7))/Z2 × {1, l},Z2 = {(E,1), (−E, −1)},
(2) (E8(8))0 ∼= (SL(2,R) × R+ × E6(6)) × {1, l0},
(3) (E8(8))ed

∼= SL(3,R) × E6(6).

Proof
(1) For α ∈ (E8(8))ev ⊂ (E8

C)ev = (E8
C)υ , there exist A ∈ SL(2,C) and

β ∈ E7
C such that α = ϕev(A,β) = ψ(A)β (see Theorem 5.2.2(1)). From the con-

dition τγαγτ = α, that is, τγψ(A)βγτ = ψ(A)β, we have ψ(τA)τγβγτ = ψ(A)β.
Hence {

τA = A,

τγβγτ = β,
or

{
τA = −A,

τγβγτ = −β.

In the former case, from τA = A, we have A ∈ SL(2,R), and from τγβγτ = β, we
have β ∈ (E7

C)τγ ∼= E7(7) (see [6, Theorem 4.3.2]). In the latter case, A = iI(I =
diag(1, −1)), β = ι satisfy the conditions, and we denote ϕev(iI, ι) by l. Thus we
have the isomorphism (E8(8))ev

∼= ((SL(2,R) × E7(7)) ∪ l(SL(2,R) × E7(7)))/Z2 =
(SL(2,R) × E7(7))/Z2 × {1, l},Z2 = {(E,1), (−E, −1)}.

(2) For α ∈ (E8(8))0 ⊂ (E8
C)0 = (E8

C)υι, there exist A ∈ SL(2,C), θ ∈ C∗

and β ∈ E6
C such that α = ϕ0(A,θ,β) = ψ(A)φ(θ)β (see Theorem 5.2.2(2)).

From the condition τγαγτ = α, that is, τγψ(A)φ(θ)βγτ = ψ(A)φ(θ)β, we have
ψ(τA)φ(τθ)τγβγτ = ψ(A)φ(θ)β. Hence

(i)

⎧⎪⎪⎨⎪⎪⎩
τA = A,

τθ = θ,

τγβγτ = β,

(ii)

⎧⎪⎪⎨⎪⎪⎩
τA = A,

τθ = ωθ,

τγβγτ = φ(ω2)β,

(iii)

⎧⎪⎪⎨⎪⎪⎩
τA = A,

τθ = ω2θ,

τγβγτ = φ(ω)β,

(iv)

⎧⎪⎪⎨⎪⎪⎩
τA = −A,

τθ = −θ,

τγβγτ = β,

(v)

⎧⎪⎪⎨⎪⎪⎩
τA = −A,

τθ = −ωθ,

τγβγτ = φ(ω2)β,

(vi)

⎧⎪⎪⎨⎪⎪⎩
τA = −A,

τθ = −ω2θ,

τγβγτ = φ(ω)β.
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Case (i). From τA = A,τθ = θ, we have A ∈ SL(2,R), θ ∈ R∗, and from
τγβγτ = β, we have β ∈ (E6

C)τγ ∼= E6(6). Hence the group of case (i) is isomor-
phic to (

SL(2,R) × R∗ × E6(6)

)
/Z2,Z2 =

{
(E,1,1), (−E, −1,1)

}
.

The mapping g : SL(2,R) × R∗ × E6(6) → SL(2,R) × R+ × E6(6),

g(A,θ,β) =

{
(A,θ,β) if θ > 0,

(−A, −θ,β) if θ < 0

induces the isomorphism SL(2,R) × R+ × E6(6)
∼= (SL(2,R) × R∗ × E6(6))/Z2.

Therefore the group of case (i) is isomorphic to SL(2,R) × R+ × E6(6).
Case (ii). We have ϕ0(E,ω,φ(ω2)) = ψ(E)φ(ω)φ(ω2) = 1.
Case (iii). We have ϕ0(E,ω2, φ(ω)) = ψ(E)φ(ω2)φ(ω) = 1.
Case (iv). We have ϕ0(iI, i,1) = l0 (hereafter we denote ϕ0(iI, i,1) by l0).
Case (v). We have ϕ0(iI, iω,φ(ω2)) = ϕ0(iI, i,1)ϕ0(E,ω,φ(ω2)) = l0.
Case (vi). We have ϕ0(iI, iω2, φ(ω)) = ϕ0(iI, i,1)ϕ0(E,ω2, φ(ω)) = l0.

Thus we have the isomorphism (E8(8))0 ∼= (SL(2,R) × R+ × E6(6)) ∪ l0(SL(2,R) ×
R+ × E6(6)) = (SL(2,R) × R+ × E6(6)) × {1, l0}.

(3) Under the isomorphism between e8
C and ě8

C given in the proof of Theo-
rem 5.2.2(3), the transformation γ and the complex conjugation τ of e8

C are
transfered to the following transformation γ and the complex conjugation τ

of Ě8
C :

γ(D,φ,X,Y ) = (D,γφγ, γX, γY ),

τ(D,φ,X,Y ) = (τD, τφτ, τX, τY ),

respectively. Hence instead of (E8(8))ed = (E8
C)ed ∩ (E8

C)τγ , we consider
(Ě8(8))ed = (Ě8

C)ed ∩ (Ě8
C)τγ . Now, for α ∈ (Ě8(8))ed ⊂ (Ě8

C)ed = (Ě8
C)w,

there exist A ∈ SL(3,C) and β ∈ E6
C such that α = ϕed(A,β) = ϕ1(A)ϕ2(β) (see

Theorem 5.2.2(3)). From the condition γτατγ = α, that is, γτϕ1(A)ϕ2(β)τγ =
ϕ1(A)ϕ2(β), we have ϕ1(τA)ϕ2(τγβγτ) = ϕ1(A)ϕ2(β). Hence

(i)

{
τA = A,

τγβγτ = β,
(ii)

{
τA = ωA,

τγβγτ = ω2β,
or (iii)

{
τA = ω2A,

τγβγτ = ωβ.

Case (i). From τA = A, we have A ∈ SL(3,R), and from τγβγτ = β, we have
β ∈ (E6

C)τγ ∼= E6(6).
Case (ii). We have ϕed(ωE,ω21)(D,φ,X,Y ) = (ωDω−1, ω2φω−2, ωω2X,

ω−1ω−2Y ) = (D,φ,X,Y ), that is, ϕed(ωE,ω21) = 1.
Case (iii). We have ϕed(ω2E,ω1)(D,φ,X,Y ) = (ω2Dω−2, ωφω−1, ω2ωX,

ω−2ω−1Y ) = (D,φ,X,Y ); that is, ϕed(ω2E,ω1) = 1.
Thus we have the isomorphism (E8(8))ed

∼= (Ě8(8))ed
∼= SL(3,R) × E6(6). �
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5.4. Subgroups of type A1 ⊕ E7(−25),A1 ⊕ R ⊕ E6(−26), and A2 ⊕ E6(−26)

of E8(−24)

In this section, we use Lie algebras e8(−24), e8
C and Lie groups E8(−24), E8

C

defined in Section 5.1 and Ě8
C defined in Section 5.2.

THEOREM 5.4.1

The 3-graded decomposition of the Lie algebra e8(−24) = (e8C)τ (or e8
C),

e8(−24) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ,Z = (Φ(0,0,0, −3),0,0,0,0,0), is given by

g0 =

⎧⎨⎩
iGkl, 0 ≤ k < l ≤ 7,

Ã1(ek), Ã2(ek), Ã3(ek), F̃1(ek), F̃2(ek), F̃3(ek), 0 ≤ k ≤ 7,

(E1 − E2)∼, (E2 − E3)∼,1, 1̃,1−,1−,

⎫⎬⎭
82,

g−1 =

{
Ė−

1 , Ė−
2 , Ė−

3 , Ḟ1(ek)
−

, Ḟ2(ek)
−

, Ḟ3(ek)
−

, 0 ≤ k ≤ 7,

Ė1−, Ė2−, Ė3−, Ḟ1(ek)−, Ḟ2(ek)−, Ḟ3(ek)−, 0 ≤ k ≤ 7,

}
54,

g−2 = {Ê1, Ê2, Ê3, F̂1(ek), F̂2(ek), F̂3(ek), 0 ≤ k ≤ 7} 27,

g−3 = {1.
−,1. − } 2,

g1 = λ̃(g−1),g2 = λ̃(g−2),g3 = λ̃(g−3).

Since (e8(−24))ev = (e8C)ev ∩ (e8C)τ = (e8C)υ ∩ (e8C)τ , (e8(−24))0 = (e8C)0 ∩
(e8C)τ = (e8C)υι ∩ (e8C)τ , (e8(−24))ed = (e8C)ed ∩ (e8C)τ = (e8C)w ∩ (e8C)τ , we
determine the structures of groups

(E8(−24))ev = (E8
C)ev ∩ (E8

C)τ = (E8
C)υ ∩ (E8

C)τ ,

(E8(−24))0 = (E8
C)0 ∩ (E8

C)τ = (E8
C)υι ∩ (E8

C)τ ,

(E8(−24))ed = (E8
C)ed ∩ (E8

C)τ = (E8
C)w ∩ (E8

C)τ .

THEOREM 5.4.2

We have the following:
(1) (E8(−24))ev

∼= (SL(2,R) × E7(−25))/Z2 × {1, l},Z2 = {(E,1), (−E, −1)},
(2) (E8(−24))0 ∼= (SL(2,R) × R+ × E6(−26)) × {1, l0},
(3) (E8(−24))ed

∼= SL(3,R) × E6(−26).

Proof
(1) For α ∈ (E8(−24))ev ⊂ (E8

C)ev = (E8
C)υ , there exist A ∈ SL(2,C) and

β ∈ E7
C such that α = ϕev(A,β) = ψ(A)β (see Theorem 5.2.2(1)). From the

condition τατ = α, that is, τψ(A)βτ = ψ(A)β, we have ψ(τA)τβτ = ψ(A)β.
Hence {

τA = A,

τβτ = β,
or

{
τA = −A,

τβτ = −β.
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In the former case, from τA = A, we have A ∈ SL(2,R), and from τβτ = β,
we have β ∈ (E7

C)τ ∼= E7(−25) (see [6, Theorem 4.3.2]). In the latter case, A =
iI, (I = diag(1, −1)), β = ι satisfy the conditions, and l = ψ(iI)ι. Thus we have
the isomorphism (E8(−24))ev

∼= ((SL(2,R) × E7(−25)) ∪ l(SL(2,R) × E7(−25)))/
Z2 = (SL(2,R) × E7(−25))/Z2 × {1, l},Z2 = {(E,1), (−E, −1)}.

(2) For α ∈ (E8(−24))0 ⊂ (E8
C)0 = (E8

C)υι, there exist A ∈ SL(2,C), θ ∈ C∗,
and β ∈ E6

C such that α = ϕ0(A,θ,β) = ψ(A)φ(θ)β (see Theorem 5.2.2(2)).
From the condition τατ = α, that is, τψ(A)φ(θ)βτ = ψ(A)φ(θ)β, we have
ψ(τA)φ(τθ)τβτ = ψ(A)φ(θ)β. Hence

(i)

⎧⎪⎪⎨⎪⎪⎩
τA = A,

τθ = θ,

τβτ = β,

(ii)

⎧⎪⎪⎨⎪⎪⎩
τA = A,

τθ = ωθ,

τβτ = φ(ω2)β,

(iii)

⎧⎪⎪⎨⎪⎪⎩
τA = A,

τθ = ω2θ,

τβτ = φ(ω)β,

(iv)

⎧⎪⎪⎨⎪⎪⎩
τA = −A,

τθ = −θ,

τβτ = β,

(v)

⎧⎪⎪⎨⎪⎪⎩
τA = −A,

τθ = −ωθ,

τβτ = φ(ω2)β,

(vi)

⎧⎪⎪⎨⎪⎪⎩
τA = −A,

τθ = −ω2θ,

τβτ = φ(ω)β.

Case (i). From τA = A,τθ = θ, we have A ∈ SL(2,R), θ ∈ R∗, and from
τβτ = β, we have β ∈ (E6

C)τ = E6(−26). Hence the group of case (i) is (SL(2,R) ×
R∗ × E6(−26))/Z2,Z2 = {(E,1,1), (−E, −1,1)}. By the analogous argument
in the proof of Theorem 5.3.1(2), we have (SL(2,R) × R∗ × E6(−26))/Z2

∼=
SL(2,R) × R+ × E6(−26).

Case (ii). We have ϕ0(E,ω,φ(ω2)) = ψ(E)φ(ω)φ(ω2) = 1.

Case (iii). We have ϕ0(E,ω2, φ(ω)) = ψ(E)φ(ω2)φ(ω) = 1.

Case (iv). We have ϕ0(iI, i,1) = l0.

Case (v). We have ϕ0(iI, iω,φ(ω2)) = ϕ0(iI, i,1)ϕ0(E,ω,φ(ω2)) = l0.
Case (vi). We have ϕ0(iI, iω2, φ(ω)) = ϕ0(iI, i,1)ϕ0(E,ω2, φ(ω)) = l0.

Thus we have the isomorphism (E8(−24))0 ∼= (SL(2,R) × R+ × E6(−26)) ∪ l0(SL(2,

R) × R+ × E6(−26)) = (SL(2,R) × R+ × E6(−26)) × {1, l0}.
(3) From the opening statement in the proof of Theorem 5.3.1(3), we use

(Ě8(−24))ed = (Ě8
C)ed ∩ (Ě8

C)τ = (Ě8
C)w ∩ (Ě8

C)τ instead of the group
(E8(−24))ed = (E8

C)ed ∩ (E8
C)τ = (E8

C)w ∩ (E8
C)τ . Now, for α ∈ (Ě8(−24))ed ⊂

(Ě8
C)w, there exists A ∈ SL(3,C) and β ∈ E6

C such that α = ϕed(A,β) =
ϕ1(A)ϕ2(β) (see Theorem 5.2.2(3)). From the condition τατ = α, that is,
τϕ1(A)ϕ2(β)τ = ϕ1(A)ϕ2(β), we have ϕ1(τA)ϕ2(τβτ) = ϕ1(A)ϕ2(β). Hence

(i)

{
τA = A,

τβτ = β,
(ii)

{
τA = ωA,

τβτ = ω2β,
or (iii)

{
τA = ω2A,

τβτ = ωβ.
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Case (i). From τA = A, we have A ∈ SL(3,R), and from τβτ = β, we have
β ∈ (E6

C)τ = E6(−26).
Case (ii). We have ϕed(ωE,ω21)(D,φ,X,Y ) = (ωDω−1, ω2φω−2, ωω2X,

ω−1ω−2Y ) = (D,φ,X,Y ), that is, ϕed(ωE,ω21) = 1.
Case (iii). We have ϕed(ω2E,ω1)(D,φ,X,Y ) = (ω2Dω−2, ωφω−1, ω2ωX,

ω−2ω−1Y ) = (D,φ,X,Y ), that is, ϕed(ω2E,ω1) = 1.
Thus we have the isomorphism (E8(−24))ed

∼= (Ě8(−24))ed
∼= SL(3,R) × E6(−26).

�

5.5. Subgroups of type C ⊕ A7
C and A8

C of E8
C

In this section, we use another C-Lie algebra ẽ8
C of type E8

C constructed by
Gomyo [1]. We review notation in the definition of ẽ8

C .
Let e1, . . . ,en be the canonical C-basis of n-dimensional C-vector space Cn,

and let (x,y) be the inner product in Cn satisfying (ei,ej) = δij . In the exterior
C-vector space Λk(Cn), we define an inner product by

(x1 ∧ · · · ∧ xk,y1 ∧ · · · ∧ yk) = det
(
(xi,yj)

)
, k ≥ 1,

(a, b) = ab, a, b ∈ Λ0(Cn) = C.

Then ei1 ∧ · · · ∧ eik
,1 ≤ i1 < · · · < ik ≤ n, form an orthonormal C-basis of Λk(Cn).

For u ∈ Λk(Cn), we define an element ∗u ∈ Λn−k(Cn) satisfying

(∗u,v) = (u ∧ v,e1 ∧ · · · ∧ en), v ∈ Λn−k(Cn).

Then ∗ induces a C-linear isomorphism ∗ : Λk(Cn) → Λn−k(Cn).
The group SL(n,C) naturally acts on Λk(Cn) as

A(x1 ∧ · · · ∧ xk) = Ax1 ∧ · · · ∧ Axk, A1 = 1.

Hence the Lie algebra sl(n,C) acts on Λk(Cn) as

D(x1 ∧ · · · ∧ xk) =
k∑

j=1

x1 ∧ · · · ∧ Dxj ∧ · · · ∧ xk, D1 = 0.

LEMMA 5.5.1

For A ∈ SL(n,C),D ∈ sl(n,C), and u,v ∈ Λk(Cn), we have
(1) (Au, tA−1v) = (u,v), (Du,v) + (u, − tDv) = 0,
(2) ∗(Au) = tA−1(∗u), ∗(Du) = − tD(∗u).

For u,v ∈ Λk(Cn) (1 ≤ k ≤ n), we define a C-linear mapping u × v of Cn by

(u × v)x = ∗
(
v ∧ ∗(u ∧ x)

)
+ (−1)n−k n − k

n
(u,v)x, x ∈ Cn.

Since tr(u × v) = 0, u × v can be regarded as an element of sl(n,C) with respect
to the canonical C-basis of Cn.

LEMMA 5.5.2

For A ∈ SL(n,C),D ∈ sl(n,C), and u,v ∈ Λk(Cn), we have
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(1) A(u × v)A−1 = Au × tA−1v, [D,u × v] = Du × v + u × (− tDv),
(2) t(u × v) = v × u, τ(u × v) = τu × τv,
(3) tr(D(u × v)) = (−1)n−k(Du,v).

Now, we construct a C-Lie algebra ẽ8
C of type E8

C .

PROPOSITION 5.5.3 (GOMYO [1, Theorem 3.2])

In an 80 + 84 + 84 = 248 dimensional C-vector space

ẽ8
C = sl(9,C) ⊕ Λ3(C9) ⊕ Λ3(C9),

we define a Lie bracket [R1,R2] by

[(D1,u1,v1), (D2,u2,v2)] = (D,u,v),⎧⎪⎪⎨⎪⎪⎩
D = [D1,D2] + u1 × v2 − u2 × v1,

u = D1u2 − D2u1 + ∗(v1 ∧ v2),

v = −tD1v2 + tD2v1 − ∗(u1 ∧ u2);

then ẽ8
C becomes a simple C-Lie algebra.

This C-Lie algebra ẽ8
C has to be type E8

C . Let Ẽ8

C
be the automorphism group

of ẽ8
C :

Ẽ8

C
=
{
α ∈ IsoC(ẽ8

C)
∣∣ α[R1,R2] = [αR1, αR2]

}
.

Then Ẽ8

C
is also a simply connected complex Lie group of type E8

C .
We define a C-linear transformation λ̂ of ẽ8

C by

λ̂(D,u,v) = (−tD, −v, −u).

Then λ̂ ∈ Ẽ8

C
and λ̂2 = 1. The complex conjugation of ẽ8

C is usually denoted
by τ :

τ(D,u,v) = (τD, τu, τv).

LEMMA 5.5.4 (see GOMYO [1])

The Killing form B̃8 of the Lie algebra ẽ8
C is given by

B̃8

(
(D1,u1,v1), (D2,u2,v2)

)
= 60

(
tr(D1D2) + (u1,v2) + (v1,u2)

)
.

We shall find an R-Lie algebra of type E8(8). We define an R-Lie algebra ẽ8
′ by

ẽ8
′ = sl(9,R) ⊕ Λ3(R9) ⊕ Λ3(R9) = (ẽ8

C)
τ

with the Lie bracket the same as that of ẽ8
C .

PROPOSITION 5.5.5

We have that ẽ8
′ is an R-Lie algebra of type E8(8).
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Proof
We find the signature of the Killing form B̃8

′ = B̃8 |̃e8′ of ẽ8
′. Decompose ẽ8

′ into
eigenspaces relative to λ̂:

ẽ8
′ = (̂e8′)λ̂ ⊕ (̃e8′)−λ̂,

(̃e8′)λ̂ = {R ∈ ê8
′ | λ̂R = R} =

{
(D,u, −u)

∣∣D ∈ sl(9,R), tD = −D,u ∈ Λ3(R9)
}
,

(̃e8′)−λ̂ = {R ∈ ẽ8
′ | λ̃R = −R} =

{
(D,u,u)

∣∣D ∈ sl(9,R), tD = D,u ∈ Λ3(R9)
}
.

Then, from Lemma 5.5.4, we see that the Killing form B̃8
′ on (̃e8′)λ̂ is negative

definite and B̃8
′ on (̃e8′)−λ̂ is positive definite. Therefore the number of negative

eigenvalues of B̃8
′ is dim((̃e8′)λ̂) = 44 + 84 = 128, and the number of positive

eigenvalues of B̃8
′ is dim((̃e8′)−λ̂) = 36 + 84 = 120. Therefore the signature of

B̃8
′ is 128 − 120 = 8. Hence the type of B̃8

′ is E8(8). �

Let Ẽ8

′
be the automorphism group of ẽ8

′:

Ẽ8

′
=
{
α ∈ IsoR(ẽ8

′)
∣∣ α[R1,R2] = [αR1, αR2]

}
.

Although we cannot give any explicit isomorphism between e8
C and ẽ8

C , e8(8)

and ẽ8
′, instead of ẽ8

C
, ẽ8

′
, Ẽ8

C
, and Ẽ8

′
, we use the same notation as e8

C , e8(8),
E8

C , and E8(8) of Sections 5.1.
In the C-Lie algebra e8

C = sl(9,C) ⊕ Λ3(C9) ⊕ Λ3(C9), let

Z =
1
3
(
diag(−8,1,1,1,1,1,1,1,1),0,0

)
.

THEOREM 5.5.6

The 3-graded decomposition of the Lie algebra e8(8) = (e8C)τ (or e8
C),

e8(8) = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ,Z = 1
3 (diag(−8,1,1,1,1,1,1,1,1),0,0), is given by

g0 =
{
(Eii − E99,0,0),1 ≤ i ≤ 8, (Ekl,0,0),2 ≤ k ≤ 9,2 ≤ l ≤ 9, k �= l

}
64,

g−1 =
{
(0,0,ei ∧ ej ∧ ek),2 ≤ i < j < k ≤ 9

}
56,

g−2 =
{
(0,e1 ∧ ej ∧ ek,0),2 ≤ j < k ≤ 9

}
28,

g−3 =
{
(E1j ,0,0),2 ≤ j ≤ 9

}
8,

g1 = λ̂(g−1),g2 = λ̂(g−2),g3 = λ̂(g−3).

For the characteristic element Z = 1
3 (diag(−8,1,1,1,1,1,1,1,1),0,0), we set

z4 = exp
(2πi

4
adZ

)
, z3 = exp

(2πi

3
adZ

)
;

then we have

z4(D,u,v) = (A4DA4
−1,A4u, tA4

−1v), A4 = diag(ω12
8, ω12, ω12, . . . , ω12),
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z3(D,u,v) = (A3DA3
−1,A3u, tA3

−1v), A3 = ω9E,

= (D,ω9u, ω9
−1v),

where (D,u,v) ∈ e8
C , ω12 = e2πi/12, ω9 = e2πi/9.

Since (e8C)0 = (e8C)z4 , (e8C)ed = (e8C)z3 , we determine the structures of
groups

(E8
C)0 = (E8

C)z4 , (E8
C)ed = (E8

C)z3 .

THEOREM 5.5.7

(1) As for (E8
C)ev, we will study this later.

(2) We have (E8
C)0 ∼= (C∗ × SL(8,C))/Z24,Z24 = Z3 × Z8,Z3 = {(1,E),

(ω,E), (ω2,E)}, Z8 = {(ω8
k, ω8

kE) | k = 0,1, . . . ,7}, ω = e2πi/3, ω8 = e2πi/8.
(3) We have (E8

C)ed
∼= SL(9,C)/Z3,Z3 = {E,ωE,ω2E}, ω = e2πi/3.

Proof
(2) We define a mapping ϕ0 : S(GL(1,C) × GL(8,C)) → (E8

C)z4 = (E8
C)0

by

ϕ0(A)(D,u,v) = (ADA−1,Au, tA−1v);

ϕ0 is well defined. Indeed, by using Lemmas 5.5.1 and 5.5.2, we have

ϕ0(A)[(D1,u1,v1), (D2,u2,v2)] = [ϕ0(A)(D1,u1,v1), ϕ0(A)(D2,u2,v2)];

that is, ϕ0(A) ∈ E8
C . Next, since z4 = ϕ0(A4) and z4ϕ0(A) = ϕ0(A4)ϕ0(A) =

ϕ0(A4A) = ϕ0(AA4) = ϕ0(A)ϕ0(A4) = ϕ0(A)z4, we get ϕ0(A) ∈ (E8
C)z4 . Obvi-

ously ϕ0 is a homomorphism. It is easy to see that Kerϕ0 = {E,ωE,ω2E} = Z3,
(E8

C)z4 is connected, Kerϕ0 is discrete, and dimC

(
s(gl(1,C) ⊕ gl(8,C))

)
= (1 +

64) − 1 = 64 = dimC((e8C)0) = dimC((e8C)z4) (see Theorem 5.5.6), so ϕ0 is sur-
jective. Hence we have

(E8
C)z4 ∼= S

(
GL(1,C) × GL(8,C)

)
/Z3, Z3 = {E,ωE,ω2E}.

Further, the mapping h : C∗ × SL(8,C) → S(GL(1,C) × GL(8,C)),

h(z,B) =
(

z−8 0
0 zB

)
,

induces the isomorphism S(GL(1,C) × GL(8,C)) ∼= (C∗ × SL(8,C))/Z8, Z8 =
{(ω8

k, ω8
kE) | k = 0,1, . . . ,7}, and h satisfies h(ω,E) = ωE. Thus we have the

isomorphism (E8
C)0 = (E8

C)z4 ∼= (C∗ × SL(8,C))/(Z3 × Z8),Z3 = {(1,E),
(ω,E), (ω2,E)},Z8 = {(ω8

k, ω8
kE) | k = 0,1, . . . ,7}.

(3) We define a mapping ϕed : SL(9,C) → (E8
C)z3 = (E8

C)ed by

ϕed(A)(D,u,v) = (ADA−1,Au, tA−1v).

Then we see that ϕed induces the isomorphism (E8
C)ed = (E8

C)z3 ∼= SL(9,C)/
Z3,Z3 = {E,ωE,ω2E} in a way similar to (2) above. �
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5.6. Subgroups of type R ⊕ A7(7) and A8(8) of E8(8)

In this section, we use Lie algebras e8
C , e8(8) and Lie groups E8

C ,E8(8) defined
in Section 5.5.

Since (e8(8))0 = (e8C)0 ∩ (e8C)τ = (e8C)z4 ∩ (e8C)τ , (e8(8))ed = (e8C)ed ∩
(e8C)τ = (e8C)z3 ∩ (e8C)τ , we determine the structures of groups

(E8(8))0 = (E8
C)0 ∩ (E8

C)τ = (E8
C)z4 ∩ (E8

C)τ ,

(E8(8))ed = (E8
C)ed ∩ (E8

C)τ = (E8
C)z3 ∩ (E8

C)τ .

THEOREM 5.6.1

(1) As for (E8(8))ev, we will study this later.
(2) We have (E8(8))0 ∼= (R+ × SL(8,R)) × {1, ζ, ζ2}.
(3) We have (E8(8))ed

∼= SL(9,R) × {1, ζ, ζ2}.

Proof
(2) For α ∈ (E8(8))0 ⊂ (E8

C)0 = (E8
C)z4 , there exists A ∈ S(GL(1,C) ×

GL(8,C)) such that α = ϕ0(A) (see Theorem 5.5.7(2)). From the condition
τατ = α, that is, τϕ4(A)τ = ϕ4(A), we have ϕ0(τA) = ϕ0(A). Hence

(i) τA = A, (ii) τA = ωA, or (iii) τA = ω2A.

Case (i). From the condition τA = A, we have A ∈ S(GL(1,R) × GL(8,R)).
The mapping h : R∗ × SL(8,R) → S(GL(1,R) × GL(8,R)),

h(r,B) =
(

r−8 0
0 rB

)
,

induces the isomorphism S(GL(1,R) × GL(8,R)) ∼= (R∗ × SL(8,R))/Z2,Z2 =
{(1,E), (−1, −E)}. Further, the mapping k : R∗ × SL(8,R) → R+ × SL(8,R),

k(r,B) =

{
(r,B) if r > 0,

(−r, −B) if r < 0

induces the isomorphism R+ × SL(8,R) ∼= (R∗ × SL(8,R))/Z2,Z2 = {(1,E),
(−1, −E)}. Hence we have S(GL(1,R) × GL(8,R)) ∼= R+ × SL(8,R).

Case (ii). Since A = ωE satisfies the condition τA = ωA, we have

ϕ0(ωE)(D,u,v) =
(
(ωE)D(ωE)−1, (ωE)u, t(ωE)−1v

)
= (D,ωu, ω2v) = ζ(D,u,v);

that is, ζ is defined by ϕ0(ωE).
Case (iii). Since A = ω2E satisfies the condition τA = ω2A, in a way similar

to case (ii), we have ϕ0(ω2E) = ζ2.
Thus we have the isomorphism (E8(8))0 ∼= (R+ × SL(8,R)) ∪ ζ(R+ × SL(8,R)) ∪
ζ2(R+ × SL(8,R)) = (R+ × SL(8,R)) × {1, ζ, ζ2}.

(3) For α ∈ (E8(8))ed ⊂ (E8
C)ed = (E8

C)z3 , there exists A ∈ SL(9,C) such
that α = ϕed(A) (see Theorem 5.5.7(3)). From the condition τατ = α, that is,
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τϕed(A)τ = ϕed(A), we have ϕ3(τA) = ϕ3(A). Hence

(i) τA = A, (ii) τA = ωA, or (iii) τA = ω2A.

Case (i). From the condition τA = A, we have A ∈ SL(9,R).
Case (ii). Since A = ωE satisfies the condition τA = ωA, we have ϕed(ωE) =

ζ as in Case of (2).
Case (iii). Since A = ω2E satisfies the conditions τA = ω2A, we have

ϕed(ω2E) = ζ2 as in Case (2). Thus we have the isomorphism (E8(8))ed =
(E8

C)z3 ∼= SL(9,R) ∪ ζ(SL(9,R)) ∪ ζ2(SL(9,R)) = SL(9,R) × {1, ζ, ζ2}. �

5.7. Subgroup of type D8
C of E8

C and subgroup of type D8(8) of E8(8)

In this section, we determine the structures of the groups (E8
C)ev (see The-

orem 5.5.7(1)) and (E8(8))ev (see Theorem 5.6.1(1)). As we use a realization
of semispinor groups Ss(16,C) in E8

C and Ss(8,8) in E8(8) by Gomyo [2], we
review here one more Lie algebra e8

C constructed by Gomyo [2].
Let e0, e1, . . . , e7 be the canonical C-basis of the C-vector space C

C which is
the complexification of the R-Calyley algebra C. In a 16-dimensional C-vector
space (CC)2, denote

ẽ1 =
(

e0

0

)
, ẽ2 =

(
e1

0

)
, . . . , ẽ8 =

(
e7

0

)
,

ẽ9 =
(

0
e0

)
, ẽ10 =

(
0
e1

)
, . . . , ẽ16 =

(
0
e7

)
.

We give an inner product (ã, b̃) in (CC)2 so that ẽ1, ẽ2, . . . , ẽ16 are an orthonormal
C-basis of (CC)2. Let Cl((CC)2) be the C-Clifford algebra with a C-basis

1, ẽ1, ẽ2, . . . , ẽ16, . . . , ẽk1 · · · ẽkl
(k1 < · · · < kl), . . . , ẽ1ẽ2 · · · ẽ16

with relations ẽ2
k = −1 and ẽkẽl = −ẽlẽk (k �= l). Now, the complex spinor group

Spin(16,C) is defined by

Spin(16,C) =
{

ã1ã2 · · · ã2q ∈ Cl((CC)2)
∣∣∣ ãk ∈ (CC)2, (ãk, ãk) = 1,

q = 1,2,3, . . .

}
.

It is known that the group Spin(16,C) is connected and is a double covering
group of SO(16,C) = SO((CC)2) by the projection p : Spin(16,C) → SO(16,C),

p(α̃)x̃ = α̃x̃α̃−1, x̃ ∈ (CC)2.

So Spin(16,C) is simply connected. In Cl((CC)2), let

ζ̃ = ẽ1ẽ2 · · · ẽ15ẽ16.

Then ζ̃ ∈ Spin(16,C) and ζ̃2 = 1. The center of the group Spin(16,C) is given
by

z
(
Spin(16,C)

)
= {1, −1, ζ̃, −ζ̃}.

The complex semispinor group Ss(16,C) is defined by

Ss(16,C) = Spin(16,C)/{1, ζ̃}.
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It is known that Spin(16,C)/{1, −1} ∼= SO(16,C) and Ss(16,C) �∼= SO(16,C).
In the C-Lie algebra so(8,C) = so(CC) = {X ∈ HomC(CC) | (Xx,y) + (x,

Xy) = 0, x, y ∈ C
C }, Gkl (0 ≤ k ≤ 7,0 ≤ l ≤ 7, k �= l) is defined as a C-endomor-

phism of C
C satisfying

Gklel = ek, Gklek = −el, Gklej = 0 otherwise,

then Gkl,0 ≤ k < l ≤ 7 is C-basis of so(8,C). (These Gkl are already used in
Theorems 5.2.1 and 5.4.1.) Next, Fkl ∈ so(8,C) (0 ≤ k ≤ 7,0 ≤ l ≤ 7, k �= l) is
defined as

Fklx =
1
2
ek(elx), x ∈ C

C .

Now, we define C-linear transformations μ,κ, and ν of so(8,C) by

μGkl = Fkl, (κX)x = Xx, x ∈ C
C , ν = μκ.

Then μ,κ, and ν are outer automorphisms of so(8,C).
For x, y ∈ C

C , we define a C-linear transformation x × y of C
C by

(x × y)z = (y, z)x − (x, z)y, z ∈ C
C .

Let so(16,C) = {D ∈ Hom((CC)2) | (Dx̃, ỹ) + (x̃,Dỹ) = 0, x̃, ỹ ∈ (CC)2} = {D ∈
M(16,C) | tD + D = 0}. We define a C-bilinear mapping × : (CC ⊗ C

C) × (CC ⊗
C

C) → so(16,C) by

(x1 ⊗ y1,0) × (x2 ⊗ y2,0) =
(

(y1, y2)π(x1 × x2) 0
0 (x1, x2)π(y1 × y2)

)
,

(0, z1 ⊗ u1) × (0, z2 ⊗ u2) =
(

(u1, u2)ν2(z1 × z2) 0
0 (z1, z2)ν2(u1 × u2)

)
,

(x ⊗ y,0) × (0, z ⊗ u) =
(

0 1
2 (xz)t(yu)

− 1
2 (yu)t(xz) 0

)
,

(0, z ⊗ u) × (x ⊗ y,0) =
(

0 − 1
2 (xz)t(yu)

1
2 (yu)t(xz) 0

)
.

We define a representation ρ of Spin(16,C) on (CC ⊗ C
C) ⊕ (CC ⊗ C

C) (called
the half-spinor representation of Spin(16,C)) by

ρ

((
a1

b1

)(
a2

b2

))
(x ⊗ y,0)

=
(

−a1(a2x) ⊗ y − x ⊗ b1(b2y), a1x ⊗ b2y − a2x ⊗ b1y
)
,

ρ

((
a1

b1

)(
a2

b2

))
(0, z ⊗ u)

=
(

−a1z ⊗ b2u + a2z ⊗ b1u, −a1(a2z) ⊗ u − z ⊗ b1(b2u)
)
,

ρ(ã1ã2 · · · ã2m−1ã2m) = ρ(ã1ã2) · · · ρ(ã2m−1ã2m).
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Then the differential representation dρ of so(16,C) on (CC ⊗ C
C) ⊕ (CC ⊗ C

C)
has the following property:

dρ

((
X 0
0 Y

))
(x ⊗ y, z ⊗ u) =

(
(μX)x ⊗ y +x ⊗ (μY )y, (νX)z ⊗ u+ z ⊗ (νY )u

)
.

Under preliminaries above, we have the following proposition.

PROPOSITION 5.7.1 (GOMYO [2, Theorem 3.4])

In a 120 + 64 + 64 = 248 dimensional C-vector space

ê8
C = so(16,C) ⊕ (CC ⊗ C

C) ⊕ (CC ⊗ C
C),

we define a Lie bracket [R1,R2] by

[(D1, P1), (D2, P2)] =
(
[D1,D2] − P1 × P2, dρ(D1)P2 − dρ(D2)P1

)
;

then ê8
C becomes a simple C-Lie algebra.

This C-Lie algebra ê8
C has to be of type E8

C . Let Ê8
C be the automorphism

group of ê8
C :

Ê8
C =

{
α ∈ IsoC (̂e8C) | α[R1,R2] = [αR1, αR2]

}
.

Then Ê8
C is also a simply connected complex Lie group of type E8

C . So we use
notations e8

C and E8
C instead of ê8

C and Ê8
C .

In the C-algebra e8
C = so(16,C) ⊕ (CC ⊗ C

C) ⊕ (CC ⊗ C
C), let

Z =
(
diag(iJ, iJ, iJ, iJ, −iJ, iJ, iJ, iJ),0,0

)
, J =

(
0 1

−1 0

)
.

Let Gkl be an element of so(16,C) = {D ∈ M(16,C) | tD + D = 0} such that
Gkl = Ekl − Elk (where Ekl is a matrix of M(16,C) when the (k, l)-entry is 1
and the others are zero). Then Gkl,0 ≤ k < l ≤ 15 is a C-basis of so(16,C). The
complex conjugation in e8

C is usually denoted by τ :

τ(D,x ⊗ y, z ⊗ u) = (τD, τx ⊗ τy, τz ⊗ τu).

THEOREM 5.7.2

The 3-graded decomposition of the Lie algebra e8
C = so(16,C) ⊕ (CC ⊗ C

C) ⊕
(CC ⊗ C

C),

e8
C = g−3 ⊕ g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 ⊕ g3

with respect to adZ,Z = (diag(iJ, iJ, iJ, iJ, −iJ, iJ, iJ, iJ),0,0), is given by

g0 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Gk,k+1,0,0), k = 0,2,4, . . . ,14,

(Gk,k+j + Gk+1,k+1+j ,0,0),
k = 0,2,4, . . . ,14, j = k + 2, k + 4, . . . ,14, k, j �= 8,

(Gk,8 − Gk+1,9,0,0), k = 0,2,4,6,G8,k − G9,k+1, k = 10,12,14,

(Gk,k+1+j − Gk+1,k+j ,0,0),
k = 0,2,4, . . . ,14, j = k + 2, k + 4, . . . ,14, k, j �= 8,

(Gk,8 + Gk+1,9,0,0), k = 0,2,4,6,G8,k + G9,k+1, k = 10,12,14

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭ 64,
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g−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0, (e0 ⊗ e0 + e1 ⊗ e1) − i(e0 ⊗ e1 − e1 ⊗ e0),0),
(0, (e1 ⊗ ek + e0 ⊗ ek+1) − i(e0 ⊗ ek − e1 ⊗ ek+1),0),

k = 2,4,6,

(0, (el ⊗ e0) + i(el ⊗ e1),0), (0, (el ⊗ ek) − i(el ⊗ ek+1),0),
k = 2,4,6, l = 2,3, . . .7,

(0,0, (e0 ⊗ e0 + e1 ⊗ e1) + i(e0 ⊗ e1 − e1 ⊗ e0)),
(0,0, (ek ⊗ e0 − ek+1 ⊗ e1) + (ek ⊗ e1 + ek+1 ⊗ e0)),

k = 2,4,6,

(0,0, (el ⊗ e0) + i(el ⊗ e1), (el ⊗ ek) − i(el ⊗ ek+1)),
k = 2,4,6, l = 2,3, . . .7

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
58,

g−2 =

⎧⎪⎪⎨⎪⎪⎩
(Gk,l − Gk+1,l+1 + i(Gk,l+1 + Gk+1,l),0,0),

k = 0,2, . . . ,12, l = k + 2, k + 4, . . . ,14, k, l �= 8
(Gk,8 − Gk+1,9 − i(Gk,9 + Gk+1,8),0,0),

k = 0,2, . . . ,14, k �= 8

⎫⎪⎪⎬⎪⎪⎭
28,

g−3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(0, (e0 ⊗ e0 − e1 ⊗ e1) + i(e0 ⊗ e1 + e1 ⊗ e0),0),
(0, (e0 ⊗ ek − e0 ⊗ ek+1) − i(e0 ⊗ ek+1 + e1 ⊗ ek),0),

k = 2,4,6,

(0,0, (e0 ⊗ e0 − e1 ⊗ e1) + i(e0 ⊗ e1 + e1 ⊗ e0)),
(0,0, (ek ⊗ e0 + ek+1 ⊗ e1) − i(ek+1 ⊗ e0 − ek ⊗ e1)),

k = 2,4,6,

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭ 8,

g1 = τ(g−1), g2 = τ(g−2), g3 = τ(g−3).

Proof
Noting that

μ
(
i(G01 + G23 + G45 + G67)

)
= 2iG01,

μ
(
i(−G01 + G23 + G45 + G67)

)
= i(G01 − G23 − G45 − G67),

ν
(
i(G01 + G23 + G45 + G67)

)
= i(G01 − G23 − G45 − G67),

ν
(
i(−G01 + G23 + G45 + G67)

)
= 2iG01,

we can prove this theorem by direct calculations. �

We define a C-linear transformation ε of e8
C by

ε(D,x ⊗ y, z ⊗ u) = (D, −x ⊗ y, −z ⊗ u).

Then ε ∈ E8
C and ε2 = 1.

Now, for the characteristic element Z = (diag(iJ, iJ, iJ, iJ, −iJ, iJ, iJ, iJ),0,

0), we have the following proposition.

PROPOSITION 5.7.3

We have

exp
(2πi

2
adZ

)
= ε.
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Proof
Since Z is a central element of (so(16,C),0,0), the action of exp(πiadZ) on
(so(16,C),0,0) is trivial. Next,

iadZ(x ⊗ y,0) =
(

−μ(G01 + G23 + G45 + G67)x ⊗ y

− x × μ(G01 + G23 + G45 + G67)y,0
)

=
(

−2G01x ⊗ y − x ⊗ (G01 − G23 − G45 − G67)y,0
)

=
(
diag(2J,0,0,0)x ⊗ y + x ⊗ diag(J, −J, −J, −J)y,0

)
.

Hence, for t ∈ R, we have(
exp(tiadZ)

)
(x ⊗ y,0)

=
(
diag(R(2t),E,E,E)x ⊗ diag(R(t),R(−t),R(−t),R(−t))y,0

)
,

where R(t) =
(

cos t
sin t

− sin t
cos t

)
. Setting t = π, we have(

exp(πiadZ)
)
(x ⊗ y,0)

=
(
diag(E,E,E,E)x ⊗ diag(−E, −E, −E, −E)y,0

)
=
(
x ⊗ (−y),0

)
= (−x ⊗ y,0).

Similarly, we obtain(
exp(πiadZ)

)
(0, z ⊗ u) =

(
0, z ⊗ (−u)

)
= (0, −z ⊗ u).

Thus we have (
exp(πiadZ)

)
(D,x ⊗ y, z ⊗ u)

= (D, −x ⊗ y, −z ⊗ u) = ε(D,x ⊗ y, z ⊗ u),

that is, exp((2πi/2)adZ) = ε. �

Set z2 = exp((2πi/2)adZ) = ε. Then since (e8C)ev = (e8C)z2 = (e8C)ε, we deter-
mine the structure of the group

(E8
C)ev = (E8

C)z2 = (E8
C)ε.

THEOREM 5.7.4

We have

(E8
C)ev

∼= Ss(16,C).

Proof
We define a mapping ϕev : Spin(16,C) → (E8

C)ε = (E8
C)0 by

ϕev(α̃)(D,P ) =
(
p(α̃)Dp(α̃)−1, ρ(α̃)P

)
.

Since ϕev(−1) = ε, for α̃ ∈ Spin(16,C) we have ϕev(α̃)ε = ϕev(α̃)ϕev(−1) =
ϕev(α̃(−1)) = ϕev((−1)α̃) = ϕev(−1)ϕev(α̃) = εϕev(α̃), that is, ϕ(α̃) ∈ (E8

C)ε.
Hence ϕev is well defined. Since (E8

C)ε is connected and dimC((e8C)ε) =
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dimC((e8C)ev) = 64 + 28 × 2 (see Theorem 5.7.2) = 120 = dimC(spin(16,C)),
Kerϕev is discrete, so Kerϕev is contained in the center of Spin(16,C): Kerϕev ⊂
z(Spin(16,C)) = {1, −1, ζ̃, −ζ̃}. However

ϕev(1) = ϕev(ζ̃) = 1 and ϕev(−1) = ϕev(−ζ̃) = ε,

so Kerϕ = {1, ζ̃}. Again, since (E8
C)ε is connected and dimC((e8C)ε) =

dimC(spin(16,C)), ϕ is surjective. Thus we have the isomorphism (E8
C)ev =

(E8
C)ε ∼= Spin(16,C)/{1, ζ̃} = Ss(16,C). �

Next, we define the semispinor group Ss(8,8). Let I8 =
(

−E
0

0
E

)
, E ∈ M(8,C),

and define Spin(8,8) by

Spin(8,8) =
{
α̃ ∈ Spin(16,C)

∣∣ (τI8)α̃ = α̃
}
,

where τ is the complex conjugation in Cl((CC)2). Then Spin(8,8) is a connected
(but not simply connected) group, and Ss(8,8) is defined by

Ss(8,8) = Spin(8,8)/{1, ζ̃},

which is a double-covering group of the identity-connected component group
SO(8,8)0 of SO(8,8) = {A ∈ SO(16,C) | τ(I8AI8) = A}.

We define C-linear transformations ε1 and ε2 of e8
C by

ε1(D,x ⊗ y, z ⊗ u) = (I8DI8, −x ⊗ y, z ⊗ u),

ε2(D,x ⊗ y, z ⊗ u) = (I8DI8, x ⊗ y, −z ⊗ u).

Then ε1, ε2 ∈ E8
C , ε1

2 = ε2
2 = 1, and ε, ε1, ε2 commute with each other.

We find an R-Lie algebra of type E8(8). We define an R-Lie algebra e8
′ by

e8
′ = so(8,8) ⊕ (iC ⊗ C) ⊕ (C ⊗ C) = (e8C)τε1

with the Lie bracket the same as that of e8
C .

LEMMA 5.7.5 (GOMYO [2, Proposition 3.5])

The Killing form B8 of the Lie algebra e8
C is given by

B8

(
(D1, (x1 ⊗ y1, z1 ⊗ u1)), (D2, (x2 ⊗ y2, z2 ⊗ u2))

)
= 30tr(D1D2) − 60

(
(x1, x2)(y1, y2) + (z1, z2)(u1, u2)

)
.

PROPOSITION 5.7.6

We have that e8
′ is an R-Lie algebra of type E8(8).

Proof
We find the signature of the Killing form B8

′ = B8 | e8
′ of e8

′. Decompose e8
′

into eigenspaces relative to τ :

e8
′ = (e8′)τ ⊕ (e8′)−τ ,
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(e8′)τ = {R ∈ e8
′ | τR = R}

=
{
(D,0,Q)

∣∣D ∈ so(8,8), τD = D,Q ∈ C ⊗ C
}
,

(e8′)−τ = {R ∈ e8
′ | τR = −R}

=
{
(D, iP,0)

∣∣D ∈ so(8,8), τD = −D,P ∈ C ⊗ C
}
.

Then, from Lemma 5.7.5, we see that the Killing form B8
′ on (e8′)τ is positive

definite and B8
′ on (e8′)−τ is negative definite. Therefore the number of positive

eigenvalues of B8
′ is dim((e8′)τ ) = 54 + 64 = 120, and the number of negative

eigenvalues of B8
′ is dim((e8′)−τ ) = 64+64 = 128. Therefore the signature of B8

′

is 128 − 120 = 8. Hence the type of B8
′ is E8(8). �

Let E8
′ be the automorphism group of e8

′:

E8
′ =
{
α ∈ IsoR(e8′)

∣∣ α[R1,R2] = [αR1, αR2]
}
.

Although we cannot give any explicit isomorphism between E8
′ and E8(8) of

Section 5.1, hereafter we denote e8
′ by e8(8) and E8

′ by E8(8).

PROPOSITION 5.7.7

The involution τε1 leaves (e8C)ev invariant.

Proof
We can easily check that (e8C)ev = g−2 ⊕ g0 ⊕ g2 of Theorem 5.7.2 is left invariant
under the action of τε1 of so(16,C). So we have this proposition. �

From Proposition 5.7.7, we have (e8(8))ev = (e8C)ev ∩ (e8C)τε1 = (e8C)ε ∩ (e8C)τε1 .
So we determine the structure of the group

(E8(8))ev = (E8
C)ev ∩ (E8

C)τε1 = (E8
C)ε ∩ (E8

C)τε1 .

THEOREM 5.7.8

We have

(E8(8))ev
∼= Ss(8,8) × {1, Jε2}.

Proof
For α ∈ (E8(8))ev ⊂ (E8

C)ev = (E8
C)ε, there exists α̃ ∈ Spin(16,C) such that

α = ϕev(α̃) (see Theorem 5.7.5). From the condition τε1αε1τ = α, that is,
τε1ϕev(α̃)ε1τ = ϕev(α̃), we have ϕev(τ(I8α̃)) = ϕev(α̃). Hence

(i) (τI8)α̃ = α̃ or (ii) (τI8)α̃ = ζ̃α̃.

Case (i). From the condition (τI8)α̃ = α̃, we have α̃ ∈ Spin(8,8).
Case (ii). We easily obtain that α̃ = j̃ satisfies condition (ii), where

j̃ =

(
1√
2
e0

1√
2
e0

)(
1√
2
e1

1√
2
e1

)
· · ·
(

1√
2
e7

1√
2
e7

)
∈ Spin(16,C).



3-graded decompositions of exceptional Lie algebras g 305

Here we define a transformation J of e8
C by

J(D,x ⊗ y, z ⊗ u) = (J8DJ8
−1, y ⊗ x,u ⊗ z),

where J8 =
(

0
E

−E
0

)
, E ∈ M(8,C). Then we have ϕev(j̃) = Jε2.

Thus we have the isomorphism (E8(8))0 = ((E8
C)τε1)ε ∼= Ss(8,8) ∪ Jε2(Ss(8,

8)) = Ss(8,8) × {1, Jε2}. �
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