On a property of commutators in the unitary group.

By

Jun-ichi Igusa

(Received Dec. 27, 1949)

In his interesting paper ${ }^{1)}$ Andre Weil had generalized the classical inversion theorem of Jacobi to non-abelian case. He had established namely the correspondence between the classes of representations of the Poincaré group of a Riemann surface \boldsymbol{C} of genus p and the classes of divisors on \boldsymbol{C}. The complex variety of the divisor classes of degree n may be called the " hyperjacobian variety" since it coincides with the Jacobian variety in the case of $n=1$. The author examined more than two years ago some topological properties of the hyperjacobian variety and observed that they are based on a property of commutators in the unitary group, which can be stated as follows:

Proposition f. The analytic mapping

$$
\begin{equation*}
f(X, Y)=X Y X^{-1} Y^{-1} \tag{1}
\end{equation*}
$$

from the product $U(n) \times U(n)^{2)}$ onto ${ }^{3)}{ }^{s} U(n)$ is "open at a point", $\{A, B\}$ if and only if the matrices A and B generate a subgroup of $U(n)$, which is irreducible as its own representation.

In order to " linearize" the mapping (1), we differentiate it and obtain

$$
\begin{aligned}
d f= & d X \cdot Y X^{-1} Y^{-1}+X Y \cdot d X^{-1} \cdot Y^{-1} \\
& +X \cdot d Y \cdot X^{-1} Y^{-1}+X Y X^{-1} \cdot d Y^{-1}
\end{aligned}
$$

[^0]If we multiply $f^{-1}=Y X Y^{-1} X^{-1}$ to this equation from the left side and if we put

$$
f^{-1} d f=\delta f, \quad X^{-1} d X=\delta X \text { etc., }
$$

we have

$$
\begin{aligned}
\partial f= & Y X Y^{-1} \cdot \delta X \cdot Y X^{-1} Y^{-1}+Y \cdot \delta X^{-1} \cdot Y^{-1} \\
& +Y X \cdot \delta Y \cdot X^{-1} Y^{-1}+\delta Y^{-1} \\
= & (Y X)\left[\left(Y^{-1} \cdot \delta X \cdot Y-\delta X\right)-\left(X^{-1} \cdot \delta Y X-\delta Y\right)\right](Y X)^{-1} .
\end{aligned}
$$

Now the "infinitesimal matrices" $\delta X, \delta Y$ and δf generate the Lie algebras $L(n)$ and ${ }^{s} L(n)$ of $U(n)$ and ${ }^{S} U(n)$ respectively; and our proposition f is. equivalent to the following

Proposition F, The linear mapping
(2) $\quad F(X, Y)=\left(A^{-1} X A-X\right)+\left(B^{-1} Y B-Y\right)$
from the direct sum $\dot{L}(n)+L(n)$ into ${ }^{s} L(n)$ is an "onto-mapping". if and only if the matrices A and B generate a subgroup of $U(n)$, which is irreducible as its own representation.

In order to prove this proposition we define the "inner product" (X, Y) for X, Y in ${ }^{8} L(n)$ by

$$
(X, Y)=\operatorname{tr}\left(X \bar{Y}^{*}\right),
$$

then (X, Y) is an invariant of the adjoint group of ${ }^{s} U(n)$. Now if we have
(3) $\quad F(L(n), L(n)) \not \varsubsetneqq^{s} L(n)$,
there exists at least one non-zero " vector" Z in ${ }^{s} L(n)$, which is "orthogonal" to the linear subvariety $F(L(n), L(n))$ of ${ }^{s} L(n)$. By a suitable operation T of the adjoint group of ${ }^{9} U(n)$, we can transform the matrix Z into the diagonal form as follows

$$
\begin{gathered}
\boldsymbol{T Z T}^{-1}=\tilde{Z}=\left(\begin{array}{cc}
\sqrt{-1} \theta_{1} & 0 \\
0 & \ddots \\
\sqrt{-1} \theta_{n}
\end{array}\right) \\
\theta_{1}=\ldots=\theta_{n_{1}}>\theta_{n_{1}+1}=\ldots=\theta_{n_{2}}>\ldots>\theta_{n_{t-1}+1}=\ldots=\theta_{n} .
\end{gathered}
$$

Since we have

$$
\operatorname{tr} \tilde{Z}=\sqrt{-1}\left(\theta_{1}+\ldots+\theta_{n}\right)=\operatorname{tr} Z=0
$$

and since $\tilde{Z} \neq 0$, we must have

$$
t \geqq 2
$$

Moreover if we put

$$
\tilde{A}=T A T^{-1}, \tilde{B}=T B T^{-1}
$$

the statement (3) is equivalent to the equations

$$
\begin{align*}
& \left(\tilde{A^{-1}} X \tilde{A}-X, \tilde{Z}\right)=0, \tag{4}\\
& \left(\tilde{B}^{-1} Y \tilde{B}-Y, \tilde{Z}\right)=0
\end{align*}
$$

for all X, Y in $L(n)$. Now let $a_{i j}$ and $x_{i j}(1 \leqq i, j \leqq n)$ be the coefficients of \tilde{A} and X respectively, then the first equation of the above ones can be written as

$$
\begin{equation*}
\sum_{i j k=1}^{n} \theta_{k}\left(\bar{a}_{i k} a_{j k} x_{i j}-x_{k k}\right)=0 . \tag{6}
\end{equation*}
$$

Since $x_{i j}$ are arbitary under the unitary restriction

$$
x_{i j}+\bar{x}_{j i}=0 \quad(1 \leqq i, j \leqq n)
$$

(6) is equivalent to

$$
\begin{align*}
& \sum_{k=1}^{n} \theta_{k}\left(\left|a_{h k}\right|^{2}-\delta_{h k}\right)=0, \tag{6a}\\
& \sum_{k=1}^{n} \theta_{k} \bar{a}_{i k} a_{j k}=0 \\
& (1 \leqq i, j, h \leqq n ; i \neq j) .
\end{align*}
$$

It follows from (6a)

$$
\begin{gathered}
\left(1-\sum_{k=1}^{n_{1}}\left|a_{h k}\right|^{2}\right) \theta_{n_{1}}=\sum_{k>n_{1}} \theta_{k}\left|a_{h k}\right|^{2} \\
\leqq \theta_{n_{1}+1}\left(1-\sum_{k=1}^{n_{1}}\left|a_{n k}\right|^{2}\right)
\end{gathered}
$$

for $1 \leqq h \leqq n_{1}$; since $\theta_{n_{1}}>\theta_{n_{1}+1}$, we must have

$$
\sum_{k=1}^{n_{1}}\left|a_{n k}\right|^{2}=1
$$

and therefore

$$
a_{h k}=a_{k l}=0 \quad\left(1 \leqq h \leqq n_{1}, k>n_{1}\right)
$$

By the continuation of this process we conclude that \tilde{A} must be of the following form

The equations (6b) are then automatically satisfied ; and conversely if \tilde{A} is of this form, (4) holds for every X in $L(n)$. In the same way (5) is equivalent to the fact that \tilde{B} is of the form (7), which completes our proof.

Now let \mathbb{E} be any discrete group, then the set $\boldsymbol{G}=\{\Phi\}$ of all unitary representations of degree n of this group constitute a compact space, if we introduce in \boldsymbol{G} a " weak topology" by the following set of operators on \boldsymbol{G} :

$$
\dot{\alpha}(\Phi)=\Phi(\alpha) \quad(\alpha \in \mathscr{G})
$$

In particular, if \mathbb{G} admits a finite number of generators $\alpha_{i}(1 \leqq i$ $\leqq m$) with defining relations

$$
\pi: \rho(\alpha)=1
$$

the points of \boldsymbol{G} are in a one-to-one correspondence with the set of m matrices $X_{i}(1 \leqq i \leqq m)$ satisfying

$$
\begin{gathered}
P: \rho(X)=I_{n} \quad(\text { unit matrix of degree } n) \\
X_{i} \bar{X}_{i}^{*}=I_{n} \quad(1 \leqq i \leqq m)
\end{gathered}
$$

Furthermore let $x_{i j k}+\sqrt{-1} y_{i j k}(1 \leqq j, k \leqq n)$ be the coefficients of X_{i} for $1 \leqq i \leqq m$, then the above equations are polynomial relations in the $2 m \cdot n^{2}$ real parameters $x_{i j k}$ and $y_{i j k}$ with integral rational coefficients, so that they define a compact algebraic variety $\boldsymbol{G}(\alpha, \pi)$ in the $2 m n^{2}$ dimensional real affine space, which is homeomorphic with \boldsymbol{G}. The "geometric structure" of $\boldsymbol{G}(\alpha, \pi)$ depends neither on the choice of the generators α nor on the choice of the defining relations π, when \mathbb{G} is given, so that we may speak of the geometric structure of \boldsymbol{G}

In particular let \mathbb{F} be the Poincare group of the Riemann surface \boldsymbol{C}; $\mathfrak{G H}$ has $2 p$ generators $\left\{\alpha_{i}, \beta_{i}\right\}(1 \leqq i \leqq p)$ with the defining relation

$$
\Pi_{i=1}^{p} \alpha_{i} \beta_{i} \alpha_{i}^{-1} \beta_{i}^{-1}=1
$$

We conclude from our proposition F the following
Corollary 1. If $p \geqq 2$, a point $\left\{A_{i}, B_{i}\right\}(1 \leqq i \leqq p)$ of the variety \boldsymbol{G} is multiple on \boldsymbol{G} if and only if the representation

$$
\Phi: \alpha_{i} \rightarrow A_{i}, \beta_{i} \rightarrow B_{i} \quad(1 \leqq i \leqq p)
$$

is reducible. Moreover it holds

$$
\operatorname{dim} \boldsymbol{G}=(2 p-1) n^{2}+1
$$

By a similar argument as in the proof of proposition F, we can also prove the

Corollary 2. If $p=1$, a point $\{A, B\}$ is multiple if and only if the representation

$$
\Phi: \alpha \rightarrow A, \quad \beta \rightarrow B
$$

contains the same irreducible representation at least two times. Moreover it holds

$$
\operatorname{dim} \boldsymbol{G}=n^{2}+n .
$$

We note that our propositions are false if we take $G L(n)$ instead of $U(n)$; and the two corollaries are also false if we consider the representations by $G L(n)$.

Now the variety G admits the transformation

$$
\left\{A_{i}, B_{i}\right\} \rightarrow\left\{T A_{i} T^{-1}, T B_{i} T^{-1}\right\} \quad(1 \leqq i \leqq p)
$$

for every T in $U(n)$; they form a group \mathfrak{F} which is locally isomorphic with ${ }^{s} U(n)$. We construct a "conjugate space" \boldsymbol{V} of \boldsymbol{G} by identifying the "equivalent" points of \boldsymbol{G} under this transformation group. It holds

$$
\operatorname{dim} \boldsymbol{V}= \begin{cases}2\left[(p-1) n^{2}+1\right] & (p \geqq 2) \\ 2 n & (p=1)\end{cases}
$$

and \boldsymbol{V} is a "base" of the "fibre-space" \boldsymbol{G}, where the "fibre" is the manifold of the group \mathfrak{F} in general for $p \geqq 2$. In view of Weil's result ${ }^{4)} \boldsymbol{V}$ gives the topological structure of the hyperjacobian variety (which is invariant under the "birational correspondence"). Now we can prove that the Poincare group of \boldsymbol{V} is a free abelian group with $2 p$ generators. Moreover \boldsymbol{C} is a subvariety of \boldsymbol{V} and the "canonical paths" $\left\{\mu_{i}, \beta_{i}\right\} \quad(1 \leqq i \leqq p)$ on \boldsymbol{C} generate exactly the Poincare group of \boldsymbol{V}, which is well-known in the case of the Jacobin variety.

[^1]
[^0]: 1) Généralisation des fonctions abéliennes, J. Math. pures et appliquées, Tome 17 (1938). Cf. Also H. Tôyoma's notes in Proc. Imp. Acad. Tokyo Vol. XIX-.
 2) We shall use the same notations as in Weyl's book: Classical groups (1939).
 s) This can be proved most elementary by Shoda's device: Einige Sätze über Matrizen, Jap. J. of Math., Vol. 13 (1937).
[^1]: 4) Cf. loc. cit 1)
