### MEMOIRS OF THE COLLEGE SCIENCE, UNIVERSITY OF KYOTO, SERIES A, Vol. XXVI, Mathematics No, 1. 1950.

# On the Uniqueness of Solutions of a System of Ordinary Differential Equations<sup>a</sup>

## By

## Taro Yoshizawa and Kyuzo Hayashi

#### (Received October 5, 1949)

The late Prof. Okamura discovered a remarkable function<sup>(2)</sup> concerning the uniqueness of the solution of Cauchy-problem of the system of differential equations. In this paper we extend it so as to fit to more general problems.

**1. Extended definition.** Consider a system of differential equations

(1) 
$$\frac{dy_i}{dx} = f_i(x, y_1, y_2, ..., y_n)$$
  $(i=1, 2, ..., n),$ 

where  $f_i$  are continuous for simplicity in the domain

$$G: 0 \leq x \leq a, \quad b_i \leq y_i \leq b'_i, \quad (i=1, 2, \dots, n).$$

Let  $H_{\alpha}$  be a hyperplane defined by  $x=\alpha$   $(0 \le \alpha \le \alpha)$  in G, and  $S_{\alpha}$  an arbitrary sub-space in  $H_{\alpha}$ .  $S_{\alpha}$  may be a single point or  $H_{\alpha}$  itself. Besides  $S_{\alpha}$  is considered as regular property in this paper;  $S_{\alpha}$  is supposed a closed set and hence among distances from a point P of  $H_{\alpha}$  to any point in  $S_{\alpha}$ , the minimum exists, which is called the distance from P to  $S_{\alpha}$  denoted by  $\overline{PS_{\alpha}}$  or  $\overline{S_{\alpha}P}$ .

Now let  $S_{\varepsilon}$  and  $S_{\varepsilon'}$  be two sub-spaces in G such as  $x=\overline{\varepsilon}$  and  $x=\overline{\varepsilon'}$  ( $\overline{\varepsilon}\leq \overline{\varepsilon'}$ ) respectively. Divide the interval  $[\overline{\varepsilon},\overline{\varepsilon'}]$  in  $\nu$  parts such as

$$\boldsymbol{\xi} = \hat{\boldsymbol{\varepsilon}}_0 \leq \boldsymbol{\xi}_1 \leq \dots \leq \boldsymbol{\xi}_{\nu} = \boldsymbol{\xi}'.$$

Take a point  $Q_k$  in G on the hyperplane  $H_{t_k}$  and through it draw the straight line, having the angular coefficients given by the values of  $f_i$  at the point  $Q_k$ . This line cuts the hyperplane  $H_{t_{k+1}}$  at a point, say  $P_{k+1}$   $(k=0, 1, ..., \nu-1)$ . Put

$$\varDelta = \overline{S_{\mathfrak{t}}Q_{\mathfrak{0}}} + \overline{P_{\mathfrak{1}}Q_{\mathfrak{1}}} + \dots + \overline{P_{\nu}S_{\mathfrak{t}}}.$$

## Taro Yoshizawa and Kyuzo Hayashi

For two given sub-spaces  $S_{\mathfrak{t}}$  and  $S_{\mathfrak{t}'}$ , consider all the possible values of  $\mathcal{A}$ . Tending all the differences  $\mathfrak{f}_k - \mathfrak{f}_{k-1}$   $(k=1, 2, \ldots, \nu)$  to zero, take the least of the limits of  $\mathcal{A}$ . We designate it by  $D(S_{\mathfrak{t}}, S_{\mathfrak{t}'})$ . Then a very broad extension of Okamura's function is made. When  $S_{\mathfrak{t}}$  and  $S_{\mathfrak{t}'}$  signify points P and Q respectively, it becomes Okamura's function D(P, Q).

 $D(S_{t}, S_{t'})$  has the same properties as D(P, Q), which run as follows;

a) For that a solution of (1) shall exist so as to pass through  $S_{\mathfrak{k}}$  and  $S_{\mathfrak{k}'}(0 \leq \boldsymbol{\xi} \leq \boldsymbol{\xi'} \leq a)$ , it is necessary and sufficient that

$$(2) \qquad D(S_{\mathfrak{t}}, S_{\mathfrak{t}'}) = 0.$$

The condition is necessary, for if a solution say C of (1) passes through  $S_{\mathfrak{t}}$  and  $S_{\mathfrak{t}'}$ , then  $\mathcal{A}$ , formed by points  $Q_k$  on C such as  $x = \hat{\mathfrak{t}} + \frac{k}{\nu}(\hat{\mathfrak{t}'} - \hat{\mathfrak{t}})$   $(k=0, 1, \dots, \nu-1)$ , tends to zero with  $\frac{1}{\nu}$  by the continuity of  $f_i$ ; hence  $D(S_{\mathfrak{t}}, S_{\mathfrak{t}'}) = 0$ . Conversely, let  $D(S_{\mathfrak{t}}, S_{\mathfrak{t}'}) = 0$ , then there is a sequence of values of  $\mathcal{A}$ ,

$$\mathcal{A}^{(\mu)} = \overline{S_{\xi} Q_{0}^{(\mu)}} + \overline{P_{1}^{(\mu)} Q_{1}^{(\mu)}} + \dots + \overline{P_{\nu_{\mu}}^{(\mu)} S_{\xi'}} \qquad (\mu = 1, 2, \dots),$$

tending to zero with  $\frac{1}{\mu}$ . The *x*-coordinates of the points  $P_k^{(\mu)}$  and  $Q_k^{(\mu)}$  are  $\hat{\varsigma}_k^{(\mu)}$  ( $\hat{\varsigma} = \hat{\varsigma}_0^{(\mu)} \leq \hat{\varsigma}_1^{(\mu)} \leq \dots \leq \hat{\varsigma}_{\nu_{\mu}}^{(\mu)} = \hat{\varsigma}'$ ), while  $P_0^{(\mu)}$  (or  $Q_{\nu_{\mu}}^{(\mu)}$ ) is the point of  $S_{\mathfrak{r}}$  (or  $S_{\mathfrak{r}'}$ ) which gives the distance  $\overline{S_{\mathfrak{r}}Q_0^{(\mu)}}$  (or  $\overline{P_{\nu_{\mu}}^{(\mu)}S_{\mathfrak{r}'}}$ ). Let  $y_i = Y_i^{(\mu)}(x)$  ( $i=1,2,\dots,n$ ) represent the segment  $Q_k^{(\mu)}\overline{P_{k+1}}$  for  $\hat{\varsigma}_k^{(\mu)} \leq x < \hat{\varsigma}_{k+1}^{(\mu)}$  ( $k=0,1,\dots,\nu_{\mu}-1$ ) and the points  $P_0^{(\mu)}$  and  $Q_{\nu_{\mu}}^{(\mu)}$  for  $x=\hat{\varsigma}$  and  $\hat{\varsigma}'$  respectively. These functions are discontinuous at most at  $x=\hat{\varsigma}_k^{(\mu)}$  and we represent by  $\sigma_i^{(\mu)}(x)$  the sum of discontinuities of  $Y_i^{(\mu)}(x)$  for  $[\hat{\varsigma}, x]$ . Then the differences  $Y_i^{(\mu)}(x) - \sigma_i^{(\mu)}(x)$  are continuous in  $\hat{\varsigma} \leq x \leq \hat{\varsigma}'$ . Evidently we have  $|\sigma_i^{(\mu)}(x)| \leq \Delta^{(\mu)}$ .

Therefore we have, for  $\xi \leq x \leq \xi'$ ,

$$Y_{i}^{(\mu)}(x) - \sigma_{i}^{(\mu)}(x) = Y_{i}^{(\mu)}(\hat{\varsigma}) - \sigma_{i}^{(\mu)}(\hat{\varsigma}) + \int_{\varsigma}^{x} f_{i}^{*}(s) ds,$$

where  $f_i^*(s) = f_i[\xi_k, Y_1^{(\mu)}(\xi_k), \dots, Y_n^{(\mu)}(\xi_k)]$  for  $\xi_k \leq s < \xi_{k+1}$ .

Consequently the sequence of the functions  $Y_i^{(\mu)}(x) - \sigma_i^{(\mu)}(x)$  is equally continuous. Hence we can select a uniformly convergent sequence, and we have in the limit

On the Uniqueness of Solutions of a System etc.

$$Y_{i}(x) = Y_{i}(\xi) + \int_{\xi}^{x} f_{i}[t, Y_{1}(t), \dots, Y_{n}(t)] dt,$$

for  $\sigma_i^{(\mu)}(x)$  tend to zero uniformly. Therefore we have obtained a solution  $y_i = Y_i(x)$  of (1), passing through  $S_{\varepsilon}$  and  $S_{\varepsilon'}$ .

b) Consider a point P in G such as  $x = \hat{\varsigma}'$ . For  $\hat{\varsigma} \leq \hat{\varsigma}' \leq \hat{\varsigma}''$ , we have

(3) 
$$D(S_{\xi}, S_{\xi''}) \leq D(S_{\xi}, P) + D(P, S_{\xi''}).$$

For three points  $P(\hat{\varsigma}, \eta_1, \eta_2, \dots, \eta_n)$ ,  $Q(\hat{\varsigma}', \eta_1', \eta_2', \dots, \eta_n')$  and  $R(\hat{\varsigma}'', \eta_1'', \eta_2'', \dots, \eta_n'')$ , where  $\hat{\varsigma} \leq \hat{\varsigma}' \leq \hat{\varsigma}''$ , we have

(4) 
$$\begin{cases} D(S_{\xi}, Q) \leq D(S_{\xi}, R) + M(\xi'' - \xi') + \sqrt{(\eta_{1}'' - \eta_{1}')^{2} + \dots + (\eta_{n}'' - \eta_{n}')^{2}}, \\ D(Q, S_{\xi''}) \leq D(P, S_{\xi''}) + M(\xi' - \xi) + \sqrt{(\eta_{1}' - \eta_{1})^{2} + \dots + (\eta_{n}' - \eta_{n})^{2}}, \end{cases}$$

*M* being the upper bound of  $\sqrt{f_1^2 + f_2^2 + \dots + f_n^2}$  in *G*. The proof may be done easily from the definition of  $D(S_{\mathfrak{r}}, S_{\mathfrak{r}'})$ .

c)  $D(S_{z}, P)$  is a continuous function of P, and satisfies the Lipschitz condition with regard to the  $(y_1, y_2, \ldots, y_n)$ -coordinates of P. This is evident by b).

2. Uniqueness theorems. Consider a system of differential equations

(5) 
$$\frac{dy_i}{dx} = f_i(x, y_1, y_2, \dots, y_n) \quad (i=1, 2, \dots, n),$$

where  $f_i$  are continuous in a domain

 $G: 0 \leq x \leq a, \ b_i \leq y_i \leq b_i', \ (i=1, 2, \dots, n, \ b_i \leq 0, \ b_i' \geq 0),$ and  $f_i(x, 0, \dots, 0) = 0$  for  $0 \leq x \leq a, \ (i=1, 2, \dots, n),$ 

which means that x-axis is at least a solution.

We denote the sub-space  $S_0$ , which contains the point O(0, 0, ..., 0), by  $S_o$ ; also  $S_a$  containing the point A(a, 0, ..., 0) by  $S_A$ .

**Theorem 1.** In order that the solution of (5), starting from a point in  $S_o$  and arriving at a point in  $S_A$ , should be unique, it is necessary and sufficient that there exist two functions  $\varphi(x, y_1, y_2, \dots, y_n)$  and  $\psi(x, y_1, y_2, \dots, y_n)$  continuous in G and

 $\varphi(\mathbf{x}, \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n) \geq 0, \quad \psi(\mathbf{x}, \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n) \geq 0,$ 

and zero for all points of  $S_o$  respectively  $S_A$ , i.e.,

 $\varphi(S_o) = 0, \qquad \psi(S_A) = 0,$ 

and for  $0 \leq x \leq a$ ,

Taro Yoshizawa and Kyuzo Hayashi

$$\varphi(x, 0, \dots, 0) + \psi(x, 0, \dots, 0) = 0,$$
  

$$\varphi(x, y_1, y_2, \dots, y_n) + \psi(x, y_1, y_2, \dots, y_n) > 0$$
  
provided  $|y_1| + |y_2| + \dots + |y_n| \ge 0,$ 

and moreover both functions satisfy in G the Lipschitz condition with regard to  $(y_1, y_2, \ldots, y_n)$ , and for all points  $(x, y_1, y_2, \ldots, y_n)$ in G, we have

$$\overline{\lim_{t \to 0}} \frac{1}{t} \{ \varphi(x+t, y_1 + tf_1, \dots, y_n + tf_n) - \varphi(x, y_1, \dots, y_n) \} \leq 0,$$
  
$$\underline{\lim_{t \to 0}} \frac{1}{t} \{ \psi(x+t, y_1 + tf_1, \dots, y + tf_n) - \psi(x, y_1, \dots, y_n) \} \geq 0.^{(3)}$$

Proof. If the solution is unique, put

$$\varphi(x, y_1, y_2, \dots, y_n) = D(S_o, P),$$
  
$$\psi(x, y_1, y_2, \dots, y_n) = D(P, S_A),$$

where P is the point  $(x, y_1, y_2, \dots, y_n)$ . Then  $\varphi$  and  $\psi$  satisfy these conditions; e.g.,  $D(S_o, P)$  is a continuous function of P, non negative, and zero only when P is on a solution passing through  $S_o$ . For two points P and Q on a same hyperplane  $H_x$ , we have

$$|D(S_o, P) - D(S_o, Q)| \leq D(P, Q) = PQ,$$

and the function  $D(S_o, P)$  does not increase with x on any solution of (5). If  $P_1$  and  $P_2$  are two points on one solution,  $P_2$  on the right of  $P_1$ , then

$$D(S_0, P_2) \leq D(S_0, P_1) + D(P_1, P_2),$$

where  $D(P_1, P_2) = 0$ . Finally  $D(S_o, P) + D(P, S_A)$  is zero when and only when P is on one solution passing through  $S_o$  and  $S_A$ , i. e. on x-axis.

Conversely, if there exist such two functions,  $\varphi$  and  $\psi$ , it is easy to prove that  $\varphi + \psi$  is zero on a solution passing through  $S_o$ and  $S_A$ . In fact, let the solution intersect  $S_o$  at  $P_0$  and  $S_A$  at  $P_1$ . Then  $D(S_o, P_0) = 0$ , since  $P_0$  belongs to  $S_o$ .  $D(S_o, P)$  being non increasing with x on the solution,  $D(S_o, P)$  must always be zero on it. Similarly  $D(P, S_A)$  must always be zero on the same solution. Hence the solution must be x-axis itself. Q. E. D.

Choosing  $S_o$  and  $S_A$  in Theorem 1 conveniently, we shall have

the necessary and sufficient uniqueness conditions in Fukuhara's problem<sup>(4)</sup>, boundary problems of the differential equation of the second order and others.

Now consider

(6) 
$$\frac{d^2y}{dx^2} = f\left(x, y, \frac{dy}{dx}\right),$$

where f(x, y, y') is continuous in a domain  $[0 \le x \le a, b \le y \le b', (b \le 0, b' \ge 0), |y'| < \infty]$ , and f(x, 0, 0) = 0 for  $0 \le x \le a$ . Consider the solution of (6) which vanishes at x=0 and x=a. In the case of  $|y'| \le C < \infty$ , our problem becomes to search the conditions for that the solution of the system

$$\begin{cases} y'=z, \\ z'=f(x, y, z), \\ G: 0 \leq x \leq a, \ b \leq y \leq b', \ |z| \leq C, \end{cases}$$

passing through a point of the segment  $(x=0, y=0, |z| \leq C)$  and a point on the segment  $(x=a, y=0, |z| \leq C)$ , shall be unique. As a special case of the Theorem 1, we have

**Theorem 2.** If we restrict to the solutions such as  $|y'| \leq C$ , in order that the solution of (6), for which y=0 at x=0 and x=a, should be unique, it is necessary and sufficient that there should exist two continuous functions in G,  $\varphi(x, y, z)$  and  $\psi(x, y, z)$ , such that

$$\varphi(x, y, z) \ge 0, \qquad \psi(x, y, z) \ge 0,$$
  
 $\varphi(0, 0, z) = 0, \qquad \psi(a, 0, z) = 0 \text{ for } |z| \le C,$ 

and for  $0 \leq x \leq a$ 

$$\varphi(x, 0, 0) + \psi(x, 0, 0) = 0,$$
  
 $\varphi(x, y, z) + \psi(x, y, z) > 0 \text{ provided } |y| + |z| \ge 0.$ 

and both functions verify in G the Lipschitz condition with regard to (y, z), and, for all points (x, y, z) in G, we have

$$\overline{\lim_{t\to 0}} \frac{1}{t} \{\varphi(x+t, y+tz, z+tf) - \varphi(x, y, z)\} \leq 0,$$
  
$$\underline{\lim_{t\to 0}} \frac{1}{t} \{\psi(x+t, y+tz, z+tf) - \psi(x, y, z)\} \geq 0.$$
<sup>(3)</sup>

**Theorem 3.** If the restriction  $|y'| \leq C$  in Theorem 2 is taken

away, we may enunciate as follows: Take an arbitrary positive number  $L(0 < L < \infty)$  (i. e.; C in the above) and let  $\varphi$  and  $\psi$ , in Theorem 2, be denoted by  $\varphi_L$  and  $\psi_L$ . Then for the uniqueness it is necessary and sufficient that there should exist  $\varphi_L$  and  $\psi_L$ , stated above, however great L may be.

Theorem 4. When  $|z| \leq C$  is replaced by  $|z| < \infty$ , if the functions  $\varphi$  and  $\psi$  with the properties stated in Theorem 2 exist, then the solution of (6) passing through (x=0, y=0) and (x=a, y=0) is unique (only sufficient conditions).

Analogous theorems for theorem 2, 3 and 4 may easily be concluded also, when  $|y| < \infty$ :

3. Further extention. In this case, to form  $\Delta$ , let us divide the segment  $[\alpha, \gamma]$   $(0 \le \alpha \le \beta \le \gamma \le \alpha)$  in  $\nu$  parts as follow:

$$\hat{\varsigma}_0 \leq \hat{\varsigma}_1 \leq \hat{\varsigma}_2 \leq \dots \leq \hat{\varsigma}_{\mu} \leq \hat{\varsigma}_{\mu+1} \leq \dots \leq \hat{\varsigma}_{\nu},$$

where  $\hat{\varsigma}_0 = \alpha$ ,  $\hat{\varsigma}_{\mu} = \beta$  and  $\hat{\varsigma}_{\nu} = \gamma$  are taken into the dividing points. Now put

$$\mathcal{A} = \overline{S_{\alpha}Q_{0}} + \overline{P_{1}Q_{1}} + \dots + \overline{P_{\mu}Q_{\mu}} + \dots + \overline{P_{\nu}S_{\tau}} + \overline{P_{\mu}S_{\beta}} + \overline{S_{\beta}Q_{\mu}}.$$

So we obtain a function  $D(S_{\alpha}, S_{3}, S_{r})$  extending D(P, Q). Further than that, we may for

 $0 \leq u_1 \leq u_2 \leq \dots \leq u_{\nu} \leq a$ 

also define  $D(S_{\alpha_1}, S_{\alpha_2}, \dots, S_{\alpha_{\nu}})$ . These generalized functions have the same properties as D(P, Q); namely

a) In order that there should exist a solution of (1), passing through all the given sub-spaces  $S_{\alpha_1}, S_{\alpha_2}, \ldots, S_{\alpha_{\nu}}, (\alpha_1 \leq \alpha_2 \leq \ldots \leq \alpha_{\nu})$ , it is necessary and sufficient that we shall have

$$D(S_{\alpha_1}, S_{\alpha_2}, \ldots, S_{\alpha_{\nu}}) = 0.$$

b) Consider a point P in G such as  $x=\xi$ . If  $a_{\mu-1} \leq \xi \leq a_{\mu}$  $(2 \leq \mu \leq \nu)$ , then

$$D(S_{\alpha_1}, S_{\alpha_2}, \dots, S_{\alpha_{\nu}}) \leq D(S_{\alpha_1}, S_{\alpha_2}, \dots, S_{\alpha_{\mu-1}}, P)$$
  
+  $D(P, S_{\alpha_{\nu}}, \dots, S_{\alpha_{\nu}}).$ 

For two points  $P(\xi, \eta_1, \ldots, \eta_n)$  and  $Q(\xi', \eta'_1, \ldots, \eta'_n)$ , if  $a_n \leq \xi \leq \xi' \leq a$ , then

$$D(S_{\alpha_1}, S_{\alpha_2}, \dots, S_{\alpha_{\nu}}, P) \leq D(S_{\alpha_1}, S_{\alpha_2}, \dots, S_{\alpha_{\nu}}, Q) + M(\hat{\varsigma}' - \hat{\varsigma}) + \sqrt{(\eta_1' - \eta_1)^2 + \dots + (\eta_n' - \eta_n)^2},$$

## On the Uniqueness of Solutions of a System etc.

and also, if  $0 \leq \xi \leq \xi' \leq a_1$ , then

$$D(Q, S_{\alpha_1}, \dots, S_{\alpha_{\nu}}) \leq D(P, S_{\alpha_1}, \dots, S_{\alpha_{\nu}}) + M(\hat{\varsigma}' - \hat{\varsigma}) + \sqrt{(\eta_1' - \eta_1)^2 + \dots + (\eta_n' - \eta_n)^2},$$

M being the upper bound of  $\sqrt{f_1^2 + f_1^2 + \dots + f_n^2}$  in G.

c)  $D(S_{\alpha_1}, \ldots, S_{\alpha_{\nu}}, P)$ ,  $(p \in H_i, a_{\nu} \leq \hat{s} \leq a)$  is continuous with respect to P in  $[a_{\nu} \leq x \leq a, b_i \leq y_i \leq b'_i \ (i=1, 2, \ldots, n)]$  and it satisfies the Lipschitz condition with regard to the  $(y_1, y_2, \ldots, y_n)$ -coordinates of P.

Remark 1. 
$$D(S_{\alpha_1}, \dots, S_{\alpha_{i-1}}, H_i, S_{\alpha_{i+1}}, \dots, S_{\alpha_{\nu}})$$
  
= $D(S_{\alpha_1}, \dots, S_{\alpha_{i-1}}, S_{\alpha_{i+1}}, \dots, S_{\alpha_{\nu}}), (2 \le i \le \nu - 1).$ 

4. Uniqueness theorems. Theorem 5. Consider a system of differential equations (5). For the points  $O(0, 0, \ldots, 0)$ ,  $A(a, 0, \ldots, 0)$  and  $A_j(a_j, 0, \ldots, 0)$   $[(j=1, 2, \ldots, \nu-1), 0=a_0 < a_1 < a_2 < \ldots \\ \ldots < a_\nu = a]$  let certain sub-spaces  $S_0$ ,  $S_{a_j}$  and  $S_a$ , containing the points O,  $A_j$  and A respectively, be denoted by  $S_0$ ,  $S_{A_j}$   $(j=1,2,\ldots,\nu-1)$  and  $S_A$  respectively. When  $S_0$ ,  $S_{A_j}$  and  $S_A$  are given, in order that the solution of (5), passing through all the sub-spaces  $S_0$ ,  $S_{A_j}(j=1,2,\ldots,\nu-1)$  and  $S_A$ , should be unique, it is necessary and sufficient that there shall exist  $2^{\nu}$  functions,  $\varphi_j(x, y_1,\ldots,y_n)$  and  $\psi_j(x, y_1,\ldots,y_n)$   $(j=1,2,\ldots,\nu)$ , as follows: At first let

$$G_j: a_{j-1} \leq x \leq a_j, \ b_i \leq y_i \leq b'_i \ (i=1, 2, \dots, n),$$
$$[j=1, 2, \dots, \nu].$$

L: x-axis,

and  $P: (x, y_1, y_2, ..., y_n).$ 

Then  $\varphi_j(P)$  and  $\psi_j(P)$  are continuous functions defined in  $G_j$  and always

 $\varphi_{j}(P) \geq 0, \quad \psi_{j}(P) \geq 0 \quad (j=1,2,\ldots,\nu),$  $\varphi_{1}(P) = 0 \quad \text{for} \quad P \in L + S_{o},$  $\varphi_{j}(P) = 0 \quad \text{for} \quad P \in L \quad (j=2,3,\ldots,\nu)$ 

and, for the point P such as  $\varphi_j(P) = 0$   $(P \in S_{A_j})$ ,  $\varphi_{j+1}(P) = 0$  $(j=1, 2, ..., \nu-1)$  and also

$$\psi_{\nu}(P) = 0, \text{ for } P \in L + S_{A},$$
  
$$\psi_{j}(P) = 0 \text{ for } P \in L \quad (j=1, 2, \dots, \nu-1)$$

and, for the point P such as  $\psi_j(P) = 0$   $(P \in S_{A_{j-1}})$ ,  $\psi_{j-1}(P) = 0$   $(j = 2, 3, \dots, \nu)$  and, for  $P \in G_j$ ,

$$\begin{split} \varphi_{j}(P) + \psi_{j}(P) &= 0 \qquad (P \in L), \\ \varphi_{j}(P) + \psi_{j}(P) >_{\bullet} 0 \qquad (P \in L), \end{split}$$

both functions  $\varphi_j$  and  $\psi_j$  satisfying in  $G_j$  the Lipschitz condition with regard to  $(y_1, y_2, \ldots, y_n)$ , and, for all points  $(x, y_1, y_2, \ldots, y_n)$ in  $G_j$ , we have

$$\overline{\lim_{t \to 0}} \frac{1}{t} \{ \varphi_j(x+t, y_1+tf_1, \dots, y_n+tf_n) - \varphi_j(x, y_1, \dots, y_n) \} \leq 0$$
  
$$\lim_{t \to 0} \frac{1}{t} \{ \psi_j(x+t, y_1+tf_1, \dots, y_n+tf_n) - \psi_j(x, y_1, \dots, y_n) \} \geq 0^{(3)}$$
  
$$(j=1, 2, \dots, \nu)$$

The proof is omitted.

According to the suitable choice of  $S_o$ ,  $S_{A_j}(j=1, 2, ..., \nu-1)$ and  $S_A$  in Theorem 5, we may obtain the necessary and sufficient conditions for the uniqueness in Fukuhara's problem (loc. cit.), boundary problems of a differential equation of n-th order, generalized Fukuhara's problem and various other kinds of problems.

Let us e.g., consider the differential equation

(7) 
$$\frac{d^3y}{dx^3} = f\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}\right),$$

where f(x, y, y', y'') is continuous in the domain  $[0 \le x \le b, |y| \le C, |y'| < \infty, |y''| < \infty]$  and f(x, 0, 0, 0) = 0 for  $0 \le x \le b$ . Consider the solution of (7) for which y=0 at x=0, x=a and x=b, where 0 < a < b. Now we consider only the solution such as  $|y'|, |y''| \le d < \infty$ . Then our problem is reduced to search the uniqueness condition for the solution of the system

$$\begin{cases} y'=u, \\ u'=v, \\ v'=f(x, y, u, v) \\ G: 0 \leq x \leq b, \ |y| \leq C, \ |u| \leq d, \ |v| \leq d \end{cases}$$

which passes through a point of  $S_o(x=0, y=0, |u| \leq d, |v| \leq d)$ , a point of  $S_A(x=a, y=0, |u| \leq d, |v| \leq d)$  and a point of  $S_B(x=b, y=0, |u| \leq d, |v| \leq d)$ . By the above theorem we have

**Theorem 6.** If we restrict solutions such as  $|y'| \leq d$  and

 $|y''| \leq d$ , in order that the solution of (7), for which y=0 at x=0, x=a and x=b, shall be unique, it is necessary and sufficient that there exist four functions,  $\varphi_1(x, y, u, v)$ ,  $\varphi_2(x, y, u, v)$ ,  $\psi_1(x, y, u, v)$  and  $\psi_2(x, y, u, v)$  such as follows: At first let

$$egin{aligned} G_1: 0 \leq & x \leq a, \ |y| \leq c, \ |u| \leq d, \ |v| \leq d, \ G_2: a \leq & x \leq b, \ |y| \leq c, ullet |u| \leq d, \ |v| \leq d. \end{aligned}$$

Then  $\varphi_j$  and  $\psi_j$  are continuous functions defined in  $G_j(j=1,2)$ and always

$$\varphi_1 \geq 0, \quad \psi_1 \geq 0, \quad \varphi_2 \geq 0, \quad \psi_2 \geq 0,$$

and for  $|u| \leq d$  and  $|v| \leq d$ 

$$\varphi_1(0, 0, u, v) = 0$$
  
 $\psi_2(b, 0, u, v) = 0,$ 

and,  $\varphi_2(a, 0, u, v) = 0$  for u and v such as  $\varphi_1(a, 0, u, v) = 0$ , and,  $\psi_1(a, 0, u, v) = 0$  for u and v such as  $\psi_2(a, 0, u, v) = 0$ , and for  $0 \le x \le a$ 

$$\varphi_1(x, 0, 0, 0) + \psi_1(x, 0, 0, 0) = 0,$$

 $\varphi_1(x, y, u, v) + \psi_1(x, y, u, v) > 0 \quad \text{provided} \ |y| + |u| + |v| \ge 0,$  for  $a \le x \le b$ 

 $\varphi_2(x, 0, 0, 0) + \psi_2(x, 0, 0, 0) = 0,$ 

 $\varphi_2(x, y, u, v) + \psi_2(x, y, u, v) > 0$  provided  $|y| + |u| + |v| \neq 0$ .

 $\varphi_1, \varphi_2, \psi_1$  and  $\psi_2$  satisfy the Lipschitz condition with regard to (y, u, v), and for all points (x, y, u, v) in  $G_j$ , we have

$$\overline{\lim_{t \to 0}} \frac{1}{t} \{ \varphi_j(x+t, y+tu, u+tv, v+tf) - \varphi_j(x, y, u, v) \} \leq 0, \\
\underline{\lim_{t \to 0}} \frac{1}{t} \{ \psi_j(x+t, y+tu, u+tv, v+tf) - \psi_j(x, y, u, v) \} \geq 0,^{(3)} \\
(j=1, 2)$$

Theorems analogous to the theorems 3 and 4 may easily be concluded. For Fukuhara's problem such as  $y_1(0) = y_2(a) = y_3(b) = 0$  (0 < a < b) of the system

Taro Yoshizawa and Kyuzo Hayashi

$$\begin{cases} \frac{dy_1}{dx} = f_1(x, y_1, y_2, y_3), \\ \frac{dy_2}{dx} = f_2(x, y_1, y_2, y_3), \\ \frac{dy_3}{dx} = f_3(x, y_1, y_2, y_3), \\ G: 0 \le x \le b, \ b_i \le y_i \le b'_i \ (i=1, 2, 3) \ (b_i \le 0, \ b'_i \ge 0) \end{cases}$$

where  $f_i(x, 0, 0, 0) = 0$  (i=1, 2, 3),  $S_o$ ,  $S_A$  and  $S_B$  are  $(x=0, y_1=0, b_2 \le y_2 \le b_2', b_3 \le y_3 \le b_3')$ ,  $(x=a, b_1 \le y_1 \le b_1', y_2=0, b_3 \le y_3 \le b_3')$ and  $(x=b, b_1 \le y_1 \le b_1', b_2 \le y_2 \le b_2', y_3=0)$  respectively.

**Remark 2.** The Okamura's work  $(1942)^{(5)}$  can be generalized. **Remark 3.**  $\varphi$  and  $\psi$  etc. may be modified as follows:

They become continuous in the domain (closed) and their partial derivatives continuous in the domain (open) and the remaining properties are the same as the original ones. For instance, the condition

(8) 
$$\overline{\lim_{t\to 0}}\frac{1}{t}\{\varphi(x+t, y_1+tf_1, \dots, y_n+tf_n)-\varphi(x, y_1, \dots, y_n)\} \leq 0$$

will be replaced by the condition

(9) 
$$\frac{\partial \varphi}{\partial x} + \sum_{i=1}^{n} \frac{\partial \varphi}{\partial y_i} f_i \leq 0.$$

In (8) put

$$\varphi(\mathbf{x}, \mathbf{y}_1, \mathbf{y}_2, \ldots, \mathbf{y}_n) e^{-\mathbf{x}} = \overline{\varphi}(\mathbf{x}, \mathbf{y}_1, \mathbf{y}_2, \ldots, \mathbf{y}_n),$$

then

$$\overline{\lim_{t\to 0}} \frac{1}{t} \{ \overline{\varphi}(x+t, y_1+tf_1, \dots, y_n+tf_n) - \overline{\varphi}(x, y_1, \dots, y_n) \} \leq -\overline{\varphi}(x, y_1, \dots, y_n)$$

where  $\overline{\varphi}(x, y_1, y_2, \dots, y_n)$  is positive or zero with  $\varphi(x, y_1, \dots, y_n)$ . Therefore we have to prove the following theorem in which we represent for convenience  $(y_1, y_2, \dots, y_n)$  etc. by vector-symbol y etc..

**Theorem 7.** i) Let  $\varphi(x, y)$  be continuous and positive or zero in the closed domain  $G[0 \le x \le a, b_i \le y_i \le b'_i \ (i=1, 2, \dots, n)]$  and it satisfies Lipschitz condition, i.e., there exists a positive constant K such as in G

$$|\varphi(\mathbf{x}', \mathbf{y}') - \varphi(\mathbf{x}, \mathbf{y})| \leq K(|\mathbf{x}' - \mathbf{x}| + |\mathbf{y}' - \mathbf{y}|)$$

ii) At each point (x, y) in G, let  $\varphi(x, y)$  satisfy the inequality

$$\overline{\lim_{t\to 0}}\frac{1}{t}\{\varphi(\mathbf{x}+t,\mathbf{y}+\mathbf{f}t)-\varphi(\mathbf{x},\mathbf{y})\}\leq -\varphi(\mathbf{x},\mathbf{y})\ (\leq 0),$$

where  $f_i(x, y)$  (i=1, 2, ..., n) are continuous in G.

Then there exists a continuous function  $\tilde{\varphi}(x, y)$  in G such as follows: According as  $\varphi(x, y)$  is positive or zero,  $\tilde{\varphi}(x, y)$  is positive or zero. It has the bounded continuous partial derivatives  $\frac{\partial \widetilde{\varphi}}{\partial x}, \frac{\partial \widetilde{\varphi}}{\partial y_1},$  $\frac{\partial \tilde{\varphi}}{\partial r}$  in the inside of *G* which satisfy  $\partial y_n$ 

$$\frac{\partial \tilde{\varphi}(x,y)}{\partial x} + \sum_{i=1}^{n} \frac{\partial \tilde{\varphi}(x,y)}{\partial y_{i}} f_{i}(x,y) \leq 0.$$

This remark we owe to Prof. Nagumo. The proof is omitted. And also it is the same with  $\psi$ .

Thus we have succeeded in developing the profound idea of the late Prof. Hiroshi Okamura much regretted by his early death. At the end we express heartily thanks to Prof. Toshizô Matsumoto, to whom we owe a great debt for his guidance in our researches.

> September 1949, Mathematical Institute, Kyoto University.

#### References

1) The contents have been already published in "Sugaku" (The Mathematics) Vol. 2, No. 1. (1949).

2) Okamura, Mem. Coll. Sci. Kyoto Univ. A. 23 (1941), pp. 225-231.

3) By the remark of Prof. M. Nagumo  $\varphi$  and  $\psi$  can be replaced with the conti-

nuous functions whose patial derivatives  $\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y_1}, \dots, \frac{\partial \varphi}{\partial y_n}, \frac{\partial \psi}{\partial x}, \frac{\partial \psi}{\partial y_1}, \dots, \frac{\partial \psi}{\partial y_n}$  are continuous in the inside of G (except the boundary). Cf. Remark. 3.

4) Nagumo, Proc. of Phys-Math. Soc. of Japan. Series 3, vol. 25, p. 221.

5) Okamura, Mem. Coll. Sci. Kyoto Univ. A. 24 (1942), p. 22.