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We intend to give a general and direct definition of the surface
integral (which appears in the Gauss-Green formura, j. e. J Çfdxdy).

It is defined ordinarily by means of the area of the surface
where we suppose the existence of its tangent planes, while j fdxdy
depends only upon the area of the projection of the surface on
xy-plane. In this case the area must be calculated, according to
the multiplicity in positive and negative senses after the form of
the surface. Theoretical difficulty lies in this respect. For the
curvilinear integral it may be solved easily by the Stieltjets integral.

In this paper first we define the mapping of bounded variation
o f two dimensions"' by using the theory o f Brouwer's " Abbil-
dungsgrad," (1 ) and  then two dimensional Stieltjes integral, after
that we may extend immediately the surface integral.

This extension is not the Lebesgue-Stieltjes integral into two
dimensions, but it is  a direct extension of the original Stieltjes
integral into two dimensions. We remark that the modern theory
of the integral ignores this point.

In the next, I shall mention the validity of the Gauss-Green's
theorem under the notion above mentioned o f bounded variation
for the closed (Jordan) surface without using any other condition.

This theorem, by its frequent application in mathematical
physics, has hitherto been treated roughly until Kellogg who has
proved it under certain mathematically rigorous conditions. Now
our conditions are farther more general, and extremely simple
(cf. (3) of the last remark). The present author believes that his
reserch makes clear of the mathematical nature of this theorem,
and he thinks it necessary to study the potential theory to which
it is applied—in particular, several methods concerning to Dirichlet
problem in space—from thie new stand point.
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Further, the extention to the dimensions higher than two is
not difficut, though such a one like Stokes's theorem (the relation
between two dimensions and one dimension in three dimensions)
is  h n  important analogous problem, it is a question that it is
discussed in the similar manner.

I. Mapping of the bounded variation. Let (u, y) and (x, y) be
rectangular coordinates of respective planes, and c(u, y), 0(u, y) be
continuous functions on a bounded closed region of uy-plane (the
sum of open set and its boundary). We consider the mapping of
;J-  into xy-plane, namely

: 0(u, y), y= 0(u, y)

Briefly, we write it (x, y)=21.(u, v), also W(4) the image of 4  in
xy-plane, and the like.

Let ô be an open subset of 4 .  When a point P( x, y) does not
belong to the boundary of 8, t (—  8), we denote by ./4.4(x, Y),8]  or
simply by A (P, 8), the " Abbildungsgrad " of a at the point P.

W e call the variation on 8 of the mapping A, the following
integral, (if integrable)

(4)
A (P, 8)dm (P) taken over the whole plane (or a (8) —t(—ô))

and we denote it by V (8 ) . Especially, when the mapping functions

50, 0 are continuously differentiable in el, and that If a ( v, d u d v  <
(u, v)

+ 00, we see easily from the definition of " Abbildungsgrad " that

V (ô)_—f &
( v , d u d v  (especially by the Nagum o's theory).
(u, v)

If the following conditions B , and B , about the mapping a are
fufilled, we call W the mapping of the bounded variation :

B1. We may divide LT into the sum o f a  finite number of

closed regions 8,(i =1, 2 , . . . ,n )  (i. e .j= V-8,, when i j ,  8, • 8 j =0)

however small it may be, such that m [  W( — (3)]=-o is possible ;
we denote such a subdivision by (a ),

132 .  For every such subdivision ( a ) ,  V (8,) is determinate, and
E I VOA is bounded.
E=1

We call the upper bound supEj v(ai )1, the total variation on
(a ) 4 .4

of the mapping W.
With this bounded variation, especially with the condition B2,
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we will prove the following theorem, also necessary to prove
Gauss-Green's theorem : For the mapping Of the bounded variation,
let (0) be a subdivision satisfying the condition B , ; then to the

_
point P of xy-plane, if PE V ‘21((31 — d1) , put ao ( P )  E1 A (P, (3,.) other-

i =
wise ao (P) =0, and let us denote the upper bound by a (P ) for all
possible divisions ( 0 )  i.e. a(P) =suPa o (P ). Then the intégral

(o)
a (p )d m , the field of integration being the whole plane or ?1(4 ) 0 ),

is equal to the total variation of the mapping %t ; of course
a (p )dm  <co.

Proof. For a subdivision  ( ô ) ,  we have

(1) i 1 V( 8 ) A (p , ai)idm= f a o (p )dm .
i=1 1=1

A(P, a)  is constant in the neighbourhood of points which do not
belong to ',(W— a) (by continuity), and it is additive, i.e. A (P,Z8 i )
=EA(P, 8,). Therefore divide a, into the following three parts :

(u, v)  ; s,),t(u, v) A [a(u, v)
a2= The interior points of E (u , y); K (u ,v) E

then, they have no common points to one another, and M,
are all open sets (by the continuity of the " Abbildungsgrad "),
and we have 8 ,=  + cn ;moreover, if P  (a,— 81 ) , then A(P, 8,)
= A(P, ap) + A (P , i3 ), where the latter two terms are respectively
the positive and the negative parts of the first members (by the
additivity and the property of the zero of mapping).

Following further the subdivision (a), by dividing all a, suc-
cessively, (1) will becomes an equality. Whence cleary

(2) sup yji Kai ) =sup E (I A (P, i d m  s u P i a o (P )din .
(o) ( a )  1=1 - ( o )

we take a succession of subdivision (a,) (v=1, 2,... ) mentioned in
B 1 ; th e  divided parts tend to zero for c/o . W e m ay suppose
that each (c )  is  the subdivision of the preceding (11 ); For this,
it suffices to designate anew by a1, the superposition of a l,

a„, the condition B , being yet fulfilled. In this case, summed
up for all the image of boundary of division V.I21( -8 1) for all a,
is o f measure zero, and for the other points P, a ..(P )  increases
monotonously with 1), since ( a , )  is the subdivision of a n d
the " Abbildungsgrad " is additive.
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Hence, lima„ ( P )  is deteminate. On the other hand for any

subdivision ( o ) ,  if /5 -"E V, ;4(a, — ) , P  has a positive distance from
the closed set of the second member ; therefore for sufficiently
large 1.) the diameters of :4(80 for (a u )  will become smaller than the
above distance. Therefore, by the additivity of the " Abbildungs-
grad " and the property of the zero order, we have easily aG (P )
_ < a „ (P ). Hence, lim a ,  (P )  >2  Since (a ) is arbitrary, taking
the upper bound of the second member, we have lima° (P )_ a (P ).—
This is true for all points of xy-plane except a set of measure
zero, and of course, the inequality does not occur. thus u(P),
being measurable function, we have by the property of the integral

lim a (P)dm= fa(P)dm.

Since for all 1), we have

S a , (P)dmSJ a (P)dm,

we have
sup f a , (P)drn Sa(P)dm.
(o)

Combined with (2), the proof is completed.

II. Stieltjes integral of two dimensions. Surface integral.
Now it is easy to define the integral. Let the mapping

21[x= 9(u, y) , y (u, y) , (u, y)E4] be of the bounded vriation as
in the preceding section, and f(u, y ) a  continuous function in Zf,

for a subdivision ( a )  stated in B, =  d i ) ;  for that the sum 11i=1
f(u s , y1 ) V((3,), where (u„ y1 ) € 8,(i-1, 2, , n), converges in the limit
of tending the subdivision (a) to infinity. We call it two dimen-
sional Stieltjes integral, and denote by

f ( u, y)cPt(u, y )  o r  J ,f(u, v) (u, y) ,

where cPli=d9*it, means the infinitesimal dV  of the variation V
explained in the preceding section, i.e. the element of area con-
sidered with its sign.

To prove the existence of the limit we may go as in the case
of classical integral of tne continuous function. We remark the
following to the proof : By the condition B, of the bounded vari-
ation, two subdivisions may be superposed as to make a  third
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subdivision (a)  b y  the additivity of the variation V  w e have
V( Ea,) V(81 ), moreover remark the condition 132 and the uni-
form continuity of the function f.

It is clear that this gives immediately a  definition of the
surface integral.

Now let the surface S  be represented by means of parameter
(u, y ) by the eqations.

S ; x =ia(u , y ) , y =---41)(u, v ), 2---1(u, y )

where 0, 0, x  are supposed to be continuous in the closed domain
A  of uv-plane. Among them, the first two (u, y), y = 0(u, y)
give the mapping of the bounded variation. Given a  continuous
function f (M ) y ) of the point M  on the surface, the Stieltjes
integral f(u, v)clio*0 (u, y ) is invariable by any topological trans-
formation of the parameter (u, y) ; but by the change of the side,
it will change only the sign. Now we denote it by

f (M )d.x k y (M ) or by L j fdxdy,

and call it the surface integral. Of course, the sides of the surface
are assigned which we denote by S+ and S -  respectively. So we
have

fdxky  —  j fdv  y .
8- s+

Obviously we have
jidy*x=-. —

Concluding these the two dimensional Stieltjes integral is a
surface integral where the surface S  overlaps several times over
the xy-plane.

III. Gauss-Green's Theorem
Theorem. Let (x, y, z ) be the rectangular of positive configur-

ation, the function F(x, y, z )  be continuous in the closed domain
D  D + S which consists of a jordan surface S  and its interior D.

aFW e suppose that is continuous with respect to z  in the open
az

intervals contained in the section (closed set) o f D cut by a
straight line parallel to 2-axis, and that  is summable f ap'—

az az
d.xdydz <oo on  the set D,(D c D, c D ) on  which it is defined.
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Moreover we suppose that the surface S  admits the mapping of
x-ry-bounded variation ; then we have

(3) Iff —F  dxdyriz= Fcir * jj Fdxdy)az
where the outward of D  is the positive side o f S .  This formula
holds also for the domain enclosed by a finite number of Jordan
surfaces.

Remark. 1. Let Yi (i= 1, 2,...) be all the rational numbers, since
D , is closed, the set e,----- E (1, y) I (1, y, r,) ED  are also closed in
the plane and hence measurable in the plane. Further the set

D1 - D V  El (1, Y, 2)1 (x, y) E e, , r i <z<rk ij,k r i  <71 <rk

is also measurable. If we continue the function F  to be continuous
aFup to .b, its partial derivative with respect to z  is equal to

in D,.
This shows that 

a F
is a measurable function.

az
2 . Explaining in detail, the Jordan surface S  is a topological

image of a sphere, therefore it cannot be expressed at the same
time by a single function of the parameter (v t, y )  which appears
in the preceding section. But it can be expressed locally (i.e. for
a part cf, of the surface S ) , and the surface will be covered by a
finite number of such part, in this case we may suppose that the
variation is bounded in each of such parts of the surface ; hence
particularly the images on the xy-plane of the boundaries of these
parts x*y(c-3 — 8) may be supposed to be sets of measure zero. Thus
the surface S  can be regarded as the union of a finite number of
such parts which are not overlapping to one another, and it can
easily be seen that the surface integral on S  can be determined
without contradiction as the sum of the surface integrals on each
o f such parts (independent of the mode of subdivision into such
parts).

Proof of the theorem. By the assumption dividing S  such that
iT'`5„ the sum EF(M i ) V(81){m 1 Ea„ 17(ô1)=L-- A.,* „(P, 81 )dm (P)],

approaches the integral J Fdx*y o f (3 ) in the limit of the subdi-
visions. O n  the other hand the projection of the boundaries of
the subdivided parts on xy-plane, do= V,.,,(T31 --.8,) is a closed set and

az
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m (do) = 0. Then all the points on xy-plane are classified completely
whether they belong to some o f .x*y(d i) o r  not ; then such
set being denoted by d i ( j - 1 ,  2), they are a ll open sets.
Divide a, into 2+1 parts such that 8i = where at, are all open

1= 0
sets and aii •aa=0, k) x* y (8 i i ) c di . Of course by that di  • dk =0,

k ) and all di  except do o f measure zero are all open, S= V
is regarded as a subdivision (a), next to the subdivision of S=
We may continue the subdivision as far as we please. Noticing

n A
m(d0 ) =0, hence v(ô,,,) =0, the sum -2,F(mi ; ) V(ô 1 ) tends to?  

5, Fdx* y o f (3).
On the other hand, for the triple integral o f  (3 ) we have

after Fubini

fff Â
a

F
2  cadyd2= .S.S‘ dxdyf 8 F  ch— Ef (1 dz)dm,

az d az
r*Y  (.5)

j\

where we apply the fact that x,y(S) - Td ( c do ) is of measure zero.j=1
the difference between this and the former is

A
E [E R m i .o v ( a ,

d
i )—  (1 'F  d z )d m ia2

E  [E  F (Mi i ) A (P, a13 ) —( f & F  d2) ]dm (P)
2 P

by the definition o f v(a , i )  of § 1, It converges to zero which will
provod as follows.
Here, the field of integration o f ( f 3F dz

).P 
is the parts D , with

the vertical line through (x, y) = ( A ,  ). The set of points P such
that the parts said above contain any segment MN O 0 (MO N)
lying on the surface S  has the measure zero, because if  we take
a sequence of subdivisions a : c ,  c ,  . . . a „ . . .  indefinitely subdivi-
ding, then the fact that M  and N  belong to distinct 81 shows that
the above points P belong finally to the image of the boundary
Vxv  ( —ô1). Therefore such points P  are negligible. Then we
may say a (P) 2/2 when the intersection by the vertical line is a
sum of ii non-overlapping open intervals (this holds good even
when p =  . )  To prove it, it is enough to show a (P) for p
finite and for the above open sets containing p  open intervals
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N2k-11V 2k(k=1,.2, ......... ,p) which are either disjoint and, if contiguous,
then separated by exterior points of D. Now we assign such a
exterior point to each o f them, and appoint to each interval
N2k-11V an interior point, and denote by 0,(/----1,2,  ,2e-1)
these two kinds of points arranging by the increasing Z-coordin-
ates. Consequently i s  an  interior point and 0 2 ,  is  an
exterior point. In the next place we cut o ff b y  the cylinder
of sufficient small diameter having this vertical line as the axis,
then the parts of the surface S  in this cylinder are divided into
2/2 parts separated by the above points 0 1,  and we denote these
2p parts by 81 successively. Denoting the remaining parts of the
surface S  by ô (i> Z v i )  appropriately, we set a subdivision cr. By
the topological property o f " Abbildungsgrad ", we have A (P, ai)
= (— 1)

1
.  

(6)

Therefore by the definition of section I, fi..„(P) = El A(P, 801
2p.

-E l (by the property of " Abbildungsgrad " zero) and hence
a (i13' (section I )  from a „(P) . On the other hand, by
the theorem of the last part of section I, S'a (P) dm  is finite ;  con-
sequently the set of point P  such as p= co is a set of measure
zero in xy-plane ; therefore these points are negligible by the
integration in  ( 4 ) .  Thus, we may consider only the case where
the parts of the intersection of D, by a vertical line are the simple
sum o f a  finite number of open intervals N,k _I N2k contains an
interior point. In this case, we have

—V dz) — F (I  2,_,)]=32, (-1)iF (IV).az P  k = 1 1=1

Therefore, the integrand o f (4 ) takes the following from :

(M13 ) A (P, a") — ( f  z  z )  p = F ( M i i ) A (P, (-1)R  (ND,
1=1

where A (P, E  (- 1 ) 1 is evident from the topological con-

sideration. (6)

Therefore if we suppose IF (N) — F(Mi i )1 < e  when N a i i ,  the
absolute value of the integrand o f (4 ) does not surpass 2 p e . As
above mentioned 2 p _ a(P ) , therefore the absolute value of integral
(4 ) does not surpass the following quantity

EF(M i i )A (P, ai,) —(1 & F  dz ) dm (P) (P) dm(P).
dj a Z P
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By the theorem in the last part of the section I, Ça(P)dm (P)
is finite, and e may be taken as small as pleased, by the uniform
continuity of F(M ) on S , provided the subdivision is undergone
infinitely. Thus the proof of the Gauss-Green's theorem is completed.

Remark. 1. If the surface is a set of measure zero (volume
zero), we may replace the field of integration in the second member
of (3 ) by D .  Even when we suppose the surface i s  of bounded
variation as above mentioned, we cannot say generally the surface
S  is  of volume zero. It is d ifficult to  give an example of the
surface of volume positive. In this point differs from the case of
curves.

2. Supposing that the surface is no t on ly o f x*,y bounded
variation but also of p z , 2 , , x bounded variation, and S  is of volume
zero, then, for any continuously differentiable vector (X, Y, Z ) in D,
we obtain

f ax +  3 Y+  3 Z )dxdydz--- Xdyx-z+ Y dzi, x +
&31 az

but generally  w e cannot p rove th is. F urther, w e connt say
generally that this second member is a geometrical quantity (in-
dependent of the change of the axis of coordinates). In order to
verifying this, we must calculate the transformation of the surface
integral corresponding to the transformation of axis, for this
purpose we have only to show that the Stieltjes integral Ç fciço.y.0
is linear type. But the relation which is easily proved in the case
of one dimension

fd (Sc, + SD2)*0 = fdsoi iç b  + f fc402*sh

remains unproved. Considering these points, it seems that our
conditions on variation boundedness is  to o  w eak , so  th at the
appropriate restriction will be desirable, but in that case it w ill
be difficult keep the analogy to one dimension --except the conti-
nuity (cf. footnote (2)) --and, I remark that, if it  is  possible, we
obtain, by developing into two dimensions the analogy of the de-
finition o f (continuous) curve by Jordan, a definition of the area
of surface independent of the tangent plane." )

3. In particular, when the functions io (u, y) , 0(u, y ) are con-
tinuous in the bounded closed domain 4, and moreover continuously
differentiable in 4, and that the image of boundary is of measure
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zero (m[50.)4(3— 4)] —0), and moreover (5°'d u d v  <on, then
• a (u, v)

the mapping is of bounded variation, therefore the Stieltjes integral
(Section I) takes the form

f (u, v)dyN-0(u, v) & 
(u, v)

this easily is proved from the fact  V (8) f  3  (9
' dudv (Section 1).a (u, y)

Further. when the surface S  is given by the equation
S : x = 50(u , v ), y=0 (u, v), z=x(u,v),

it is easily proved that the surface is of volume zero. Consequently,
by Gauss-Green's theorem, when the surface S  is such  a surface
(or the union of such surfaces), we conclude

fff  aF dxdydz= f Fdx , iy =f f  F  3 (ç°
'  

ç f j ) dudv,
az (u, v)

A S A

in this relation the sense of (u, v) must be taken properly (such that
the positive side of S  may be the exterior domain).

1) Brouwer; Math. Ann. 71 (1912), P .  97. It will be better to apply the recent,
excellent Nagumo's theory: Nagumo, Syazedo to Sonzaiteiri (Kawade Syob0 Sfigaku
Shtlsyo).

2) It is restricted within the continuous mapping. In  this point the analogy to
one dimension is lost, but so long as we use the theory of !!Abbildungsgrad " we
cannot remove this restriction.

3) Kellogg, Foundations of Potential Theory (1929); Chap. IV. Except this there
are some literature, fo r  example : T0zir6 Ogasawara, G reen no Teiri n i tsu ite
(Hiroshima Bunrika Daigaku Kiy0 12 km  P. 101, Shôwa 17 Nen)

4) the property of " Abbildungsgrad" zero : when P E2I (8), then A (P, =0.
5) by the property of " Abbildungsgrad " zero; we have a(P) = 0  when Pal (4)
6) I  have not yet the rigorous proof.
7 )  This subject was discussed by Banach by the paper ; Sur les lignes rectifiables

et les ' surfaces dont l'aire est finie. (Fundam. Math. 7(1925), p. 225). But the area
defined by Banach in  that paper is not verified to have the geometrical property
(i. e. invariableness with respect to  the choice of the xyz-coordinates axis in the
space). I think that it is not a satisfactory definition, and by the same reason, we
cannot succeed in the definition of the area of the surface.

(Redacted by T . Matsumoto and M. Yamaguchi and S. Mizohata)


