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Let V - ( r>1 )  be an algebraic variety immersed in the pro-
jective space L , k  a field of definition for V, and W - 1  a  generic
hyperplane with respect to k  in L .  Then it is well known that
the intersection H- V is defined and is an irreducible variety"
In  this case the question arises that the variety may get a new
singular point other than that o f V .  When the characteristic p
of the universal domain is 0 ,  we know that such a case cannot
take place by  the second theorem o f B e rtin i. In this note we
shall show that it is also true even when the case

To discuss this problem it is sufficient to consider the case
when V is lying in the affine space SA'.

Let

F(X )=*viu,X ,— v=0 •

be the defining equation for H , where (u„ y) are (N+1)-inde-
pendent variables over k  and X, denote the indeterminates Of S.
Let P= (x 1 ,...... , .x,v)  be any point on W, which is simple on V.
Then we can choose (N— r) polynomials G1,(X )(v=1, ...... , N— r)
from the definig ideal of V  over k such that the rank of the matrix

(  (
 / 1 ) = 1 ........ ,  N— r\

A = .ax, 1- 1 , ,  N

is equal to N— r. T h en  the simplicity o f  P  on  W  can be con-
cluded if we can show that the rank of the matrix
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f v=i, ......
ki=1„  IA\rr— r )

u,

is equal to N—r+1.
Let dimk (x)=s, dimk,,,,(x)=t, then dimk (u, v, x)—dimk(u, x)

=N +1 + t, hence dint,(u) = N +1+ t — s. Since the point P= (x)
lies on V, w e have s__<r, and N+1+1—s>N+1+t—r>N—r+1,
j .  e. there are at least (N— r+ 1) independent variables over k(x)
among u i (i----1„  N ). Since the rank of the matrix A  is N—r,
without loss of generality we can assume that

-IA G=1:  IA\rrirr).

Suppose that the rank of the matrix B is at most equal to N— r,
then we have the relations' )

aG1 .... aG, aG,
ax, Xk

aG , aGN_, (k=N—r+1,..., N)
ax,
u, ....

axN_, axk
uk

and uk  (k=N — r+1,..., N )  can be expressed as th e linear
combinations of ui (i=1 ,..., N — r) with the coefficients in k(x).
It contradicts to the preceding ,fact.

Thus we get the

THEOREM . L e t  P  be a point on the generic hyperplane section
of  an  algebraic variety  V (r > 1 ) .  T hen if  P  is sim ple on V , P is
also sim ple on W .

aG„
'
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Notes
1) Th is can be shown easily using the Lemma, due to Mr. T. Matsusaka,

which is a generalization of Zariski's Lemma, O. Zariski. "Pencils on an algebraic
variety and a new proof o f a  theorem of B ertin i." T rans. A. M. Soc. 1941, p. 68,
Lem m a 5 . T. Matsusaka. "T h e  th eo rem  of Bertini on linear systems in modular
fields." Ment. of the College of Science, Univ. Kyôto Vol. XXV I, Math. No. 1, 1950,
p. 55. th. 2. 4.

2) F or th e  device o f  th e  following proof I thank to my friend Mr. Hajime
Nishimura.

Added in the proof. I find in his letter to Mr. J. Igusa of Nov. 3, 1950, that
Pro f. W e il had already obtained this result as an important lemma in the general
theory of the Picard variety. (Nov. 25, 1950.)


