MEMORIES OF THE COLLEGE OF SCIENCE, UNIVERSITY OF KYOTO, SERIES A, Vol. XXVI, Mathematics No. 2, 1950.

On the Special Riemann Spaces of Class Two

By

Makoto MATSUMOTO

(Received Jan. 25, 1950)

In this paper we have presented the special Riemann spaces of class two and type one. In my previous papers⁽¹⁾ I defined the type number of space of class two and gave a necessary and sufficient condition that the space of type $\tau(\geq 3)$ be of class two. But we have not yet any general research of spaces of type one and two.

Consider a *n*-dimensional variety V_n in such an (n+p)-dimensional euclidean space E_{n+p} , that the fundamental form

$$ds^2 = g_{ij}dx^i dx^j$$

is positive definite; and let $B_{P}^{\alpha}(P=I,...,p; a=1,...,n+p)$ be a system of mutually orthogonal unite vectors normal to V_n and put $B_i^{\alpha}(i=1,...,n; a=1,...,n+p) = \partial y^{\alpha}/\partial x^i$; where y^{α} are the cartesian coordinates in E_{n+p} . Then we obtain

$$dB_{i}^{a} = (\Gamma_{ij}^{k} B_{k}^{a} + H_{ij}^{p} B_{P}^{a}) dx^{j}, dB_{P}^{a} = (-g^{kl} H_{li}^{p} B_{k}^{a} + H_{Pi}^{q} B_{O}^{a}) dx^{j},$$
(0.1)

along a curve on V_n , where the functions H_{ij}^P are symmetric in the indices i, j and called the second fundamentel tensors for the normal B_{F}^{α} ; and the functions H_{ij}^{ρ} are skew-symmetric in the indices P, Q. And those functions H_{ij}^{P} and H_{ij}^{P} satisfy, moreover, the Gauss equation

$$R_{ijkl} = H^P_{ik} H^P_{jl} - H^P_{il} H^P_{jk}, \qquad (0.2)$$

the Codazzi equation

$$H_{ij,k}^{P} - H_{ik,j}^{P} = H_{ij}^{Q} H_{Pk}^{Q} - H_{ik}^{Q} H_{Pj}^{Q}, \qquad (0.3)$$

and finally the Ricci equation

$$H_{Qi,j}^{P} - H_{Qj,i}^{P} + (H_{Qi}^{R}H_{Rj}^{P} - H_{Qj}^{R}H_{Ri}^{P}) = g^{ab}(H_{ai}^{Q}H_{bj}^{P} - H_{aj}^{Q}H_{bi}^{P}). \quad (0.4)$$

In particular case for p=1 all the functions $H_{Q_i}^p$ vanish identically and in case for p=2 the expression in the parenthesis in the left member of (0.4) vanishes identically on account of the skew-symmetric property of $H_{Q_i}^p$.

When we transform a system of normal vectors B_{P}^{α} to the another $\overline{B}_{P}^{\alpha}$, that is,

$$\bar{B}_{P}^{a} = l_{P}^{q} B_{Q}^{a}; \quad |l_{P}^{q}| = \pm 1,$$

then the second fundamental tensors H_{ij}^{p} are transformed to \bar{H}_{ij}^{p} defined by

$$\overline{H}_{ij}^{P} = l_{P}^{Q} H_{ij}^{Q}.$$

Throughout in this paper, by the space we shall mean the real Riemann space whose fundamental form is positive definite.

1. We consider such a *n*-dimensional variety V_n of an (n+2)-dimensional euclidean space, that, for example, the rank τ_{II} of the matrix $||H_{ij}^{I\prime}||$ is less than two. Then we have from (0.2)

$$R_{ijkl} = H_{ik}^{I} H_{il}^{I} - H_{il}^{I} H_{jk}^{I}.$$
(1.1)

If τ_{II} is equal to zero, we get from (0.3)

$$H_{ij,k}^{\prime} - H_{ik,j}^{\prime} = 0, \qquad (1 \cdot 2)$$

so that V_n can be imbedded in (n+1)-dimensional eucldean space. Consequently if V_n is of class two and $\tau_{11} < 2$, we have $\tau_{11} = 1$. Also, in this case, if the rank τ_1 of the matrix $||H'_{1j}||$ is more than three, the Codazzi equation $(1 \cdot 2)$ is a result of the Gauss equation $(1 \cdot 1)$ and hence V_n is of class one, which was proved by T. Y. Thomas.⁽²⁾

Now let us find a necessary and sufficient condition that a space V_n is of class two, τ_{11} is equal to one and τ_1 is equal to three for a particular choice of a system of normal vectors B_P^{α} . It has been shown by T. Y. Thomas,⁽³⁾ that a necessary and sufficient condition for the Gauss equation (1.1) having such a solution H'_{11} , that the rank τ_1 of the matrix $||H'_{11}||$ is equal to three, be the matrix conditions

(I) rank of
$$\begin{bmatrix} R_{1abc} & R_{2abc} \dots R_{nabc} \\ \vdots & \vdots \\ R_{1ijk} & R_{2ijk} \dots R_{nijk} \\ \vdots & \vdots \\ R_{1ijk} & R_{2ijk} \dots R_{nijk} \\ \vdots & \vdots \\ R_{1pqr} & R_{2pqr} \dots R_{npqr} \end{bmatrix} = 3,$$

(II) $R(a, b, c; i, j, k) \ge 0,$
 $\sum_{a,b,c,i,j,k} R(a, b, c; i, j, k) > 0,$

and finally

(III)
$$R_n(R) = 0;$$

where R(a, b, c; i, j, k) is the determinant

R_{abij}	R_{abjk}	R_{abki}	
R_{bcij}	$R_{\scriptscriptstyle bcjk}$	$R_{\scriptscriptstyle bcki}$	
Rcaij	R_{cajk}	R_{caki}	,

and $R_n(R)$ is the resultant system of a system of homogeneous equations

$$t^{2}R_{ijkl} = H^{I}_{ik}H^{J}_{jl} - H^{I}_{il}H^{J}_{jk},$$

$$H^{I}_{im}R_{hijk} - H^{J}_{lk}R_{hijm} + H^{J}_{jl}R_{lkmk} - H^{J}_{jk}R_{lkmi} = 0,$$

as the above system of equations having a non-trivial solution (t, H_{ij}^{\prime}) . Then the solution H_{ij}^{\prime} of the Gauss equation $(1 \cdot 1)$ is real and uniquely determined to within algebraic sign.

Further, for V_n of class two, there must exist two systems of functions $H_{ij}^{\prime\prime}(=H_{ji}^{\prime\prime})$ and $H_i(i, j, =1, ..., n)$ satisfying the Codazzi equation

$$D_{aij}^{I} = -H_{ai}^{II}H_{j} + H_{aj}^{II}H_{i}, \qquad (1\cdot3)$$

$$D_{aij}^{II} = H_{ai}^{I} H_{j} - H_{aj}^{I} H_{i}, \qquad (1.4)$$

the Ricci equation

$$H_{i,j} - H_{j,i} = g^{ab} (H^{II}_{ai} H^{I}_{bj} - H^{II}_{aj} H^{I}_{bi}), \qquad (1.5)$$

and finally from $\pi_{II}=0$

$$H_{ai}^{II}H_{bi}^{II} - H_{ai}^{II}H_{bi}^{II} = 0; \qquad (1.6)$$

where D_{aij}^{p} is defined by

$$D_{aij}^{P} = H_{ai,j}^{P} - H_{aj,i}^{P}.$$

From $(1 \cdot 3)$ and $(1 \cdot 6)$ we obtain

$$H_{kr}^{II} D_{jpq}^{I} - H_{jr}^{II} D_{kpq}^{I} = 0, \qquad (1.7)$$

and further easily

(IV) $D_{aij}^{\prime} D_{bkl}^{\prime} - D_{akl}^{\prime} D_{bij}^{\prime} = 0,$

that is a necessary condition.

For the purpose that we obtain the equations determining the functions H_{ij}^{II} , differentiating (1.7) covariantly with respect to x^{t} and summing three equations obtained by permuting the indices i, j, k cyclically, we have

$$H_{(i}D_{jk)|rpq}^{\prime} + H_{r(i}^{\prime\prime}D_{jk)|pq}^{\prime} = 0^{(4)}, \qquad (1\cdot8)$$

on account of $(1\cdot 4)$; where $D'_{ik|_{ppq}}$ and $D'_{jk|_{pq}}$ are defined by

$$D'_{jk_{1}rpq} = H^{I}_{kr} D'_{jpq} - H^{I}_{jr} D^{I}_{kpq}, \qquad (1.9)$$

$$D'_{jk|pq} = D'_{jpq,k} - D'_{kpq,j}.$$
(1.10)

Multiplying (1.8) by H_{hd}^{II} and making use of (1.3) we obtain

$$D'_{hl(i}D'_{jk)|rpq} - H''_{hl}H''_{r(i}D'_{jk)|pq} = H_{d}H''_{h(i}D'_{jk)|rpq}.$$

Further multiplying by D'_{abc} and making use of (1.7), (1.9), (1.10), (IV) we obtain finally

$$D_{abc}^{I} D_{hpq}^{J} D_{d(ij}^{I} H_{k)r}^{J} = H_{hd}^{II} H_{ra}^{II} D_{(i|bc|}^{J} D_{jk}^{J})_{pq}.$$
 (1.11)

In this equation $(1 \cdot 11)$ the quantities D'_{ijk} and H'_{ij} are already known.

(A). Assume that all the coefficients $D_{(i|bc|}^{I}D_{jk}^{I}|_{pq}$ of $H_{hal}^{II}H_{ra}^{II}$ in (1.11) vanish. As all D_{ijk}^{I} can not be zero, since otherwise V_n be of class one, we have

$$D'_{d(ij}H'_{k)r}=0. (1.12)$$

We can refer to such a system of coordinates (H'), that at the origin the matrix $||H'_{ij}||$ has the form

152

On the Special Riemann Spaces of Class Two.

$$\|H_{ij}^{I}\| = \left| \begin{array}{ccc} H_{3}^{I} & \vdots & 0 \\ 0 & \vdots & 0 \\ \vdots & \vdots & \end{array} \right|, \quad |H_{3}^{I}| = \left| \begin{array}{ccc} H_{11}^{I} & H_{12}^{I} & H_{13}^{I} \\ H_{21}^{I} & H_{22}^{I} & H_{23}^{I} \\ H_{31}^{I} & H_{32}^{I} & H_{33}^{I} \end{array} \right| \approx 0,$$

because the matrix $||H_{ij}^{\prime}||$ is of the rank three. Making the conjugate $H_{i}^{\prime i}$ of $H_{ij}^{\prime}(i, j=1, 2, 3)$ in $|H_{i}^{\prime}|$ and contracting (1.12) for the indices r, i, j, k=1, 2, 3; d=1,..., n by H_{i}^{kr} , we obtain $D_{dij}^{\prime}=0$ (i, j=1, 2, 3; d=1,..., n). Next taking the indices r, i, j=1, 2, 3; d=1,..., n in (1.12) we have

$$H_{ir}^{I} D_{djk}^{I} + H_{jr}^{I} D_{dki}^{I} = 0,$$

and contracting by H_i^r we have $D'_{djk}=0$ (j=1,2,3; k>3; d=1,...,n). Finally taking the indices i, r=1,2,3; j, k>3; d=1,...,n in $(1\cdot 12)$ we have $D'_{djk}=0$ (j, k>3; d=1,...n). Thus all D'_{dij} are vanishing contrary to hypothesis. Consequently we get, as a necessary condition

(V)
$$\sum_{i,j,k,p,q,b,c} (D_{(j|bc|}^{J} D_{jk)|pq}^{J})^{2} > 0.$$

(B). Next let us prove that a solution $H_{ij}^{\prime\prime}$ of the equation (1.11) is uniquely determined to within algebraic sign. In fact, let $H_{ij}^{\prime\prime}$ and $\bar{H}_{ij}^{\prime\prime}$ be the two solutions of (1.11) and put

$$\bar{H}_{ij}^{\prime\prime} = H_{ij}^{\prime\prime} + h_{ij}. \tag{1.13}$$

Substituting $(1 \cdot 13)$ in $(1 \cdot 11)$ and making use of (V) we have

$$h_{hd}h_{ra} + h_{hd}H_{ra}^{\prime\prime} + H_{hd}^{\prime\prime}h_{ra} = 0.$$
 (1.14)

Assume that the rank of the marix $||h_{ij}||$ is equal to $\tau (= 0)$, and refer to a system of coordinates that at the origin the matrix $||h_{ij}||$ has the form

$$\|h_{ij}\| = \|h_{\tau} \stackrel{!}{:} 0 \\ 0 \stackrel{!}{:} 0 \|, |h_{r}| = |h_{11} \dots h_{1\tau} | \neq 0, \\ \dots \\ h_{\tau_{1}} \dots h_{\tau_{\tau}} | h_{\tau_{\tau}} |$$

and make the conjugate h^{ij} of $h_{ij}(i, j=1, ..., \tau)$ in $|h_{\tau}|$. Contracting (1.14) for the indices $h, d, r, a=1,..., \tau$ by h^{hd} gives

$$(\tau + h^{hd} H_{hd}^{\prime \prime}) h_{ra} + \tau H_{ra}^{\prime \prime} = 0.$$
 (1.15)

Further contracting by h^{ra} gives $h^{hd}H_{hd}^{\prime\prime} = -\tau/2$, so that from (1.15) we have $h_{ra} = -2H_{ra}^{\prime\prime}$, and then from (1.13) $\bar{H}_{ij}^{\prime\prime} = -H_{ij}^{\prime\prime}$ $(i, j=1, ..., \tau)$. Next taking the indices $h, d, a=1, ..., \tau; r > \tau$ in (1.14) we have $H_{ra}^{\prime\prime} = 0(r > \tau; a=1 ..., \tau)$ and taking the indices $h, d=1, ..., \tau; r > \tau$. Hence we have $H_{ra}^{\prime\prime} = 0(r, a > \tau)$, so that $\bar{H}_{ra}^{\prime\prime} = 0$ $(a=1, ..., n; r > \tau)$. Hence we see $\bar{H}_{ij}^{\prime\prime} = -H_{ij}^{\prime\prime}(i, j=1, ..., n)$ for $\tau \neq 0$ and the above statement is proved.

(C.) Next, let us find a necessary and sufficient condition that the solution $H_{ij}^{\prime\prime}$ is real. Taking the indices r and a equal to h and d respectively in (1.11) gives

$$D_{abc}^{I} D_{hpq}^{I} D_{d(ij}^{I} H_{k)h}^{I} = (H_{hd}^{II})^{2} D_{(i|bc|}^{I} D_{jk|pq}^{I},$$

and hence we have

$$(VI) \qquad D'_{abc}D'_{hpq}D'_{d(ij}H'_{k)h} \cdot D'_{(i|bc|}D'_{jk}|_{pq} \geq 0,$$

that is a necessary condition. Conversely we see easily that if (VI) is satisfied, neither of these salution $H_{ij}^{\prime\prime}$ can be pure imaginary.

Now we put

$$H_{ij}^{\prime\prime} = p_{ij} + \sqrt{-1} \ q_{ij}; \qquad (1.16)$$

where the p's and q's are all real. Substituting from (1.16) in (1.11) and equating the imaginary part to zero we obtain

$$p_{hd}q_{ra} + q_{hd}p_{ra} = 0. (1.17)$$

By the similar process which was used in (B), it follows from (1.17) that if the rank of the matrix $||q_{ij}||$ does not vanish, all the p_{ij} are equal to zero, so that the solution $H_{ij}^{\prime\prime}$ is real or pure imaginary. Consequently if (VI) is satisfied, the solution is real.

(D.) Finally we see easily that the necessary and sufficient condition for the system of equation $(1 \cdot 11)$ to have a solution $H_{ij}^{\prime\prime}$, is

(VII)
$$\begin{vmatrix} D'_{abc} D'_{hpq} D'_{d(ij} H'_{k)r} & D'_{(i|bc|} D'_{jk|pq} \\ D'_{aef} D'_{hst} D'_{d(xy} H'_{z)r} & D'_{(x|ef|} D'_{yz|st} \end{vmatrix} = 0$$

that is the resultant system of the system of homogeneous equations

$$t^{2}D_{abc}^{\prime}D_{hpq}^{\prime}D_{d(ij}^{\prime}H_{k)r}^{\prime} \rightarrow H_{hd}^{\prime\prime}H_{ra}^{\prime\prime}D_{(i|bc|}^{\prime}D_{jk)|pq}^{\prime} = 0,$$

154

having a non-trivial solution $(t, H_{ij}^{\prime\prime})$.

Conversely if the conditions (V), (VI), (VII) are satisfied, it is easily seen that $(1 \cdot 18)$ has a non-trivial solution (t, H_{ij}^{ll}) ; where t = 0, and thus H_{ij}^{ll}/t is a solution of $(1 \cdot 11)$ and also is real. Hence the functions H_{ij}^{ll} are uniquely determined to within algebraic sign; for example, when

$$D_{1bc}^{\prime} D_{1pq}^{\prime} D_{1(ij}^{\prime} H_{k)|1}^{\prime} \cdot D_{(i|bc|}^{\prime} D_{jk)|pq}^{\prime} > 0,$$

we have

$$H_{11}^{\prime\prime} = + \sqrt{\frac{D_{bc}^{\prime} D_{1pq}^{\prime} D_{1(ij}^{\prime} H_{k)1}^{\prime}}{D_{(i+bc)}^{\prime} D_{jk}^{\prime} pq}}, \qquad (1.19)$$

and for another $H_{hd}^{\prime\prime}$ we have

$$H_{kd}^{\prime\prime} = \frac{D_{1bc}^{\prime} D_{lpq}^{\prime} D_{d(ij}^{\prime} H_{k)1}^{\prime}}{H_{11}^{\prime\prime} D_{(d+bc)}^{\prime} D_{jk}^{\prime} P_{pq}^{\prime}}.$$
 (1.20)

(E). From $(1 \cdot 11)$ we have by means of (IV)

 $H_{hd}^{II}H_{ra}^{II} - H_{ha}^{II}H_{rd}^{II} = 0,$

so that the condition $(1 \cdot 6)$ is satisfied.

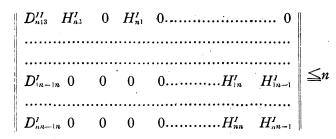
II. Now, for the purpose that we get the functions $H_i(i=1, ..., n)$ satisfying the equation $(1 \cdot 4)$, consider a system of homogeneous equations

$$t \ D_{aij}'' - H_{ai}'H_j + H_{aj}'H_i = 0, \qquad (2 \cdot 1)$$

where t, $H_i(i=1, ..., n)$ are unknown. We see easily that all of H_i can not be zero for V_n of class two. Therefore the equation (2.1) must have a non-trivial solution (t, H_i) , so that we have a matrix condition;

rank of

	$D_{^{112}}^{\prime\prime}$	$H_{\scriptscriptstyle 12}^\prime$	H_{11}'	0	0.	•••••	0
	$D^{\prime\prime}_{ m 212}$	$H_{\scriptscriptstyle 22}^\prime$	H_{n1}^{\prime}	0	0		0
	•••••	•••••	•••••	••••	••••	•••••	0
(VIII)	$D_{n_{12}}^{\prime\prime}$	$H_{^{\prime\prime}2}^{\prime\prime}$	H_{n1}'	0	0	a • • • • • • • • • • • • • • • • • • •	0
	$D_{113}^{\prime\prime}$	$H_{\scriptscriptstyle 13}^\prime$	0	H'_{11}	0	•••••	0
						•••••••	



as a necessary condition. Conversely, if the condition (VIII) is satisfied, the system of equations $(2 \cdot 1)$ has a non-trivial solution (t, H_i) , where t is not vanishing; that is proved easily, putting t=0 in $(2 \cdot 1)$ i, e.

$$H_{ai}'H_{i}-H_{ai}'H_{i}=0,$$

and referring to the system of coordinates (H'). Therefore we have H_i/t satisfying the system of equations $(1\cdot 4)$. Also, in the similar manner, it is to be seen easily that the solutian H_i is uniquely determined and is real. Explicitly we have the form H_i , referring to the system of coordinates (H'), as follows,

$$H_{i} = \frac{1}{2} H_{I}^{ab} D_{abi}^{II} \quad (a, b, i=1, 2, 3),$$

$$H_{i} H_{ik}^{I} = D_{iki}^{II} \quad (i>3; j, k=1, 2, 3),$$
(2.2)

where the indices j, k of H'_{jk} are to be chosen for $H'_{jk} = 0$.

Thus obtained H_{ij}^{\prime} , $H_{ij}^{\prime\prime}$ and $H_i(i, j=1,=,n)$ must satisfy the equation (1.3), *i. e.*

(IX)
$$D'_{aij} + H^{II}_{ai}H_j - H^{II}_{aj}H_i = 0,$$

that is a necessary condition.

Now we remark that those H_{ij}^{\prime} , $H_{ij}^{\prime\prime}$ and H_i satisfy the Ricci equation (1.5). In fact, differentiating (1.4) covariantly with respect to x^k and summing three equations obtained by cyclic permutation of the indices *i*, *j*, *k* give by means of (IX) and (1.2)

$$H'_{a(i}D_{jk)} = 0,$$
 (2.3)

where

$$D_{jk} = H_{j,k} - H_{k,j} - g^{ab} (H_{aj}^{\prime\prime} H_{bk}^{\prime} - H_{ak}^{\prime\prime} H_{bj}^{\prime}).$$

We have immediately $D_{jk}=0$, referring to the system of coordinates (H').

Consequently we obtain the

Theorem : A Riemann space V_n of dimensionality $n(\geq 3)$ is of class two and the matrices $||H_{ij}^{I}||$ and $||H_{ij}^{II}||$, whose elements are the second fundamental tensors of V_n , are equal to three and one respectively for a particular choice of a system of normal vectors if, and only if, the inequalities (II), (V), (VI) and the equations (III), (IV), (VII), (IX) and finally the matrix conditions (I), (VIII) are satisfied.

Finally it is to be noted that the curvature tensor R_{ijkl} of those V_n satisfies the equation

$$R_{a,i(j)}^{b}R_{|b|,kl}^{a}=0,$$

making use on $(1 \cdot 1)$ and therefore V_n is of type one.⁽⁵⁾ But those V_n are not the general spaces of class two ane type one.

References

(1) Jour. Japan Math. So., vol. 2. nos. 1–2. Riemann spaces of class two and their algebraic characterization. pp. 67-92.

(2) Acta Mate., 61 (1936) p. 189

(3) 1. c., p. 194

(4) for example

$$A_{(i|b|}B_{jk}) = A_{ib}B_{jk} + A_{jb}B_{ki} + A_{kb}B_{ij}$$

(5) M. Matsumoto, l. c., p. 69