Memoirs of the College of Science University of Kyoto, Series A,

 Vol. XXVI, Mathematics No. 3, 1951.
On Generalized Spaces which admit given Holonomy Groups.

By
Seizi Takizawa

(Received January 25, 1951)

Introduction

The properties of generalized spaces (in the sense of E. Cartan) admitting various holonomy groups have been investigated mainly in concrete examples by many authors. The present purpose is to establish, by applying the Cartan's theory of continuous groups, a general theory which includes their results as its special cases or which may avail to treat systematically concrete cases.

In order to attain this, it will be necessary to extend the fundamental theorem of holonomy groups which demands us to take a very restricted moving frame of reference (repère mobile).

The first section will be concerned with the equations which are to be satisfied by Pfaffian forms of connection in the extended fundamental theorem. In the sicond section we shall mainly deal with the structure of the space with general connection whose holonomy group is intransitive or imprimitive.

I. Ricci's Relations of a subgroup.

1. Ricci's families. Let $\mathscr{G}=\left\{T_{a}\right\}$ be a transitive Lie group of transformations which have been defined on a Klein space \boldsymbol{E}^{n} of points ξ^{i}. Let a^{1}, \ldots, a^{r} be the parameters of \mathscr{C} and $T_{0}=T_{a=0}$ the identical transformation.

Let R_{a} be a moving frame of \mathscr{C} and $\omega^{1}(a, d a), \ldots, \omega^{2}(a, d a)$ its relative components: the symbol of an infinitesimal transformation $T_{a}^{-1} T_{a+a a}$ can be written as

$$
\omega^{s}(a, d a) X_{s},
$$

where $\left(X_{1}, \ldots, X_{r}\right)$ is a fixed set of r independent operators of \mathbb{B}^{4} taken so that X_{n+1}, \ldots, X_{r} may generate the subgroup which fixes
the origin of the frame R_{0}.
Let $\mathfrak{E}=\left\{T_{u}\right\}$ be a subgroup of \mathscr{G} depending upon ρ parameters $u^{1}, \ldots, u^{\rho}(\rho<r)$ such that $T_{u=0}=T_{v}$, and let $\bar{\omega}^{1}(u, d u), \ldots, \bar{\sigma}^{r}(u ; d u)$ denote the relative components of the family $\mathfrak{\curvearrowleft} R_{0}$ of frames. When we express by

$$
\begin{equation*}
l_{p}^{\prime \prime}, \bar{\pi}^{p}=0(m=1, \ldots, r-\rho ; p=1, \ldots, r) \tag{1}
\end{equation*}
$$

the equations which are to be satisfied by π^{3}, the subgroup \mathfrak{S} can be characterized by the constants l_{p}^{m} having certain properties.

Definition. A continuous subfamily \mathfrak{F} of $\left\{R_{a}\right\}$ is called a Ricci's family of \mathfrak{G} if $T_{u} \mathfrak{F}=\mathfrak{F}$ for every $T_{u} \in \mathfrak{F}$, and a system of equations which characterizes the relative components of \mathfrak{F} is called a Ricci's relation of \mathfrak{F} or of \mathfrak{F}.

We assume that \mathfrak{F} depend upon $\rho+k$ parameters.
For a transfomation $T \in \mathbb{G}, \quad T R_{0} \in \mathfrak{F}$ implies that $\mathfrak{y} T R_{0} \subset \mathfrak{F}$. Hence we can write as

$$
\mathfrak{F}=\sum_{y} \mathfrak{S} T_{y} R_{0}
$$

where $\left\{T_{y}\right\}$ is a family of transformations of \mathbb{G} depending upon k parameters y^{1}, \ldots, y^{k}.

We may always suppose that $R_{0} \in \mathfrak{F}$ and $T_{y=0}=T_{0}$ without loss of generality.

Since

$$
\left(T_{u} T_{y}\right)^{-1}\left(T_{u+d u} T_{y+d y}\right)=T_{v}^{-1}\left(T_{u}^{-1} T_{u+d u}\right) T_{y}\left(T_{y}^{-1} T_{y+d_{y}}\right),
$$

denoting by ω^{s} and by $\omega^{* s}(y d y)$ the relative components of \mathfrak{F} and $\left\{T_{y}\right\}$ respectively, we obtain the equations

$$
\begin{equation*}
\omega^{s}=a_{p}^{s}(y) \bar{\omega}^{\nu}+\omega^{* s}(y, d y), l_{r}^{m} \bar{\omega}^{p}=0 \tag{2}
\end{equation*}
$$

as a Ricci's relation of \mathfrak{K}, where $\left\|a_{p}^{s}\right\|$ is a matrix of the linear adjoint group of $\left(\mathbb{G}\right.$ corresponding to T_{y}^{-1}.

The relation (2) may be regarded as $r-\rho$ independent linear homogeneous equations of $r+k$ indetrminates $\omega^{s}, d y^{j}$ with coefficients of functions of y^{j}.

Each coset $\mathfrak{S} T_{y} R_{0}$ of \mathfrak{F} is invariant under every transformation of \mathfrak{F}, and so the parameters y^{j} which determine a coset of \mathfrak{F} will be called the invariants of the Ricci's relation. They may be regarded as functions defined on \mathfrak{F}.
2. Ricci's relations. Taking into account the Lie's equations

On Generalized Spaces which admit given Holonomy Groups. 201
of structure, we can easily verify that $a_{i,}^{s}(y), \omega^{* s}(y, d y)$ in (2) satisfy the equations

$$
\begin{equation*}
d a_{p}^{s}+C_{q t}^{s} a_{p}^{q} \omega^{* t}=0, a_{p}^{s}(0)=\delta_{p}^{s} \tag{3}
\end{equation*}
$$

Conversely, we have the following:
Lemma 1. Let $\omega^{* s}(y, d y)$ be r Pfaffiain forms of y^{1}, \ldots, y^{k} satisfying the Cartan's equations of structure and $a_{p}^{s}(y)$ be r^{2} functions of y^{j} satisfying (3). Then (2) is a Ricci's relation of \Im, if ω^{s} are ($\rho+k$)-independent in (2).

In fact: since $\omega^{* s}(y, d y)$ satisfy the Cartan's equations, we have a unique k-parameter family $\left\{T_{y}\right\}$ whose relative components are $\omega^{* s}(y, d y)$ and such that $T_{y=0}=T_{0}$. The Cartan's equations of $\omega^{* s}$ and the wellknown relations between the constants of structure $C_{p q}^{s}$ assure immediately that a system of Pfaffian equations

$$
d a_{\eta}^{s}+C_{q t}^{s} a_{\eta}^{q} \omega^{* t}=0
$$

is completely integrable in the $\left(r^{2}+k\right)$-dimensional space $\left(a_{p}^{s}, y^{j}\right)$. Hence it has a unique solution $a_{p}^{s}(y)$ reducing to δ_{p}^{s} at $y^{j}=0$, and so $\left\|a_{p}^{s}(y)\right\|$ coincides with the matrix of the linear adjoint group of (3) corresponding to T_{y}^{-1}. Moreover the $(\rho+k)$-independence of ω^{s} asserts that $T_{y} T_{y^{\prime}}^{-1} \bar{\epsilon} \mathscr{G}$ for $\left(y^{\prime j}\right) \neq\left(y^{j}\right)$. (2) is therefore a Ricci's relation of $\sum_{y} \int_{2} T_{y} R_{0}$.

Let us give up the last condition in Lemma 1, and suppose that ω^{s} are $\left(\rho+k^{\prime}\right)$-independent in (2), $\left(k^{\prime}<k\right)$.
Changing parameters y^{j} conveniently if necessary, we can still make $\omega^{s}\left(\rho+k^{\prime}\right)$-independent even after setting $y^{k^{\prime+1}} \equiv 0, \ldots, y^{k} \equiv 0$ in (2). Thus we may have a Ricci's relation whose k^{\prime} invariants are $y^{1}, \ldots, y^{k i}$.

In this case, to have set $y^{k^{\prime}+1} \equiv 0, \ldots, y^{k} \equiv 0$ means to have taken only one transformation $T_{\bar{y}}$ belonging to each family $\left\{T_{y}\right\} \cap \mathfrak{S} T_{y}$, and to construct a Ricci's relation of the $\left(\rho+k^{\prime}\right)$-parameter family $\sum_{\bar{j}} \mathfrak{S} T_{\bar{y}} R_{0}$.

This fact may furnish us an actual process to construct a relation of the least Ricci's family including a given family $\left\{T_{y} R_{0}\right\}$.
3. A geometrical interpretation. Let us now consider a class of objects Ω, on which (3) operates transitively, equivalent to the class of integral varieties of $l_{p^{m}}^{m} \omega^{n}(a, d a)=0$, and let g_{1}, \ldots, g_{r-p}
denote the components of objects Ω.
On the transformation group $(\mathscr{G}(\Omega)$, we can express the symbol of $T_{a}^{-1} T_{a+i l a}$ by the form

$$
\omega^{s}(a, d a) Y_{s}\left(g, \frac{\partial}{\partial g}\right)
$$

where ω^{s} are the relative components of \mathbb{G}. The operators Y_{s} are not always γ-independent. Let Ω_{0} be the object such that $T_{u} \Omega_{v}=$ $\mathcal{S}_{\|}$for every $T_{u} \epsilon \mathfrak{F}$, and let $g_{m}, g_{m}+d g_{m}$ denote its components referring to the two coordinate systems defined by frames $R_{n}, R_{a+1 / n}$ respectively. Then we have

$$
d g_{m}+\omega^{s}(a, d a) Y_{s} g_{m}=0
$$

On a Ricci's family \mathfrak{F} of \mathfrak{K}, g_{m} are functins of y^{1}, \ldots, y^{k} merely, furthermore the rank of the matrix

$$
\left\|\frac{\partial g_{m}}{\partial y^{j}}\right\|
$$

is equal to k. Hence

$$
\frac{\partial g_{m}}{\partial y^{j}} d y^{j}+\omega^{s} Y_{s} g_{m}(y)=0
$$

is nothing else but a Rieci's relation of \mathfrak{F}.
Thus we can also obtain a Ricci's relation from knowing Y_{s} and $g_{m}(y)$.
4. The case that \mathscr{S} is intransitive. In particular, let us as sume that \mathfrak{G} is intransitive on \boldsymbol{E}^{n} and has l invariants. For a transformation $T_{y} \in\left(\mathscr{S}\right.$, setting $\tilde{\omega}^{s}=a_{p}^{s}(y) \bar{\omega}^{n}$, we may see that $\tilde{\omega}^{1}, \ldots, \tilde{\omega}^{n}$ are generally ($n-l$)-independent. Lat T_{y} be one of the transformations which transform the origin A_{0} of the frame R_{0} to an arbitrary point $A_{y} \in \boldsymbol{E}^{n}$. Then, among the relative components $\omega^{* s}(y, d y)$ of the family $\left\{T_{y}\right\}$ depending upon n parameters y^{1}, \ldots, y^{n}, the first n components $\omega^{* 1}, \ldots, \omega^{* n}$ are independent. Let us represent a relation of the least Ricci's family including $\left\{T_{y} R_{0}\right\}$ by the formulae

$$
\begin{equation*}
\omega^{s}=a_{j}^{s}\left(y^{j}\right) \bar{\omega}^{d}+\omega^{* s}\left(y^{j}, d y^{j}\right), l_{p}^{m} \bar{\omega}^{p}=0 \quad(j=1, \ldots, k \leqq n) \tag{2}
\end{equation*}
$$

Then $\omega^{1}, \ldots, \omega^{n}$ are linearly independent in (2).
Changing parameters y^{j} conveniently if necessary, we can still

On Generalized Spaces which admit given Holonomy Groups. 203 make $\omega^{1}, \ldots, \omega^{n}$ independent even after setting $y^{l+1} \equiv 0, \ldots, y^{k} \equiv 0$ in (2).

Consequently we have:
Lemma 2. If \mathfrak{S} is an intransitive subgroup with l invariants on \boldsymbol{E}^{n}, we can gèt a Ricci's relatin (2) fulfilling the following conditions:
(i) $\omega^{1}, \ldots, \omega^{n}$ are (generally) independent,
(ii) $k=l$.

Interpreting these conditions geometrically, we have:
Lemma 2'. There exists a Ricci's family \mathfrak{F} which contains (at least in the local sense) a frame whose origin is an arbitrary point of \boldsymbol{L}^{n}, and the invariants y^{1}, \ldots, y^{l} of \mathfrak{F} are functions of ξ^{i} and are indeed the invariants of $\mathfrak{5}$ on \boldsymbol{E}^{n}.

Let S^{n-l} denote a surface defined by $y^{j}=$ const. $(j=1, \ldots, l)$. Then $T_{u} S^{n-l}=S^{n-l}$ for every $T_{u} \in \mathfrak{E}$, and \mathfrak{S} operates transitively on the points of S^{n-l}. Hence, in the Klein space $\boldsymbol{E}^{n}(\mathfrak{K}), S^{n-l}$ is an exceptional surface on which all invariants of contact are constant. The Frenet's formulae of S^{n-l} are therefore relations between $\omega^{1}, \ldots, \omega^{r}$ with coefficients of functions merely of y^{j}.

Let Ω denote the family of all Frenet's frames of S^{n-l}. We can take \mathfrak{F} such that $\Omega \supset \mathfrak{S} T_{y} R_{0}$.

It follows that:
Lemma 3. We can take the relation (2) in Lemma 2 fulfilling the further conditions:
(iii) $a_{i}^{s}, \bar{v}(s=1, \ldots, r)$ satisfy the Frenet's formulae of S^{n-l},
(iv) some of y^{1}, \ldots, y^{l} are the invariants of contact of S^{n-l}.

Remark. The similar results hold when we consider a neighbourhood U of a point A_{0} such that $\mathfrak{S} A_{0}$ spreads an $(n-l)$ dimensional variety in \boldsymbol{E}^{n} and $\operatorname{dimsc} A \geqq n-l$ for any $A \in U$.

II. The space with (5)-connection.

5. Pfaffian forms of connection. Let us now consider a space \boldsymbol{R}^{n} of points x^{i} with (5)-connection.

We associate with each point $A\left(x^{i}\right) \in \boldsymbol{R}^{n}$ a frame R_{A} in the tangent space $\boldsymbol{E}_{\boldsymbol{A}} . \quad \boldsymbol{R}_{\boldsymbol{A}}$ may define a coordinate system ($\left.\xi^{\boldsymbol{t}}\right)$ to which $\boldsymbol{E}_{\boldsymbol{A}}$ refers.

If we connect $\boldsymbol{E}_{A^{\prime}(x+1 \pi)}$ with $\boldsymbol{E}_{A(x)}$, a point $\xi^{\prime i}=\xi^{i}+d \xi^{i} \in \boldsymbol{E}_{A}$, coincides with a point $\xi^{i} \in \boldsymbol{E}_{A}$. Then we have the formula

$$
d \xi^{i}+\omega^{\varsigma}(x, d x) X_{s} \xi^{i}=0
$$

where $\omega^{s}(x, d x)$ are Pfaffian forms of connection.
An infinitesimal transformation associated with an infinitesimal cycle of \boldsymbol{R}^{n} may be given by the formula
with

$$
(d \grave{\delta}) \xi^{i}+\Omega^{s} X_{s} \xi^{i}=0
$$

$$
\Omega^{s}=\omega^{s \prime}-\frac{1}{2} C_{p,}^{s}\left[\omega^{p} \omega^{p}\right]:
$$

a point of $\boldsymbol{E}_{\boldsymbol{A}}$ having coordinates $\hat{\boldsymbol{\xi}}^{i}$ with respect to $\boldsymbol{R}_{\boldsymbol{A}}$ has coordinates $\hat{\xi}^{i}+(d \hat{\delta}) \hat{\xi}^{i}$ with respect to the developed frame \bar{R}_{A} of $R_{\text {A }}$.

Suppose that \boldsymbol{R}^{n} admits a holonomy group \mathfrak{F}. For a point $A_{0} \in \boldsymbol{R}^{n}$, let us take a Ricci's family $\mathfrak{F}_{A_{10}}$ of \mathfrak{F} in $\boldsymbol{E}_{A 0}$ and write its Ricci's relation in the formulae

$$
\begin{equation*}
\omega^{s}=a_{p}^{s}(y) \bar{\omega}^{p}+\omega^{* s}(y, d y), l_{p}^{m} \bar{\epsilon}^{p}=0 . \tag{2}
\end{equation*}
$$

Let C be a curve joining A_{0} to any other point $A \in \boldsymbol{R}^{n}$ and let \mathfrak{F}_{A} denote the developed family of $\mathfrak{F}_{A 0}$ along C into \boldsymbol{L}_{A}. Then \mathfrak{F}_{A} is also a Ricci's family whose relation is given by (2). Moreover \mathfrak{F}_{A} does not depend on C, as \mathfrak{F} is the holonomy group of \boldsymbol{R}^{n}.

It follows that, in order that \boldsymbol{N}^{n} admits a holonomy group \mathfrak{S}, it is necessary and sufficient that with each point $A \in \boldsymbol{R}^{n}$ a Ricci's family \mathfrak{F}_{A} of \mathfrak{G} in \boldsymbol{E}_{A} can be associated so that a development along an arbitrary curve $\widehat{A_{1} A_{2}}$ may superpose $\mathfrak{F}_{A 2}$ on $\mathfrak{F}_{A 1}$, in particular a coset $y=y_{1}$ (=const.) of $\mathfrak{F}_{A 2}$ on a coset $y=y_{1}$ of $\mathfrak{F}_{A 1}$.

Therefore, if we take the frame R_{A} such that $R_{A} \in \mathfrak{F}$, the Pfaffian forms $\omega^{s}(x, d t)$ of connection satisfy the relation (2): that is

$$
\omega^{s}(x, d x)=a_{j}^{\varsigma}\left(y^{j}\right) \bar{\omega}^{\prime \prime}(x, d x)+\omega^{* s}\left(y^{j}, d y^{j}\right),
$$

where $\pi^{p}(x, d x)$ are certain Pfaffian forms satisfying the equations

$$
l_{p^{\prime}}^{\prime \prime} \omega^{p}=0 ;
$$

and y^{j} are functions of x^{i} : for a point $A\left(x^{i}\right)$, the functions $y^{j}(x)$ represent the values of y^{j} to which the coset of \mathfrak{F}_{A} containing R_{A} corresponds. Hence we have the following :

Theorem 1. If \boldsymbol{R}^{n} admits a holonomy group \mathfrak{F}, we can take R_{A} so that Pfaffian forms of connection may satisfy an arbitrary Ricci's relation of \mathfrak{G}. In this case, the invariants y^{j} are functions

On Generalized Spaces which admit given Holonomy Groups. 205
of x^{j}, but they depend on the choice of the coset to which R_{A} belongs.
Setting

$$
\overline{\Omega^{s}}=\bar{\omega}^{s}-\frac{1}{2} C_{p,}^{s}\left[\bar{\omega}^{p} \tilde{\omega}^{q}\right],
$$

we can obtain formulae

$$
l_{p}^{m} \bar{\Omega}^{p}=0, \quad \Omega^{s}=a_{p}^{\S}, \bar{\Omega}^{p}
$$

that is:
Theorem 2. Ω^{s} satisfy the Ricci's relation (2) in which we set $d y^{j}=0$.
6. Intransitive holonomy groups. When the holonomy group \mathfrak{S} is intransitive on \boldsymbol{E}_{A}, we can take \mathfrak{F}_{A} satisfying the conditions (i), (ii) in Lemma 2 and the frame $R_{A} \in \mathfrak{F}_{A}$ whose origin is the point $A \in \boldsymbol{R}^{n}$. Then the coset to which R_{A} belongs is uniquely determined, and so we have the following result:

Theorem 3. If \boldsymbol{R}^{n} admits an intransitive holonomy group with l invariants, then we can so attach to each point of $\boldsymbol{R}^{n} a$ frame $\boldsymbol{R}_{\boldsymbol{A}}$ whose origin is the point of \boldsymbol{R}^{n} that Pfaffian forms of connection may satisfy a Ricci's relation which has just linvaniants $y^{\prime}, \ldots, y^{l}$. In this case y^{j} are functions of x^{i} and are independent on the choice of the frame R_{A}.

Since an arbitrary development separately superposes the cosets of one family on those of the other, we have:

Corollary 1. Let A be a point on a variety defined by $y^{j}=y_{1}^{j},\left(=\right.$ const.) in \boldsymbol{R}^{n} and A_{1} a point of \boldsymbol{R}^{n}. Develop \boldsymbol{E}_{A} on $\boldsymbol{E}_{A 0}$ along a curve $\overparen{A_{0} A}$. Then the developed frame \vec{R}_{A} of R_{A} belongs to the coset $y^{j}=y_{1}^{j}$ of $\mathfrak{F}_{A 1}$, and its origin \bar{A} is on the surface $y^{j}=y_{1}^{j}$ of $\boldsymbol{E}_{A 0}$.

Definition. Let V^{λ} be a λ-dimensional variety in \boldsymbol{R}^{n}. Suppose that, in every $\boldsymbol{E}_{A}, A \in V_{.}^{\lambda}$, there exists a surface $S_{A}^{\lambda} \ni A$, and that the development along an arbitrary curve $\overparen{A A^{\prime}} \subset V^{\lambda}$ superposes $\dot{S}_{A^{\prime}}^{\lambda}$ on S_{A}^{λ}. Then we call S_{A}^{λ} an image of V^{λ} and V^{λ} the inverse image of S_{A}^{λ}.

From the definition we have:
Corollary 2. In Theorem 3, a variety V^{n-l} defined by $y^{j}=y_{1}{ }^{j}$ in \boldsymbol{R}^{n} is the inverse image of the surface S_{A}^{n-1} defined by $y^{j}=y_{1}{ }^{j}$ in $\boldsymbol{E}_{A}, A \in V^{n-l}$.

About the geometric property of the inverse image, taking into account Lemma 3, we have:

Corollary 3. Along the variety V^{n-l}, Pfaffian forms of connection of \boldsymbol{R}^{n} can satisfy the Frenet's formulae of S^{n-l}.

Remark. Suppse that, in $\boldsymbol{E}_{A 0}, A_{0}$ is such a point as A_{0} in §4, Remark. Then the similar results hold when we consider a neighbourhood of A_{0} in \boldsymbol{R}^{n}.
7. Imprimitive subgroups. We have known that, when the holonomy group \mathfrak{S} is intransitive, \boldsymbol{R}^{n} is generated by ∞^{2} varieties V^{n-l} which are inverse images of the invariant surfaces S^{n-l} of \mathfrak{F} in $\boldsymbol{E}_{\boldsymbol{A}}$.

Now we are going to prove that this circumustance occurs in the case that \mathfrak{F} is imprimitive and $\boldsymbol{R}^{\boldsymbol{n}}$ is without torsion.

Let us assume that \mathfrak{F} is imprimitive on \boldsymbol{E}^{n} : the whole space \boldsymbol{E}^{n} is filled up by ∞^{μ} surfaces $M^{n-\mu}$ having (locally) the property that no two of them can have common point without being identical; and \mathfrak{S} can also be regarded as a group of transformations operating (generally intransitively) on the class of objects $M^{n-\mu}$.

We suppose that $\mathfrak{5}$ is intransitive on \boldsymbol{L}^{n} and has l invariants, $(0 \leqq l \leqq n)$; let \mathfrak{F} be the Ricci's family that we had considered in Lemma 2 and let b^{1}, \ldots, b^{p+l} be parameters of \mathfrak{F}.

Let \mathfrak{M} denote a family consisting of the frames of \mathfrak{F} whoseo rigins are on a same surface $M^{n-\mu}$. Then two classes of objects $M^{n-\mu}$ and \mathfrak{M}, on which \mathfrak{F} operates, are equivalent.

Let \mathfrak{F} denote a subfamily of \mathfrak{M} whose frames have a same point $P \in \boldsymbol{E}^{n}$ as their origins. Then two classes of \mathfrak{F} and P, on which \mathfrak{F} operates, are equivalent. And so the object \mathfrak{F} are characterized by the equations $\omega^{1}=0, \ldots, \omega^{n}=0$ on \mathfrak{F}.

Since each \mathfrak{M} is generated by \mathfrak{B}, the objects \mathfrak{M} are characterized by linear homogemeus equations of $\omega^{1}, \ldots, \omega^{n}$. And their coefficients may be functions of y^{j}; because the equations in which we set $y^{j}=y_{1}^{j}\left(=\right.$ const.) characterize the class of objects $\mathfrak{M}_{y 11}$ which is equivalent to the class of $M^{n-\mu} \cap S_{y 1}^{n-l}$ and \mathfrak{G} is transitive on it, therefore the equations which characterize $\mathfrak{M}_{y 1}$ may be of constant coefficients.

From the definition of our relations of Lemma 2, the first n

On Generalized Spaces which admit given Holonomy Groups. 207
equations of (2) for the unknowns $d y^{j}$ have a unique solution written as

$$
\begin{equation*}
d y^{j}=\tau_{k}^{j}(y) \omega^{k} \quad(j=1, \ldots, l ; k=1, \ldots, n) . \tag{4}
\end{equation*}
$$

We can now take the forms

$$
\pi^{\nu}=\lambda_{q}^{p}(y) \omega^{q} \quad(p, q=1, \ldots, r)
$$

with the properties:
(i) $\left|\lambda_{q}^{p}\right| \neq 0,\left|\lambda_{k}^{f}\right| \neq 0, \lambda_{q}^{i} \equiv 0(i, k=1, \ldots, n ; Q=n+1, \ldots, r)$,
(ii) the relations (2) from which $\bar{\omega}^{s}$ are eliminated are (4) and

$$
\begin{equation*}
\pi^{p+l+1}=0, \cdots, \pi^{r}=0 \tag{5}
\end{equation*}
$$

(iii) the equations which characterize the relative components of \mathfrak{M} are expressed by (4), (5) and

$$
\begin{equation*}
\pi^{1}=0, \ldots, \pi^{\mu}=0 \tag{6}
\end{equation*}
$$

If ω^{s} are the relative components $\omega^{s}(b, d b)$ of \mathfrak{F}, then $\pi^{1}, \ldots, \pi^{\rho+l}$ are indepent, $\pi^{\rho+l+1}=0, \ldots, \pi^{r}=0$, and from the imprimitivity of \mathfrak{y} the system of equations (6) is completely integrable on \mathfrak{F}. Hence, setting

$$
\begin{aligned}
\pi^{a \prime} & =\frac{\partial \lambda_{i}^{a}}{\partial y^{j}} \tau_{k}^{j}\left[\omega^{k} \omega^{t}\right]+\frac{1}{2} \lambda_{k}^{a} C_{p_{m}}^{k}\left[\omega^{p} \omega^{q}\right] \\
& \equiv \frac{1}{2} \gamma_{\mu q}^{a}(y)\left[\pi^{p} \pi^{q}\right] \quad(a=1, \ldots, \mu)
\end{aligned}
$$

with

$$
\boldsymbol{\gamma}_{p_{q}}^{a}+\boldsymbol{\gamma}_{p q}^{a}=0,
$$

we have

$$
\begin{equation*}
\gamma_{\sigma \tau}^{a} \equiv 0 \quad(a=1, \ldots, \mu ; \sigma, \tau=\mu+1, \ldots, \rho+l) . \tag{7}
\end{equation*}
$$

8. Imprimitive holonomoy groups. We are now in a position to consider \boldsymbol{R}^{n} which admits the holonomy group \mathfrak{y}. We shall denote by M_{A} the surface $M^{n-\mu}$ such that $A \in M^{n-\mu} \subset \boldsymbol{E}_{A}$ and by \mathfrak{M}_{A} the family \mathfrak{M} such that $R_{A} \in \mathfrak{M} \subset \mathfrak{F}_{A}$.

If Γ is a geometric object in a tangent space, then the developed object of Γ will be written as $\bar{\Gamma}$.

The Pfaffian forms $\omega^{s}(x, d x)$ of connection may be satisfy the relations

$$
\pi^{p+l+1}=0, \cdots, \pi^{r}=0
$$

where $y^{j}=y^{j}(x)$ such that $d y^{j}=\tau_{k}^{j}(y) \omega^{k}$, and R_{A} may be a frame whose origin is the point $A \in \boldsymbol{R}^{n}$.

Consider a system of differential equations

$$
\begin{equation*}
\pi^{1}=0, \ldots, \pi^{\mu}=0 \tag{6}
\end{equation*}
$$

On account of the condition that \boldsymbol{R}^{n} is without torsion, say

$$
\Omega^{1}=0, \ldots, \Omega^{n}=0,
$$

we have

$$
\pi^{a \prime}=\frac{1}{2} \gamma_{a \beta}^{a}\left[\pi^{\alpha} \pi^{\beta}\right](a=1, \ldots, \mu ; \alpha, \beta=1, \ldots, \rho+l),
$$

and from

$$
\begin{equation*}
\gamma_{\sigma \bar{i}}^{a} \equiv 0 \quad(a=1, \ldots, \mu ; \sigma, \tau=\mu+1, \ldots, \mu+l) \tag{7}
\end{equation*}
$$

we have

$$
\pi^{a \prime}=\frac{1}{2} \gamma_{l c c}^{n}\left[\pi^{b} \pi^{c}\right]+\gamma_{b \Delta}^{a}\left[\pi^{b} \pi^{o}\right](a, b, c=1, \ldots, \mu ; \sigma=\mu+1, \ldots, \rho+l) .
$$

The system (6) is the efore completely integrable, and \boldsymbol{R}^{n} is filled up by its ∞^{μ} integral varieties $L^{n-\mu}$. We can easily see that these varieties $L^{n-\mu}$ depend on neither λ_{q}^{p} nor R_{A}.

Let

$$
x^{i}=x^{t}(t) \quad(0 \leqq t \leqq 1)
$$

be a curve C lying on a variety $L^{n-\mu}$, and let $h^{s}(t) d t$ denote the Pfaffian forms of connection along C. We denote by A, A^{\prime} the points $x^{i}(0), x_{i}^{i}(1)$ respectively.

If $\omega^{\curvearrowright}(b, d b)$ denote the relative components of $\mathfrak{F}_{A}=\left\{R_{b}\right\}$, a system of differential equations

$$
\begin{equation*}
\omega^{s}(b, d b)=h^{s}(t) d t \tag{8}
\end{equation*}
$$

has a unique solution $b^{\alpha}(t)\left(\alpha=1, \ldots, l^{\prime}+l\right)$ such that $R_{b(0)}=R_{A}$. Then

$$
R_{b(1)}=\bar{R}_{A^{\prime}}(\text { along } C) .
$$

Since $\omega^{s}=h^{s}(t) d t$ satisfy the relations

$$
\pi^{1}=0, \ldots, \pi^{\mu}=0
$$

we have

On Generalized Spaces which admit given Holonomy Groups. 209

$$
\bar{R}_{A^{\prime}} \in \mathfrak{M}_{A}
$$

and since \bar{A}^{\prime} is the origin of $\bar{R}_{A^{\prime}}$, we have

$$
\overline{A^{\prime}} \in M_{A}
$$

and

$$
\bar{M}_{A^{\prime}}=M_{A} .
$$

This proves that M_{A} is the image of $L^{n-\mu}$ passing through A. Consequently we have the following result:

Theorem 4. Suppose that the holonomy group \mathfrak{F} of \boldsymbol{R}^{n} without torsion is imprimitive: \boldsymbol{E}_{A} is filled $u p$ by co ${ }^{\mu}$ surfaces $M^{n-\mu}$ and \mathfrak{S} may also be regarded as the group $\mathfrak{S}\left(M^{n-\mu}\right)$ operating on the class of objects $M^{n-\mu}$. Then \boldsymbol{R}^{n} is filled $u p$ by ∞^{μ} varieties $L^{n-\mu}$ having (locally) the property that no two of them can have common point without being identical, and each $L^{n-\mu}$ is the inverse image of $M^{n-\mu}$.
9. Spaces with $\mathfrak{S}\left(M^{n-\mu}\right)$ connection. Furthermore, let us assume that a transformation associated with an arbitrary closed curve lying on a $L^{n-\mu}$ leaves invariant all $M^{n-\mu}$ in \boldsymbol{E}_{d}. Then we can identify $\boldsymbol{E}_{\boldsymbol{A}}$ and $\boldsymbol{E}_{A^{\prime}}, A, A^{\prime} \in L^{n-\mu}$, and we have the tangent space $\boldsymbol{E}_{L^{n-\mu}}$ at a variety $L^{n-\mu}$.

When $\mathfrak{G}\left(M^{n-\mu}\right)$ is transitive, if we regard $L^{n-\mu}, M^{n-\mu}$ as the point in $\boldsymbol{R}^{n}, \boldsymbol{E}_{\boldsymbol{A}}^{n}$ respectively, the given connection induces a μ-dimensional spac: \boldsymbol{R}^{μ} of points $L^{n-\mu}$ with $\mathfrak{S}\left(M^{n-\mu}\right)$-connection.

When $\mathfrak{S}\left(M^{n-\mu}\right)$ is intransitive, let V^{λ} denote the inverse image of $S_{A}^{\lambda}=\mathfrak{5} M_{A}^{n-\mu}$, then we have a $(\lambda-n+\mu)$-dimensional space $V^{\lambda-n+\mu}$ with $\mathfrak{S}\left(M^{n-\mu}\right)$-connection, by attending only to V^{λ} in \boldsymbol{R}^{n}.

In such cases, the study of spaces with a given connection can be reduced to that of spaces with a different connection.

At the end I express my sincere gratitude to Prof. J. Kanitani for his kind guidance during my researches.

