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Note on the non-increasing solutions of
V'=f(x5).
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The non-increasing solutions of the ordinary differential equa-
tion of the second order,

(1) 23 =1 (x3,%),
X X

have been discussed by A. Kneser, A. Mambriani, G. Scorza
Dragoni and recently by P. Hartman-and A. Wintner etc.. In the
following we will give some comments on the same topics.

At first on the increasing solutions of (1), the

Theorem 1. Let f(x,,2) be defined and continuous in the
domain 0<x<w, 0<y< o, —ow<<z< o, Suppose that, for
every C> 0, there exists a continuous function g (x, y, 2) =@ (x, ¥, 2)
for the domain

dc : 0<x<C, 0Zy<C —k<:zX0

(constant £>0 may be arbitrarily small) with the continuous first
partial derivatives in the interior of 4c, and that ¢ (x,y,2)>0 for
z==0, ¢ (x,y,0)=0, moreover that, in the interior of dc¢, we have

(2 99, 3% 1+ 3% f(x,y,2)<0.
ox Oy 0z
Then let y=y(x) be a solution of (1) no (0 <)a<< x < b satis-

fying the initial conditions

1) P. Hartman and A. Wintner have proved a theorem like this in American
Journal of Mathematics, Vol. 73 (1951). Since their conditions are f(x, y,0)= 0 and
(% ¥, 2) —f(x,9,0)= Mz, if we take @=e~2Mz, 22, then it satisfies evidently (2) and (5),
and so their theorem becomes a special case of ours. Hence their condition f(x,0,0)
=0 for 0< x<co is not necessary. Also their Lemma 1 (p. 391) can be deduced
from this theorem.
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(3) y(@ =0 and y(a)=0,
then we have
) YV(x)=Z0 for a<xXb.

Also, let dc be the domain [0 <x<C 0<y<C, k=2z2=0]
and if, instead of (2), @ (x,y,2) satisfies
30 3P

L1/
5 9% 4+ 9% 24 %% fa, 9, 2) >0
(%) 6x+ay 2+ 32 f(x,9, 2)

and y'(a)> 0, then
6) yY(x)>0 for a<x<0b.

Proof. Now we consider the case (3). By the continuity of
y(x) and the definition of f(x,y,z), there exists a positive number
L such as 0 < y(x) < L for a < x < b except the trivial case y=0.
Take C=max(b, L) and consider the function @ (x,y,z) correspon-
ding to this C. Now suppose that 3'(x) is negative at a value of
x. Then, by the continuity of 3'(x), there exist two values
of x, say x=x, and x=x, such that y'(x)=0, ¥ (x.)> —k and
—k <y (x) <0 for x,<x<x.. In this interval, @(x,y(x),y (x))=0
since ?(x,y(x),y¥(x)) is non-increasing with respect to x and
vet @(x,y(x,),y (%)) =@ (x,, y(x,),0)=0. This contradicts with
O (%o, y(2,), 5 (2,))> 0, for y (x,)==0. Therefore we have (4).

In the case where ¥ (@) >0, also we may conclude that there
exist no points such as y'(x)=0 by (5) in the same way, and so
(6) is proved.

For the next theorem, we use

Lemma 1. (Okamura’s existence theorem®). Let f(x,y,2z) be
continuous in the domain

£*: aéxéb, Q)(x)gyga)(x)a —o Lz o,

where, for a <x < b, ©(x) and o (x) are twice differentiable, o(x)
< w(x) and satisfy

(7) " (2) 2 f(x, 0(x), ' (x))

and

2) Okamura, “On y”/=f(x,5,3’) (II)”. Functional Equations (in Japanese), Vol.
30 (1941), pp. 14-19.
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(8) (—t_)’,(x) gf(x) E’(x)’ (B,(x))

respectively. And let ¢(x) be a function defined on a < x b,
satisfying ()< ¢(0) < w(x) (@< x<b) and

Q) )¢ SL-|¥=4"| (@a=a,2"KD),

where L is a constant.

Moreover suppose that there exist four functions &;(x,y,z)
and ¥,(x,y,2) (i=1,2) such as follows; @,(x,y,2) is continuous
inaxx2x=b,0(x)y<¢((x),2z=K ] (constant K >0 may be ar-
bitrarily great) and has continuous first partial derivatives in the
interior of this domain. ¥,, @, and ¥, are the same respectively in
[e<x<b ¢S y<Sawx),22K], [a=<2=b, ¢(NSy<S o),
2z<—K]and [a<xX0b, 0(x) Ly<¢(x),z<— K]. These func-
tions are supposed positive in their definition domains, while in
their domains they converge uniformly to zero for z— + o respecti-
vely ; ahd finally in the interior of their respective domains, the
inequalities

(10) 0 20k 2y 20
o0x oy 9z
and
a O Ol 2y O (5,2 S 0
ox oy oz
hold.

Then, in £*, there exists at least a solution of (1), y=y(x),
satisfying y(a) =¢(a) and y(b)=¢ ().

This lemma is proved by the following idea; We can suppose
that K> L, K> |o'(x)| and K > | o'(x) |, for K may be great. Let
M be greater than K and satisfy for a <2< b, o(2)<y < ¢ (1),

min ?,(x,y, K)> max @,(x,y, M)
and for a <x<b, ¢()<y<w(x),
min (02(.76, y,_K)> max ¢2('x) yy—M) ;

the same with ¥, and ¥, where we take for M a common value.
Now we define a bounded continuous function g(x,y2) as follows.
Namely when o(x) <y <l o(x),
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fx,9, M) for z>M
g(x,y,2)=4 f(x,3,2) for —M=<z<M
flx,y, —M) for z2<—M,

g(x,9,2)> g(x, @(x),2) for y >a(x) and g(x,,2) <g(x, @(x),2) for
y<w(x). Then g(x,y,2) coincides with f(x,5,2) in 4la<x=<b,
v y<w(x), —M=<z=< M]and becomes bounded” continuous
inaxx<bh —o0<y<ow —o<z< x| Hence y'=gx,,5)
has at least a solution y=y(x)(a < x<b) such as y(a)=¢(a)
and y(b)=¢(b), and we see that this solution satisfies w(x)
<y(x) < ®(x). Moreover considering the functions @,(x,y(x),
¥ (x)) and T.(x,y(x),y (x)), it will follow that there exist no
points satisfying y'(x) =M or 3 (x)<—M, by the properties of M
and inequalities (10) and (il). Therefore |y (x)|< M and so
y=y(x) lying in 4 is a solution of y’'=g=f.

Using this lemma and Theorem 1, we obtain the following
theorem.

Theorem 2. Let f(x,¥,2) be a continuous function in the
domain

(12) R: 012<w, 0{y< w, —0<2zxX0

and suppose that

(13) f(x,0,0)=0 for 0 <x< o
and that
(14) Jf(x,,0=0 for 0 ax< o0, 0 y< oo,

Moreover suppose that for every C>0 there exist two func-
tions ?(x,y,2)=®Pc(x,y,2) and ¥ (x,9,2)=¥c(x,2) as follows;
namely @ and ¥ are positive continuous and converge uniformly
to zero for z——co in

(15) Re: 052<C 0<y=<C(C 2=5-K

3) E. g., for y >w((x)

(% ¥, 2) =g(%,5(x), 2) +_1%,% )
and for y < w(x)

w(x)—y

g%y, 2)=g(x, 0(x),2) " Tte(—y "
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(constant K > 0 may be arbitrarily great) and, in the interior
of R., they have continuous first partial derivatives which satisfy

(16) 82 199 2422 {9,220
ox 3y 02

and _

17) O LY o+ f(2,9,2)< 0
ax 9y 0z

respectively.

Then for x,>0 and y, >0 (1) has at least a solution y=y(x)
on 0 < x X x,, satisfying

(18) y(0) =y, and y(x,) =0.

Proof. Let w(x)=0, &(x) =y, and

f#,9,2) (—o<2z<0)

f*(x’y’z)z{f(x,y,O) (0< z2< ).

Then f*(x,y,z) becomes continuons in 0= 2<%, 0=y 7,
—w< 2< 4+ o], and w(x), w(x) satisfy (7) and (8) respectively, for
o" (1) =0=F*(x, @(x), ¢/ (x)) and &" (x) =0=f* (x, 3, 0) =* (%, & (x),

@ (x)). Let ¢(x) =y.,(1——%) and then ¢(x) satisfies (9) clearly.

As 9, and ¥, in Lemma 1, we use @, and ¥, corresponding to C
respectively, where C=max(x,,y,). For z>0, there is a positive
number M such that, for 0<x<4x, 0 y<1y, 0 S (x5 0)<

%l—, hence we have

19 0730 =3 =M1+2) @0,

Hence putting
0,(1, 5, 2)=€" 4" (220),
and

V. (x,y,2)=e* (2=0);

clearly @, and ¥, satisfy the conditions of Lemma 1. Therefore
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Y gy 9V

(20) PR CE s )

has at least a solution y=y(x)v passing through (x=0, y=y,) and
(x=1x,, y=0). '

Now considering the function @ (x,y,2)=2% it is continuous in
the domain 4dc¢ of Theorem 1, ¢ >0 for 2==0 and ?=0 for z=0,
and finally, .
Y/ Y P
ezt —f*(x,9, 2
ox oy 0z I 3,2)

=2z:f*(x,9,2) =0,

provided z >0. Therefore if ¥'(x) is positive at a value of x' say
x=¢, then by Theorem 1, ¥'(x) >0 for £ < x < x,; but this contra-
dicts with y(x,)=0 since ¥(§)=0. Hence y'(x)< 0 for 0 < x < x,
and so Theorem 2 is proved.

From this proof, we see that (13) and (14) are not essential
conditions. It is the same with Theorem 3 mentioned below.”

For Theorem 3, the following Lemmas are needed.

Lemma 2. Let £ be a closed bounded domain in (x, y) plane
and £* be the three-dimensional domain of (x,y,2) such that
(x,y)e £ and |z|< . Let f(x,5,2) be a continuous function in
£*., Moreover we suppose that there exist two functions ?,(x, y, 2)
(1=1,2) as follows; @,(x,y,2) is continuous in the domain [(x, y)
€L, 22K] (K: constant) and has contiouous first partial deriva-
tives in the interior of the domain, and @,(x,y,2) is the same in
[(x,y)eL£,z<—K]. These functions are always positive and con-
verge uniformly to zero for (x,y)e£ and z— 4+ o and finally, in
the interior of their respective domains, the following inequalities

0P, 00,
-+
ox ay

2+ 2% fr3,920 (=12)

hold.

Then for an arbitrary positive number «, there is another
positive number B(«) such that for any solution y=y(x) of (1)
with the initial conditions y(x,) =y, and | ' (x,)| < ¢, where (x,, ¥,)
is an arbitrary point in £, the inequality |y (x)| < B(«) always

4) We can modify the Theorems 1, 2, 3, 4 for more general regions of y and y”.
5) Okamura, “On 3”/=f(x,,3’)”, Functional Equations (in Japanese), Vol. 27
(1941), pp. 29-30. ’
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holds, as long as y=y(x) lies in the interior of £ for x, < .
If in place of &;, there exist similar functions ¥,(x,y,2) (i=
1, 2) satisfying

aw‘; + awz
ox oy

ha ?{'f(x,y,Z)éO (i=1,2),
¥4

then the above stated inequality holds for x,= x.

For consider @;(x,y(x),y (x)) which is positive at x=x, and
non-decreasing with x, then the assumption that 3(«) does not
exist contradicts with @;(x,y,y’)—0 for | ' |- and uniformly for
(x, ) eL.

Lemma 3.” Let w(x) and &(x) be twice differentiable for
a<x<b and w(a)>w(a). Suppose that the function f(x,3y,2)
satisfies the same conditions as in Lemma 2 and that there ex1st
?,(x,9,2) and Z.(x,9,2) ({1=1,2) as in Lemma 2.

Then there exists a positive number y having the following
properties ; Every solution curve of (1) with the initial conditions
w(@) X y(a) <w(a) and ¥y (a)=r meets the curve y=a(x) for a
value of x in @< x< b, and every solution curve with the initial
conditions (@) < y(@)< ®(a) and ¥y (@)<—r meets the curve
y=w(x) for a value of x in a< x<b.

Under the above preparations, we shall prove the following
theorem which is an extension of Hartman and Wintner’s theorem.

Theorem 3. Suppose that f(x, y, z) satisfies the same conditions
as in Theorem 2. Then for every y, >0, there exists at least a
solution of (1) for 0 < x < oo, satisfying the initial condition

(21) ¥(0) =y,
and the inequalities

(22) yx)=20 and y()X0.

Proof. Let y,>0 be fixed and y=y(x, x,) be a solution of (1),
for 0 < x< x,, satisfying (18). Its existence is evident from Theorem
2. We can suppose that y(x, x,) >0 for 0 < x < x,, for if it be not
so, the assertion is clear. Let x,=# (n=1,2,...), then it follows

6) Okamura, loc. cit., p. 30. C.f. Nagumo, “ Uber die Differentialgleichung y”/=f
(x,5,%),” Proc. of Physico-Math. Soc. of Japan, ser 3, vol. 19 (1937), pp. 863-864.
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from Lemma 2 and 3 that, for any integer k >0, there exists a
constant M >0 corresponding to %k such that

0=2y(x,n)=—Mfor 0<x<Fkand n=k+1,k+2,....

Hence by equicontinuity, y(x, #,), y(x, 1,),... tends to a desired solu-
tion of (1), if #, n.,...are chosen suitably.
Remark. Hartman and Wintner’s theorem® is a special case

of the above: for we may put
- [
P(x,3,2)=e° ’or& (2X0)

% 2z

7 (x,9,2) = lvso (2x0),

e.g., @ satisfies the conditions clearly, because

o0 3@ P
—t——24+—f(x, 9,2
ox oy 0z I(x3:2)

z

=e U~ fovto {_z— ¢(zz) S, 2)}

>e ! foser f—242} =0.

Then concerning the solutions of (1) which satisfy (22) for
0=x < o, there arises a question, whether the limit relation

(23) lim y(x) =0

>

is true or not. About it we have

Theorem 4. Let f(x,v,2) be a continuous function in R.
Suppose that for every pair of constants 0< c¢< C, there exists a
positive continuous function @?(y,2) n R* [c Sy < C, 2<—K] (K:
constant) with continuous first partial derivatives in the interior of
R*, converging uniformly to zero for ¢ <y < C when z—— oo and
satisfying, in the interior of [0 < x <o, c <y <C, 2z<—K, the
inequality

7) P. Hartman and A. Wintner, “On the non-increasing solutions of y”/=f
(%,9,9”)”, American Journal of Math., Vol. 73 (1951), p. 391.
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(24) 9 2 49% finy, 220
oy 0z

Moreover suppose that, for every pair of constants 0< ¢ < C,
there exists a positive continuous function 7 (x, ¥, 2) in R[§ < x <,
c<y<(C, —C <z2<0] (£: constant) such that it converges
uniformly to zero for ¢ <y C, —C' <2< 0 when x— and

that, in the interior of R (including z=0), has continuous first
partial derivatives and satisfies

(25) or L O 497

= . , 0.
oy,

Then for any solution y=y(x) of (1) on 0 <x < oo satisfying
(22), the relation (23) is true.

Proof. For if otherwise, then lim y(x)=c >0 would hold for

TP

a certain solution y=y(x). Hence if y(0)<X C, c<y®)XC for
0<x< . Now we may consider y'(0)> —K, since K may be
great. Choose N(> K >0) such as

min @(y,—K)>max ¢(y, —N),

eSysSC cSy=C
and then we shall have —N<y'(x) <0 for 0 <x <. Because
if for a value of x, say x=¢,, 3 (§,)<— N holds, by the continuity
of ¥'(x), there are £, and £, such that y'(¢,) = —K, y'(§;,) =—N and
—K> y'(x) > —N for &, <x <¢.,, and since we have @(y(5,),¥ (52))
=@(y(¢,),—K)>0 and ¢(y(x),y (x)) is non-decreasing with x by
(24), it follows that @ (y(§,),—K) < @ (y(£,),— N) which contradicts
with the choice of N.

Now choose 0< < ¢ and C' >max(y(0),N) and ¥ (x,¥, 2)

corresponding to ¢ and C'. As ¥ (x,y(x),y (x)) is non-decreasing
with x by (25) and ¥ (¢, y(¢), y'(€)) >0, we have

m @ (2, y(x),5 (1)) 2 ¥ (€, 5(5), 5 (£))>0.

This contradiction proves the theorem.
Remark 1. 7 (x,y,2) can be replaced by #*(x,y,z) which is
positive, tends to infinity (x— o) and satisfies, instead of (25),
or* | oT* U *

P +W’Z+Tz"'f(x1yy Z)éo
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Remark 2. Rutting

?(y,2)=e (2=—K)
and

¥ (1, 2) me 0O (0<n< 0, ¢ <y<C, —C <2=0),

we obtain Hartman and Wintner’s theorem.”

December 1951, Mathematical Institute,
Kyoto University.

8) Hartman and Wintner, loc, cit.,, p. 399.



