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The non-increasing solutions of the ordinary differential equa-
tion of the second order,

dyy ,  dy 
dx2d x

have been discussed by A . K neser, A . M ambriani, G. Scorza
Dragoni and recently by P. Hartman and A. Wintner e tc .. In the
following we will give some comments on the same topics.

At first on the increasing solutions of (1), the
Theorem 1.1) L e t  f(x, y, z) be defined and continuous in the

domain 0 <x <co ,  0 y < cc, —  co <z <  co. Suppose that, for
every C> 0, there exists a continuous function o (x, y, z) =- o c (x, y, z)
for the domain

dc 0 y < C ,  — k<z< 0
(constant k> 0  may be arbitrarily small) with the continuous first
partial derivatives in the interior of dc, and that o (x, y, z)> 0  for
z + 0 ,  (x, y, 0) 0 ,  moreover that, in the interior of dc, we have

ao a o a (2) + • z+ •f(x, y, z)_< O.
ax a y az

Then let y  ( x )  be a solution of (1) no (0 <_) a < x < b satis-
fying the initial conditions

1 )  P . Hartman and A. Wintner have proved a theorem like this in American
Journal o f  Mathematics, Vol. 73 (1951). Since their conditions are f(x, y, 0) 0  a n d
f(x, y, z) — f(x, y, ( ) >  M z, if we take ø = e -M x .  z2 , then it satisfies evidently (2) and (5),
and so their theorem becomes a special case of ours. Hence their condition f(x, 0, 0)

0 for OS x < c / 0  is not necessary. Also their Lemma 1 (p. 391) can be deduced
from this theorem.

(1)
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(3) y (a) 0  and y' (a) 0,

then we have

(4) y'(x)___ 0  fo r  a < x < b .

Also, let 4 c be the domain [0 x C ,  0 y  <  C, k z  0]
and if, instead of (2), 0 (x, y, z ) satisfies

(5)
ao

 +
ao

 . z +

ao
 - f ( x ,y , z ) _ > _ .  0ax ay az

and y' (a)> 0, then

(6) y' (x)> 0  fo r  a < x < b.

Proof. Now we consider the case (3). By the continuity of
y (x ) and the definition of f(x, y, z), there exists a positive number
L  such as 0 y(x) L  for a <  b except the trivial case y O .
Take C=max(b, L )  and consider the function 0  y, z) correspon-
ding to this C . Now suppose that y' (x) is negative at a value of
x. T h e n , by  the continuity o f  yr (x) , there exist two values
o f x, say x  xi ,  and x= x, such that y' (x1) =0, y ' (x0)> — k  and
— k <y' (x) < O for x, <x <x2. In this interval, 0 (x, y (x) , y' (x)) 0
since 0 (x, y(x), y '(x ) )  is non-increasing with respect to  x  and
ye t 0 (x1, y(x,), y' (x1)) = O (xi, y(x1), 0) =O . This contradicts with
0 (x2, y ( X 2 ) , y' (x,))> 0, for y' (x2) ÷ O. Therefore we have (4).

In the case where y' (a) > 0, also we may conclude that there
exist no points such as y' (x) =0 by (5) in the same way, and so
(6) is proved.

For the next theorem, we use
Lemma 1. (Okamura's existence theorem 2 ) ) .  Let f(x, y, z) be

continuous in the domain

X * : a < x < b ,  w (x )< y < (- 0(x), —00 <z< co,

where, for a x b, w(x) and (7)(x) are twice differentiable, (0(x)
< io(x) and satisfy

(7) 0" (x ) f  (x , (x ) w ' (x ))
and

2) Okamura, "O n  y " - - --f ( x , y , y 1 )  (11)". Functional Equations (in Japanese), Vol.
30 (1941), pp. 14-19.



Note on the non-increasing solutions of y" =f(x, y, y') 155

(8) ()"(x )5  f (x, i(x), (7/(x))

respectively. And let O W  b e  a  function defined on a <x  b ,
satisfying (p(x) ‹  ( X ) ‹  (x ) (a < x b) and

(9) I 0(x') - 0(x")1 L • I x' — x" I ( a  < x', x" < b),

where L  is  a constant.
Moreover suppose th a t th e re  e x is t  four functions 0,(x, y, z)

and E . (x, y, z ) (i= 1, 2) such as follows ; (P 1 (x, y, z )  is continuous
in [a  <  x  b ,  ( x ) <  y  <  (X ),  Z > K ]  (constant K >  0 may be ar-
bitrarily great) and has continuous first partial derivatives in the
interior of this domain. T „ 0 , and T , are the same respectively in
La S  x b ,  ( x )  y  <  ( 0 ( x ) ,  z  K ]  ,  [a < x  b, 0(x ) < y  < W j(x ),
z <— K ] and [a < x  <b , (f2 (x) y  ( X ) , Z  K ] .  These func-
tions are supposed positive in their definition domains, while in
their domains they converge uniformly to zero for z---) ± co respecti-
vely; a t id  finally in the interior of their respective domains, the
inequalities

ao, ao, a(10 (x, y, z) 0
ax3 y az

and

aqf' +- -z+ -f(x, y, z) < 0
ax 3y 'az

hold.
Then, in there exists at least a solution of (1 ), y=y(x),

satisfying y (a) =0 (a)  and y(b) =0 (b).
This lemma is proved by the following idea ; W e can suppose

that K > L, K> ( x ) 1  and K >  I 0' (x) I, for K  m ay be great. Let
M  be greater than K  and satisfy fo r a < x < b, (0_(x)< y <0 (x),

min 0 1 (x, y, >  max 0 1 (x, y, M )

and for a < x  S b, 0(x )<y  S (0(x ),

min 0 2 (x, y,— K )> max 07 2(x, — M )

the same with T  and T ,, where we take for M  a, common value.
Now we define a bounded continuous function g(x, y z ) as follows.
Namely when w (x) <y  (7 )(x ),
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I f ( x ,  y ,  M )  fo r  z > M
ex, Y , z) = f(x , y , z) fo r  — M S  z S  M

f(x, y, — M) f o r  z <— M ,

g(x, y , z)> g(x, i, (x) ,z ) for y > w) (x) and g(x, y , z ) <g(x , o(x ), z ) for
y < e (x ). Then g(x, y , z )  coincides with f (x , y , z )  in  d [a x b ,
te)  (X ) y < ( x ) ,  —  M  z  M ]  and becomes bounded' )  continuous
in [a x b ,  —  co <y <cc , — co <z <cc ]. H e n c e  y"=g(x, y, y')
h a s  a t  le a s t  a solution y = y (x) (a x < b )  such  as y (a)=0 (a)
and y  (b )= (b ) , and w e  s e e  th a t  th is  solution satisfies e ( x )

y (x )5 . (x ) .  Moreover considering the functions 0 1 (x,y(x),
y ' (x )) and #.13.

 i (x, y(x), y ' (x)), it  w ill fo llo w  th a t th e re  ex is t no
points satisfying y'(x).__/1/ or y' (x) M ,  b y  the properties of M
and inequalities (10) and (11). Therefore I y' (x) I < M  and so
y  y ( x )  lying in d  is  a solution of y " =g=f .

U sing this lem m a and Theorem  1, w e obtain the following
theorem.

Theorem 2 .  Let f (x , y , z ) b e  a  continuous function in the
domain

(12) R :  0 < x < c o ,  0 S y <  0 0 ,  —co <z_<_.0

and suppose that

(13) f (x , 0, 0 for 0 x < 00

and that

(14) f(x, y, 0) 0 for 0 x < co, 0 y  <  co.

Moreover suppose that for every C > 0 there exist two func-
tions (x, y , z )= e (x , y , z )  and (x, y , 2) ! P ' 0 (x, y , 2 )  as follows ;
namely and qf are positive continuous and converge uniformly
to  zero for z—> — co in

(15) Rc: —K

3 )  E. g., for y > (x)
y ( x )  

g(x, y , z)— g(x, Wi(x), z) + 1+ y 
— (7)(x)

and for y <  (x )
co(x )— v g(x, y, g(x, z)— .

1+ a)(x) —Y
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(constant K >  0  may be arbitrarily great) a n d , in  th e  interior
of 12,, they have continuous first partial derivatives which satisfy

ao
 + -

a
  - z +

ao 
(16)

ax ay az

and

(17) aT
+

af
 •  z +  

ar
 •  f ( x ,  y , 0ax ay az

respectively.
Then for 1,, > 0 and yo > 0  (1 ) has at least a solution

on 0 x x o ,  satisfying

(18) y(0) =yo and  y (x0) =0.

Proof. Let (g(x)----= 0, ro(x) y,, and

i f(x, y, z) (—  00 < z 0)
f * (x, y, .2) =

f (x , y , 0) (0 < z <co).

Then f* (x, y , 2 ) becomes continuons in  [0 x x o ,  0 Y  yo,
—  co < z < + col and 02(x), (7)(x) satisfy (7) and (8) respectively, for
q," (x) = 0 * (x, (x )  ,  ( x ) )  and (-0"(x)=0_5f * (x, y, ) , 0) =f* (x, i (x) ,
it-/(1)). Let OW =y„(1— )  and then ib(x) satisfies (9 )  clearly.

xo

A s 0 2 and ?P 2  Lemma 1, we use Goo  and  V ,J corresponding to C
respectively, where C = m a x ( x o d ) ) •  F o r  z > 0, there is a positive
number M  such that, f o r  0 . 5 x  x o,  OS y  yo,  0  f(x, y, 0 )S

2  
hence we have

(19) 0 < f(x, y , 0) =f* (x, y, z) - (1+ 22 )  (z> 0).

Hence putting

(x, y, '" +") (z > 0),

and

z) (z 0) ;

clearly 0 1 a n d  gri satisfy the conditions of Lemma 1. Therefore
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d 'y  ___4 4 dy  ).
dx= dx

has at least a solution y=y(x) passing through (x=0, y=y o)  and
(x= xo, y= 0).

Now considering the function 0 (x, y, z) it is continuous in
the domain dc of Theorem 1, 0 > 0 for z 0  an d  0 = 0  fo r  z =0,
and finally,

—
30

+
a0 

 • z +

ao   
f * ( x , y ,  z )ax 3 y 3z

-= 22.f * (x, y, 0,

provided z >0. Therefore if y' (x ) is positive at a value of x say
x = $ , then by Theorem 1, y'(x) > 0 for < x < z0 ; but this contra-
dicts with y (;) = 0 since y (e) O. Hence y' (x)_<. 0 for 0 x xo

and so Theorem 2 is proved.
From this proof, we see that (13) and (14) are not essential

conditions. It is the same with Theorem 3 mentioned below."
For Theorem 3, the following Lemmas are needed.
Lemma 2 » Let 4  be a closed bounded domain in (x, y) plane

and 4 *  be the three-dimensional domain o f  (x, y, z) such that
(x, y) E  4  and I z I < co. Let f(x, y, z) be a continuous function in
L .  Moreover we suppose that there exist two functions 0,(x, y, z)
(i=1,2) as follows ; 01 (x, y, z) is continuous in the domain [(x, y)
( 4, K ] (K : constant) and has contiouous first partial deriva-
tives in the interior of the domain, and 0,(x, y, 2) is the same in
1(x, y) E 4,z These functions are always positive and con-
verge uniformly to zero for (x, y) ( L  and z---› ± co and finally, in
the interior of their respective domains, the following inequalities

ao, ao, ao, + -z+  f(x, y, 0  (i= 1 , 2)ax 3y 32
hold.

Then for an arbitrary positive number a, there is another
positive number p ( a )  such that for any solution y=y(x) of (1)
with the initial conditions y(x 0) =3 70 and I y' (zo) a , where (xo,
is an arbitrary point in  Z , th e  inequality I Ax) I < 13 () always

4) We can modify the Theorems 1, 2, 3, 4 for more general regions of y and ' .

5) Okamura, "O n  y " = f ( x ,y ,y 0 " ,  Functional Equations (in Japanese), Vol. 27
(1941), pp. 29-30.

(20)
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holds, as long as y =y (x )  lies in the interior of L  for x0 x .
If in place of 01, there exist similar functions T(x, 2) (i=

1, 2) satisfying

aT, + • z+ • f(x, 0 ( i = 1 ,  2),ax ay az

then the above stated inequality holds for x.
For consider 0 1 (x , y(x), y ' (x)) which is positive at x= x, and

non-decreasing with x , then the assumption that /9(a) does not
exist contradicts with 0 1 (x, y, y')--k) for I y' I —*co and uniformly for
(x,y)€ L.

Lemma 3.n)  Let w  (x )  a n d  (x )  be twice differentiable for
a x S b  and 0) (a) > 7(i (a) . Suppose that the function f (x , y, 2)
satisfies the same conditions as in Lemma 2 and that there exist
01 (x,y, z) and (x , y , 2) (i=1, 2) as in Lemma 2.

Then there exists a positive number r  having the following
properties ; Every solution curve of (1 ) with the initial conditions
oj. (a) y  ( a )  < -(-5 (a) and y' (a) r meets the curve y= 3(x ) for a
value of x  in a< x < b , and every solution curve with the initial
conditions (y (a) <y (a) _< (5(a) and y' (a) 7- meets the curve
y = (.11 (x) for a value of x  in a < x < b.

Under the above preparations, we shall prove the following
theorem which is an extension of Hartman and Wintner's theorem.

Theorem 3 .  Suppose that f(x, y, z) satisfies the same conditions
as in Theorem 2. Then for every yo > 0, there exists at least a
solution of (1) for 0 x < cc, satisfying the initial condition

(21) Y (0) =Y0

and the inequalities

(22) y (x) 0  and y' (x)5 O.

Proof. Let y0> 0 be fixed and y =y (x ,x ))  be a solution of (1),
for 0 5 x5 xo , satisfying (18). Its existence is evident from Theorem
2. W e can suppose that y (x, x0 )> 0 fo r  0  x xi ) ,  for if it be not
so, the assertion is clear. Let x 0 = n  (n =1 , 2,...), then it follows

6) Okamura, loc. cit., p. 30. C. f. Nagumo, "Über die Differentialgleichung y " = f
(x,y,y 1 )," Proc. o f Physico-Math. Soc. of Japan, ser 3, vol. 19 (1937), pp. 863-864.
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from Lemma 2  and 3  that, for any integer k  > 0 , there exists a
constant M >  0  corresponding to k  such that

0 —M for 0 x  k and n =k +1 ,k +2 ,. . .  .

Hence by equicontinuity, y(x, n 1 ), y (x , n 2 ) ,... tends to a desired solu-
tion of (1), if n „ n „ ...are chosen suitably.

Remark. Hartman and W intner's  theorem' )  is  a special case
of the above ;  for we may put

y _ v iz

y, z) '00(z)

f wiz 
(x , y , z )=e -  I 0 16(.)

(z 0)

(z 0),

e.g., 0 satisfies the conditions clearly, because

ao3 ( 1 )+ • z+ f(x, Y , 2)ax 3 y az

= e 
_y _ tax   

{ —z—  2 f ( x ,  y ,  z ) }

f zdz 

> e -  J00(zi — 2+ z} =0.

Then concerning the solutions of (1 )  which satisfy (22) for
O x  < co ,  there arises a question, whether the limit relation

(23) lim y(x) =
2 - ) 0 0

is true or not. About it we have
Theorem 4. Let f (x , y , z ) be a  continuous function in R.

Suppose that for every pair of constants 0 < c < C , there exists a
positive continuous function 0(y, z) in R* [e ‹ , y  C, z  <- 1 C ] (K :
constant) with continuous first partial derivatives in the interior of
R*, converging uniformly to zero for c S y _ _ C  when z—>—co and
satisfying, in the interior of [0 S x  <co , c S y S C ,  z S — K ] ,  the
inequality

7 )  P .  Hartman and A. Wintner, "On the non-increasing solutions of
(x , y ,  y ' )" ,  American Journal of Math., Vol. 73 (1951), p. 391.
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(24) a° • z+ a(f) f (x , y, 0.
ay az

Moreover suppose that, for every pair of constants 0 < c' < C',
there exists a positive continuous function V (x, y, z) in k LE x <
d .‹ y _<.C' , — C' <z  < O] (E: constant) such that it converges
uniformly to zero fo r c' y — C ' z 0  w h en  x—> co and
that, in the interior o f k  (including 2=0), has continuous first
partial derivatives and satisfies

aqr
q r f(25) + 2+ -f(x, y, 2) >  0.

ax ay az

Then for any solution y =y (x ) of (1 ) on 0 .‹ x  < 00 satisfying
(22), the relation (23) is true.

Proof. For if otherwise, then lim y(x) -=c > 0 would hold for

a certain solution y =y ( x ) .  Hence if y(0)‹. C, c y (x )_<_ . C  for
0 x < 00. Now we may consider y' (0) >  —K, since K  may be
great. Choose N (> K > 0) such as

min 0(y ,— K )> max 0(y , — N ),
cSYIS".-0

and then we shall have — N <y' (x) 0 for 0 <cc. Because
if for a value of x , say y' (E1 )_<— N holds, by the continuity
of y' (x), there are E, and E such that y' (E2) = — K, —N and
—K> y' (x) > — N  for E, <x and since we have 0 (Y (2), (2))

0 (.3'00, — K ) > 0 and (1) (y (x) , y' ( x ) )  is non-decreasing with x by
(24), it follows that (y (E2), — (y (E2), —  N ) which contradicts
with the choice of N.

Now choose 0 < c' < c and C' > max (y(0), N )  and gr (x, y, 2)
corresponding to c' a n d  C '. A s  (x, y (x) , y' (x)) is non-decreasing
with x  by (25) and 3If y ($ ), y '($ )) >0, we have

lim W(x, y(x), y' ($ , y($), y' ($))> 0.

This contradiction proves the theorem.
Remark 1. (x, y, 2) can be replaced by / I f * (x, y , z ) which is

positive, tends to infinity (x—> co) and satisfies, instead of (25),

a w *  a q i* aqi* 2+ • A x, y , z )< O.
dy az
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Remark 2 .  Rutting

0(y, z) K)
and

(x, y, e x < 0),

we obtain Hartman and Wintner's theorem!)

December 1951, Mathematical Institute,
Kyoto University.

8 )  Hartman and Wintner, loc, cit., p. 399.


