A Note on the Riemann-Roch-Weil's Theorem

By
Ryoichiro Kawai

(Received October 1, 1951)
The beautiful theory of hyperabelians functions through which A. Weil took the remarkable first step into the " non-abelian mathematics" is founded on the basis of the Riemann-Roch's theorem concerning with the generalized divisors which he introduced. He proved this theorem, using the abelian integrals of the $3^{\text {rd }}$ kind, in a purely function-theoretical way. Under a remark of Mr. Igusa, that this theorem will be innerly related to the Riemann-Roch's theorem which E. Witt proved in the case of simple algebras over function-fields, in this note we shall show a relation between the above two theorems and prove the Weil's theorem in a purely algebraic way.

During my investigation I have received many kind advices from Mr. Igusa to whom I express my sincere gratitude.

§ 1. "Signature."

Let $K=k(x, y)$ be an algebraic function-field of one variable over an algebraically closed constant-field k, and let S be the ring of all matrices of degree m whose elements belong to K. We shall now construct a certain kind of Riemann-Roch's theorem in S. The letter P always denotes a prime divisor of K, and K_{P}, S_{P} denote the P-adic completion of K, S respectively.

We shall associate a positive integer $n=n(P)$ to each prime divisor P of K in the following way.

$$
\begin{array}{ll}
n(P)>1,(n, p)=1 & \text { for finite number of } P \neq P_{\infty} \text { 's } \\
n(P)=1 & \text { for the other prime divisors }
\end{array}
$$

where p is the characteristic of k. We shall call these integers $n(P)$ given in this way the "Signatures" of S (or of K).

For eachone of finite number of $P^{\prime} s$ for which $n(P)>1$, we choose a galois-extension Z_{P}, such that $\left[Z_{P}: K_{P}\right]=n(P)$. Then the prime divisor P is completely ramified and therefore $P=\boldsymbol{P}^{n}$
in Z_{P}. The ramification theorem of Hilbert shows that Z_{P} / K_{P} is cyclic as n is relatively prime to the characteristic p of K.

Lemma 1. If $(n, p)=1$, there exists a number II//P such that

$$
\Pi^{\sigma}=\zeta \Pi,
$$

where σ is a generator of the galois-group of Z_{P} over K_{P}, and ζ is a primitive root of $x^{n}-1=0$.
Proof: Let $/ /$ be a number in \boldsymbol{P} such that, $I / / \boldsymbol{P}$, then we have

$$
\Pi^{a^{i}}=\varepsilon_{t} \Pi \quad\left(i=1,2, \ldots, n-1, \varepsilon_{0}=\varepsilon_{n}=1 .\right)
$$

with a unit ε_{i} of K_{P} and $\varepsilon_{i}=\varepsilon_{i-1}^{o} \varepsilon_{1}$. Hence if we put
then we have

$$
\begin{aligned}
& \varepsilon_{1} \equiv \eta \quad(\bmod \boldsymbol{P}) \\
& \varepsilon_{i} \equiv r^{i} \quad(\bmod \boldsymbol{P}) \quad(i=1,2, \ldots, n-1, n)
\end{aligned}
$$

$$
\text { therefore } \quad \eta^{n}=1
$$

$$
\text { that is } \quad \eta=\zeta^{*} \text {, }
$$

where ζ is a primitive root of $x^{n}-1=0$ and $1 \leq s<n$.
Then a number

$$
\bar{I}=\sum_{i=1}^{n-1} \zeta^{-s i} \Pi^{\sigma^{i}}=\left(\sum_{i=0}^{n-1} \zeta^{-s i} \varepsilon_{i}\right) \Pi
$$

satisfies all the conditions of the Lemma 1. For

$$
\left(\sum_{i=0}^{n-1} \zeta^{-s i} \varepsilon_{i}\right) \equiv n \quad(\bmod \boldsymbol{P})
$$

this shows that $\bar{I} \| \boldsymbol{P}, \bar{I}^{\circ}=\zeta^{s} \bar{\Pi}$ and that $(s, n)=1$.
§2. Local divisors. (Canonical form.)
Let $P \cap k(x)=\mathfrak{p}$, and let \mathfrak{o}_{P} be the integral domain of K with respect to $k(x)_{\mathfrak{p}}$, then $I_{P}=\left(\mathfrak{o}_{P}\right)_{m}$, which is the set of all matrices of degree m over \mathfrak{o}_{P} is a "Maximalordnung" of S and the other " Maximalordnung " I_{P}^{\prime} of S_{P} are represented as

$$
I_{P}^{\prime}=\sigma^{-1} I_{P} \rho
$$

with a regular element ρ of S_{P}. I_{P} has only one two-sided prime ideal (P) and the other two-sided ideal of it are powers of (P).

In the case $n(P)=1$, all the left-ideals \mathfrak{A}_{p} of I_{P} are principal and are uniquely normalized as
where

$$
\mathfrak{H}_{P}=I_{P} \theta_{P},
$$

$$
\theta_{P}=\left(\begin{array}{cccc}
\theta_{11} & A_{12} & \ldots & \ldots \\
0 & \theta_{22} & \theta_{1 n} \\
\vdots & & \ddots & \\
\theta_{22} & \ldots & \vdots \\
\vdots & & & \ddots \\
0 & \ldots & \ldots & \vdots \\
0 & \theta^{n} \\
\theta^{n n}
\end{array}\right)
$$

and $\theta_{i k}(i<k)$ are determined uniquely modulo $\theta_{i i}$ (see Weil [1], Witt [2]). We shall call a left-ideal ϑ_{P}, for which θ_{P} is regular, a local leftdivisor of S for $n(P)=1$. If we restrict the elements of I_{P} to the set of all P-adic units, we get a Weil's divisor $U_{P} \theta_{P}$.

For $n(P)>1$, if a left-ideal $\mathfrak{A}_{P}=I_{P}, \theta_{P}$, of I_{P} in Z_{P} satisfies the following two conditions, then we shall call it a local left-divisor of S.

$$
\begin{align*}
& \theta_{P} \text { is regular in } S, \tag{1}\\
& \mathfrak{U}_{P}^{\sigma}=\mathfrak{N}_{P} \text {, for all } \sigma \text { of the galois-group of } Z_{P} \text { over } K_{P}
\end{align*}
$$

We shall call this $\theta_{\boldsymbol{p}}$. the representative of $\mathfrak{A}_{\boldsymbol{p}}$.
Let θ be a representative of a local divisor and let $\theta^{\sigma}=V \theta$, then the other representative of the same divisor is given by $\theta^{\prime}=U \theta$, where U is a modulo \boldsymbol{P} unimodular matrix of S_{P}, and θ^{\prime} satsfies $\theta^{\prime \sigma}=V^{\prime} \theta^{\prime}$. Clearly $V^{\prime}=U^{o} V U^{-1}$. Now if we put

$$
\left\{\begin{array}{l}
V \equiv A(\bmod \boldsymbol{P}) \\
V^{\prime} \equiv A^{\prime}(\bmod \boldsymbol{P}) \\
U \equiv U_{0}(\bmod \boldsymbol{P})
\end{array}\right.
$$

then we have $A^{\prime}=U_{n} A U_{0}{ }^{-1}$. And if we assume $\theta^{\alpha}=V_{\nu}{ }^{\theta}$ $(\nu=1, \ldots, n)$, then we have $V_{\nu}=V_{\nu-1}^{o} V$, therefore $V_{\nu} \equiv A^{\nu}(\bmod \boldsymbol{P})$ ($V_{v}=E_{m}$). From $A^{n}=E_{m}$, there exists a regular constant matrix M such that

$$
A=M^{-1} D M, \quad D=\left(\grave{o}_{i j} \zeta^{l_{i}}\right),
$$

where ζ is a primitive root of $x^{n}-1=0$ of Lemma 1., and d's are uniquely determined by
$n-1 \geqq d_{1} \geqq \ldots \ldots \geqq d_{k} \geqq 0>d_{k+1} \geqq \ldots \ldots \geqq d_{m} \geqq-(n-1), d_{1}-d_{m}<n$.
Clearly these $d^{\prime} s$ are characteristic to θ. Replacing θ by $\theta^{\prime}=M \theta$ we get a divisor θ satsfying (we write θ instead of θ^{\prime})

$$
\theta^{o}=V \theta, \quad V \equiv D(\bmod \boldsymbol{P}), \quad V_{\nu} \equiv D^{\nu}(\bmod \boldsymbol{P})
$$

Then the divisor

$$
\bar{\theta}=\sum_{\nu=0}^{n-1} D^{-\nu} \theta^{\sigma^{\nu}}=\left(\sum_{\nu=0}^{n-1} D^{-\nu} V_{\nu}\right) \theta
$$

represents the same divisor as θ, since

$$
\sum_{\nu=0}^{n-1} D^{-\nu} V_{\nu} \equiv n E_{m} \quad(\bmod \boldsymbol{P})
$$

is modulo \boldsymbol{P} unimodular, and clearly we have $\bar{\theta}^{a}=D \bar{\theta}$. From now on we always choose as a representative of a divisor such a θ that satisfies $\theta^{o}=D \theta$. Then if we take a matrix $\Delta=\left(\partial_{i j} I^{a t}\right)$, so the matrix $\theta_{0}=\Delta^{-1} \theta$ satisfies $\theta_{0}^{\mathrm{o}}=\theta_{0}$, i. e., is a divisor of K_{P}. Hence we have proved

Lemma 2. For $n(P)>1$, each local left-divisor Θ_{P}. is uniquely normalized in the following form

$$
\theta_{P}=\Delta_{F} \cdot \theta_{\| P}
$$

where

$$
\Delta_{P}=\left(\partial_{i j} I I^{d_{i}}\right), n-1 \geqq d_{1} \geqq \ldots \ldots \geqq d_{m} \geqq-(n-1), d_{1}-d_{m}<n .
$$

and $\theta_{\| P}$ is a local left-divisor of K_{P}.
§3. Divisors and their ideals.
If we were given a left-divisor $\mathfrak{U}_{n(P)=1} \prod_{P_{(P)>1}} \mathfrak{H}_{P}$, where \mathfrak{H}_{P} and \mathfrak{A}_{P} are all equal to E_{m} but a finite number of P, the set of the numbers of S

$$
\alpha=\prod_{n(P)=1} a_{P} \prod_{n(P)>1} \alpha_{P},
$$

which satisfy the conditions
$\begin{array}{lll} & \varkappa_{p} \in \mathfrak{H}_{P} & \text { for all } P \neq P_{\infty}, n(P)=1, \\ \text { and } & \mathfrak{U}_{\boldsymbol{P}} \in \mathfrak{H}_{\boldsymbol{P}} & \text { for all } \boldsymbol{P}, n(P)>1,\end{array}$
form an I-ideal (\mathfrak{H}). For (1°) if $\alpha, \beta \in \mathfrak{Y}$, then it follows $\alpha_{P} \in \mathfrak{U}_{P}$, $\beta_{P} \in \mathfrak{N}_{P}$ for all $P \neq P_{\infty} ' s, n(P)=1$ and $\alpha_{P} \in \mathfrak{N}_{P}, P_{P}, \in \mathfrak{N}_{P}$ for all \boldsymbol{P}, $n(P)>1$, therefore $(\alpha \pm \beta)_{P}=\alpha_{P} \pm \beta_{P} \in \mathfrak{H}_{P}$ and $(\alpha \pm \beta)_{P}=\alpha_{P} \pm \beta_{P}$ i.e. $\alpha \pm \beta \in(\mathfrak{H})$. (2°) If $\alpha \in(\mathfrak{H}), o \in I$, it follows that $(o \alpha)_{P}=o \alpha_{P} \subset I_{P} \alpha_{P}$ $\subset \mathfrak{U}_{P}$ and $(o u)_{P}=o_{P} \alpha_{P} \subset I_{P} \mu_{P} \subset \mathfrak{H}_{P}$ i.e. out $\in(\mathfrak{A})$. (3°) Because \mathfrak{A}_{P} is an I_{P}-ideal, there is a number μ_{P} such that $\mu_{P} \mathfrak{U}_{P} \subset I_{P}$ for each P, $n(P)=1$ and $\mu_{P} \mathfrak{U}_{P} \subset I_{P}$ for $n(P)>1$. But $\mu_{P}\left(\right.$ or $\left.\mu_{P}\right)=E_{m}$ all but a finite number of $P($ or $\boldsymbol{P})$. Let

$$
\mu_{P}=\left(\mu_{l j}^{(P)}\right) \text { and } \mu_{P}=\left(\mu_{i j}^{(P)}\right) \text { for } P=P_{1}, \ldots, P_{l}, \boldsymbol{P}=\boldsymbol{P}_{1}, \ldots, \boldsymbol{P}_{l}^{\prime}
$$

and

$$
\mu_{i j}^{(P)}=\pi^{\nu_{i j}\left(P^{P}\right)} \varepsilon_{i j}{ }^{(P)} \text { and } \mu_{i j}(\boldsymbol{P})=I I^{\nu_{i j}(\boldsymbol{P})} \varepsilon_{i j}^{(\boldsymbol{P})} \quad(\pi / / P)
$$

then there exists a matrix of S such that

$$
\mu=\left(\mu_{i j}\right), \mu_{i j}=\pi^{\nu i j} \varepsilon_{i j} ; \nu_{i j} \geqq \nu_{i j}\left(P^{\cdot)}\right) \text { and } \nu_{i j} \geqq \nu_{i j}^{(P)}
$$

and clearly this μ satisfies $\mu(\mathfrak{H}) \subset I$.
From the above we can conclude that every left-divisor uniquely determins a left-ideal of I, and that, if \mathfrak{U}_{P} and $\mathfrak{H}_{\boldsymbol{P}}$ are nor$\mathrm{mal},(\mathfrak{H})$ is also normal and vice versa.

The above all things which we have proved about left-divisors and left-ideals are also true for any right-divisors and right-ideals. (See [2], [3]). If we are given a left-divisor $\mathfrak{H}=\Pi \mathfrak{H}_{p} \Pi \mathfrak{A}_{P}$, then the problem of finding an element of S which satisfies the conditions

$$
\mathfrak{H}_{P} \Phi \in I_{P} \text { and } \mathfrak{A}_{P}, \Phi_{\epsilon} I_{P} \text { for all } P \text { and } \boldsymbol{P},
$$

is reduced to the problem of finding an element (of S) from the right-ideal (\mathfrak{H}^{-1}) such that

$$
\Phi \in I_{P} \text { for all } P_{\infty}{ }^{\prime} s
$$

because of $\mathfrak{A}_{P} \mathfrak{H}_{P}^{-1}=I_{P}$ and $\mathfrak{A}_{P}, \mathfrak{H}_{P}{ }^{-1}=I_{P}$ for all P and \boldsymbol{P} (Cf. [2], [3], [4]). The number of linearly independent Φ satisfying (3), we shall call $\operatorname{dim} \mathfrak{N}$. Let $\Phi=\left(\varphi_{i j}\right)(i, j=1,2, \ldots, m)$ and assume that the
 and $\theta_{0 P}$ means as before the fractional and integral part of the local divisor $\theta_{\boldsymbol{P}}$, then the second condition of (3) is transformed as follows:

If we put $\Theta_{0} \Phi=\Psi$
in

$$
\Delta \Theta_{0} \cdot \Phi \in I_{P}
$$

then we have $\Psi \in I_{P}$ and $\Theta_{0} \Phi \in I_{P}$ therefore Φ must lie in the ideal $\left(\theta_{0}^{-1}\right)$. And if we put $\Psi=\left(\psi_{i_{j}}\right)$, then we have

$$
\Delta \Psi=\left(\psi_{i j} \Pi_{i}^{d_{i}}\right) \quad\left(d_{1} \geqq d_{2} \geqq \ldots \geqq d_{m}, n-1 \geqq d_{i} \geqq-(n-1)\right),
$$

and the condition $\Delta \Psi \in I_{P}$ insists that

$$
\psi_{k+i, j} \equiv 0(\bmod P) \quad\binom{i=1,2, \ldots, m-k}{j=1,2, \ldots, m} .
$$

Therefore Ψ must satisfy the above $m[m-k(P)]$ conditions and

$$
\begin{equation*}
\operatorname{dim} \mathfrak{A}=\operatorname{dim} \tilde{\mathfrak{A}}-m \sum_{n(P)\rangle 1}[m-k(P)] \tag{4}
\end{equation*}
$$

where $\dot{\mathfrak{M}}$ denotes K-divisor
§ 4. Riemann-Roch-Witt's theorem for given "Signatures".
Lemma 3. (Riemann-Roch-Witt's theorem).

$$
\operatorname{dim} \tilde{\mathfrak{A}}_{12}=\operatorname{deg} \tilde{\mathfrak{A}}_{12}-G+1+\operatorname{dim} \tilde{\mathfrak{A}}^{21},
$$

where $\tilde{\mathfrak{A}}_{12} \tilde{2}^{21}=\boldsymbol{k}$ and \boldsymbol{k} denotes the canonical divisor of K, and G the genus of S, and we assume that $I_{1}=1$.
The proof is well known, so we shall not write it down (see [2]). A. Well introduced a symbol $I(\theta)$ by

$$
I(\theta)=\sum_{n(P)=1} I(\theta)+\underset{n(P)>1}{ } I\left(\theta_{P}\right)
$$

where $I\left(\theta_{P}\right)$ and $I\left(\theta_{P}\right)$ is defined for each P and \boldsymbol{P} by

$$
\operatorname{det} \theta_{P}=P^{I\left(\theta_{E}\right)} \text { and } \operatorname{det} \theta_{\boldsymbol{P}}=\boldsymbol{P}^{I\left(\theta_{P}\right)}
$$

The theorem 6 of Deuring's "Algebren" in VI § 4 (P. 82) (see [5]) shows that, if we put $P \cap k(x)=\mathfrak{p}$,

$$
\left(\mathfrak{p}^{I\left(\theta_{0 P}\right)}\right)^{m}=\mathfrak{p}^{\operatorname{deg} \theta_{0 P}}\left(\theta_{N_{p} f} \epsilon S_{P}\right),
$$

therefore we have

$$
\begin{equation*}
\operatorname{deg} \theta_{0 P}=m I\left(\theta_{0 P}\right) . \tag{5}
\end{equation*}
$$

Hence

$$
\operatorname{deg} \theta_{0}=\sum_{P} \operatorname{deg} \theta_{1 p}=m \sum_{p} I\left(\theta_{r}\right)=m I\left(\theta_{0}\right),
$$

therefore in lemma 3 we have

$$
\operatorname{deg} \tilde{\mathfrak{H}}_{12}=\underset{n(P)=1}{ } \sum_{1} I\left(\theta_{P}\right)+\underset{n(P)>1}{ } \sum_{1} I\left(\theta_{u P}\right) .
$$

According to the Weil's definition, if we put

$$
\operatorname{deg} \mathscr{A}_{12}=m\left[\sum_{n(P)=1} I\left(\theta_{P}\right)+\sum_{n(P)>1} I\left(\theta_{P}\right)\right],
$$

so we have

$$
\operatorname{deg} \Re_{12}=m \sum_{n(P) 1} I\left(\theta_{P}\right)+m_{n(P)>1}^{m}\left[I\left(\theta_{0 P}\right)+\sum_{i=1} \frac{d_{i}}{n(P)}\right] .
$$

From Lemma 3, we have

$$
\begin{aligned}
\operatorname{dim} \mathfrak{A}_{12} & =\operatorname{deg} \tilde{\mathfrak{A}}_{12}-G+1+\operatorname{dim} \tilde{\mathfrak{A}}^{21}-m \sum_{n(P)>1}[m-k(P)] \\
& =\operatorname{deg} \mathfrak{A}_{12}-G+1+\operatorname{dim} \mathfrak{A}^{21}-m \sum_{n(P)>1}\left[\sum_{i=1}^{m} \frac{d_{i}}{n(P)}+m-k(P)\right] \\
& =\operatorname{deg} \mathfrak{A}_{12}-G+1+\operatorname{dim} \tilde{\mathfrak{N}}^{21}-m \sum_{n(P)>1}\left[\sum_{i=1}^{k(P)} \frac{d_{i}}{n(P)}+\sum_{i=k+1}^{m}\left(1+\frac{d_{i}}{n(P)}\right)\right] \\
& =\operatorname{deg} \mathfrak{A}_{12}-G+1+\operatorname{dim} \tilde{\mathfrak{N}}^{21}-m \sum_{P} \sum_{i=1}^{m}\left\langle\frac{d_{i}}{n(P)}\right\rangle .
\end{aligned}
$$

In this formula $\langle *\rangle$ denotes the fractional part of $*$, and $\operatorname{dim} \mathfrak{N}$ denotes also the rank of the modul generated by the differntial matrices $d \Phi$ (Cf. [1]) satisfying

For $n(P)=1$, from $d \Phi=\Phi \boldsymbol{k}, \Phi \mathfrak{A}_{12}^{-1} \boldsymbol{k} \in I_{P}$ and $d \Phi \mathfrak{A}_{1 \geq 1}^{-1} \in I_{P}$ are equivalent. And for $n(P)>1, \Psi \theta_{1}{ }^{-1} \Delta^{-1} k \in I_{\boldsymbol{P}}$ and $d \Phi=\varphi \boldsymbol{k}_{\boldsymbol{P}}=\Phi \boldsymbol{k} \boldsymbol{P}^{n-1}$ shows the equivalence of $d \Phi \mathscr{H}_{12}^{-1} \in I_{P}$. and $\Phi_{\mathfrak{H}_{12}^{-1}} \mathbf{k} \in I_{P}$.

Theorem 1. (Wittl's theorem for given "Signatures.")

$$
\operatorname{dim} \mathfrak{A}_{12}=\operatorname{deg} \mathfrak{N}_{12}-G+1-m \sum_{N} \sum_{i=1}^{m}\left\langle\frac{d_{i}}{n(P)}\right\rangle+\operatorname{dim} \tilde{\mathfrak{X}}^{91}
$$

where $\tilde{\mathfrak{A}}^{\underline{1}}$ is reguarded as the dimension of $d \Phi$ which satisfies

$$
d \Phi \mathscr{H}_{12}^{-1} \in I_{P} \quad \text { and } I_{P} \text { for all } P \text { and } \boldsymbol{P}
$$

Remark: In our case, the genus G of S is easily computed, and we have

$$
G=m^{2}(g-1)+1
$$

where g is the genus of the function-field K.
§5. Relation to the Riemann-Roch-Weil's theorem.
If we are given two divisors θ and θ^{\prime} of degree r and r^{\prime} respectively, the rank of the modul generated by the following r by r^{\prime} matrix Φ of K which satisfies the condition

$$
\theta_{P} \Phi \theta_{P}^{\prime-1} \in I_{P}^{(r, r)} \text { and } \theta_{P} \Phi \theta_{\boldsymbol{P}}^{\prime-1} \in I_{P}^{(r, r)} \text { for all } P \text { and } \boldsymbol{P}
$$

is denoted by $N\left(\theta, \theta^{\prime}\right)$, where $I_{P}^{\left(r, r^{\prime}\right)}$ and $I_{P}{ }^{\left(r, r^{\prime}\right)}$ denote the modul of all r by r^{\prime} matrices of o_{P} and o_{P} respectively. (See [1] Chapitre I, Cf. [5]). Using theorem 1 , this number $N\left(\theta, \theta^{\prime}\right)$ is easily computed.

The Kroneckerian product $\theta \times^{t} \theta^{\prime-1}$ i.e.

$$
\Theta \times^{t} \theta^{\prime-1}=\prod_{n(P)=1} \theta_{P} \times^{t} \theta_{P}^{\prime-1} \prod_{n(P)>1} \theta_{P} \times{ }^{t} \theta_{P}^{\prime-1}
$$

gives also a divisor of $K_{r r^{\prime}}$ in our sense. If we denote by $\operatorname{dim}\left(\theta \times{ }^{t} \theta^{\prime-1}\right)$ the rank of the modul generated by the elements of $K_{r r}$ which are determined by the conditions

$$
\theta_{P} \times^{t} \theta_{P}^{\prime-1} . \Phi \in I_{P} \text { and } \theta_{P} \times \times^{\prime} \theta_{P^{\prime}}^{\prime-1} . \Phi \in I_{P} \text { for all } P \text { and } \boldsymbol{P}
$$

So we can easily verify that

$$
\begin{equation*}
\operatorname{dim}\left(\theta \times^{t} \theta^{\prime-1}\right)=r r^{\prime} N\left(\theta, \theta^{\prime}\right) \tag{6}
\end{equation*}
$$

On the other hand, by theorem 1

$$
\begin{aligned}
\operatorname{dim}\left(\theta \times^{t} \theta^{\prime-1}\right) & =\operatorname{deg}\left(\theta \times^{t} \theta^{-1}\right)-G+1 \\
& -r r^{\prime} \sum_{P} \sum_{i=1}^{r} \left\lvert\, \sum_{i \prime=1}^{r^{\prime}}\left\langle\frac{d_{i}-d_{i^{\prime}}^{\prime}}{n(P)}\right\rangle+\operatorname{dim}\left({ }^{t} \widetilde{\theta}^{\prime} \times \tilde{\theta}^{-1} \cdot k\right)\right.
\end{aligned}
$$

But using (5) and the remark of theorem 1, we have

$$
\begin{array}{r}
\operatorname{dim}\left(\theta \times^{t} \theta^{-1}\right)=r r^{\prime}\left[r^{\prime} I(\theta)-r I\left(\theta^{\prime}\right)\right]-\left(r r^{\prime}\right)^{2}(g-1) \\
-r r^{\prime} \sum_{P} \sum_{i=1}^{r} \sum_{i=1}^{r \prime}\left\langle\frac{d_{i}-d_{i^{\prime}}^{\prime}}{n(P)}\right\rangle+\operatorname{dim}\left({ }^{t} \widetilde{\mathcal{\theta}^{\prime}} \times \tilde{\Theta}^{-1} \cdot k\right), \tag{7}
\end{array}
$$

and $\operatorname{dim}\left({ }^{t} \tilde{\theta^{\prime}} \times \tilde{\theta}^{-1} \cdot \boldsymbol{k}\right)$ represents the number of linearly independent differential matrices $d \Phi$, which satisfies
$d \Phi^{t} \theta_{P}^{\prime} \times \theta_{P}^{-1} \in I_{P}$ and $d \Phi{ }^{t} \theta^{\prime}{ }_{P} \times \theta_{P}{ }^{-1} \in I_{P}$. for all P and \boldsymbol{P}.
It is clear that this is $r r^{\prime}$-times of the number $\sigma\left(\theta, \theta^{\prime}\right)$ of linearly independent r by r^{\prime} differential matrices $d \Phi$ of K, which satisfies
$\theta_{P}^{\prime} d \Phi \theta_{P}^{-1} \in I_{P}^{\left(r, r^{\prime}\right)}$ and $\theta_{P}^{\prime} d \Phi \theta_{P^{-1}} \in I_{P}^{\left(r, r^{\prime}\right)}$ for all P and \boldsymbol{P}.
So we have proved, by dividing the both side of (7) by $r r^{\prime}$.
Theorem 2. (Weil's theorem.)

$$
\begin{aligned}
& N\left(\theta, \theta^{\prime}\right)=r^{\prime} I(\theta)-r I\left(\theta^{\prime}\right)-r r^{\prime}(g-1)+\sum_{P} \sum_{i=1}^{r} \sum_{i=1}^{r \prime}\left\langle\frac{d_{i}-d_{i^{\prime}}^{\prime}}{n(P)}\right\rangle \\
&+\sigma\left(\theta, \theta^{\prime}\right)
\end{aligned}
$$

where $\sigma\left(\theta, \theta^{\prime}\right)$ denotes the number of linearly independent r by

A Note on the Rlemonn-Roch-Weil's Theorem 131 r^{\prime} differential matrices $d \Phi$ of K.

Bibliography.

1) A. Weil, Généralization des fonctions abéliennes. Journal de Mathématiques pures et appliquées XVII (1938).
2) E. Witt, Riemann-Rochscher Satz und ζ-Funktion in Hyperkomplexen. Math. Ann. Bd 110. (1934).
3) F. K. Schmidt, Analytische Zahlentheorie in Körpern der Charakteristik p. Math. Zeitschr. Bd 33. (1931).
4) F. K. Schmidt, Zur arithmetische Theorie der Algebraischen Funktionen. I. Math. Zeitschr. Bd 41. (1939).
5) M. Deuring, Algebren. Berlin. Ergebnis (1935).
6) H. Toyama, Uber nicht-abelsche Theorie der algebraischen Funktionen. Bulletin of the Tokyo Institute of Technology. Series-B (1950).
