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The beautiful theory of hyperabelians functions through which
A. Weil took the remarkable first step into the " non-abelian mathe-
matics" is founded on the basis of the Riemann-Roch's theorem
concerning with the generalized divisors which he introduced. He
proved this theorem, using the abelian integrals of the 3 ' kind, in
a purely function-theoretical w ay. Under a remark of Mr. Igusa,
that this theorem will be innerly related to the Riemann-Roch's
theorem which E. Witt proved in the case of simple algebras over
function-fields, in this note we shall show a relation between the
above two theorems and prove the Weil's theorem in a purely al-
gebraic way.

During my investigation I  have received many kind advices
from Mr. Igusa to whom I express my sincere gratitude.

§ 1. "Signature."
Let (1, y )  be an algebraic function-field of one variable

over an algebraically closed constant-field k, and let S be the ring
o f all matrices of degree n i whose elements belong to K .  We
shall now construct a certain kind o f Riemann-Roch's theorem in
S . The letter P  always denotes a prime divisor of K, and IG,
denote the P-adic completion of K ,S  respectively.

We shall associate a positive integer n---=n (P )  to each prime
divisor P  of K  in the following *way.

n (P )>1 , (n , p )  1  for finite number of P +Pc. 's,
n(P)---1 for the other prime divisors,

where p  is the characteristic of k. We shall call these integers
n (P )  given in this way the " Signatures "  of S  (or of K ).

For eachone of finite number of P' s for which n (P )> 1 , we
choose a  galois-extension Z p  such that [Zp : K ]= n ( P ) .  Then
the prime divisor P  is completely ramified and therefore P =I"
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in Z .  The ramification theorem of Hilbert shows that Zp./Kp is
cyclic as n  is relatively prime to the characteristic p of K.

Lemma 1. I f  (n, p) =1 , there exists a  number such that

where a  is a  generator o f  the galois-group of Zp. over K p, and
is a  p r im itiv e  ro o t o f -1 =O.

Proof : Let II  be a number in P  such that, IIIIP, then we have

/7 0 i =e 1 11 (i= 1, 2 ,..., n - 1 ,  e =€=1.)

with a unit e, of IG  and E l.  Hence if we put

(mod P ) ,
then we have Ei 7,a (mod P )  ( i= 1 , n -1 , n

therefore rin=1,

that is )2=C",
where C is  a primitive root of f -1 = 0  and 1 S s  <n.

Then a number
_ n-1 n-1

H = E C- s1  =(•E  C - s i E

satisfies all the conditions of the Lemma 1. For
n-1

(E n  (mod P ) ,
=")

this shows that //°=C8/7 and th at (s, ) = 1 .

§ 2. Local divisors. (Canonical form.)
Let Pn k(x)=p, and let op be the integral domain of K  with

respect to k(x)p, then I ,=  (o,,)„„ which is the set of all matrices of
degree m  over op is  a  " Maximalordnung " of S  and the other
" Maximalordnung " P ,. of Sp are represented as

rp=p - I p p

w ith a regular element p  of S .  I , ,  has only one two-sided prime
ideal ( P )  and the other two-sided ideal of it  are powers of (P).

In the case n (P)=1 , all the left-ideals of I p  are principal
and are uniquely normalized as



A Note on the Riemann-Roch-W eil's Theorem. 125

= Ipe  p ,

where Ion 012........ 1/A

023 ••• 2n

\o ............. , 0"

and t) ,( i < k ) are determined uniquely modulo 0i, (see W eil [1],
Witt [2 ] ) .  We shall call a left-ideal 'Ap, for which 6 ,  is regular,
a local leftdivisor o f S  fo r  n (P )  = 1 . If we restrict the elements
of Ip to the set of all P-adic units, we get a Weil's divisor Up ep.

For n  (P)> 1 , if a  left-ideal W p---/p0p of Li,  in Z p  satisfies
the following two conditions, then we shall call it a local left-divisor
of S.

e p  is regular in S, (1)

n— W p. for all a of the galois-group of Z over K 1 .

We shall call this O p  the representative of
Let 0 be a representative of a local divisor and let 00 = VO, then

the other representative of the same divisor is given by 6' - - .  y e ,
where U  is a modulo P  unimodular matrix of Sp., and 6 ' satsfies
tri-= V O'. C learly  V-= U 'V U - 1 . Now if we put

{

V ----- A  (mod P )
V A ' (mod P )
U  U ,  (mod P ) ,

then we have A '=U „A U „'.  And if we assume Oa =
n ) ,  then we have V, therefore V1, (mod P )

( V E „ ) .  From A "----.E„„ there exists a  regular constant matrix
M  such that

A= M 'D  M , D — (a f i c4 i),

where C is a primitive root of x - - 1 of Lemma 1., and d's are
uniquely determined by

n - - 1 >  d ,> ....... > d k >  0 >clz.,-1 > .......
 
> d1—d,„< n.

Clearly these d 's  are characteristic to 6. Replacing 6  by 0'=/l4:0
we get a divisor 0 satsfying (we write 0  instead of O')

v a ,  v  D(mod P ) , D" (mod P ) .
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Then the divisor
n-1 n-1
E D - 1 9a =  (E 0v=0

represents the same divisor as  0, since
f l  —I

(mod P )

is modulo P  unimodular, and clearly we have 0-`3 = D 0 .  From now
on we always choose as a  representative of a divisor such a 0 that
satisfies 19.--_Do. Then i f  we take a  matrix 4= ("ai i l1 " ') , so the
matrix 0o =4 - 1  (9 satisfies 07= O , i .  e., is a  divisor of K . H ence
we have proved

Lemma 2. Fo r n (P)>1 , each local left-divisor Op. is uniquely
normalized in the following form

ep.= P e
 liP,

where
(  11.1i),   > ............................. d,--d,„,<n.

and O p  i s  a  local left-divisor of K .

§ 3. Divisors and their ideals.
If we were given a  left-divisor 'A= in Ip  11 :4,„ where ÇA, and

,1 (1') =1 71 (P)>1

.1p  are all equal to E „, but a finite number o f P , the set of the
numbers of S

a =  ap  a p ,
n ( p )-1  n (P )> 1

which satisfy the conditions
E S.7fp for all P + P . ,  n ( P ) =  ,

and Wp. E '.)1p for all P ,  n (P)> 1,

form an I-id ea l (a ). For (1 ° ) if u,gEw, then it follows a E Wp ,
13,02f, fo r all P + P o, 's ,  n ( P ) =1  and up E  ip .  19p., c 2(p for all P ,
n (P)> 1, therefore (a ±i9),---a, ±P,Olp and (u± g)p.=ap+Pp i.e .
a+ gE (w). (2 ° )  I f  a( (%), oc/, it follows that (0 a)p -=-0  a p C Ip ap

C A ,  and (0 u )  p =  O p a p  C  'p a p . C  ? tp  i. e. ouE (%). (3 ° ) Because W, is
an I f -ideal, there is a  number pp such that P p W p  C  Ip  for each P,
n(P) = 1 and  ppsap c /p for n(P ) > 1. But pp (or pp) =E„, all but
a  finite number of P(or P ) .  Let

PP -= (il ir) )  and p p = C u r)  for P=P1,•••,P1, P =P 1,-••,
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and (p) (P)=  7r (P )  an d Ja i (P )  = (P )eii (7r#P),

then there exists a matrix of S such that

11= P ii=e ije q ; v i;(P) and Pt ;

and clearly this p  satisfies /1(1) c I.
From the above we can conclude that every left-divisor uni-

quely determ ins a left-ideal of I, and that, if 9Jp  and Wp. are nor-
mal, (VI) is also normal and vice versa.

The above all things which we have proved about left-divisors
and left-ideals are also true for any right-divisors and right-ideals.
(See [2 ], [3 ]) . If we are given a left-divisor s.)1= H ;)Ip H % p, then
the problem of finding an element o f S  which satisfies the con-
ditions

'.)1 0E /p and W p.0E/p. for all P  and P ,

is reduced to the problem of finding an element (of S )  from the
right-ideal (W- ' )  such that

E  p  for all P 's

because of 2.1,%,1 = I p  and Wp.Wp- 1 = /p  fo r  all P  and P  (Cf. [2],
[3 ], [4 ]) . The number of linearly independent 0  satisfying (3 ), we
shall call dim W. Let 0=  (v i i )  ( i, j= 1, m ) and assume that the
given divisor ',)1=ff O p H  Op is normalized such that 0 p.-=  4p(9 0 » ,

n (P )= I n (P )> ,
and 00p  means as before the fractional and integral part of the
local divisor O p ,  then the second condition of (3 ) is transformed
as follows :

If we put 00 0—T

in 400•0(1p,

then we have E I,, and 00 40 E
therefore 0  must lie in the ideal (00

-1 ) • A n d  if we put gr.=-( 5),
then we have

dT 4') n -1 (n -1 ) ) ,

and the condition zIrE  / p  insists that

Ok+i,, 0 (mod P )  (
1= 1 ,  2 , . . . ,  m — k )

m

Therefore If must satisfy the above m [m — k ( P ) ] conditions and
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dim E  [m — k(P)]
n(»)>1

where 21 denotes K-divisor

= /1 0,17 0 0 p .
n ( P ) = 1  n (P )> 1

§ 4. Riemann-Roch-Witt's theorem for given " Signatures".
Lemma 3. (Riemann-Roch-W itt's theorem).

dim R1 2 = deg ii,,—G+1+dim

where Tf,2
-1."---- k  an d  k  denotes the canonical divisor of  K,

and G the genus of S , and we assume that
The proof is well known, so we shall not write it down (see [2]).
A. Well introduced a  symbol I( 0) by

/(0)---E 1(0 ) +E p )
n(P)=-1 n (P )> 1

where /(0,) and /(0p ) is defined for each P  and P  by

det 0 p--- P 1 ( e ' ) and  det 01 ).— P I ( e p)

T he theorem 6 o f Deuring's " Algebren " in VI § 4 (P. 82) (see
[5]) shows that, if we put Pn k(x)=p,

( p 1.( 90P)) 77 p  deg e, OopE Sr),

therefore we have
deg 00 ---m  /(0,). (5)

Hence deg 0o = E deg E =  / (  ,

therefore in lemma 3 we have

deg i 1 2 =m E  / ( 0 , ) + m  / ( 0 0p)•
n (P )> 1n (P )= 1

According to the Weil's definition, if we put

deg W1 2 .--- m[E p )  E /(0/..)],
n (P )= 1 n (P )> 1

so we have 
deg :)110-= m E  / ( 0 9 p ) + m  [/(090p)+E 

n (P )1 n (P )> 1 i= 1  n (P)

From Lemma 3, we have

(4)
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dim 21,2 = deg 'An —G+1+ dim E [In — k (P ) ]
n (P )>1

=deg k2—G+1+ dim W21 —mE [ c11 +  — k(P ) ]n(p)>1 i=in (P)
rn

=deg W„—G+1+dim -t21 — m E  [T  (1+ d i  ) ]re(P)>1 n ( P )  i = k + 1 n (p )

=deg 21, 2 — G +1+ dim 'Tr E  ( )•
P n (P )

In this formula ( * ) denotes the fractional part of *, and dim
denotes also the rank of the modul generated by the differntial
matrices d0 (Cf. [1]) satisfying

d0W-F91 E I p  and c/0'.2172 E Ip for all P  and P.

For n (P ) =1, from dO = Gok, OWT2
1 k EL, and dOWT,' EL> are equi-

valent. And for n (P )> 1, 0 „ - ' 4- 1 k€Ip. and d O  (Pk p.= 40kP'
shows the equivalence of d09.1;-,1 E/p. and 0% 1kElp..

Theorem 1. (W it t t 's  theorem f or given " Signatures.")

dim t 2 = deg W1 2 —G+1—nt ( ) + dim a5,
P  i = 1  n (p )

where el is reguarded as the dim ension of  dO which satisfies

clOWT21 E I F  and  .11. f o r all P  and P,

Remark : In our case, the genus G  of S is easily computed, and
we have

G = m (g -1 )  +1,

where g  is the genus of the function-field K.

§ 5. Relation to the Riemann-Roch-Weirs theorem.
I f  w e  are given two divisors (9 and N' of degree r and r'

respectively, the rank of the modul generated by the following r
by r' matrix 0  of K  which satisfies the condition

,60 and Op0(9 1 E /p" ) for all P  andP,

is denoted by N (0 , &'), where and / ') denote the modul
of all r by matrices of op and op respectively. (See [1] Chapitre
I, C f. [5 ]). Using theorem 1, this number N (0 , 0 ') is easily com-
puted.
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The Kroneckerian product Oxe .

ext6Y - 1 . H  0 , x t 0 1  I I  O p > 0'1 1-

n(P)=1 n (P )>  I

gives also a  divisor of in  our sense. I f  we denote by
dim (Oxt h e  rank of the modul generated by the elements
of K„., which are determined by the conditions

x ' 8 .  OE l p  and Op. x sO'p- '. OE / p  for all P  and P.

So we can easily verify that

dim ( x t6P-i) =  Tr' N(0, 6 ') . (6)

On the other hand, by theorem 1
dim (6> 06 ' - ')---- deg ( e x t0 - 1) — G +1

7 7 d  E E l if  ( di- 4   )  +dim (tg'x
P i=1 V =1 n (p )

where j= H Op H 0 0,  and 6,, H  op.
n (P )= I  n ( P ) > 1 u ( P ) = 1  n ( I  ) >1

But using (5 ) and the remark of theorem 1, we have

dim (0 x 'e - i) =27' [r' I(0)— r1(0')]— (rr') 2 (g -1 )

— ri' E (d í— d5 + dim e  x fr),
p v = i  n (P) (7)

and dim (' O! x -6 - 1 . k )  represents the number o f linearly indepen-
dent differential matrices dO, which satisfies

d(P. tO'p x 6;1 EL  and (10. '0 ' x O p - 1  E I p . for all P  and P.

It is clear that this is rr'-times of the number (7 (0  , 6 ') of linearly
independent r  by r' differential matrices dO of K , which satisfies

e',4400 -p- 1  E and 6wpd0t9p- 1 E/pfr.'' ) for all P  and P.

So we have proved, by dividing the both side o f (7) by rr'.
Theorem 2. ( W eil's theorem.)

N (6 , 0') . 1 1 1(09)— r1(6v)— r? ( g - 1 ) + E  E E
P '1=1 2 1 =1

/ c1 ,-4 ,\
" n(P) i

+c( 6 , 60 )

where a (0 , 6') denotes the number of  linearly independent r by
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r' differential matrices d(D of K.
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