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The authour has obtained with M. Yamaguti a theorem on
the existence of periodic solutions for nonlinear differential equa-
tions by a simple method.” Now we consider the natural exten-
sion of this method to nonlinear systems. Recently D. Graffi®
has proved the existence of periodic systems for a type of nonli-
near circuits. Here we will show a general principle which gua-
rantees the existence of periodic systems for this type of nonlinear
system, 1. e.

glsﬁﬁﬁ(xi)m%(xf) =p(H) (i=1,2,...,m), 1)

where Ly=const., Lj;=Ly, };‘;L‘,&SP 0, when | & |+ ... 1&.|==0,
p:(t) =p(t+w), (s, p:(Hdi=0, (i=1,2,...,n), and the functions
fi(x), ¢.(x;) are continuous and moreover the latter fulfil the con-
dition of Lipshitz,” and p;(¢#) are continuous.

And, as examples, we will show Graffi's example (example I)
and another of van der Pol’s type (example II).

The principle is as follows:

THEOREM. The system (1) possesses at least one syslem of
periodic solution (x,(1),..., x.(8)), (x:(t+w) =x,(2)), if the following
conditions are fulfilled,

7)) sgnx-¢:(x)>0 for |x;|>q, P:(x;) =j:igo.- (x)dx,— + o,

(l xt [—9@), (i=17 2’ cery n)-
ii) there exist two constants v, and e such that

Ax; =3 Lyg.(x) [Fy(x) ~P()] Z ¢(>0)

Sor VAl . 42, =7, where E(xi)=j:ifs(x‘)dxz, P.-(t)=£ p:(2) dt
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and
1

(Zij) : (Li.f) = (L:‘j) : ([zj) = ( 1 .., ) = (e)
‘ 1
PROOF. Put
yi= :gL;jJi;+F‘(xi) —P(1).
Then the system of equations (1) is changed as follows:
i =3 LAy~ Fy(%) + Py} }

¥i=—@:i(x:).
Now consider the quantity,

(2)

P(xy, ooy %y 31pees 9u) =P(25 9) =;‘Zf,y,yj/2+é<”f(x,),
then ditP(x(t), y(t))———'%:ijy,{ Soj(xj) +Z‘/’i(xi) [ELU Fi(x)

+P,(t)}1=—§Z,,%<x‘)-[E(xj>—Pj(t>]=~A(x; ).

The hypersurface P(x; y)=C, (we denote this by S,), encloses in
the 2n-dimensional space (%,..-%u, ¥1, -+, ¥») a region ® homeomor-
phic to the interior of a sphere.

If A(x; £)=0, the proposition is true. In fact, we have 71‘17

P=—A(x; 1)< 0 for every trajectory which issues from a point on
S., therefore this trajectory never goes out from 9 at this point,
therefore every trajectory issuing from a point of 9D remains in
that domoin for increasing .

C I Min A(x; )=—m(m>0) for |x|< 7,, .it happens that

;P——~A(ﬂc 1) is positive in | x| < 7, therefore a curve (x(2),

y(#)) which issues .at the time ¢, from a point of the hypersurface
S, for | x(t,)| < 7, may pass through the exterior domain of S, for
1>t

But we shall see as follows that this curve will soon enter into
D, and this curve remains bounded. The proof is as follows: we

choose R, sufficiently large (for example R,> r0(1+6ﬂ~)), and
£
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hereafter consider in the domain | x| < R, in the x-space. Our as-
sertion is to prove that every solution (x(f), y(t)) which issues
from a point (x(t), y(%,) )€S,, where | x(%,)| < #,, and passes through
the exterior domain of S, will again intersects S, for | x(¥)| < R,
and enter into 9, and (x(#), y(t)) is bounded for t=>1, if C is
chosen sufficiently large.

To prove this, we change the coordinates y,—Y; by

\

)= {=)5)

Then the equations (2) are changed as follows:

X= Yi_ziu (FJ_PJ) =Y,—¢i(x, t)} 3)
Y=~ Z;Zif'%(xj)-
The hypersurface is defined as
L S,y +30,()=C.
2 4,3=1 i=1
If C is chosen sufficiently large, for | x| <R, max (| Yi|,..., | Y. |)

on S, becomes uniformly large. Taking into account the fact that
di(x, ) (1=1,2,...,n) are bounded for | x| <R, we see that, if C
is chosen sufficiently large, the trajectory (x(#)) in the xa-space
corresponding to the curve (x(f), y(#)) which issues from a point
of S, for |x(4)| <% will pass through the domain |x| < R, in
sufficiently short time. In fact, for every point (%, ¥) on S,, one

dy, Y, _";Lij%(x:)

of Y, Y, must be sufficiently large, while ==t =% =__J7 ~
» Y & dxl X; Y.— ,}i(x, t)
oY,

shows that is sufficiently small for such a trajectory, where

0Y,, is the varilation of Y3, corresponding to the part of trajectory
such that |x(#)| < R, Therefore, taking account of % =Y,—¢,
(%, 1), we see that the point (x(#)) will pass through the domain
| x| < R, in sufficiently short time.

It follows that the variation dY is sufficiently small, therefore
the direction cosines of the curve (x,(f),x.{t), ..., %.(#)) are almost
constant, that is the curve (x(#)) behaves like a straight line, i.e.
%=a:+ei(s) (i=1,2,...,n) éa‘;’=1, e; are uniformly small,

where s is the arc length of the trajectory (x(f)) in the x-space.
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Then we consider the variation of P along the trajectory

3P=jid’t’_dt =j15/s' ds=| P ds+j PJs ds.

| z(2)] <70 ro< |e(8)] <Bo

In the second member, the second term is negative and the first
term may be positive. But we easily see 0P negative.
In fact, consider the ratio of the two functions to integrate,

P/sinlx® <7, _  Pin|x| <y, $in7n,<|x|<R,
| P/singn < |x(t)| <R,| |Pinr,<|z|<R,| Sinlz|=n

taking into accout the fact that the second factor is neérly’ equal

tol, and (Pin|x|<7)<m, (Pinr<|x|<R)<—¢, we see

that the ratio is less than % x 2. Secondly the arc length of the
€

part |x(®) | <7, is less than 37, because the trajectory behaves

like a straight line, and that of the second term is greater than

R,—7, therefore we see that

j P/ids: [j Plsds | <™ 2. _ N g
[

7| €70 705 |2(e) [<Ro R—v, R,—v, €
As we have chosen R, so as to let this ratio be less than 1, we see
that 6P <0.

Now we shall consider the continuous mapping 7':

(x(t), y(t))— (x(t,+ @), y(t,+®)), (o is the common period of p;
(¥)), where (x(t,+®), y(t,+ ®)) is the point of the trajectory at the
time #,+o corresponding to the initial value (x(%),y(%)). We
shall prove that, if (x(%),y(#))e€S,, the image (x(f,+ ), y(t,+w))
belongs to 9.

We shall prove this by contradiction, so we suppose that the-
re exists a point (x(f,+®), y(4,+®)) not belonging to D, in this
case the initial point (x(%,), (%)) fulfils either 1) |x(¢)| >R, or
i) 20| <R,

In the first case, if we take ¢(>0) sufficiently small, we have
| x(t,+¢)|> R, and that (x(f,+¢), y(t,+¢))eD (because at the point
x(t,) such that | x(t,)|>R,, we have gt P < —¢), therefore there
would exist a time ¢ between #,+¢ and #+ such that (x(7),
y(2)) €S, t+e<r<t,+ and that (x(t), y())eD, for t,+e< t<r.

On the other hand, we should have | x(z)| <7, (as we have
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Tllit_ P >0 at this point), therefore by tracing the trajectory in the

reverse sense for time, and taking account of the relation 6P <0
(which we have just obtained by the above analysis), there would
exist a time 7’ between f,+¢ and r such that

(x("),y(z'))§P, (that is, lies in the exterior domain of S,).
This contradicts with the choice of . In the second case, i. e. if
| x(t,)| < R,, by the above analysis, we can choose ¢(>0) such
that | x(¢,+¢)| > R,, where 0< e< w, and that (x(to+e) y(t,+¢))
€Y. This situation is entirely the same as'i), thus in both cases,
we meet with the contradiction.

As we have proved T'(S,) Cc 9, (T(S,) is the image of S, by
the transformation 7°), and as the mapping T is topological, we
have finally

T(D)c .
As the clo<ed domain 9 is homeomorphic to 2xz-dimensional

sphere (i.e. L Xi; < 1), by applying Brouwer’s fixed point theorem,
we conclude that there exists at least one fixed point, that is

@), yt)) = (x(h+w), y(t,+©)).

Therefore the trajectory corresponding to this initial value
(x(t), y(t,)) must be periodic.
Thus we have finished the proof of the theorem.

Example 1. Graffi's example.
The system of differential equations is as follows :

’

Lx+ Mx.+fi () %4 ¢,(x) =p,(1), (L, M>0, L,L.—M>0 >
M2+ Lox.+ [, (%) %o+ @2(%0) = po(1) . P (E+w)= pi(¥)

where F1)_, R (| x,]—+ ), and ’”;”) & Ul ), (R
J( i i
C; are positive).
If the condition
Ry R, R R :
I, | § 4
4L, LQC C. >M( (4)

be satisfied, the existence of at least one system of periodic solu-
tions may be concluded.
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PROOF. We have only to show that the condition ii) of the
theorem is fulfilled.

, L, M
CHere  (L)=(p ) A= Y L] O=LL-dp),
)

A x5 =L (e F () = Po() ) = My (x) | Fix) — PaGo)

_MSD"(x") {Fi(x)—=P ()} +L|¢:(x2) 1F(xy) —Py() }]

=—(1$~{ ¢ (£-+E‘~)x]x +L1%

+4,(x; t)x.x2+13(x; t) x,

xf} + 4, (%, %05 D)2

| %, |— o
where 4,(x; £)—0, when .
| 2 |—> o0
Therefore by the relation (5), we can find ¢, and L such that
A(x; D =e, for | x| = L (i=1,2).
On the other hand, from the hypotheses that F,(x.)— =+ oo, ¢,(x)
—+ o (x—>+), and P:(f) are bounded, we can find L' (= L)
such that
A@x; h=e for |x | L, 2| 2 L.

for |x|SL, |x| 2L
Therefore for vx°+x,° = 2L, we have A(x; f)=e. Q.E.D.
Example II. The system of van der Pol’s type.

The system is as follows: :
Ll'xl+Ma&z"‘lﬁ(xlz_'al)x:+k1x|=ﬁx(t)‘ (Li, M> 0, L;L:—M2>0 )
M3+ Lo+ po(x7— @) %o+ ko= p.(8), ‘11> 0, k;> 0, p:i(t+0)=p,(t) |

If M is sufficiently small with respect to L,, L., or if L, p, k,
differ slightly from L., ¢, k. respectively, that is, if

M <t/LLERpu, - Min (¥ ,lifek , Y If:’) (5)
v orvy

we can conclude the existence of at least.one periodic system.
PROOF.
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AQx;b) =%—[Lgk,xl{%xf—%xf—a(t)} +o ]

— 31—8[sz1/115€,4_ M(kxll;»xﬁg“—{- k‘-‘ﬂixlxx._,) +L,k._,/t.1x._.*:]+ R(x ; t).

To asssert that A(x; £)=<(>0) for both sufficiently large
| % |, | x.], we have only to show the first term is positive for
| %, |+ |2, |=L(>0). For this purpose we consider the following
Lok px' + Likopox!

ratio for | x, |+ x. >0, 2.0, ; ,
[ l+ ]2 T R + ko xx,

, by easy compu-

tation we have,

>~1_ . (VLkpx®+ ‘/L1k2/12x~22)2_>_ N Lokpox’ + v Likops %7

-2 Ryptox %" + Ropti %% o kX + prokexs”

: 14/L1L2/‘1/‘2k1k2 .
As the first factor of this last ‘'member is greater than Min
vV Lk, v Lk, ) and by the hypothesis (5), the ratio

ks ' ok,
L2k1ﬂ1x14+leﬂﬂ‘.’x‘_‘4 > (1 :
= (149), (6>0). By the same reasoning as
M (klﬂexlx; + k2ﬂ1x13x2) g
example I, we can conclude A(x;¢t) =¢(>0) for | x|> 7, properly
chosen. Q.E.D.

Footnote.

1) S. Mizohata and M. Yamaguti: On the existence of periodic solutions of the
non-linear differential equation, x+a(x)-x+¢(x) =p(t). (This Mem.).

e 2) D. Graffi: Forced oscillations for several nonlinear circuits. p. 262-271. Ann.
of Math. 54 (1951).

3) These conditions are only sufficient conditions to guarantee the unicity of tra-
jectories in the phase space in which we will consider. ’

4) Hereafter we denote (x,,-, x,) by x, and V' +--+22, by [1!. We should
remark that when we write for example ¢(x), it means ¢(x,, -, x,) defined in the
(% -++» %) -space (we denote this briefly by z-space), on the other hand when we write
¢(xg) it means a real function defined in —co<lx3< +co.



