Note on Nonlinear Differential Equation of Catalysis ${ }^{1)}$

By

Toshizô Matsumoto
(Received December 27, 1952)

1. Mr. Yoshiyuki Suehiro, a chemical engineer, has consulted the author about the solutions of his differential equation of catalysis by spherical tablets,

$$
\left\{\begin{array}{c}
(m-1)\left(D a \frac{d y}{d x}-w a \frac{y}{t}\right)=w a \tag{1}\\
\frac{d w a}{d x} d x=c y \frac{a d x}{r}
\end{array}\right.
$$

or for the case $m=2$, eliminating w in (1), we have

$$
\begin{equation*}
\frac{d}{d x}\left(\frac{D a t}{y+t} \frac{d y}{d x}\right)=-\frac{c a}{r} y ; \tag{2}
\end{equation*}
$$

or fully written,

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+\frac{2}{x} \frac{d y}{d x}-\frac{1}{y+t}\left(\frac{d y}{d x}\right)^{2}-n^{2} \frac{y(y+t)}{t}=0, \tag{3}
\end{equation*}
$$

where $n=\sqrt{C / D \gamma}$. In these equations, x means the distance of any point of the tablet from its centre; y is the concentration of the reacting substance at $x ; w$ is the quantity of mass flow of the reacted substance through the spherical surface of radius x in the tablet; a is the total area occupied by the pores on the spherical surface of radius x, and hence proportional to x^{2}, while the remainings are chemical constants, positive. Solutions for $x>0$, satisfying the conditions $\frac{d y}{d x}=0$ at $x=0$, are required.
2. We may suppose $t=1$ by writing y instead of $t y$ (also $n=1$ by writing x instead of $n x$).

[^0]Putting $t=1$, and
(4) $\quad e^{z}=1+y$, we have $\frac{d\left(x^{2} \frac{d z}{d x}\right)}{d x}=n^{2} x^{2} y$.

Further putting

$$
\begin{equation*}
\frac{\chi}{x}=z, \quad \text { we have } \frac{d^{2} \chi}{d x^{2}}=n^{2} x y . \tag{5}
\end{equation*}
$$

The differential equation is very near to Emden's one ${ }^{2 /}$

$$
\frac{1}{\xi^{2}} \frac{d}{d \xi}\left(\xi^{2} \frac{d \theta}{d \xi}\right)=\theta^{n}
$$

By its knowledge we may prove the following proposition:
The solution $y(x)$ of (4) which is continuous in an interval in which $0<x$ and $y(+0)=a_{0}$ finite and determinate and greater than -1 , is normal to y-axis, i.e., $y^{\prime}(+0)=0$. We may define $y(0)$ $\equiv y(+0)$, then $y(x)$ is continuous for $0 \leq x$ and $y(0)=a_{0}$.

Since $z(x)=\log (1+y(x))$ is also continuous and $y(0)>-1$, $z(0)(\equiv z(+0))$ is also finite and determinate. Hence we have

$$
\lim _{x \rightarrow+0} \chi(x)=\lim _{x \rightarrow+0} x z(x)=0 \text {, i. e., } \quad \chi(0)(\equiv \chi(+0))=0 \text {. }
$$

Nextly we have

$$
\begin{aligned}
\left.\frac{d z}{d x}\right|_{c=+0} & =\lim _{x \rightarrow+0} \frac{(\chi / x)-z(0)}{x}=\lim _{x \rightarrow+0} \frac{\chi-x z(0)}{x^{2}} \\
& =\lim _{x \rightarrow+0} \frac{\frac{d \chi}{d x}-z(0)}{2 x},
\end{aligned}
$$

provided the last limit is determinate. On the other hand

$$
\left.\frac{d \chi}{d x}\right|_{x=+0}=\lim _{x \rightarrow+0} \frac{\chi(x)-\chi(0)}{x}=\lim _{x \rightarrow+0} \frac{\chi}{x}=z(0) .
$$

From (5) we have

$$
\frac{d \chi}{d x}=z(0)+n^{2} \int_{0}^{x} x y d x
$$

[^1]Hence $\quad \lim _{x \rightarrow+0} \frac{\frac{d \chi}{d x}-z(0)}{2 x}=\lim _{x \rightarrow+0} \frac{n^{2} x y(x)}{2}=0$,
since by hypothesis $y(0)=a_{0}$ is finite. Hence we may conclude that

$$
\left.\frac{d z}{d x}\right|_{x=+0}=0 ;
$$

hence by (4), we have

$$
\left.\frac{d y}{d x}\right|_{x=+0}=0
$$

Q. E. D.

In the following for simplicity we take $a_{0} \geq 0$, since y is the concentration, not negative.
3. Our equation has an integral near $0 \leq x$ of the form:

$$
\begin{equation*}
y(x)=a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots \cdots \tag{6}
\end{equation*}
$$

where $a_{0} \geq 0$ is given, while the other coefficients can be found successively from the equation :
(7) $\quad 2 a_{2} x+4 a_{4} x^{3}+\cdots \cdots$

$$
=n^{2}\left(\frac{a_{0}}{3} x+\frac{a_{2}}{5} x^{3}+\cdots \cdots\right)\left(1+a_{0}+a_{2} x^{2}+a_{4} x^{4}+\cdots \cdots\right)
$$

This power-series is dominated by

$$
\psi(x)=A_{0}+A_{2} x^{2}+A_{4} x^{4}+\cdots \cdots
$$

where $A_{0}=a_{0}$ and

$$
\begin{equation*}
\frac{d \psi}{d x}=\frac{n^{2}}{3} x \psi(1+\psi) \tag{8}
\end{equation*}
$$

which gives

$$
\psi(x)=\frac{a_{0}}{1+a_{0}} e^{n_{2}^{2} x^{2 / 6}} /\left(1-\frac{a_{0}}{1+a_{0}} e^{n_{2 x} x^{2 / 6}}\right) .
$$

Hence the convergence abscissa ρ of $y(x)$ is

$$
\rho \geq \frac{\sqrt{6}}{n} \sqrt{\log \left(1+\frac{1}{a_{0}}\right)} .
$$

Our solution $y(x)$ with the initial condition $y(0)=a_{0}$ is unique on the right of y-axis and it is a power-series of x and a_{0}, with positive
coefficients, so that our solution, written $y\left(x, a_{0}\right)$ increases with a_{0} for fixed x.

To obtain (7), integrating (4) we have
or

$$
\begin{gathered}
x^{2} \frac{d z}{d x}=n^{2} \int_{0}^{x} x^{2} y d x, \\
x^{2} \frac{d y}{d x}=n^{2}(1+y) \int_{0}^{x} x^{2} y d x .
\end{gathered}
$$

Putting (6), we have (7). From (7) we may find all the coefficients except a_{0}; they are positive for $a_{0}>0$.

To find $\psi(x)$, we consider instead of (7), the relation:

$$
\begin{aligned}
& 2 A_{2} x+4 A_{4} x^{3}+\cdots \cdots \\
& \quad=\frac{n^{2}}{3}\left(A_{0} x+A_{2} x^{3}+\cdots\right)\left(1+A_{0}+A_{2} x^{2}+A_{4} x^{4}+\cdots\right) .
\end{aligned}
$$

We see easily that for $a_{0}=A_{0}(>0)$, we have $a_{2}=A_{2}, a_{4}<A_{4}, \cdots$ and that $\psi(x)$ satisfies (8).

It is evident that the solution $y(x)$ with the initial condition $y(0)=a_{0}>0$ is unique and it is continuous with respect to a_{0}; the first quadrant of the coordinate plane is swept by our integrals with $0 \leq a_{0}<\infty$.

We remark that above considerations may easily be extended for the cases $a_{0}>-1$ and $x<0$.

[^0]: 1) Read before the last autumn meeting of Japanese Mathematical Society held in Kyoto.
[^1]: 2) Emden, Gaskugeln (1907); Chandrasekhar, Steller Structure (1938); by the author, Emden's differential Equation (in japanese), Sankaidō \& Co., (1945).
