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Some Remarks on Liiroth’s Theorem
By
Pierre SAMUEL

(Communicated by Prof. Akizuki, September 29, 1952)

We give here a purely field theoretic proof of a generalization
of Liiroth’s theorem, recently pointed out by J. Igusa.” We need
the following result:

Theorem 1. Let K' and K" be two finitely generated extensions
of the same algebraic dimension of an infinite field k, and let (t) be .
a finite set of independent variables over K' and over K". If K'(t)
=K"(t), K' and K" are isomorphic extensions of k.

Let us write K'=k(x), K"=k(x"), ()= (x/) and (x”)=(x/")
being finite sets of quantities. There exist rational functions f;, g;
with coefficients in k such that x/=7(/, 1), x/'=g,(x/, ). Since
k is infinite we may choose in & a set of quantities (@) such that
the fi(x;”, @) and g;(x/, @) have non vanishing denominators. Since
(@) is a specialization of (#) both over K’ and K", we have
' =fi(g; (¥, @), a). If we denote by (x’) the set of quantities
(g;(x/, @)), the fields k(x’) and k(x") are equal. Since (x’) is a
specialization of (x”) over k, and since k(x”) and k(x”) have the
same algebraic dimension over &, (¥’) is a generic specialization of
(¥) over k> and the fields k(x”), k(x") are isomorphic. QED.

Remark. When the field % is algebraically closed, the proof
applies to the following more general situation: if (¢) is a
finite set of quantities such that k(¢) is linearly disjoint
from K’ and from K’ over k, and if K'(¢)=K"'(t), then K’
and K’ are isomorphic extensions of k. This result is
closely related to a question discussed by B. Segre.®
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We now come to the generalization of Liiroth’s theorem :

Theorem 2. Let ()= (4, -, t.) be a finite set of independent
variables over an infinite field k. Then every one-dimensional sub-
extension K of k() is a simple transcendental extension of k.

We may suppose, for example, that £,---, f, are independent
variables over K. Then K(t,---, t.,), which is contained in k(¢,---,
t.), is, by Liiroth’s theorem, a simple transcendental extension
k(t,--+, b, x) of B(ty---,t). Since K(t,--, t.)=k(x) (L, -, 1), K is
isomorphic to k(x) by th. 1. QED.

Remark. Theorem 2 may be extended to the case of finite
basic field k: replacing £ by an algebraic extension, we see
that K has genus 0; we then notice (cf. Igusa’s paper) that
a rational curve over a finite field # has a rational point
over k. :
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