Maximum Principle for Analytic Functions on Open Riemann Surfaces.

Bv

Yukio Kusunoki

(Received 20 April, 1953)

1. Let \mathfrak{F} be a non-compact region on an open Riemann surface F, such that its relative boundary I'_0 consists of a finite number of closed analytic curves on F. Now let w(P) be a single-valued analytic function on \mathfrak{F} , satisfying a condition

$$(1) \overline{\lim}_{\Gamma_0} |w(P)| \leq 1.$$

We consider an arbitrary compact ring domain $G \subset \mathfrak{F}$, whose boundary consists of Γ_0 and Γ , where Γ is composed of a finite number of closed analytic curves and separates Γ_0 from the ideal boundary \mathfrak{F} of \mathfrak{F} . If we put

$$\max_{P \in \Gamma} |w(P)| = M(\Gamma),$$

then we have

- (2) $\log |w(P)| \leq \omega(P, l', G) \log M(l')$, for $P \in G$, where $\omega_G(P) \equiv \omega(P, l', G)$ denotes the harmonic measure of l' with respect to G. Namely, since $\omega(P, l', G) \log M(l') \log |w(P)|$ is single-valued, harmonic in $P \in G S$ (where $S = E\{P; w(P) = 0, P \in G + \Gamma_0 + l'\}$) and ≥ 0 for P on Γ_0 , l' and arbitrarily large in the neighborhood of S, hence we easily obtain (2) by use of the maximum principle for harmonic function in compact region.
- **2.** We fix an arbitrary point $P_0 \in G$ and consider the level curve Γ^G : $\omega_G(P) = \omega_G(P_0)$. Then I^G consists of a finite number of closed analytic curves (occasionally with multiple points) on G and separates Γ_0 from Γ . Clearly it contains a curve passing through P_0 . In following we shall denote the ring domain (on \mathfrak{F}) by $R(\Gamma,\Gamma')$ which is surrounded by two disjoint arbitrary boundaries Γ and Γ' . Let $R(\Gamma_0, \Gamma') \equiv G^*$, where Γ^G is homologous to Γ_0 , then

$$\omega_G^* \equiv \omega(P, I', G)/\omega_G(P_0)$$

is clearly the harmonic measure Γ^{G} with respect to G^{*} and its

Dirichlet integral taken over G^* has the value

(3)
$$D_{G*}[\omega_G^*] = D_{G*}[\omega_G]/\omega_G^2(P_0) = \frac{1}{\omega_G^2(P_0)} \int_{\Gamma_G} \omega_G d\bar{\omega}_G = \frac{1}{\omega_G(P_0)} \int_{\Gamma_0} d\bar{\omega}_G = \frac{1}{\omega_G(P_0)$$

where $\bar{\omega}_G$ denotes the conjugate harmonic function of ω_G . Let r_G and μ_G denote the harmonic moduli* of G^* and G respectively, then we have

(4)
$$\log \mu_G = 2\pi/D_G[\omega_G], \log r_G = 2\pi/D_{G*}[\omega_G^*].$$

From (2), (3) and (4) we get

$$\omega_G(P_0) = \log r_G/\log \mu_G$$

(5)
$$\log |w(P_0)| \leq \log r_G \frac{\log M(\Gamma)}{\log \mu_G}$$

We shall next prove that sup $\log r_G < \infty$ (for $\Gamma \rightarrow \Im$).

3. Let $\hat{\gamma}^{G}$ be an analytic curve which connects the point P_{0} to Γ and lies in a domain (neighboured at P_{0}) of $G-G^{*}$. e.g. $\hat{\gamma}^{G}$ is a level curve $(\bar{\omega}_{G}=\text{constant})$ passing through P_{0} . Now we take a z-circle $V_{P_{0}}^{r_{0}}(\subseteq G)$ with center P_{0} i.e. the image mapped on its local parameter circle |z|<1 is the disc $K_{r_{0}}$: $|z|< r_{0}<1$. Let γ^{G} denote an analytic arc which issues from P_{0} and is contained in $\hat{\gamma}^{G} \cap V_{P_{0}}^{r_{0}}$. Let

$$\hat{G} = R(\Gamma_0, \gamma^a + \Gamma)$$

If we consider the harmonic measure $\omega_{\hat{G}} \equiv \omega(P, \gamma^G + \Gamma, \hat{G})$, then we have for $P \in G^*$

$$\omega_{G^*}(P) \geq \omega_{\widehat{G}}(P)$$

and easily obtain

$$r_G \leq r_{G'} = 2\pi / \int_{\Gamma_0} \frac{\partial \omega_{G}}{\partial n} ds,$$

^{**} When the function u is harmonic in a ring domain $R=R(\Gamma, \Gamma')$ with analytic boundaries Γ , Γ' and has the boundary value zero on Γ and $\log \mu_R$ on Γ' , where constant μ_R is so chosen that $\int_{\Gamma} \frac{\partial u}{\partial n} ds = 2\pi$, then μ_R is called the harmonic modulus of R. (see, L. Sario [5]). Then we note that $\log \mu_R = 2\pi \lambda_R(\Gamma, \Gamma')$, where $\lambda_R(\Gamma, \Gamma')$ denotes an extremal distance between Γ and Γ' with respect to R (cf. V. Wolontis [6]).

where $r_{G'}$ denotes the harmonic modulus of \hat{G} . Therefore, it is sufficient to prove that $\sup_{G \to \mathfrak{F}} \log r_{G'} < \infty$. Suppose now $\sup_{G \to \mathfrak{F}} \log r_{G'} = \infty$, then there exists a sequence of domains $\{G_n\}$ n=1, $2, \cdots (G_n \to \mathfrak{F}, G_n \supset G_0 \equiv G \supset V'_{P_0})$, such that $\lim_{n \to \infty} \log r'_{G_n} = \infty$. Here, we shall use the following Lemma.

Lemma. If U_1 , U_2 , \cdots is an infinite sequence of function all harmonic in a domain D on open Riemann surface and uniformly bounded in D, then foy any compact closed region B on D, there exists a subsequence taken from the given sequence which converges uniformly in B to a limit function harmonic in B.

Proof. Since B is closed compact region in D, there exists a covering of B with a finite number of z_i -circles $V_{P_i}^{r_0}$ $(i=1,2,\cdots,n)$, where $r_0(<\frac{1}{2})$ is so chosen that all $V_{P_i}^{r_0} \subset D$. At first, since $\{U_j\}$ $(j=1,2,\cdots)$ is uniformly bounded sequence in $|z_i| < 2r_0$, by usual Lemma in plane-domain (e.g. cf. Kellogg [1]) we take from $\{U_j\}$ a subsequence $\{U_{1p_1}\}$ $p_1=1,2,\cdots$, which converges uniformly in $K_{r_0}=(|z_i|< r_0)$. Next we take from $\{U_{1p_1}\}$ a subsequence $\{U^{2p_2}\}$ $p_2=1,2,\cdots$, which converges uniformly in $K_{r_0}=(|z_i|< r_0)$. Next we take from $\{U_{1p_1}\}$ a subsequence $\{U^{2p_2}\}$ $\{U_{2p_2}\}$ $\{U_{2p_2}\}$ $\{U_{2p_3}\}$ $\{U_{2p_3}\}$ $\{U_{2p_4}\}$ $\{U_{2p_5}\}$ $\{$

Now, since Γ_0 is analytic, each point on Γ_0 has a definite neighbourhood, in which any one of harmonic measures $\omega_{\widehat{\alpha}_n}(P)$ can be harmonically continued across Γ_0 by the principle of reflection. Lét \mathfrak{D} be a compact closed region on $\widehat{G}_0 + \Gamma_0 - (V_{\Gamma_0}^{r_0} + B_{\Gamma_0}^{r_0})$ containing $B_{\Gamma_0}^{l}$ (where B_{Γ}^{r} denotes the boundary of V_{Γ}^{r}) and Γ_0 . Since $\{\omega_{\widehat{\alpha}_n}\}$ are all harmonic and uniformly bounded in a domain $\supset \mathfrak{D}$, hence by above Lemma we can take a subsequence $\{\omega_{\widehat{\alpha}_{nl}}\}$ (for simplicity, we write again $\{\omega_{\widehat{\alpha}_n}\}$ in the following) from $\{\omega_{\widehat{\alpha}_n}\}$, which converges uniformly in \mathfrak{D} to a limit function ω and therefore uniformly

$$\frac{\partial \omega_{Gn}}{\partial n} \rightarrow \frac{\partial \omega}{\partial n}$$
 on Γ_0 ,

where $\frac{\partial}{\partial n}$ denotes the inner normal with respect to G_n . Since

$$D_{\hat{G}_n}[\omega_{\hat{G}_n}] = \int_{\Gamma_0} \frac{\partial \omega_{\hat{G}_n}}{\partial n} ds = 2\pi/\log r_{Gn}' \to 0 \text{ (for } n \to \infty),$$

hence $\int_{\Gamma_0} \frac{\partial \omega}{\partial n} \mathrm{ds} = 0$. Moreover, as $\frac{\partial \omega}{\partial n} \geq 0$ on Γ_0 , therefore $\frac{\partial \omega}{\partial n} = 0$ throughout Γ_0 , i.e. $\bar{\omega}$ (conjugate harmonic function of ω) is constant on Γ_0 , thus the derivative of analytic function $\Omega = \omega + i\bar{\omega}$ vanishes on Γ_0 and therefore everywhere in \mathfrak{D} . This happens only in the case, when Ω reduces to a constant and thus ω is equal to zero in \mathfrak{D} . Therefore for given $\varepsilon > 0$, there exists a large number n_0 , such that for $n \geq n_0$

$$\omega_{\widehat{G}_{n}}(P) \leq \varepsilon \qquad P \in B_{P_{0}}^{1}$$

Fix a number $N \ge n_0$, such that

(6)
$$D_{\hat{G}_N}[\omega_{\hat{G}_N}] \equiv \delta_N < 4r_0^2 (1-\epsilon)/\pi$$

Since $\omega_{\widehat{G}_N}$ (we write simply ω_N) is single-valued, harmonic function in $\widehat{G}_N - V_{P_0}^{r_0}$ which is equal to 1 on γ^{G_N} and $\leq \varepsilon$ on $B_{P_0}^{-1}$, hence the level curves \widehat{L}_{ν}^N : $\omega_N = \rho$ ($\varepsilon \leq \rho \leq 1$) lying in $V_{P_0}^{-1}$ surround always a curve γ^{G_N} . Therefore in local parameter disc $K_{P_0}^{-1}$: |z| < 1, we have always

(7)
$$2r_0 \leqq \int_{L_{\rho}^{N}} |dz| \qquad (\epsilon \leqq \rho \leqq 1),$$

where L_{P}^{N} denotes the image of \hat{L}_{P}^{N} on the z-plane. Put $\mathcal{Q}_{N} = \omega_{N} + i\bar{\omega}_{N}$ and consider \mathcal{Q}_{N} as another local parameter at P_{0} . Since

$$\int_{(L_{\rho}^{N})} d\tilde{\omega}_{N} \leq \int_{(L_{\rho}^{N}) + \Gamma} d\tilde{\omega}_{N} = \int_{\Gamma_{0}} d\tilde{\omega}_{N} = \delta_{N}.$$

where (L_{ρ}^{N}) denotes the image (on $\omega_{N}=\rho$) of L_{ρ}^{N} , hence by using the Schwarz's inequality to (7), we have

(8)
$$4 r_0^2 \leq \int_{(L_u^N)} d\tilde{\omega}_N \int_{(L_u^N)} |\frac{dz}{d\Omega_N}|^2 d\tilde{\omega}_N \leq \delta_N \int_{(L_u^N)} |\frac{dz}{d\Omega_N}|^2 d\tilde{\omega}_N$$

Integrating (8) from ε to 1 with respect to $\rho(=\omega_N)$ then we obtain

$$4 r_0^2 (1-\epsilon) \leq \delta_N \int_{\epsilon}^1 \int_{(L_0^N)} |\frac{dz}{d\Omega_N}|^2 d\tilde{\omega}_N d\omega_N \leq \pi \delta_N$$

i.e.

$$\delta_N \ge 4 r_0^2 (1-\epsilon)/\pi > 0$$

which contradicts to (6). q.e.d.

4. From (5), thus we have

$$\log |w(P_{\scriptscriptstyle 0})| \leq (\sup_{\varGamma \to \Im} \log \, r_{\scriptscriptstyle 0}) \lim_{\varGamma \to \Im} \frac{\log M(\varGamma)}{\log \mu_{\scriptscriptstyle G}}.$$

Suppose now that the ideal boundary \Im of \Im has zero harmonic measure, then $\log \mu_G \to \infty$ (for $\Gamma \to \Im$) and conversely. hence we can conclude finally the following theorem by the usual approximation and limiting process.

Theorem. Let F be an open Riemann surface with two disjoint boundaries Γ_0 and \Im , such that the harmonic measure of \Im is zero, i.e. there exists a finite number of closed analytic curves Γ' on F, separating Γ_0 from \Im , and for this Γ' , $\omega(P, \Im, R(\Gamma', \Im)) \equiv \Im$. Let $\omega(P)$ be a single-valued analytic function on F satisfying

$$\overline{\lim}_{P_0}|w(P)|\leq m,$$

then, if

 $\lim_{\Gamma \to \widehat{\Im}} \frac{\log M(\Gamma)}{\log \mu_{G}} = 0, \text{ where } \mu_{G} \text{ denotes the harmonic modulus}$

of
$$G=R(\Gamma', \Gamma)$$
, $(\Gamma'=\Gamma_0 \text{ if } \Gamma_0 \text{ is analytic})$,

the function w(P) is bounded, such that $|w(P)| \leq m$ for $P \in F$ (Maximumprinciple holds).

Corollary. Let F be a Riemann surface with null boundary. Now, let w(P) be a single-valued analytic function bounded in F, then w(P) reduces to a constant.

Proof. For an arbitrary point $P_{\scriptscriptstyle 0} \in F$, $|w(P) - w(P_{\scriptscriptstyle 0})| < \varepsilon, P \in V_{\scriptscriptstyle P_{\scriptscriptstyle 0}}^{\delta}$. Take $\Gamma_{\scriptscriptstyle 0} \equiv B_{\scriptscriptstyle P_{\scriptscriptstyle 0}}^{\delta}$, then by the theorem $|w(P) - w(P_{\scriptscriptstyle 0})| \leq \varepsilon$, $P \in F$, q.e.d.

Remark. Let w(z) be a regular function in $z \neq \infty$, and $\varepsilon = \operatorname{Max}_{\operatorname{Pol} z \mid z \mid 0}$

$$|w(z)-w(0)|$$
, $M(r) \equiv \max_{1 \le |z|=r} |w(z)|$. Since $\log \mu_G = \log \frac{r}{\delta}$ if

 $\underline{\lim_{r\to\infty}} \frac{\log M(r)}{\log r} (= \underline{\lim_{r\to\infty}} \frac{T(r)}{\log r}) = 0, \text{ then we have by the theorem } |w(z)|$

$$-w(0)| \le \varepsilon$$
, for $z \ne \infty$, i.e. $w(z) \equiv \text{const.}$

Mathematical Institute, Kyoto University.

References

- [1] D. Kellogg; Foundations of Potentialtheory. Berlin 1929, P. 267.
- [2] R. Nevanlinna; Eindeutige analytische Funktionen. Berlin 1936.
- [3]: Quadratisch integrierbare Differentiale auf einer Riemannschen Mannigfaltigkeit. Ann. Acad. Sci. Fenn. Ser. A. 1941.
- [4] A. Pfluger; Über das Anwachsen eindeutiger analytischer Funktionen auf offenen Riemannschen Flächen. ibid. 1949.
 - [5] L. Sario; Über Riemannsche Flächen mit hebbarem Rand. ibid. 1948.
- [6] V. Wolontis; Properties of conformal invariants. Amer. Journ. of Math. vol. 74, 1952.