Maximum Principle for Analytic Functions on Open Riemann Surfaces.

By

Yukio Kusunoki

(Received 20 April, 1953)

1. Let \mathfrak{F} be a non-compact region on an open Riemann surface F, such that its relative boundary I_{0}^{\prime} consists of a finite number of closed analytic curves on F. Now let $w(P)$ be a single-valued analytic function on \mathfrak{F}, satisfying a condition

$$
\begin{equation*}
\overline{\operatorname{li}_{\Gamma_{0}}}|w(P)| \leqq 1 . \tag{1}
\end{equation*}
$$

We consider an arbitrary compact ring domain $G \subset \mathfrak{F}$, whose boundary consists of Γ_{0} and Γ^{\prime}, where Γ^{\prime} is composed of a finite number of closed analytic curves and separates Γ_{0} from the ideal boundary \mathfrak{F} of \mathfrak{F}. If we put

$$
\operatorname{Max}_{P \in \mathrm{f}}|w(P)| \equiv M\left(I^{\prime}\right),
$$

then we have
(2) $\quad \log |w(P)| \leqq \omega(P, I, G) \log M(\Gamma)$, for $P \in G$,
where $\omega_{i}(P) \equiv \omega(P, I, G)$ denotes the harmonic measure of I ' with respect to G. Namely, since $\omega\left(P, I^{\prime}, G\right) \log M\left(l^{\prime}\right)-\log |w(P)|$ is single-valued, harmonic in $P \in G-S$ (where $S=E\{P ; w(P)=0, P$ $\left.\epsilon G+\Gamma_{0}+I^{\prime}\right\}$) and ≥ 0 for P on Γ_{0}, I^{\prime} and arbitrarily large in the neighborhood of S, hence we easily obtain (2) by use of the maximum principle for harmonic function in compact region.
2. We fix an arbitrary point $P_{0} \in G$ and consider the level curve Γ^{G} : $\omega_{G}(P)=\omega_{i}\left(P_{0}\right)$. Then $I^{\prime \prime}$ consists of a finite number of closed analytic curves (occasionally with multiple points) on G and separates Γ_{0} from Γ. Clearly it contains a curve passing through P_{0}. In following we shall denote the ring domain (on \mathfrak{F}) by $R\left(\Gamma^{\prime}, \Gamma^{\prime}\right)$ which is surrounded by two disjoint arbitrary boundaries Γ ' and $\Gamma^{\prime \prime}$. Let $R\left(I_{0}, I^{\prime d}\right) \equiv G^{*}$, where Γ^{i} is homologous to Γ_{0}, then

$$
\omega_{i}^{\frac{\rightharpoonup}{f}} \equiv \omega\left(P, I^{\prime}, G\right) / \omega_{i}\left(P_{o}\right)
$$

is clearly the harmonic measure Γ^{G} with respect to G^{*} and its

Dirichlet integral taken over G^{*} has the value
(3)

$$
\begin{aligned}
D_{G *}\left[\omega_{i \cdot}^{*}\right] & =D_{G *}\left[\omega_{G}\right] / \omega_{G}{ }^{2}\left(P_{0}\right)=\frac{1}{\omega_{G}{ }^{2}\left(P_{0}\right)} \int_{\Gamma G} \omega_{G} d \bar{\omega}_{G}=\frac{1}{\omega_{G}\left(P_{0}\right)} \int_{\Gamma_{0}} d \bar{\omega}_{G} \\
& =D_{G}\left[\omega_{G}\right] / \omega_{G}\left(P_{0}\right)
\end{aligned}
$$

where $\bar{\omega}_{G}$ denotes the conjugate harmonic function of ω_{G}. Let γ_{G} and μ_{G} denote the harmonic moduli* of G^{*} and G respectively, then we have

$$
\begin{equation*}
\log \mu_{G}=2 \pi / D_{G}\left[\omega_{G}\right], \log \gamma_{G}=2 \pi / D_{G *}\left[\omega_{G}^{*}\right] . \tag{4}
\end{equation*}
$$

From (2), (3) and (4) we get

$$
\omega_{G}\left(P_{0}\right)=\log \gamma_{G} / \log \mu_{G}
$$

$$
\begin{equation*}
\log \left|w\left(P_{0}\right)\right| \leqq \log r_{G} \frac{\log M(\Gamma)}{\log \mu_{G}} \tag{5}
\end{equation*}
$$

We shall next prove that sup $\log r_{G}<\infty$ (for $\Gamma \rightarrow \Im$).
3. Let $\hat{\gamma}^{G}$ be an analytic curve which connects the point P_{0} to Γ and lies in a domain (neighboured at P_{0}) of $G-G^{*}$. e.g. $\hat{\gamma}^{G}$ is a level curve ($\bar{\omega}_{G}=$ constant) passing through P_{0}. Now we take a z-circle $V_{r_{o}}^{r_{o}}(\subset G)$ with center P_{0} i.e. the image mapped on its local parameter circle $|z|<1$ is the disc $K_{r_{0}}:|z|<r_{0}<1$. Let γ^{G} denote an analytic arc which issues from P_{0} and is contained in $\hat{r}^{G} \cap V_{P_{0}}^{r_{0}}$ Let

$$
\hat{G} \equiv R\left(\Gamma_{0}, \gamma^{G}+I^{\prime}\right)
$$

If we consider the harmonic measure $\omega_{\hat{\dot{G}}} \equiv \omega\left(P, \gamma^{\hat{G}}+\Gamma, \hat{G}\right)$, then we have for $P \in G^{*}$

$$
\omega_{G^{*}}(P) \geqq \omega_{\hat{G}}(P)
$$

and easily obtain

$$
r_{G} \leqq r_{G}^{\prime}=2 \pi / \int_{\Gamma_{0}} \frac{\partial \omega_{\hat{G}}}{\partial n} d s,
$$

[^0]where $r_{G}{ }^{\prime}$ denotes the harmonic modulus of \hat{G}. Therefore, it is sufficient to prove that $\sup _{G \rightarrow \mathfrak{F}} \log r_{G}^{\prime}<\infty$. Suppose now $\sup _{G \rightarrow \mathfrak{F}} \log$ $r_{G}{ }^{\prime}=\infty$, then there exists a sequence of domains $\left\{G_{n}\right\} \quad n=1$, $2, \cdots\left(G_{n} \rightarrow \mathfrak{F}, G_{n} \supset G_{0} \equiv G \supset V_{P_{0}}^{\prime}\right)$, such that $\lim _{n \rightarrow \infty} \log r_{G_{n}}^{\prime}=\infty$. Here, we shall use the following Lemma.

Lemma. If U_{1}, U_{2}, \cdots is an infinite sequence of function all harmonic in a domain D on open Riemann surface and uniformly bounded in D, then foy any compact closed region B on D, there exists a subsequence taken from the given sequence which converges uniformly in B to a limit function harmonic in B.

Proof. Since B is closed compact region in D, there exists a covering of B with a finite number of z_{i} - circles $V_{P_{i}}^{r_{0}}(i=1,2, \cdots, n)$, where $r_{0}\left(<\frac{1}{2}\right)$ is so chosen that all $V_{P_{i}^{\prime r o}}^{v r_{0}} \subset D$. At first, since $\left\{U_{j}\right\}$ ($j=1,2, \cdots$) is uniformly bounded sequence in $\left|z_{1}\right|<2 r_{0}$, by usual Lemma in plane-domain (e.g. cf. Kellogg [1]) we take from $\left\{U_{j}\right\}$ a subsequence $\left\{U_{1 p_{1}}\right\} \quad p_{1}=1,2, \cdots$, which converges uniformly in $K_{r_{0}}{ }^{1}=\left(\left|z_{1}\right|<r_{0}\right)$. Next we take from $\left\{U_{1 p_{1}}\right\}$ a subsequence $\left\{U^{2 p_{2}}\right\}$ $p_{2}=1,2, \cdots$, which converges uniformly in $K_{r o}{ }^{\circ}$. And so on. Then, the sequence $\left\{U_{n p_{n}}\right\} \quad p_{n}=1,2, \cdots$ obviously converges uniformly to a limit function harmonic in B. q.e.d.

Now, since Γ_{0} is analytic, each point on Γ_{0} has a definite neighbourhood, in which any one of harmonic measures $\omega_{\hat{\epsilon}_{n}}(P)$ can be harmonically continued across Γ_{0} by the principle of reflection. Lét D be a compact closed region on $\hat{G}_{0}+\Gamma_{0}-\left(V_{\mu 0}^{r o}+B_{r_{0}}^{r o}\right)$ containing $B_{P 0}^{p_{0}}$ (where B_{P}^{r} denotes the boundary of V_{p}^{\prime}) and Γ_{0}. Since $\left\{\omega_{\hat{\epsilon}_{n}}\right\}$ are all harmonic and uniformly bounded in a domain $\supset D$, hence by above Lemma we can take a subsequence $\left\{\omega_{\hat{\omega}_{n i}}\right\}$ (for simplicity, we write again $\left\{\omega_{\hat{\omega}_{n}}\right\}$ in the following) from $\left\{\omega_{\hat{i}_{n}}\right\}$, which converges uniformly in D to a limit function ω and therefore uniformly

$$
\frac{\partial \omega_{\hat{i} n}}{\partial n} \rightarrow \frac{\partial(\omega)}{\partial n} \text { on } \Gamma_{0}
$$

where $\frac{\partial}{\partial n}$ denotes the inner normal with respect to G_{n}. Since

$$
D_{\widehat{G}_{n}}\left[\omega_{\hat{\epsilon}_{n}}\right]=\int_{\Gamma_{0},} \frac{\partial \omega_{\hat{i} n}}{\partial n} \mathrm{ds}=2 \pi / \log \gamma_{G n}^{\prime} \rightarrow 0(\text { for } n \rightarrow \infty)
$$

hence $\int_{\Gamma_{0}} \frac{\partial \omega}{\partial n} \mathrm{ds}=0$. Moreover, as $\frac{\partial \omega}{\partial n} \geq 0$ on Γ_{ω}, therefore $\frac{\partial \omega}{\partial n}=$ 0 throughout Γ_{0}. i.e. $\bar{\omega}$ (conjugate harmonic function of ω) is constant on Γ_{0}, thus the derivative of analytic function $\Omega=\omega+i \bar{\omega}$ vanishes on Γ_{0} and therefore everywhere in D. This happens only in the case, when Ω reduces to a constant and thus ω is equal to zero in D. Therefore for given $\varepsilon>0$, there exists a large number n_{0}, such that for $n \geqq n_{0}$

$$
\omega_{\hat{G}_{n}}(P) \leqq \varepsilon \quad P \in B_{P_{0}}^{1}
$$

Fix a number $N \geqq n_{0}$, such that

$$
\begin{equation*}
D_{\hat{\omega}_{N}}\left[\omega_{\hat{\sigma}_{N}}\right] \equiv \delta_{N}<4 r_{0}^{2}(1-\varepsilon) / \pi \tag{6}
\end{equation*}
$$

Since $\omega_{\hat{G}_{N_{N}}}$ (we write simply ω_{N}) is single-valued, harmonic function in $\hat{G_{N}}-V_{P_{0}}^{r_{0}}$ which is equal to 1 on $\gamma^{G_{N}}$ and $\leqq \varepsilon$ on $B_{P_{0}}{ }^{1}$, hence the level curves $\hat{L_{\rho}^{N}}$: $\omega_{N}=\rho\left(\varepsilon \leqq \rho_{\rho} \leqq 1\right)$ lying in $V_{P_{0}}^{1}$ surround always a curve $\gamma^{G}{ }_{N}$. Therefore in local parameter disc $K_{1_{0}}^{1}:|z|<1$, we have always

$$
\begin{equation*}
2 r_{0} \leqq \int_{L_{\rho}^{N}}|d z| \quad(\varepsilon \leqq \rho \leqq 1) \tag{7}
\end{equation*}
$$

where L_{ρ}^{N} denotes the image of \hat{L}_{ρ}^{N} on the z-plane. Put $\Omega_{N}=\omega_{N_{N}}+$ $i \bar{\omega}_{N}$ and consider Ω_{N} as another local parameter at P_{0}. Since

$$
\int_{\left(L_{\rho}^{N}\right)} d \bar{\omega}_{N} \leqq \int_{\left(L_{\rho}^{N}\right)+\Gamma} d \bar{\omega}_{N}=\int_{\Gamma_{0}} d \bar{\omega}_{N}=\delta_{N}
$$

where (L_{ρ}^{N}) denotes the image (on $\omega_{N}=\rho$) of L_{ρ}^{N}, hence by using the Schwarz's inequality to (7), we have

$$
\begin{equation*}
4 \boldsymbol{r}_{0}^{2} \leqq \int_{\left(L_{\varphi}^{N}\right)} d \bar{\omega}_{N} \int_{\left(L_{\varphi}^{N}\right)}\left|\frac{d z}{d Q_{N}}\right|^{2} d \bar{\omega}_{N} \leqq \delta_{N} \int_{\left(L_{\rho}^{N}\right)}\left|\frac{d z}{d \Omega_{N}}\right|^{2} d \bar{\omega}_{N} \tag{8}
\end{equation*}
$$

Integrating (8) from ε to 1 with respect to $\rho\left(=\omega_{N}\right)$ then we obtain

$$
4 \gamma_{0}^{2}(1-\varepsilon) \leqq \hat{\delta}_{N} \int_{\varepsilon}^{1} \int_{\left(L_{\rho}^{N}\right)}\left|\frac{d z}{d \Omega_{N}}\right|^{\bullet} d \bar{\omega}_{N} d \omega_{N} \leqq \pi \hat{o}_{N}
$$

i.e.

$$
\partial_{N} \geqq 4 r_{0}^{2}(1-\varepsilon) / \pi>0
$$

which contradicts to (6). q.e.d.
4. From (5), thus we have

$$
\log \left|w\left(P_{0}\right)\right| \leqq\left(\sup _{\Gamma \rightarrow \Im} \log r_{G}\right) \lim _{\Gamma \rightarrow \Im} \frac{\log _{\boldsymbol{J}}^{+} M(\Gamma)}{\log \mu_{G}}
$$

Suppose now that the ideal boundary \mathfrak{F} of \mathfrak{F} has zero harmonic measure, then $\log \mu_{G} \rightarrow \infty$ (for $\Gamma \rightarrow \mathfrak{F}$) and conversely. hence we can conclude finally the following theorem by the usual approximation and limiting process.

Theorem. Let F be an open Riemann surface with two disjoint boundaries Γ_{0} and \mathfrak{F}, such that the harmonic measure of \mathfrak{F} is zero, i.e. there exists a finite number of closed analytic curves Γ^{\prime} on F, separating I_{0} from \mathfrak{J}, and for this $\Gamma^{\prime}, \omega\left(P, \Im, R\left(\Gamma^{\prime}, \mathfrak{\Im}\right)\right) \equiv 0$. Let $w(P)$ be a single-valued analytic function on F satisfying

$$
\varlimsup_{\Gamma_{0}}|w(P)| \leqq m
$$

then, if

$$
\begin{aligned}
& \lim _{\bar{\Gamma} \rightarrow \mathfrak{Y}} \frac{\log ^{+} M(\Gamma)}{\log \mu_{G}}=0, \text { where } \mu_{G} \text { denotes the harmonic modulus } \\
& \text { of } G=R\left(\Gamma^{\prime \prime}, \Gamma^{\prime}\right),\left(\Gamma^{\prime}=\Gamma_{0} \text { if } \Gamma_{0} \text { is analytic }\right)
\end{aligned}
$$

the function $w(P)$ is bounded, such that $|w(P)| \leqq m$ for $P \in F$ (Maximumprinciple holds).

Corollary. Let F be a Riemann surface with null boundary. Now, let $w(P)$ be a single-valued analytic function bounded in F, then $w(P)$ reduces to a constant.

Proof. For an arbitrary point $P_{v} \in F,\left|w(P)-w\left(P_{0}\right)\right|<\varepsilon, P \in V_{\%_{0}}^{\delta}$ Take $\Gamma_{0} \equiv B_{r_{0}}^{\delta}$, then by the theorem $\left|w(P)-w\left(P_{0}\right)\right| \leqq \varepsilon, P \in F$, q.e.d.

Remark. Let $w(z)$ be a regular function in $z \neq \infty$, and $\varepsilon=\operatorname{Max}_{r_{c}|z|=\delta}$ $|w(z)-w(0)|, \quad M(r) \equiv \operatorname{Max}_{r: z \mid=r}|w(z)| . \quad$ Since $\log \mu_{G}=\log \frac{r}{\delta}$ if $\lim _{r \rightarrow \infty} \frac{\log M(r)}{\log r}\left(=\lim _{r \rightarrow \infty} \frac{T(r)}{\log r}\right)=0$, then we have by the theorem $\mid w(z)$ $-w(0) \mid \leqq \varepsilon$, for $z \neq \infty$, i.e. $w(z) \equiv$ const.

References

[1] D. Kellogg ; Foundations of Potentialtheory. Berlin 1929, P. 267.
[2] R. Nevanlinna; Eindeutige analytische Funktionen. Berlin 1936.
[3] $. \ldots . . .$. : Quadratisch integrierbare Differentiale auf einer Riemannschen Mannigfaltigkeit. Ann. Acad. Sci. Fenn. Ser. A. 1941.
[4] A. Pfluger; Über das Anwachsen eindeutiger analytischer Funktionen auf offenen Riemannschen Flächen. ibid. 1949.
[5] L. Sario; Über Riemannsche Flächen mit hebbarem Rand. ibid. 1948.
[6] V. Wolontis ; Properties of conformal invariants. Amer. Journ. of Math. vol. 74, 1952.

[^0]: ※ When the function u is harmonic in a ring domain $R=R\left(\Gamma, \Gamma^{\prime}\right)$ with analytic boundaries Γ, Γ^{\prime} and has the boundary value zero on Γ and $\log \mu_{k}$ on Γ^{\prime}, where constant μ_{R} is so chosen that $\int_{\Gamma} \frac{\partial u}{\partial n} d s=2 \pi$, then μ_{R} is called the harmonic modulus of \boldsymbol{R}. (see, L. Sario [5]). Then we note that $\log \mu_{R}=2 \pi \lambda_{R}\left(\Gamma, \Gamma^{\prime}\right)$, where $\lambda_{R}\left(\Gamma, \Gamma^{\prime}\right)$ denotes an extremal distance between Γ and Γ^{\prime} with respect to R (cf. V. Wolontis [6]).

