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1 .  About special forms of non-linear differential equations of
the second order, the boundedness of solutions and the existence
o f a  periodic solution have been discussed by various authors ;
Cartwright, Littlewood, Reuter and others.

Now generalizing the problems, we consider a  system of
differential equations,

dt
dx  

d t

—f(t, x, y)

dy — g(t, x, y)

where f (t, x , y )  and g(t, x , y ) are continuous in the domain

4 :  0 < t<  + co, —  <x < + °°, <y < + co.

The non-linear differential equation of the second order is a special
case of (1).

At first, we shall prove two lemmas in order to discuss the
boundedness theorem for the solutions of (1).

Lemma 1. L e t A , an d  B , be two Positive constants (A ,  and
B , m ay  be arbitrarily  great) and  :31 be the domain

Ix! <A1, II <13 1.

Suppose that there exists a continuous function ( x ,  y )  satisfying the
following conditions in  the domain

<+ cc (x , Y) f W c ,
w here :V  is the complement of '.)t in H  co <x < + c 0 , — co < y  <  a p i
namely the conditions are  that

10 (x, y)> 0
20 (1)(x , y ) tends to  zero uniform ly  for y  and  x  respectively

when Ix! or I I  becomes infinity,

(1)
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3 °  0(x, y )  satisfies locally the Lipschitz condition with regard
to (x, y )  an d  in  the interior of  this domain 4„ we have

(2) lirn  1   (P(x+ hf(t, x, y), y+ hg(t, x, y))— (1)(x, y) } > 0,
h

where e  may be arbitrarily small, but it is a fixed positive
number when x  and  y  are bounded.

Then f o r any  solution of  (1 )  x =x (t) , y =y (t) , being given two
arbitrary Positive numbers a  and  t 9 ,  i f  we have Ix(t0) i '-, 1.Y(t„)( LP
at an  arbitrary t=t„, then there exist two positive constants L , and
M , depending only on (1. and i9 such that

Ix (t) I <Li, 1)0 1  < Ms,
for where, of  course, .1,1 > ri and M 1 >

Proof. Let us assume a .> A, and p> B„ for th is case alone is
w orth to  consider. Let at be the domain

Ix' <a, II <13.
Then, by the conditions 1° and 2°, there are two positive numbers
L , and M , such as

min 0(x, y) > m a x  (x, y),
— 91*

where al* denotes the domain [IxI <L, v i  <M1] and al indicates the
closure of al and so on . Now suppose that some solution o f (1)
x=x(t), y = y (t ) such as (x(t.), Y(to))E 91- arrives a t  the boundary of
91*, i.e. 9i*-- al* when t  increases. Then, by the continuity of the
solution, it is easy  to  see  that there  ex ist tw o values of t, say t,
and t2 ,  su ch  th a t (x (t,), y (t,)) E at (x(t,), y(1 2) )  c —9i* and
(x (t), y (t)) E 91*— a t  fo r  t, <t <t0. H e r e  c o n s id e r  the function
0(x(t), y(t)) and then this function is increasing along the solution
o f (1) by the condition 3 °. Hence we have

(1) (x (t,), y(t,)) (x (t,), y (t,)).
This contradicts the inequality (3 ). Therefore any solution o f  (1)
having the initial point which belongs to 91 cannot arrive a t  ar —
al*, that is to say, we have two positive constants L, and M, such as

lx(t)I <LI, 13'(t)1 <MI,
and now, clearly by (3), these depend only on i, p  and are inde-
pendent of t, and the solutions.

(3)
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Lemma 2. Under the same assumptions as those in Lemma 1,
let 0  be the domain

1x1 <A2, II <H,
f o r two arbitrary Positive constants A 2 (> A i )  and B2 (> 13 1).

Then f o r any  solution (x (1), y (t)) such as (x (to), (to)) e
at t= to ( t o being arbitrary, but fixed), we have

(x (t), y (t)) E t

f o r some t(> to).
P ro o f. For the solution (x (t), y (t)) satisfying

(x(to), Y(4)) e

a t  t=t,„ w e have, by Lemma 1, tw o positive constants L , and M,
independent of particular solutions such that

lx(t)I <L2, IY (t)I <1W2
when t to. Now let 0* the domain such as xl <L2, I l  <M2 and
consider the function 0(x, y)e - N (N -> 0) in the domain

J.,: < + c o ,  (x, Y) E

Then this function satisfies clearly following conditions ; namely
10  th is  is  a positive continuous function
2 °  this tends to zero uniformly for (x, y ) E 1 as t—>co.

Now for tw o points (t, x, y )  and (t, x', y') in  4 ,, w e have

10 (x, Y)e - N ' — 0(x', y')e - -v
(4)

=6. 10 (x, y)— 0(x', y')1.__C(Ix—  + iy —  y ' ) ,
where C is  a suitable positive constant. Therefore it satisfies the
Lipschitz condition w ith regard to  (x, y).

Moreover we have

lim —
1

le - " (P(x +k f ,y +h g )— e —v10(x ,y )}
h

—
1

ie - '
,

"10(x + hf , y + hg)— y )+ (x , y )— e"0(x , y )]}
h.° h

=lim  i-1 e - Alt+h)L0 (x+ hf, y+ hg)—  (x, y)l—  (x, y)  eN h
h

- 1

h-ou h
1lim ---{ +  y +hg) —  (x , y) } — NO (x, y)

h ,  0  h
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(l) (x+ hf, y + hg) — (x, y) N o  (x,
I h h

NO(x, y)} (by the condition 30 

in Lemma 1).

On the other hand, w e can have

e — N  m a x  0 (x, y)
(x, y)

by choosing N  suitably sm all, since 0(x, y ) is  positive and con-
tinuous in  3*--;)1.

T hen  the above mentioned inequality becomes always non-
negative in the interior of 4„. H ence by this fact (4 ) w e have

30 0 (x , y )e - -v  ̀is non-decreasing along any solution of (1).
Now suppose th a t  for som e solution (x (t), y (t)) of (1 ) such

as (x(to), A O )  E a t  t= to ,  we should not have

(x(t), y(t)) E

for any t. For th is solution, consider the function

(x(t), y (t)),
and then this is a non-decreasing function of t  b y  3°, while by 2°
we have some T  such that

m in  0(x, y) e-"°> m a x  0 (x,
(x, y )  E 8  -2 1 (X, Y ) E -

T here  arises a contradiction and hence w e have (x(t), y (t)) E

for some t.
2 .  Directly we have the following boundedness theorem by

the above lemmas.
Theorem 1 .  Suppose that the sam e assum ptions a s  those in

Lemma 1  hold good. T hen all the solutions are ultimately bounded,
i.e. there are positive constants A , and B , (independent of  the parti-
cular solution considered) such that

(5 ) lx(/) 1<A3, 13)(t)I <B,

f o r an y  solution (x (t), y (t)) o f  (1) satisfying (x(to ), y(t„))(E 2 (E 2

being the 2-dimensional Euclidian space) at t= t0 ( t o being arbitrary,
but f ix ed) and f or t> T 0 ( t0 )  (T , depending on the particular solu-
tion).
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P roo f. For the solutions which satisfy Ix iyI B a t  1= t„,
i.e. start from  ;)f,- there exist by Lem m a 1 tw o positive constants
A , and B , such  as lxi <A 3 , lyl < B , .  A ny solution starting from

en te rs  in to  l a t som e  t = T  by Lemma 2  (since A , and B , in
Lemma 2 being arbitrary). Then continuing this solution, we have
by Lemma 1

xi <A3 lY i <B,,
tha t is, all the solutions are ultimately bounded.

Remark 1 .  Of course, A , and B , are independent of t„, but
T„ depends on t„.

Remark 2 .  The conditions in Lemma 1 and those in Lemma
2 may be considered independently ; namely in Lemma 1 w e have
without using E in (2)

• 1lim — 40(x + y + hg) — 0 (x, y)}
h-p•O h

while m Lemma 2 we may assume again the existence of a similar
function 'F(t, x, y).

Remark 3. W e can generalize the problems for a  general
system of differential equations.

3 .  Next we can easily prove the following existence theorem
of a periodic solution of (1) by aid of the above mentioned theorem
and Lemma 3 below.

Theorem 2. S uppose that th e  sam e conditions as those in
L em m a 1 and the condition for the uniqueness of  solutions in Cau-
chy-problem (Okamura's necessary and sufficient condition")) hold
good. M oreover suppose that

f(t + (0, X, y) =f (t, x, y)
and

g (t+  co, x, y) =g(t, , c, y).

T hen (1) has at least a  periodic solution of period (0.
This theorem is proved, remarking the fac t tha t by  the uni-

queness condition the transformation T  of the point Pu (xo , yo )  in
the plane t= 0  into the point P,(x,, y i )  on the same solution in the
plane (0 is  a  ( 1 ,1 )  continuous transform ation of  the plane into

(1) Okamura ; Mem. Coll. Sci. Kyoto Univ. A 24 (1942), p. 22.
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itself and the conditions assumed for f (t, x , y ), g(t, x , y ), by aid of
the above boundedness theorem and the following lemma or
Massera's theorem")  about which we shall state some notes later.

L em m a 3• " Let T  be a (1 ,1) continuous transformation of the
plane into itself, and let Do be a fixed domain and D a domain con-
taining D„ bounded by a  closed Jordan curv e  J. Suppose that if  P
is a point of  5  every T" (P) lies in  D, f o r all n> n0 (P).

Then there is a domain 4 depending on D having the following
properties :

10 4 is bounded by  a  closed Jordan curve,
2° 4  contains D,
3 °  T O) is contained in

By this lemma the Brouwer fixed point theorem can now be
applied to d , and so 4  contains a fixed Point.

If w e do  not consider the ultimate boundedness and discuss
only the existence of a periodic solution, the conditions may be as
follows : Namely for three pairs of positive constants (A ,,
(A,„ B 5 )  and (A c, B6) (A , < A , <A , B , <B , <B ,) we indicate the
domains

1x1 <A 0, I I  <B , 5, 6)
by Z„ Z, and T, respectively. And assume the existence of two
non-negative continuous functions i01 (x, y) and ia,(x, y) in the domains

<  co, (x, Y) E

and

O t  < + 00, (x, y) Z2,
such that

m in  so, (x, y )  >  max so, (x, y)
E (X, )  E t 2 - Z2

and
min so.,(x, y) > m ax 902 (x, y)

y) E  Z 2 — T 2 (x, E  Z3 - T3

respectively, and they satisfy the Lipschitz condition with regard to
(x, y) and finally we have

(2) Wendel; Ann. Math. Stud. no 20. (Princeton, 1950), p. 226 or Massera ;
Bull. Amer. Math. Soc. Vol. 54 (1948), P .  636.

(3) Cartwright; Ann. Math. Stud. no. 20 (Princeton, 1950), p. 174.
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lim 1 15r1 (x+ hf, y+ hg) — so (x, y)} 0 (i =1, 2)
h40 h

in the interior of each domain.
Moreover assume the existence of a positive continuous function

0(t, x , y) in the domain
4*: < + co , (x, y ) E

where 0(t, x, y) converges to zero uniformly as t.-+ co and satisfies the
Lipschitz condition with regard to (x, y) and finally in the interior
of 4* satisfies the inequality

• 1lim( t +  h, x + hf, y + hg) — (t, x, y)}
h_o h

Of course, we require the  other conditions in Theorem 2. In this
case the period is m u , where n  is a certain positive integer.

4 .  In Massera's theorem, f(t, x, y ) and g(t, x , y ) do not appear
explicitly in the conditions and properties of solutions themselves are
woven into conditions. It is the part : " if  no  solution of (1) tends
to infinity in a f inite tim e and if  (1) has a solution (x (t), y (t)) which
is bounded for a n d  s o  o n "  The first half is the condition for
the possibility of the continuation of solutions. About it the late
Prof. Okamura has already  obtained the necessary and sufficient
condition in Functional Equations (in  Japanese) Vol. 32 (1942).
Namely consider a  system of differential equations

(6)

where f(t, x, y) and  g(t, x , y ) are continuous in  the domain
a<tb, —  00 <x  < + 00, —  0 0 <3, <  +  .

T hen in  order that all solutions of  (6 ) are  continuable to the
right until they arrive at t=b, it is necessary aud suff icient that there
exists a function so (t, x, y ) satisfying the following conditions ; namely

10 so ( t , x , y )  is  a  continuous function w ith the continuous
f irst partial derivatives in

r=

2° o(t, x, y)> 0  an d  ic (t, x , y ) tends to  zero uniformly for
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a <t_ b  as r--* + co,

30 w e  have always

(7 ) + x, y) + g(t, x, y)at ax ay

Therefore concerning with the equation (1), we may consider
in 0 a n d  there may be such a function 9(t, x, y) as the above
mentioned for every T .  But When we will apply to an individual
equation as the sufficient condition, it is convenient to assume in-
stead of (7) as follows ; namely (t, x, y) satisfies locally the Lips-
chitz  condition with regard to (x, y) add w e have in the interior
of the domain

(8) lim  1  { 50(t+ h,x +hf ,y +hg)-50(t,x ,y )} .0.
h

Also for the second half, as a sufficient condition, we assume
the existence of a function such as in the lemmas, and then we
shall be able to see that solutions starting from a suitable domain
are bounded.

5 . E x a m p le . Reuter's boundedness theorem (The Journal of
the London Mathematical Society, Vol. 27 (1952)).

Consider the equation

(9) i+ F ( i )  + g(x)— p(t),

where g (x ) is continuous and

g(x) sgn co as I x co .

If F(y )  is continuous and F(y) sgn co  as Iy1— œ  and p ( t )  is
continuous and bounded, the solutions of (9) satisfy ultimately

x(t) I <A ,, Ii(t) <B ,,

where A , and B , are independent of the particular solution con-
sidered.

In this case, we have instead of (9) only to consider the system

(10) i=y, —  F(y)—  g(x)+p(t).

Then choosing sufficiently great positive numbers a  and b
suitably, we may define the function 0(x , y ) as follows ; namely
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(—co <x<-1 -00,.Y -b )
._< b )

b)

 y — b )

a, y_<—b)

— a, ly1 _.<b) ,

o (x, y) =

e ucz ,9)- +
y) + 26

e uc, 'y),--=i5 (.+ ,z) - 2 6

euc.,v)-Fy

 

where u(x, y) Y22 — G (x) and G (x) (x) d x.
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