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A  num ber o f results have been established fo r  differential
algebra," and so it com es clear in the case of characteristic zero,
but the case of nonzero characteristic was investigated only in a
few papers. Among them, Kolchin (2) considered the basis theorem
for systems of ordinary or partial differential polynomials over a
differential ring, and Seidenberg (8) considered some basic theorems
in the ordinary  differential situation. In the following we shall
generalize the .results of Seidenberg in the partial differential situ-
ation. Our basis theorem is a generalization of the Kolchin's result
if it is restricted to differential polynomials over a differential field.
This restricted -=case seems useful in the application.

1. Differential polynomials. B y a dif ferential ring is meant
a ring at with a finite number m of given differentiations 8 „• - • ,8 „,
which are mutually commutative. According as m = 1  or > 1 , w e
shall say that al is an ordinary  or a paHia/ differential ring. The
differential ideal which is generated by a subset a  o f at will be
d e n o te d  b y  [a ] . The sem iprim e (or perfect) differential ideal
generated by a  w ill b e  d e n o te d  b y  a l . B y  a differential field is
m ean t a  differential ring w h ich  is  a  field ; its characteristic p
may be arbitrary.

Let R  b e  a differential field and X „ .• • , X ,  a finite number n
of independent differential indeterminates over R. The differential
ring of all differential polynomials over R  will be denoted by 91=

ixt, • • • , X I. Dealing with differential polynomials, it is useful to
introduce a linear order relation < for differential polynomials (cf.
R itt ( 7 )  and K olch in  (2 )). We define it below after some prelimi-
nary definitions.

1) A  complete bibliography up to 1948 may be found in Ritt (7). To it may be
added subsequent literatures: Herz (1), Okugawa (3-5) and Seidenberg (8 ) ; and
KPIchin's works (especially, the ope which is quoted in the footnote of p. 105).
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L et U = i " • • . 84- a n d  V----4,k1•••8„,k -  X i  be two X-derivatives.
U  is called lower th a n  V  (U  <V ) a n d  V  higher than  U (V  >U)
if and only if one of the following conditions are satisfied : 1) i <
j ,  2 )  i= j  and  the  to ta l order Et:', I t  o f  U  is less than the total
order E l?, o f  V , 3 )  i= j ,  total orders o f  U  a n d  V  a re  equal and
the first nonzero value of the differences k i —h„•••,k„,—h„, is positive.

Let A  be a  differential polynomial in at and U an X-derivative.
Then A  can be w ritten in  the  form

(1) A = A o + A i U +A 2 U 2 +•-•+ A ,Uk  (44 k  0 ) ,

such that, for p= 0, the A  are  polynomials over of X-derivatives
other than U, and such that, for p 0 ,  the A  are polynomials over

o f  U P  and X-derivatives o ther than  U  a n d  o_<_k_<p-1. We
shall say that U  is contained in  A  effectively, provided k > O.

If some X-derivative is contained in  a  differential polynominal
A  effectively, the highest of such X-derivatives is called the leader
of A .  If  A  has the leader U  with the expression (1) for A  rela-
tive  to  U, then A k  is called the initial of A  and the formal partial
derivative aA/au.A1+2A2U+•••+kAktP - 1 is called the separant
of A .  When no X-derivative is contained in  A effectively, we say
th a t A  lacks the leader.

Def inition. L et A  and  B  be two differential polynomials. If
both  o f  A  and B  lack the leader, then  A — B  (A  is of the same
rank  as B ) .  I f  A  lack s the leader and B  has the leader, then  A
<B  o r B > A  (A  is  lower than B , o r  B  is  higher than  A ) .  If  A
a n d  B  have the  leaders U  a n d  V  respectively and if U <  V , then
A  <B . If  A  and B  have the same leader U  a n d  if  A = A o + •-• +
A hUh and B = B o + ---  + 1 '  are the expressions as (1) relative to
U , then A <B  o r  A — B  according a s  h <k  o r  h=k . 2 )

The concepts o f  a  differential polynomial being reduced with
respect to another differential polynorrial, a  chain, the linear order
relation f or chains, the characteristic set and the reducedness of a
differential polynomial w ith  respect to  a  chain a re  defined as in
Ritt and in K olchin, using the order relation for differential poly-
nomials defined above.

2 )  We shall have occasions to make use of an order relation with respect to
an assigned one X i  of the indeterminates. In this case, we neglect the X-derivatives
other than X i -derivatives (or such X-derivatives are adjoined to the basic field
and the order relation is defined in like manner concerning to X i -derivatives only.
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2 .  Allowable ideals. In this and the next sections, we con-
sider the chain theorem and the decomposition theorem for semiprime
differential ideals of 91=R x„ •  •  • ,  X „ I .  These theorems do not hold
true  in general'''. S e id e n b e rg  (8 ) has show n in the ordinary  dif-
ferential situation that these theorem s hold true for " allowable "
semiprime differential ideals. W e prove that they hold true for
allowable semiprime differential ideals also in the Partial differential
situation. The proof can be done by a modification of the proof
of Kolchin (2). Therefore, we shall sketch only the line of our
p ro o f . Our results are new only when m > 1  and is an  imperfect
field. Hence, for the sake of simplicity, our description will mainly
be intended to apply only to that case, although it would be easy to
reform them so as to cover all cases.

If is perfect, every semiprime differential ideal of 91 wil be
called allow able. To define allowable semiprime differential ideals
for imperfect let 91„ be the ring of all polynomials over o f
p-th powers o f a ll X-derivatives, a n d  let z„ z2, b e  a p-basis of
A'/•̀ ;'' w hich is fixed hencefore throughout this paper for conve-
nience, and w„ w,, • • • all power products of z , z 2 , o f  exponents
not exceeding p - i ,  so that w , ,  w,, • • is a linear basis of Then,
a semiprime differential ideal in of 91 is called allowable i f  A -

A c w, e nt n 91,, w ith  A , E 91P implies A , E nt for each e. The de-
finition does not depend on the choice of the p-basis z,.

In the case of imperfect a, a differentiation a/az, in 91 can be
defined, for each e, such that az,/&z,=1, &z/z,=0 (x e ) and &U/Z,
=  O for every X-derivative U .  A  serniPrime differential ideal nt of
'X is allowable if  an d  only  if  ni n 91,  is closed under every differenti-
ation 3 0 4

The notation of " allowable" is connected with the separability.
Following Chevalley, a set (x)=-- (x,, ••• , x„) of quantities x i  over
(elements of some differential extension field of `,1.) is called separable
over cA• if and only if (the  minimum differential extension
field of containing x,,•••,x„) and riViv are linearly disjoint over
Ç . It is proved (Seidenb2rg (8) ) tha t a  nonunit prime differential
ideal p of  91 is allow2ble if  and only if  the generic point (x ) of p is
separable over

The intersection of any num ber of allowable semiprime dif-

3) Examples may be found in Seidenberg (8), pp. 185-186.
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ferential ideals of 91 ris plainly an allowable semiprime differential
ideal. Hence, if a subset a of 91 is given, it determines the minimum
allowable semiprime differential ideal containing a ;  th is  w ill be
denoted by lal u . C learly {a} g_ictl„ in g en e ra l. If is  perfect,
th e n  {a} = {a} „  for every a .  W e define lal P) (A=O, 1, 2, •-•) in-
ductively by the rules ; 1 ) {a} (°)= {a}, and 2) { a} (À1- 1) is  the semi-
p rim e  d iffe ren tia l id ea l w h ich  is  g en e ra ted  b y  la l  (À )  and all
(successive) derivatives for the differentiations a/az, o f elements
o f { a} (A) n R , „  Then, w e can easily  prove that { a 10 ) c {a } (') c • • •

c  {  (A ) C  • • •  and th a t  u )7_„{ a} P. )  = { a } „.  If an allowable semiprime
differential ideal nt has a finite subset a  such that in-= a } a , we
shall say that nt has a finite basis a.i)

L A  nt b e  a nontrivial allowable serniprime differential ideal.
Then, m contains certainly differential polynomials G  having the
leader w ith the initial not contained in tn. In fact, let Go b e  a
nonzero differential polynomial of nt of the least possible total degree
in the X-derivatives. The total degree is necessarily positive. Go

has clearly the leader for p=0. For i f  G„ lacked the leader,
Go could be written as G„—  we with G ,  at n NP and every C e i"
would be contained in ut, contradicting to the minimal property
of Go . Thus Go h a s  the leader in all cases, and as its  initial is of
lesser total degree, the initial is not contained in nt.

Consider the totality a of all such differential polynomials G,
and let A - - (A „ A , )  be a characteristic set of a, which will be
called a modified characteristic set of in. Let the separant and the
initial of A, be S , and I, respectively (i=1, •••., r ) .  The I, are not
contained in ni. W e prove that so are the S , .  In fact, let us denote
b y  U, the leader of A , and write A, -=- Hm +•••+11,,,U,' (Hik=L ; k
being dependent on i )  as in (1) of § 1. In the case k=1,
is not contained in in. In the case k ->l, S ,  has the initial W i t - -

which is not contained in in and S i  is reduced with respect to
A, hence S , cannot be contained in in.

Now, we consider, for each i  (1 w hich is such that
some of the Xi-derivatives are contained (in the usual sence) in
A „•••, A „ the set of X i -derivatives which are not higher than the
highest Xi-derivative contained in the A's, and the ring ,;3. of poly-
nomials over ;̀ of all X-derivatives in these sets. W e can prove

4) C f .  Theorem  1  of the next section.
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that there exists f o r every G E in a set of  nonnegativ e integers s„ •••,
•••,t, such that w e have the congruence

(1) S 1 8 '  •  •  •  S , 8 ' . 1111  •  •  •  41 , G O mod [in
where [m n r;3] is the differential ideal generated by in n a in  N.

R em ark . It will be easily seen that, for p=o, the congruence
holds true with respect to mod [A ,,••• , A .1 . The proof in the general
case can be carried out by an easy modification of the proof of
K olch in  ( 2 ) .

LE M M A  1. I f  a  an d  13 are two subsets of N , then { a} a n {3 } a

----- la • ,  where a • 3 denotes the set of  all products of  elements of
a  with those of  i3.

Proof . If is  perfect, this lemma is nothing but the well
known fact that la l n  i31  {  a • f3}, hence we supposé ?̀ imperfect.
It suffices to prove the inclusion a • i31„ {  a }„ n {P}„. To this object,
we shall prove inductively the inclusions { a • /9}„ {a }(À) n } (À ) (2
= 0 , 1 , 2 , •••) . By the same fact used above, { a } '  n {13 } 1") =  {a.3}
Ç la • i3} „ . Now, assume la. 131„ lal ('' n {Ç3} ( À) fo r  a  nonnegative
integer 2, and let us deduce the inclusion {a .3 { a n ( Â) .
W e denote by a' the set consisting of all elements o f { a } ( A) and
all derivatives for the differentiations &/,92, of elements of { a }(Â) n
91,, and by the set of all elements o f {3 } ( À) . Again by the fact
used above, {a; (À+") n ;1;(" ) = {a ' n =  {a' • 3'}. Hence, it is suf-
ficient to prove the inclusion a '• ' Ç  {a  • 3 Let A ' be any
element of a'. I f  A ' E then A' 3' c  la; (Â) n ( Â )  c  {a .13} „.
On the other hand, suppose A ' it ; a }( À) . Then, there is an element
A  E { a }( Â) n 91,, such that A ' is a derivative of A  for the differenti-
ations a/az . For any element B ' E i3', we have B' A  E  {a} ( À)  n i3}(À )

{a.(3 }„  and B '' -A  E  ia •1 3 } „ n * „ . Hence, 1 3 '.( aA /az e)---- 3 (B' P •
E { a • g3 }„ , and [B '(aA /az ,)]  { a • (3 }„ . Therefore, B '(3A /dz ,)

E j a • } „ .  Repeating appropriately the differentiations a/az„ we
get at B' A ' E a • i3}„.

LEMMA 2. Let a be a subset of  R , and P  an  element of R. I f
icr, 1: ) a has a f inite basis, then there is a finite subset a  of a such
that {a, i a, P } ..

Proof . Let i3 be a finite basis o f  a, P k .  Then, there is a
n o n n eg a tiv e  integer À such that 3 c {a, P  To begin with,
suppose 2= 0 .  Then 13 ç (a, P) ( v- ) for a sufficiently large integer

5 )  If 2- is a subset of in, we define (r) ( A ) (1=0, 1,2, ••) inductively by the rules
th a t 1 ) (r )o ) is  the set 7  itself and 2) (r) (À+0 is the radical indeal of (r ) (À )]  I t
is known that ur-J(r)(Â)
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Suppose p > 0. Then, there exists a nonnegative integer r  such
that the r-th power of every element of 3 is contained in [(a , P)(P. - 1 )1.
Hence, a finite subset 7-  o f  (a, P) ( '— ') can be chosen such that the
r-th power of every element of 13 i s  a  linear combination o f r-
derivatives over N .  Therefore, 3 ç IT }Ç  {cc, P }, and {cc, Pi a = {3},,
g- {T}ag-  { cr, P  L. T h u s  c c ,  P} ,,= irl a. Hence, we see that, if A=
0, p  may be supposed zero and 13 may be supposed to be a subset
of cc, P .  If we denote by a the set of all those elements of 13 which
are contained in a, then  i3 c (a, P)(°' C (a, P) (1)), and {a, P} „={ 3} „
g_ {a, P  ç  Pp,,. Consequently {cc, p },-. { a, P .  Now suppose
>  0 . If we prove the existence of a finite subset r o f {a, P}  A - 1 )

which is a finite basis of { cc, P }„ , the proof of our lemma is com-
p le ted . Let 1.  b e  the set consisting of {a, PI "- ') and all derivatives
for the differentiations &/3z1 o f elements o f  la, n N p. Since
{ =  PI ( A ) , there is a nonnegative integer p  such that $  ç
Hence, we can prove as above the existence of a finite subset e of
2- such that {e} „--= {a, „ . The set e consists of tw o parts E, and
e,, where e, is a finite subset of {a, PI ( '- "  and each element E ' of
e, is  a derivative for the differentiations a/az , of an element EE
{a, ( 1 -  n  91, . Let E., be the finite set of all such E , and r the
union of E, and E.,. T h e n  e ç ,._ç la, PI „  and consequently {r}
= la , P} „ w ith r ç {a, PI(' - ' ) .

LEMMA 3. L et a be a  subset of  91 an d  P ,  Q  two elements 01
R. I f  both {a, 13 1„ an d  {a, Q} „ have finite bases, and if  P„ •••,P„
Q „•-•,Q . are elements o f  a  such that { a, P}  „= IP,, •••,P,.,P} . and

Q} a= {Q,, V ., th e n  Icr, PQ} {Pi, • • P , ,  Q„ PQ} ..
Proo f . W e see im m ediately that {a, PQ} P }  an la,

= a n (Q1, • • • • Qs, Q} IP, Q1, P, Q2, • /W S, PIQ,••• PrQ,
PQ, • • • , PQ„ PQ},. (by  lem m a 1) ç {P,, • • • , P , Q„ • • •, Q„ PQ}

3 .  The decomposision theorem. In this section, we prove the
basis theorem, the chain theorem and the decomposition theorem
for allowable semiprime differential ideals of N = {X„ • • •, X }.

THEOREM 1  (B asis theorem ). Every allowable semiprime
f erential ideal of  92 has a finite basis.

Proo f . W e suppose the existence of allowable semiprime dif-
ferential ideal without finite basis and deduce a contradiction.. By
Zorn's lemma, there is a maximal such ideal m . Let A = (A „•••,
A ,)  be  a modified characteristic set of m, and .51, L the separant
and the initial of i l 1 ( i=1 ,• • • ,r) ,  and a s  i n  § 2. Then, there
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exists for every G E in a set of nonnegative integers s i ,  t ,  such that
S1 8 1 0  mod [in n ]. Hence, we get the inclusion S,- •

m  ç  (ni n „ .  While, Zst is the polynomial ring over ?̀ of a
finite number of X-derivatives. Therefore, the ideal in n ra in Zs'
has a finite basis a in the usual sense, and we get at once the
equality (ni n } =  {a} a .

Now, by the maximality of in, both (ni, ..3,1 a  and (ni, „  have
finite basis for each i. Hence, by Lemma 3  of § 2, {nt,

„ has also a finite basis. By Lemma 2  of § 2, we can choose a
finite subset 13 o f in such that {in, S,• • • I.; a = {S ,•••I,, 4} ‘ ,. We see
immediately the inclusions

In' Ç ni • S,•• • I,} a ç m  • IS,- • L., a  ç  (S 1 I .  in, nt i3} c {a, 41„

and in C  {a, 131„. Thus, in has a finite basis a, i3 which contradicts
to the assumption. q.e.d.

Now, we can easily deduce the following two theorems.
THEOREM 2  (Chain theorem). Every  ascending chain of  semi-

prim e dif ferential ideals o f  91 contains only a f inite num ber of  dis-
tinct ternis.

T H E O R E M  3  (Decomposition theorem). Every allowable semi-
prime dif ferential ideal in of  91 is an  intersection of a finite number
of  allowable prim e differential ideals p „  • • • , p ,  of  N .  I f  these Prime
ideals p „  • • • , p ,  are chosen irredundan tly , they are uniquely determined
by in u p  to their order.

4 .  Differential dimension. To introduce the theory o f di-
mension, Seidenberg (8) called a quantity x " differentially algebraic"
over an ordinary differential field if and only if ( . x )  is a finite
extension of Ç .  This definition is appropriate only for ordinary
differential field. For partial differential field, it does not cover
the notion of being differentially algebraic which has been used
in the case of characteristic zero. We shall adopt the following
definition.

Def inition. A  quantity x  is called differentially algebraic over
a differential field if an d  only if x  annihilates a nonzero differential
polynomial G ( X )  over A  quantity x  is called differentially S-
algebraic over Ç if and only if x  annihilates a differential polynomial
G (X )  over containing some X-derivative effectively."'

6 )  For the ordinary differential case, our "differentially S-algebraic" implies
Seidenberg's "differentially algebraic."
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PROPOSITION. Let x  be separable (in the sense of § 2) over
Then, x  is differentially S-algebraic over a if  an d  on ly  if  it is  d if

f erentially  algebraic over
P ro o f  Suppose x  differentially algebraic over Then, the

set of all differentials polynomialsG(X) over  w ith  G(x) =0 forms
a nontrivial allowable prime differential ideal p. Hence, p contains
a differential polynomial G o ( X )  containing some X-derivative effec-
tively. q.e.d.

We cannot establish in general the theory of dimension with
respect to "differentially algebraic", but we can do it with respect
to "differentially S-algebraic ", and the notion of dimension in this
sense is useful for us. If we agree to call a quantity u dependent
on a set of quantities u 1, u  w h e n  u  is differentially S-algebraic
over 5A;(u1 , • , un ), then it is sufficient for our purpose to prove the
following properties :

j) E ach  u , is dependent on u„•-•,u n .
ii) If w is dependent on u„.••,u„, y and not on u„•••,u„, then

y is dependent on u„•••,u„,w .
iii) If w is dependent on Y„ •••, v  and if each vi is dependent

on u„•••,un, then w is dependent on u,, u„.
Property (i) is trivial. Properties (ii) and (iii) can be proved

by modifying the method of Raudenbush (6).
Thus, the concept of differential dimension can be established.

Now, let x • - • ,x „ be a finite set of quantities which is separable
(in the sense of § 2) over a differential field I f  p is the set of
all differential polynomials G (X )  in 91 = 7s". IX„ •-•, X n } with G(X )
=0, then p is a nonunit allowable prime differential ideal of N.
Suppose it nonzero ideal. L e t A ---(A „•-• ,A ,)  b e  a  modified
characteristic set of p, and U, the leader of A , ( i=1 ,• • • ,  t ) .  Each
U , is a derivative of some one of the X's ; let the number of such
X's be s, and X „ be the other X's (r+ s = n ) .  If we denote
by X ( `) all those X-derivatives which are not U4-derivatives for any
i ,  then we can conclude that the corresponding x-derivatives xt"
are algebraically independent over '1" .  In fact, assume that x“ 1 are
algebraically dependent over and let G„(X} -' ) )  be a nonzero poly-
nomial of X ( 7 ) over which is contained in p and whose number
of terms is as small as possible, and furthermore whose total degree
is as low as possible. Then, G„ must have the leader and its initial
cannot be contained in p. This contradicts to the definition of A.
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Therefore, a (x ( '' ) )  is purely transcendental over a, and so is 5a(lk i ,
•• •, xk ,). I f  u ,  is the x -d e r iv a tiv e  corresponding to rh ,  then
•• x .)— a(x (71 ) (u „ --a, u 1 )  and a ( x „ • •  ,  x . )  is separable algebraic
over R ( x ) .  'A' ( x 1 ,  • • • ,  x n )  is differentially algebraic over a ( x k l ,  •  •  •  ,

xk  and we see that r  is the differential dimension of (x„  • -• , x.)
over a. As a  (x„ •••, x„) is separable over and a (x(.1 , xh..,.)  is
purely transcendental over a, R(x„ is also separable over

(x k „ • - • , Thus we have proved :
TH E O R E M  4. Let x„ x„ be a f inite set of  quantities which is

separable over a  differential field and r  the differential dimension
of  5;rs•(x„ ••, x .) o v e r Ç . T hen, the x , can he renumbered such that

•••, x ,) is purely transcendental over and  that ;1' (x„ • • • , x„) is
separable and differentially algebraic over ; ( x 1 , • , x „).

It is now not difficult to prove :
TH E O R E M  5. L et p  he a  n o n u n it allowable prime differential

ideal of  91= a {X i , ••-, X . } .  If  the differential dimension r  of  p  (i.e.
of  the generic point o f  p  over R )  is  positiv e, and if  G  is a given
differential polynomial nbt contained in p, then there exists an allowable
prim e dif ferential ideal o f  91 o f  dif ferential dim ension r-1 w hich
contains p  and does not contain G. (Cf. Seidenberg)

5 .  The theorem of the prim itive elem ent. In this section,
we prove the theorem of the primitive element which generalizes
the corresponding theorem of Seidenberg (3 ).

TH E O R E M  G. I f  a  differential field has no f inite linear basis
over the subfield of  constants, and i f  u  an d  v  are  differentially
S-algebraic over then there exists an  element w  in  F(u , v ) - -a(w ) .

The theorem can be proved by the two lem m i below, follow-
ing the lines of Seidenberg's proof.

L E M M A  1 . *  L et E„ •• • , E. be a f inite num ber s  of  elements of a
differential field with in given dif ferentiations a „  - • • ,  8,”. In  order
that E„ •••,E, shall be linearly  dependent over the subfield çV , of con-
stants, it is necessary and sufficient that the matrix  . - • 5 , )  of
the E-derivatives of  total orders <s has a  ran k  < s.

Proo f . For s = 1 , the lemma is trivial. Suppose s 1  and as-
sume that our lemma is true for s —i. We prove only the sufficiency
of the condition for s .  There exists a  nontrivial linear relation

* )  It is found in correcting the p r e s  that this lemma is already used by Kol-
chin [Proc. Amer. Math. Soc., vol. 3 (1952)J.
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(E k  < s )  with ci  E  'A'. We can suppose that
•••, are linearly independent over 7s.'  and consequently that

c ,= = 1 . For yik  < s - 1 ,  we get 0 =  a,( c,aiki
8, k i • ( 7 k 4 : i  ( j = 1 ,  • • • ,  m ) .  By the induction assumption, we see
that di c1=•••=c s_ 1 -=0  ( j= 1 , • • • ,  m ).

LEMMA 2. W hen a nonzero differential polynomial G(X „ •-, X .)
over a differential field is arbitrarily  given, we can choose elem ents
x,, •-, x,, o f  su ch  th at G ( X ) 0  if  and only if  has no f inite linear
basis over the subfield „ of constants.

Pro o f . Suppose that h a s  a finite linear basis c.":„ •-•, E, (linearly
independent) over '; „. Let X  be a differential indeterminate over
R, and consider the matrix ((Il l'  • • • a. k -Ei, • • • , ai kl • • • m es,

5

, 4 . •••
X) ( k  < s + 1 ) .  By lemma 1, every minor determinant of degree
s +1  vanishes if we substitute for X  any element of But, since
the matrix (8,ki •-• o'„,k-e*,) (Ek  < s )  has the rank s ,  there exists
among minor determinants of degree s +1  of the former matrix a
nonzero differential polynomial of X.

Conversely, suppose that has no finite linear basis over
It suffices to prove that, if a nonzero differential polynomial G(X )
over o f a  single indeterminate X  is given, we can choose an
element x 6 -rt' such that G  (x )  0. Let s be the total order of G (X ) ,
and take •Fo, E linearly independent over W e  c a n
prove the existence of co , c„ • , c, E &  such that x = E 8,_o ci e , has the
desired property. Assume inductively that there ate such constants

for every differential polynomial of X  over '", j  of total order ‹ s
and of total degree less than that of G . (For the differential poly-
nomial of total degree zero, the existence of such constants is
trivial.)

Suppose that G contains some X -d e riv a tiv e  effectively. If G(x)
= G (E i c ) = 0  were satisfied by every choice of C i E  et t) ,  its formal
partial derivatives with respect to c , would be all zero”, and we
should get

aG(x)/a(dik' a„. k -x) • d i
k. ' a„,k.Ei=o (i=0, 1, •••, s ) .

k, •-

As the matrix ( ô ' (3„,k , , , $ )  ( . .-
1, k < s + 1 )  has the rank s+1,

aG(x)/a(8,k • •• a o ,k, ,, x )  would vanish for all C i E  a,. Thus a con-

7 )  Notice that ao must have infinitely many elements even when I f  we
take 72 E a such that 72 ■t & ,  then VP  E ao is nonalgebraic over the prime field.
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tradiction to the induction assumption would take place.
Suppose, next, that G is of the form G—E,w,G7,' (G,: differen-

tial polynomial o f X  over "is0. As there is a nonzero G ,(X ) and
G, is of lesser total degree than G , we choose c, E such that
Ge (x) 0 and consequently G ( x) 0.

Proof of  Theorem 6. Let A be a differential indeterminate over
(u , v ). Since u  and v are differentially S-algebraic over ?1(A),

so is u+Av o v e r  <A > . Hence, there are differential polynomial
P (X  A )  over which contain some X-derivative effectively and
for which P(u Av ; A) = 0 .  Let P(X ; A ) be such a  differential
polynomial which is as low as possible in X , and 8,ki • • 8 fr.X its
leader and S its separant. Differentiating P(u + 'iv ; A ) =0 formally
in a ,k 1  • I3 5 A ,  we get

S(u+Av; /1)•v --1- Q(u + Av ; A) —0

(Q (X ; A) ---aP(x; A) / 3 ( ô ,k , • •

Since S(u+Av ; A)40 ,  we see that v E C?..ç (A, u  +A y ) . By the proof
of Lemma 2, we see that À E can be chosen such that S(u+2v ;
À) 0. Therefore, v E À , 21+ 2 7)).-= ( U + 22 )) , and tv=ru +2v has the
desired property.
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