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Previously Samuel [4] defined an equivalence relation between
ideals of a Noetherian ring as follows:

Let a and b be ideals in a Noetherian ring o having the same
radical. Assume that a and b are not nilpotent. For every natural
number %, define the integers vy (a, #) and wg(a, #) such that”

(1) a” C bvb(a, n) , a"¢ bvb(a, n)+1
(2) bp (a, n) Ca*, b (a, n) —1 ¢ a”.

Then a and b are said to be equivalent if lim (vy(a, 1) /n) =lim (wy
(a, n)/n)=12. He showed that this defines actually an equivalence
relation and that the operations of multiplication and addition are
compatible with the equivalence relation.

Concerning this equivalence relation, Muhly [1] proved that
if o is a Noetherian integral domain, then this equivalence relation
is characterized by integral dependence. Namely, we define the
integral dependence as follows: An element « is integral over an
ideal a if there are elements ¢, ¢, -+, ¢, such that (i) c¢;€a’ and
(i) @+ca'+ca*+---+¢,=0; an ideal b is integally dependent
on a if every element of b is integral over a. Then Muhly obtain-
ed the result: Two non-zero ideals a and b in a Noetherian integral
domain are equivalent to each other if and only if a and b are
integrally dependent on each other.

We shall prove at first that the equivalence relation is charac-
terized by integral dependence without assuming that the ring is
an integral domain (a generalization of the Muhly’s result).

The second problem. Samuel [4] proved the following “ Cance-
llation law " :
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If @, b and ¥ are equivalence classes of ideals having the
same radical (in a Noetherian ring), then ab=ab’ implies b="¥'.

Secondly we shall generalize this law, namely,

Cancellation law: Let a, b and b are equivalence classes of
ideals in a Noetherian ving. Then ab=ab' implies b=b 1if the
Jollowing. condition is satisfied : If a minimal prime divisor b of zero
contains the rvadical of a, then v contains the radicals of b and b'.

Here, the radical of an equivalence class is the radical of a
member of the class (which is obviously determined uniquely).

The third problem. Samuel [4] asked following 4 questions :

(1) Are the limits /y(a) =limw,(a, n)/n and Ly(a) =lim wy
(a, n)/n always rational numbers ?

(2) Are the deviations vy (a, #) —Ig(a)n and Lg(a)n—ws(a, #n)
bounded ?

(3) Let v be a semi-prime ideal in a Noetherian ring A and
let 3,(A) be the equivalence classes of ideals which have r as
the radical. Then ,(A) can be imbedded in a lattice ordered
group H. Does J,(A) contain all elements of H which are smaller
than an element ?

(4) Is the operation of intersection of ideals compatible with
the equivalence relation ?

We shall give here affirmative answers of (1) and (2) and
counter examples against (3) and (4).

Furthermore we shall give some remarks concerning the non-
Noetherian case and form ideals in local case.

§ 1. Integral dependence

"From now on, we shall denote by o a Noetherian ring, by
P, =, b, all of the minimal prime divisors of zero in o. If x,y,,
.-+, ¥, are elements of o and if x is not nilpotent, o[ y/x, ---, ¥./%]
will denote the following ring: Let S be the set of powere of x.

"Then 0 €S therefore we can consider the ring of quotients of o
with respect to S. Let ¢, be the natural homomorphism from o
into os. Then o[ y/x, -, y./2]=9.(0)[9.(3)/8.(x), -, 9.(3.)/8.(x)].
Observe that the kernel of ¢, coincides with 0 : x”o for sufficiently
large m and is contained in every p; such that x € p,.

We shall denote by ¢, the natural homomorphism from o onto
v/p; for each i=1, -, and by L, the field of quotients of v/p,.
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If { is a subring of L; which contains o/p; and if b is an ideal of
{, we shall denote by bno the ideal ¢7'(¢;(v) Nb). We shall say
that an ideal q is a valuation ideal of o if there exist one i, a
valuation ring v of L; which contains o/p; and an ideal ¢’ of v
such that q=¢’Nno. When a is an ideal of o, the intersection of
all valuation ideals of o containing a will be called the derived
complete ideal of a. If the derived complete ideal of a coincides
with a, then we shall say that a is a complete ideal.

THEOREM 1. An ideal b of o is integrally dependent on an
ideal o if and only if b is contained in the derived complete ideal
a of a.

PrROOF. Assume that b is integrally dependent on a. Let b
be an element of b. Then there are elements c;€a’ such that 4"
+¢b"'+---+¢,=0. For each i=1, ---, », set b;=¢,(b). Then b,
is integrally dependent on ¢;(a) because ¢.(c,) €9;(a)’. Therefore,
for every valuation » of L; whose valuation ring contains o/p;, v(b;) >
v(9,(a)), which proves that b is in o', hence b € a’. Conversely,
let » be an element of o’ (and we have only to show that b is
integral over a). (i) If b is nilpotent, then b is integral over 0,
hence over a. (ii) Now we assume that b is not nilpotent. Let
a, -, a, be a base of a and consider the ring ola,/b, -, a./b].
Assume for a moment that there exists a prime ideal 8 of the ring
containing ¢,(a,) /8. (b), ---, $,(@.)6,(b). Let i be such that p, contains
the kernel of ¢, and such that ¢,(p,) is contained in $. Then there
exists a prime ideal ¥ in (o/p;)[4.(a,)/9:(D), ---, $:(a.) /9:(b)] con-
taining ¢,(a,)/9,(b), ---, ¢.(a.)/9:(b). Therefore there exists a valua-
tion v of L, whose valuation ring contains o/p, and such that
v(9;(a;) /9:(b)) >0 for every j, which shows that v(¢;(d)) <v(9;(a))
and is a contradiction. Therefore ¢,(a,)/8.(b), -, ¢,(a.) /8, (D)
generate ‘the unit ideal in the ring ola,/b, ---, a./b], that is, there
exists a polynomial / with coefficients in ¢,(v) such that f(¢,(a,)/
o,(b), -+, ,(a.)/9,(b)) =1 and that the constant term of f is zero.
Let d be the degree of /. Then we have a relation of the form:

6. (b)) =, (c,) by B+ b (cn) (cie€ a’).

Since the kernel of ¢, coincides with 0 : "o for a sufficiently large
m, we have

bd+m=cl b11+'m—l + Ve +Cdbm.



168 Masayoshi Nagata

Since c;€a’, we have proved that b is integral over a. Thus
Theorem 1 is proved completely.

COROLLARY. Let n be the radical of v. Then an ideal b is
integrally dependent on another ideal a if and only if b+n/un is
integrally dependent on a+n/n.

REMARK. It is obvious that the derived complete ideal of an
ideal a is contained in the radical of a. Therefore if an ideal b
is integrally dependent on a, then b is contained in the radical
of a.

§ 2. Samuel’s equivalence relation

Though Samuel [3] defined the equivalence relation only for
non-nilpotent ideals under an additional condition on radicals, we
shall generalize the difinition according to note 2) at the end of the
presente paper.

THEOREM 2. Let a and b be ideals of o. Then (1) if there
exists a sequence {m, (n=1, 2, ---)} of natural numbers such that
() limm,/n=1 and (ii) b™ C a*, then b is integrally dependent on
a, and conversely, (2) if b is integrally dependent on a, then there
exists an integer ¢ such that b™*° C a™ for every n=1, 2, -

Proor. (1) Let v be an arbitrary valuation of rank 1 in L; whose
valuation ring contains o/p; (i being also arbitrary). Then
mav(8:(0)) =nv($:(a)). Therefore v(¢;(b))=>v(¢;(a)), which shows
that b is contained in the derived complete ideal of a®. It follows
that b is integrally dependent on a.

(2) Since b has a finite base, we have only to show the
existence of ¢ in the case where b is generated by one element b.
Since b is integrally dependent on a, there exists a relation b+
ab’+ - +a,= 0 with a; ea’. Therefore b’“e}Jb1I erl= '—a(}_db’a"")
Then b‘*“’ea(}_,b“‘a‘ YCa (Zbi “=’) and so on. Thus we have
b**eq” (z,b* =) Ca™ Therefore our ¢ is the required element.

COROLLARY. Two ideals a and b of o are equivalent to each
other if and only if a and b are integrally dependent on each other
(or, equivalently, a+0b is integrally dependent on both a and b).

§ 3. The cancellation law

THEOREM 3. Let a, b and ¢ be ideals of o. Assume that
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ac=bc. Then a and b are equivalent to each other if the following
condition is satisfied : If a minimal prime divisor p of zero contains
¢, then p contains a and b.

Proor. Let ¢, ---,c, be a base of ¢. For each beb, there
are a;€a such that ¢;b=>)a;c,. Let d be the determinant |d,;b
—a;;|. Then dc;=0 for every i, hence dc=0. By the condition,
we have db in nilpotent, hence d”b”=0 for a natural number e,
which shows that b is integral over a. Thus b is integrally de-
pendent on a. Similarly, a is integrally dependent on b and there-
fore a and b are equivalent to each other.

THEOREM 4. If an ideal b of o contains another ideal a of o
and if b is integrally dependent on a, then there exists a natural
number t such that v*=ab™"' for n>t.

Proor. By the same way as in the proof of (2) in Theorem
2, we have 0" C 2“,,_1 a”~'b* for sufficiently large ». Since b contains

a, we have b” C ab*' C b and b*=ab™".

COROLLARY. Two ideals a and b of o are equivalent to each
other if and only if therve exists an ideal ¢ of o such that (i) ac=bc
and (ii) ¢ contains a power of a-+D.

Proor. If there exists such a ¢, then Theorem 3 shows
that a and b are equivalent to each other. Conversely, assume
that a and b are equivalent to each other. Then for a sufficiently
large ¢, (a+b)'=a(a+b)'=b(a+b)"" and c¢=(a+Db)""" is the re-
quired ideal.

Now we come to the cancellation law :

THEOREM 5 (CANCELLATION LAW). Let a, b and b be equi-
valence classes of ideals in v. Then ab=al' implies b=b" if the
following condition is satisfied : If a minimal prime divisor p of zero
contains the vadical of a, then y contains the radicals of b and b'.

ProoF. Let a, b and ¥ be members of @, b and ¥ respec-
tively. Then ab is equivalent to al’. Therefore there exists an
ideal ¢ of o which contains a power of a(b+1) and such that
abc=ab’c by the colollary to Theorem 4. Assume that a minimal
prime divisor p of zero contains ac. Then p contains a(b+0b’).
If p contains a, then by the condition, p contains b+8’. Therefore
p contains always b+0'. Therefore by Theorem 3 we have b and
b’ are equivalent to each other, which shows that b=0'.

REMARK. Observe that the condition in Theorem 5 is satisfied
in each of the following cases and that the last case is nothing
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but the cancellation law due to Samuel [3]:

(1) A member of @ is not contained in any minimal primed
divisor of zero.

(2) The radical of @ contains those of b and ?'.

(3) a, b and ¥ have the same radical (this is a special case
of (2)).

§4. Rationality of the limits l;(a) and L;(a)

Let a be a non-nilpotent ideal of v and we renumber the p/s
so that a €p, if and only if i{<<¢t. Let a,, ---, a, be a base of a.
Set a,;=¢,(a,) (for i=1, ---,t; j=1, ---,s) and v,;=9;(0)[a./a;, -,
a;./a;) (for (i, j) such that a;;#0). Let o} be the derived normal
ring of v;,. We set a’= (N, a405n0)N(N,,.p). Then

THEOREM 6. The ideal o is the derived complete ideal of a".

Proof. Since v, is a Noetherian integral domain, o; is a Krull
ring (see Nagata [3]). Therefore o’ is a complete ideal. If i>1¢,
¢;(a’) =0=¢;(a). For an arbitrary i<t, let » be an arbitrary
valuation of L, whose valuation ring v contains o/p;,. Then v
contains at least one v;, hence of. Then v(4;(a")) >v(al)=
v(9;(a")). Therefore a’ is contained in the derived complete ideal
of a* and therefore a’ is the derived complete ideal of a™

THEOREM 7. Let a and b be non-nilpotent ideals of v which
have the same radical. Then the limits l,(a) and Lg(a) are rational
numbers, provided that they are well defined.”

Proor. Since L,(b)/z(a) =1 (see Samuel [4]), we have only
to prove that I,(b) and ZLy(a) are rational numbers. By the sym-
metry, we have only to show that Z;(a) is a rational number.
We shall denote by a, and b, the derived complete ideals of a* and
6" respectively. Let m(n) be such that 0,., C a, and that b,.,_,
¢a,. We shall use the same notations as a,, @; and o} as in
Theorem 6 (applied to our a) and let p;j (k=1, -, u(i, j)) be
all of the minimal prime divisors of a,;v¥ (for a, such that a;oj
# v¥) and let v,; be the normalized valuation defined by the valua-
tion ring (v%)*,. Lete be the maximum of vy (9;(a)) /v:in(4:(b)).
Then Theorem 6 shows that our m(x) is characterized by

mn)/m=e>(mmn)—1)/n.
Therefore limm(n)/n=e and e is obviously a rational number.
Now we have only to show that e=L;(a). If w/z# (w and # being
natural numbers) is not less than e, then b is integrally dependent



Note on a paper of Samuel 171

on a* by Theorem 1 and by our observation. Therefore w/n>
Ly(a) by Theorem 2. If w/n<e, then b** cannot be integrally
dependent on a™ for any natural number # and w/xn < Ls(a).
Therefore e=Ly(a) and the proof is completed.

§5. The deviations vg(a, #) —ly(a)# and Lg(a)n—wy(a, n).

THEOREM 8. With the same o, and b as in Theorvem 7, the
deviations vy(a, n) —ly(a)n and Ly(a)n—wy(a, n) are bounded.”

Proor. By Theorem 7, lj(a) is a rational number. Let f
and g be natural numbers such that /y(a)=f/g. By Theorem 2
a¢ is integrally dependent on b/ and there exists an integer ¢ such
that a""“ C b/ for every n=1, 2, ---. Therefore a"*?'*C b/*? for
d=<n, which proves that |vy(a, #) —/lp(a)#| is not greater than g+c,
which completes the proof for vg(a, ) —ly(a)n. The proof for
Ly(a)n—wy(a, n) can be done quite similarly.

§ 6. Counter examples against the 3-rd and the 4-th
problems of Samuel [4]

Let £ be a field, ¥ and y algebraically independent elements
over k and let A=k[x, y], m=xA+yA.

(I) The 3-rd problem : We consider the equivalence classes
of m-primary ideals in A : the set of the classes is denoted by
Sm(A). Consider a lattice ordered group H in which Sm(A) is
imbedded naturally (see Samuel [4]). Assume that there exists
an element c € §m(A) such that every element of H which is smaller
than ¢ belongs to Jm(A). Since every primary ideal belonging to
m contains a power of m, we may assume that c=m" where m
is the class of m.

Set a=x"A+m™*'. Then

LeMMA 1. a is a valuation ideal of A, hence a is complete.

PrOOF. Set f=x"+3y"*"". Then fea and fA is a prime ideal.
Let ¢’ be a valuation of the field of quotients of A/fA such that
v'(y mod. fA) =1 and the valuation ring v be the composite of the
valuation ring A,, and the valuation ring of ¢+'. We shall show
that a=2*vN A. Set x=x2mod.fA, y=y mod. fA. Then v'(x)=
1+1/2n because v(y)=1 and x™+y**'=0. Therefore v'(a/fA)
=2n+1=7'(#*). Thus we have aCs”vnA. Conversely, since
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different monomials in %, y of degree less than 2z+1 have different
values under v/, we see easily the converse inclusion. Therefore
a=x"pNA.

Now, let @ be the class of a. Since @ is smaller than m™,
am™" is an element of H which is smaller than m". By our as-
sumption, there exists an ideal b whose class is am™, i.e., if b is
the class of b, then bm"=a.

Then bm" is equivalent to a. Since a is a complete ideal,
pm” is contained in a and b C a : m*=wm**". Therefore bm™ is larger
than @, which is a contradiction. Thus we have proved that our
Sm(A) is a counter example against the 3-rd problem of Samuel
[4].

REMARK. Let a, b and ¢ be ideals of o. Assume that (i) a
is complete, (ii) bc is equivalent to a. Then a is equivalent to
(a:c¢)c. Assume furthermore that iii) if a minimal prime divisor
p of zero contains ¢ then p contains band a:c. Then b is equiva-
lent to a:c.

PrOOF. Since a is complete, we have bcCa and bCa:c.
Therefore bc C (a:c)cCa. Therefore (a:c)c is equivalent to a
and bc, because bc is equivalent to a. By the cancellation law we
see also the last assertion.

(I) The 4th problem :

LEMMA 2. If an ideal a of (a Noetherian ring) o is generated
by elements a,, ---, a,., then for every n=1, 2, ---, the ideal a* is
equivalent to the ideal a, generated by a, ---, a

Proor. For every valuation » of L,, whose valuation ring
contains v/p;, v($;(a")) =v(¢:;(a,)) and the assertion is proved.

Applying Lemma 2 to our m, we see that ¢c=1*4+3°A and
b=x*A+ (x+y)*A are equivalent to m%. But c¢nbd is contained in
x*A+m® which is not equivalent to m®. Thus the operation of
intersection of ideals is not compatible with the equivalence relation.

§ 7. Some remarks on non-Noetherian case

Let | be a ring (with identity) which may not Noetherian.
Let n be the radical of . Then —a generalization of the corol-
lary to Theorem 1:

THEOREM 9. An element b of | is integral over an ideal a of
{ if and only if b mod. n is integral over a mod. n.
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ProoF. Only if part is obvious. If & mod. n is integrally
dependent on a mod. n, there exists a relation

b*+a,b" '+ +a,=cen (a;€a’).

Since ¢ is nilpotent, we see that b is integral over a.

THEOREM 10. Theorem 1 can be generalized to the wnon-
Noetherian case under the assumption that there exists only a finite
number of minimal prime divisor of zero. ‘

Proor. By Theorem 9, we can reduce to the case where o
has no nilpotent elements. If o is an integral domain, then the
same proof is applied (the number of the @,’s may infinite). Then
the following lemma proves our assertion:

LeMMA 3. Let w,, -+, n, be ideals of | such that n,n---Nn,=0.
Let o; be the natural homomorphism from | onto {/n;. Let b be an
element of | and let a be an ideal of |. Then b is integral over a
if and only if o,(b) is integral over o.(a) for every i.

Proor. The only if part is obvious. From that o;(d) is
integral over o;(a), it follows the existence of relation of the form

b+, b4+, eng(c €a’).

Making the product of these monic polynomials in b, we see the
integral dependence of b on a.

An analogy of the proof of Lemma 3 proves

LEMMA 4. Assume that there exist only a finite number of
minimal prime divisor of zero in {. Then an element b of the total
quotient ring of | is integral over | if and only if v(a(b)) >0 for
every v and o, where o is the natural homomorphism from | onto
/v with a minimal prime divisor p of zero and v is a valuation
of the field of quotients of o(j) whose valuation ving contains o (j).

Furthermore, by the same proof as there,

THEOREM 11. Theorem 2, (2) and Theorem 4 can be generaliz-
ed to the non-Noetherian case if b/a is generated by a finite number
of elements.

On the other hand, Lemma 2 can be generalized to the non-
Noetherian case by the following proof (a may have no finite base) :

We have only to prove that a" is integrally dependent on a,
which is quite easy because if w is a monomial of degree » in a
base of a, then w" is in a,”.

As an application of Lemma 4, we shall prove the following
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THEOREM 12. Let a,, -+, a,, be elements of | which are not
zero-divisors. Set {,=ila,/a:, -, a,/a;] and d>=0n,;. Then b is
integral over |.

PrOOF. Let b be an element of d. Then there exists a natural
number # such that be"ea® for every i, where a is the ideal
generated by a,, ---, a.. Since there exists a finitely generated
subring {' of | such that benf'la/ai, -, a./a/], (a:€{’), we may
assume that | is Noetherian. Then Lemma 4 can be applied and
we see that b is integral over {.

§8. A remark on form ideals

Let P be a (Noetherian) local ring and let a be an ideal of
P. In the form ring F of P, there corresponds the form ideal q
to a. If an element b of P is integral over a, then the correspond-
ing form b to b is integral over a, as is easily seen by the defini-
_tion of integral dependence. Therefore

THEOREM. 13. The form ideal of the derived complete ideal of
a is contained in the derived complete ideal of a. In particular, if
a is complete, then a is also complete.

But, even when a is complete, a may not be complete. We
shall construct such an example under additional conditions that
(i) P is a regular local ring and (ii) a is a primary ideal belong-
ing to the maximal ideal.

ExampPLE. Let x, y, z be algebraically independent elements
over a field K and set P=K|x, y, z],.. Let q be the ideal of
P generated by x?+3° 2% 3. Then q is a primary ideal belonging
to the maximal ideal m=(x, y, z). Let a be the derived complete
ideal of q. Then the form ideal of a is not complete.

PrROOF. We have only to show that the form ideal a of a
does not contain xz. Let v, be the valuation ring P.,,,» and let
L’ be the residue class field of v,. y and z are algebraically in-
dependent over K in L. Therefore there exists a valuation »’' of
L’ such that v'(f(y, z)) =minimum of the values of terms of f(y,
z) for preasigned values of y and z, where f(y, z) is an arbitrary
element of K[y, z]. We choose v so that »'(y) =2 and 7' (x)=4.
Then ¢/(x) =3. Let v be the composite of a valuation defined by
v, with /. Then v(q) =8, whence v(a)=8. We shall show that
if fem has x2z as its leading form, then v(f)=6 or 7. w(x2)=7,
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v(x°*m) =8, v(xzm) =9, v(xy?) =7, v(3»*) =6, v(¥*2) =8, v(z22m) =10,
v(zm*) =8, v(m*)=8. Therefore, if the coefficient of 3* in f is
different from zero, then »(f) =6 and we assume that the coefficient
of y* is zero. Then we may assume that f=xz+cxy* (ceP), be
cause we have only to know that »(f)=7. Then f=x(z+c¢y)*) and
by our choice of v, v(f)=v(x)+v(z+cy) =34+4=7, which com-
pletes the proof.

REMARK. The ideal b of P generated by x*+3° and 2* is a
valuation ideal, hence is a complete ideal, whose form ideal is not
complete. . ,

Proor. Let v, be as before and let v” be the valuation ring
P/ (*+3%). Let b* be the composite of v, with v”’. Then
b=z*v*N P, because z°v*N P is a primary ideal containing x*+3*
and because (x°+3° 2z)/(x*+y°) is a principal prime ideal. The
form ideal of b is obviously generated by x* and 2z°, which does
not contain xz, whence it is not complete.
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Notes

1) These integers may not be defined (for example, let a=b be idempotent) and
therefore Samuel [4] assumed furthermore that the intersection of the powers of
the radical of a is zero. But we can treat similarly if these integers are well
defined.

2) We shall generalize the definition of equivalence as follows (including the case
where vp(a, n) and wp(a, n) are not defined): a and b are equivalent to each
other if there are integers v(n) and w(n) for n=1, 2,3, --- such that prt CanC
ar™ and such that lim v(n) /n=lim w(n)/n=1.

Theorem 2 below shows that this definition covers the definition of Samuel [4],
and the operations of multiplication and addition are compatible with this equiva-
lence relation.

3) We use here Theorem 6 below (the special case where n=1).

4) The assumption that a and b have the same radical is not essential, if we treat
one of /p(a) and Lp(a).

5) Cf. Note 4).



