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We shall treat here the same subject as is stated in the preced-
ing paper” using the dual map into the Grassmann variety. The
contents of this paper are almost as the same as the contents of
§3 of my paper “ On the characteristic linear systems of algebraic
families ” (will appear in Illinois’ Journal), but I would like to
present here again as a memory of Prof. Zariski following the advice
of Prof. Akizuki. Before to state the complete form of the final
result we must introduce some auxiliary notions.

_Let V" be an irreducible variety and E be an ample linear
system of divisors on V without fixed component. Then E defines
an everywhere biregular birational transformation of V onto a
projective variety V;. Let n=dimFE, and k£ a common field of
definition for V and E. Then the variety Vi is defined over k, and
belongs to a projective space L* (i. e. not contained in any
hyperplane of L). Let P, P be the corresponding generic
points of V, V; over k and T the tangent linear variety to V;
at P. Then the Plicker coordinates c¢(T%) is rational over
k(P), and the point ¢(T5) has a locus V:* over k. We shall call
this variety the dual variety of V with rvespect to the linear system
E, and the map ¢, of V onto V,* defined over k by ¢ (P) =c(T%)
will be called the dual map of Vonto V¥ The map ¢, is defined
at every simple point of V.

Now our theorem is as follows.

Theorem 1. Let E be an ample linear system on a non-singular
variety 'V defined over k and assume that the dual map ¢, of V

1) Y. Akizuki and H. Matsumura, On the dimensions of algebraic system of
curves with nodes on a surface, in the same number of this Memoirs.
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with respect to the linear system E is everywhere 1 to 1. Let W,
be the set of divisors which has at least d multiple points, together
with their specializations over k, then W, form a finite number of
algebraic subsystems of E. Let B be a component of M, such that
the generic member of B has only a finite number of multiple points,
then the dimension of B is not less than n—d, where n is the
dimension of E. :

We shall divide the proof in several steps to make the roles
of the assumptions clear.

Let V be a non-singular variety in a projective z-space L", not
contained in any hyperplane, ank 2 a field of definition for V.
Let L, be the linear system on V which are composed of the
hyperplane sections of V, and V* be the dual variety of V with
respect to the linear system L, (which will be simply be called a
dual variety of V), and ¢ be the dual map of V onto V*. Then
V* is a subvariety of the Grassmann variety & (7, #») which consists
of the set of » dimensional linear varieties in L. Let L’ be the
dual space of L and T be the correspondence between L’ and &
such that for any point x of L’, T'(x) is the set of  dimensional
linear varieties contained in the hyperplane x. Since T'(x) is also
a Grassmann variety & (», #—1), T is an irreducible correspondence
between L’ and . We shall say that a hyperplane x has d contacts
with V if the intersection (xX V*) NT contains 4 points, Now
we have the ,

Lemma 1. Let I, be the set of points of L' which has at least
d contacts with 'V, together with thetr specializations over k, then N,
form a bunch of subvarieties of L', normally algebraic over k.

Proof. Let 3 =@BX.-X® and T be the correspondence

d
between L’ and ®&“ such that for any point ¥ of L’ we have
T (x) =T(&--x?(x). We shall consider the intersection pro-
d
duct (’XV*X--XV¥NTY and B;(G=1, ---,s) be the com-
ponents of the intersection. Let proj,, ¥;=B;, and select among
B/’s such one that the generic point x of B; has at least d contacts
with V. Let B;(i=1, ---,t) ((<s) be such ones. We shall show

2) As an example of the linear system E satisfying these conditions we can
give the linear system on V composed of the sections of V' with the hypersurfaces
of order m(=2).
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that LtJ B;=M,. It is clear by definition that O B; is contained in
M. MLet x be a point of M,. It is sufﬁcien't—lto show that x is
contained in l‘J B; under the assunption that x has at least d con-
tacts with V.mlLet P*(i=1, .-, d) be the points of V* contained
in T'(x), then the point xX P*X .- X P,* is contained in (L'X V*
X XV*)NT“, Let B be the component of this intersection
containing the point xXP*X---P* and ZXP*X--XP* be a
generic point of B over k (it is clear that B is algebraic over k).
Then since xXP,*---XP,* is a specialization of xXP,*X --- X P*
over k, and P* # P;* for i%#j, we see that the hyperplane % has
at least d contacts with V. Hence B=proj,, ¥ must be one of
B'(1<i<t). This prove that Mi,= U B,.

It is immediate to see that the c<7);11jugate of B, (1<i<t) over k
is also one of B;(1<:<{f) and W, is seen to be normally alge-
braic over k. q.e.d.

We shall recall here that the Grassmann variety &(r, =) is
an irreducible variety of dimension (r+1) (#—7), defined over the
field of definition for the ambiant space L". Now we shall show
the

Lemma 2. &(», n) is a non-singular variety.

Proof. Let P* be an arbitrary point of & and P* the generic
point of ® over a field of definition £ for &. Let H, H be the »
dimensional linear varieties corresponding to P* and P* respec-
tively. Let o be the proper projective transformation of L™ onto
itself such that o (H) =H. Then o induces an everywhere biregular
birational transformation of & onto itself, transforming the point
P* onto P*. Since P* is a simple point of ®, P* is also a simple
point of ®. q.e.d.

Lemma 3. Assume that the dual variety V* of V has the
dimension r(=dim V'), then the component of I, whose generic
member has at most a finite number of contacts with V has the
dimension =n—d.

Proof. We shall now count the dimensions of the components
B, (appeared in the proof of Lemma 1). Since L’X®&“ is a non-
singular variety and dim &“=@#+1)(w—»)d, dim T“=n+
(r+1) (n—1—r)d we see that the dimensions of B; are allof >n—d.
Let B be one of B/’s (!=1, ---, ) and proj,, B=DB, and assume that
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the generic point x of B over k has at most a finite number of contacts
with V. This means that the components of (xX V*)nT are all
of dimension O, hence the point in (xX V*) nT are all algebraic
over k(x). Let xXP*X---XP* be a generic point of B over k,
then dim,(x, P.*, .-, P,*) =dim,(x) and we see that dim B=dim®B
=>n—d. g.e.d.

Let L, be as before the linear system of hyperplane sections
of V, and C, be a member of L, which is the intersection product
of the hyperplane x and V. Then a point P of V is a multiple
point of C, if and only if x touches with V at P, i.e. ¢(P) is
contained in 7' (x).

Lemma 4. Assume that the dual map ¢ of V onto the dual
variety V* is everywhere 1 to 1. Then the set of divisors of L, which
has at least d multiple points, together with their specializations form
a finite number of algebraic subsystems of L,.

Proof. In this case, a hyperplane x has d contacts with V if
and only if the divisor C, has 4 multiple points, on acount of the
1 to 1 correspondence of ¢. Moreover the correspondence between
the point x of L’ and the member C, of L, is also 1 to 1, since V
is not contained in any hyperplane and V has no singular sub-
varieties of codimension 1. The rest follows from the preceding
Lemmas. q.e.d.

Now the proof of the Theorem 1 is immediate. In fact, since
the linear system E is ample, E defines an everywhere biregular
birational map of V onto V. which is contained in a projective
n(=dim E) space, not contained in any hyperplane. Moreover
any member of E corresponds, in biregularly, to a hyperplane
section of V5. Thus the Theorem 1 is reduced to the case of the
linear system L,.

It is not difficult to generalize the Theorem 1 to the case when
V has some singular subvarieties whose codimensions are >2.
In this case we say that a member C of E has d variable multiple
points P,(i=1, ---, d), if P/s are all simple points of V. Then if
we assume that the dual map ¢ of V onto V;* is everywhere 1
to 1 except the multiple points of V and if we denote by 2, the
set of divisors which has at lest d variable multiple points, together
with their specializations, then the Theorem 1 holds in this generaliz-
ed form.

Theorem. 2. Let E be an ample linear system on an irreducible
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variety V" which has no singularity of codimension 1, and assume
that n=dim E is greater than r.> Let I be the set of divisors in
E which has at least one variable singular point. Then I exists
and it is an trreducible algebraic subsystem of E defined over a field
k which is a common field of definition for V and E. Moreover if
the dual variety Vi* of V with respect to the linear system E has
the same dimension v as V, then dim M=n—1.

Proof. By the same process as before, we can reduce the
problem to the case where FE is a linear system L,, hence we can
assume that V is contained in a projective n-space L*, not contained
in any hyperplane.  Let L/, &(», n) and the correspondence T
between L’ and & be as before, and we shall show that the inter-
section product (L’X V*) nT is an irreducible variety defined over
k. Let P* be an arbitrary point of &, then the intersection product
(L’XP*) . T=T7""'(P*)xP* is defined and it is an irreducible
variety defined over k(P*), and whose dimension is equal to »#—
r—1 (=0, by the assumption). Let P* be a generic point of V*
over k and x be a generic point of 77 '(P*) over k(P*). Then,
since k(x, P*) is a regular extension of &, the point xX P* has a
locus S over k. We shall show that (L’X V*) nT'=S. Counting the
dimension, we see that S is a proper component of this intersection.
Let &' X @* be an arbitrary point of (L’X V*) nT. Then since @Q*
is a point of V*, @Q* is a specialization of P* over k. Let y be
an isolated specialization of x over P*— @Q* with reference to k.
Then we have dim,,» (x) <dimes(y). Hence y must be a generic
point of T7'(Q*) over k(Q*) and the equality holds. Since &’ is
a point of T°'(Q*) («/, @*) is a specialization of (y, @*) over k.
Thus we see that (&, Q*) is a specialization of (x, P*) over k&
and the point &’ X @* is contained in S. Thus the algebraic family
M is parameterized by an irreducible variety proj,, S, which is
defined over k. Since E is an ample linear system, the generic
member of E cannot have variable singularities, and the dimension
of M cannot be ». Thus, under the assumptions of the theorem,
we must have dim M=»—1. g.e.d.

At the end of the paper we shall propose here some questions
which seems to me very interesting. To avoid the confusion we

3) This assumption n >7 is essential. In fact if #=7 we can find the following
counter example: Let V' be a projective » space L, and E be the linear system of
hyperplanes of L, then there cannot exist such M.
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shall restrict ourselves to the consideration of a non-singular variety.
Let E be an ample linear system on a non-singular variety which
satisfies the conditions of Theorem 1. We shall call a component
B of M, a proper component of M,, if the generic member of B
has exactly 4 multiple points. Then if the linear system is
given, we ask the upper bound for 4 such that i, containes a
proper component. Is it also possible to decide the exact dimen-
sion of the proper component of 9M,? The author has some
reason to imagine that the excess of the dimension of the proper
component of 9, from the integer n—d(n=dim E) has a close
connection with the geometric genus if the ambient variety V is
a non singular surface. In the case of plane algebraic curves,
these problems are treated by F. Severi.”
Kyoto University

4) Cf. F. Severi, Vorlesungen iiber Algebraische Geometrie, Teubner, Berlin
(1921), Anfang F, or O. Zariski, Algebraic surfaces, Ergebnisse der Mathematik (1935),
Chap. VIIIL.



