On the imbeddings of abstract surfaces in projective varieties

By
Masayoshi Nagata

(Received May 21, 1957)

Recently Zariski proved that a normal abstract surface can be imbedded in a projective variety if (and only if) there exists an affine variety which carries all singular points of the variety. ${ }^{1)}$

The main purpose of the present paper is to prove the following

ThEOREM 1. There exists a complete normal surface which cannot be imbedded in any projective space.

In order to prove Theorem 1, we shall prove the following two theorems, from which Theorem 1 follows easily:

TheOrem 2. Every normal surface can be imbedded in a complete normal surface.")

ThEOREM 3. There exists a normal abstract surface V with two points P and P^{\prime} such that, if a function ϕ on V is well defined at both P and P^{\prime}, then ϕ is a constant function.

§ 1. The proof of Theorem 2.

Let V be a normal abstract surface. Obviously, there exists a normal projective surface V^{*} such that 1) V^{*} is birationally equivalent to V and 2) if a point $P^{*} \varepsilon V^{*}$ corresponds to a point $P \varepsilon V$, then P^{*} dominates P (for example, let V_{1}, \cdots, V_{n} be projective

[^0]varieties in which affine representatives of V are imbedded respectively and let V^{*} be the derived normal variety of the join of the V_{i} 's). Therefore the following lemma will prove Theorem 2.

Lemma. Let V be a normal surface and let V^{*} be a complete normal surface of the same function field such that if a point $P^{*} \varepsilon V^{*}$ corresponds to a point $P \varepsilon V$ then P^{*} dominates P. If Q is a fundamental point with respect to V^{*} and if F^{*} is the total transform of Q in V^{*}, then $\left(V^{*}-F^{*}\right) \cup Q$ is a complete normal surface and satisfies the same condition as V^{*} with respect to V.

Proof. Since F^{*} is a closed set, $V^{*}-F^{*}$ is an abstract surface. On the other hand, since V is a normal surface, there exists a closed set F of V which does not contain Q such that Q is the only one point of $V-F$ which is not biregular with respect to V^{*}. Then $V-F$ is also an abstract surface and $\left(V^{*}-F^{*}\right) \cup Q=\left(V^{*}\right.$ $\left.-F^{*}\right) \cup(V-F)$, hence $\left(V^{*}-F^{*}\right) \cup Q$ is the union of a finite number of affine varieties. Obviously, every place of the function field of V has one and only one center on $\left(V^{*}-F^{*}\right) \cup Q$ and therefore $\left(V^{*}-F^{*}\right) \cup Q$ is a complete surface. Now we see Lemma easily.

§ 2. Preliminaries on a cone.

Proposition. Let D be the divisor on a normal affine cone V defined by a homogeneous ideal a. Then D is linearly equivalent to zero on V if (and only if) it is linearly equivalent to zero locally at the vertex P of V.

Proof. We shall denote also by P the spot (local ring) of P. Then there exists an element $f \varepsilon P$ such that $a P=f P$. Let f^{\prime} be the leading form of f. Then $f^{\prime} \varepsilon a$. Therefore f^{\prime} / f is a unit in P. Hence $f^{\prime} P=f P=\mathfrak{a} P$. Since f^{\prime} is homogeneous, f^{\prime} generates a and D is linearly equivalent to zero on V.

We shall apply this proposition to the cone V^{2} defined by $x^{3}+y^{3}=z^{3}$ over the field R of rational numbers. This V^{2} can be regarded as the representative cone of the projective curve V^{*} with the generic point $D^{*}=(a, b, 1), a$ and b being transcendental numbers such that $a^{3}+b^{3}=1$. Let D be the generator of V^{2} which goes through D^{*}. Then we have

Lemma. For any natural number $n, n D$ is not linearly equivalent to zero locally at the vertex P of V^{2}.

Proof. Let E^{*} be the point $(1,-1,0)$ on V^{*}. Now, we

On the imbeddings of abstract surfaces in projective varieties 233
assume the contrary. Then by Proposition, $n D$ is linearly equivalent to zero on V^{2}. Let f be the fomogeneous form which defines $n D$. Let m be the degree of f. Then $f /(x+y)^{m}$ is a function on V^{*} whose zero and pole are $n D^{*}$ and $3 m E^{*}$ respectively and we have $n D^{*} \sim 2 m E^{*}$, hence $n\left(D^{*}-E^{*}\right) \sim 0(3 m=n)$, which is a contradiction because E^{*} is rationl over R and D^{*} is a generic point of V^{*} over R.

§3. The proof of Theorem 3.

Let again a and b be transcendental numbers such that $a^{3}+b^{3}$ $=1$ and let k be a field containing a and b. Then V^{2} in $\S 2$ can be defined by

$$
\begin{equation*}
x^{2}+y^{3}+3\left(a x^{2}+b y^{2}\right) z+3\left(a^{2} x+b^{2} y\right) z^{2}=0 \tag{1}
\end{equation*}
$$

and the divisor D is defined by $x=y=0$. Set $\mathfrak{v}=k[x, y, z], \mathfrak{D}=x_{0}$ $+y \mathfrak{v}, \mathfrak{a}=x \mathfrak{v}+\left(y^{2}+3 b y z+3 b^{2} z^{2}\right) \mathfrak{o}$. Let F be the divisor defined by \mathfrak{a}. Furthermore, we set

$$
\left.\begin{array}{l}
t=\left(a^{2} x+b^{2} y\right) / b^{2} x^{2}, u=\left(t x-(a / b)^{v}\right) t, \tag{2}\\
v=\left[\left(t x-(a / b)^{2}\right)^{3}+1\right] / 3 b^{2} z .
\end{array}\right\}
$$

Then: $\quad y=\left(t x-(a / b)^{*}\right) x, x=\left(a^{2} t+b^{2} u\right) / b^{2} t^{2}$,
$z=\left[\left(t x-(a / b)^{2}\right)^{3}+1\right] / 3 b^{2} v$.
Lemma 1. The mapping $(x, y, z) \xrightarrow{\circ}(t, u, v)$ defines an involution of $k(x, y, z)$.

Proof. By the relations above, we see immediately that σ : $(x, y) \rightarrow(t, u)$ defines an involution in $k(x, y)$. By the involution, $t x$ is mapped to $t x$ itself, and therefore we see easily that the involution can be extended to an involution of $k(x, y, z)$ which mapps (x, y, z) to (t, u, v), observing that (t, u, v) satisfies the same relation as (x, y, z).

Lemma 1. $k[x, y, z, t, u, v](=k[x, z, t, v])$ defines the affine model $V-F$. ${ }^{3}$

Proof. Since $a^{2} x+b^{2} y \varepsilon \mathfrak{D}^{(2)}$ and since $x \mathfrak{o}=\mathfrak{b} \cap \mathfrak{a}$, we see that $t \varepsilon \mathfrak{a}^{-2}$ (i.e., $\mathfrak{a}^{2} t \subseteq \mathfrak{o}$). Let A be the affine variety defined by $k[x, y, z, t]$.

[^1]Since $\mathfrak{a o}[t]$ is generated by x and $z^{2}, A-$ (the divisor defined by $x=z=0$) coincides with $V-F$. Since $1+\left(t x-(a / b)^{2}\right)^{3}=1+(y / x)^{3}$ $=\left(x^{3}+y^{3}\right) / x^{3}=-3\left[b y^{2} z+a x^{0} z+\left(a^{3} x+b^{3} y\right) z^{v}\right] / x^{3}$, we see that $x^{3} v \varepsilon_{0}$. Obviously $z v \varepsilon_{v}[t]$ and therefore, for the affine variety A^{*}, defined by $k[x, y, z, t, v]$, the same property, as stated above for A, holds good. But, obviously the definition of v shows that $x 0[t, v]+z 0[t, v]$ contains 1. Therefore $A^{*}=V-F$ and the assertion is proved.

Now, by the involution σ, we can consider V^{σ}, D^{a}, F^{a}. Then we see that $V-F=V^{a}-F^{a}$ by Lemma 2. Furthermore, we see that the union M of V and V^{σ} is an abstract surface, which is obviously normal. For, let \mathfrak{v} be a place of $k(x, y, z)$ which has centers in V and V^{*}. Since $k[t, u, v, x, y, z]$ defines $V-F$, the center of \mathfrak{v} is in $V-F$. Therefore the centers of \mathfrak{v} in V and V^{*} conincides with each other. Therefore M is an abstract variety. Let P and P^{σ} be the spots of the vertices of the cones V and V^{σ}. In order to prove Theorem 3, it is sufficient to show that $P \cap P^{o}$ $=k$. P and P^{σ} will denote also the vertices.

Lemma 3. $\mathfrak{o} \cap \mathfrak{v}^{\sigma}=k$.
Proof. Regard V to be an affine representative of the projective cone defined by the same relation. Then the infinity plane section is irreducible. Therefore $\mathfrak{o} \cap k[1 / x, y / x, z / x]=k$. As is easily seen, t, u, v are in $k[1 / x, y / x, z / x]$ (as for v, use the relation derived in the proof of Lemma 2). Therefore $\mathfrak{v} \cap \mathfrak{v}^{\boldsymbol{\sigma}}=k$.

Lemma 4. If a divisor C on M does not go through any of P and P^{σ}, then $C=0$.

Proof. We may assume at first that C is irreducible. Let K be a field of definition of C. Let k be a purely transcendental extension of $R(a, b)$ contained in K such that K is algebraic over k. Let C^{\prime} be the sum of all conjugates of C over k. Since P and P^{σ} are rational points over k, C^{\prime} does not go through any of P and P^{σ}, and C^{\prime} is a prime rational cycle over k. Observe that $\sqrt{-3} \not \ddagger k$. Now, it is sufficient to prove that $C^{\prime}=0$. Let \mathfrak{q} be the prime ideal in $k[t, v, x, z]$ which defines C^{\prime}. If $\mathfrak{q}=k[t, v, x, z]$, then the assertion is obvious and we assume that \mathfrak{q} is of rank 1. Since $P \notin C^{\prime}, q$ contains an element $f(x, y, z)$ such that $f(0,0,0)=1$. Let \mathfrak{j} be the derived normal ring of $k[t x, t z]$. Since $t x$ and $t z$ are functions on the cubic curve V^{*} in $\S 2$, we see that $\{$ is of dimension 1 and t is transcendental over \mathfrak{j}. (It will be not hard to see that $\mathfrak{j}=k[t x, t z]$.) For a sufficiently large $n, t^{n} f$ is a monic polynomial in t with coefficients in \mathfrak{j}. Therefore \mathfrak{q} contains a prime

On the imbeddings of abstract surfaces in projective varieties 235
element in $\mathfrak{i}[t]$. $\lceil[t, 1 / t, 1 / t x]=k[x, z, t, v, 1 / t, 1 / x]$ and t, x are prime elements in $k[x, z, t, v]$ (for, Lemma 2 shows that $x k[x, z$, t, v] defines the divisor $\left.D ; t=x^{a}\right)$. Therefore we see that q is generated by one element, say q. Assume that $q \nsubseteq 0$ and let i be the least integer such that $x^{i} q \varepsilon_{0}$. Then the divisor on V defined by $x^{i} q$ is $i D+C^{\prime}$ (because F is prime rational over k and x defines $D+F)$. This shows tnat $i D$ is linearly equivalent to zero locally at P, which is a contradiction. Similarly we have $q \varepsilon v^{\circ}$. Thus $q \varepsilon_{\mathfrak{o}} \cap \mathfrak{o}^{\sigma}=k$. Thus Lemma 4 is proved.

Now we come to the proof of $P \cap P^{\prime}=k$. Let ϕ be a function on M which is well defined at both P and P^{\prime}. Then the pole of ϕ does not goes through any of P and P^{\prime}, hence ϕ has no pole by Lemma 4, i.e., ϕ is well defined at every point on M. By Lemma 3 , we see now that ϕ is constant. Thus Theorm 3 is proved completely.

Mathematical Institute, Kyoto University

[^2]
[^0]: 1) Zariski treated the complete case at first, as was shown by him in his lecture at Kyoto University (Oct. 1956). By virtue of Theorem 2 (cf. foot-note 2)), he generalized to the non-complete case.
 2) Since singularities of a surface are reduced by normalizations and quadratic transformations with singular centers, we may require that the complete surface has no singularity outside of the given surface,
[^1]: 3) If we make use of the notion of a-transform, defined by Nagata "A treatise on the 14 -th problem of Hillert" Memoirs Kyoto University vol. 30, No. 1 (1956), this assertion means that $k[x, z, t, v]$ is the \mathfrak{a}-transform of \mathfrak{o}.
[^2]: Added in Proof. The writer proved recently that (1) let L be a function field of dimension not less than 2 , then there exists a normal complete abstract variety of L which cannot be imbedded in any projective space, provided that the ground field is sufficiently large; if $\operatorname{dim} L$ is greater than 2 , then such a variety exists without any condition on the ground field and (2) if n is a natural number greater than 2 , then there exists a non-singular complete variety of dimension n which cannot be imbedded in any projective space.

 The details will be published in a forthcoming paper.

