Note on the generator of $\pi_{7}(\mathrm{SO}(\mathrm{n}))$

By

Hirosi Toda, Yoshihiro Saito and Ichiro Yokota

(Received June 18, 1957)

The 7th homotopy group $\pi_{\tau}(S O(n))$ of the group $S O(n)$ of the rotations in the euclidean n-space is determined by Serre [5] without details. Let

$$
\sigma: S^{7} \rightarrow S O(8) \text { and } \quad: S^{7} \rightarrow S O(7) \subset S O(8)
$$

be mappings defined by the formulas

$$
\sigma(x)(y)=x y \text { and }{ }^{\prime}(x)(y)=x y \bar{x} \text { for } x, y \in S^{7}
$$

where the multiplication in S^{7} is that of the Cayley numbers.
Denote by

$$
\sigma_{n} \epsilon \pi_{7}(S O(n)), n \geqq 8 \text { and } \ddots_{n} \in \pi_{7}(S O(n)), n \geqq 7
$$

the classes represented by σ and ${ }^{\prime \prime}$ respectively, regarding $S O$ (8) as a subgroup of $S O(n), n \geqq 8$ in the natural sense. About the element $\iota^{\prime} 7$, we have the knowledge of the result [8]:

$$
p_{* i^{\prime} ;} \neq 0
$$

under the (projection) homomorphism $p_{*}: \pi_{i}(S O(7)) \rightarrow \pi_{i}\left(S^{i}\right) \approx Z_{i}$. From this we can prove that " θ_{7} is not divisible by 2 ". Furthermore, we shall prove

Theorem. i) $\pi_{7}(S O(7))$ is a free cyclic group generated by \prime_{7}. ii) $\pi_{7}(S O(n)), n \geqq 9$, is a free cyclic group generated by σ_{n}.

As a corollary we have $\pi_{7}(S O(8)) \approx Z+Z=\left\{\sigma_{*}\right\}+\left\{\prime_{s}\right\}$.
The proof of the theorem is mainly devoted to the following simple lemma and results on $\pi_{i j}\left(S^{3}\right)$.
$S O(7)$ is the set of all $\alpha \in S O$ (8) such that α fixes the unit. Spin (7) is the set of all $\tilde{\alpha} \in S O$ (8) such that for some $\alpha \in S O$ (7) the relation

$$
\alpha(x) \tilde{\alpha}(y)=\tilde{\alpha}(x y)
$$

holds for all $x, y \in S^{7}$. In virtue of "the principle of triality" [3] we have just two of such $\tilde{\alpha}(\tilde{\alpha}$ and $-\tilde{\alpha})$ for each α. By setting $f(\tilde{\alpha})=f(-\tilde{\alpha})$ $=\alpha$, we have a double covering

$$
f: \operatorname{Spin}(7) \rightarrow S O(7)
$$

The projection $p: S O(8) \rightarrow S^{7}$ defines fiberings $p_{1}: S p i n(7) \rightarrow S^{7}$ (fibre : G_{2}) and $p_{2}: \operatorname{Spin}(5) \rightarrow S^{7}$ (fibre: S^{3}). Define a mapping

$$
t: S^{7} \rightarrow S^{7}
$$

by the formula $t(x)=x^{3}$. Obviously t is a mapping of degree 3 .
Lemma. There exists a mapping $\tilde{\mu}: S^{*} \rightarrow \operatorname{Spin}(7)$ such that $f \circ \tilde{\mu}=\rho$ and $p_{1} \circ \tilde{\rho}=t$, i.e., the diagram

is commutative.
Proof. In fact, we set $\tilde{\rho}(x)(y)=x y x^{2}$, and we shall prove the equality $(\mu(x)(y))(\tilde{\prime}(x)(z))=\tilde{\mu}(x)(y z)$. First we have the following formulas

$$
x(y z) x=(x y)(z x) \text { and }(y \bar{x})(x z x)=(y z) x
$$

for $x, y, z \in S^{j}$. The first formula is proved in [3], the second follows easily from the first and Lemma 2 in [4]. Now

$$
\begin{aligned}
(\rho(x)(y))(\tilde{\mu}(x) & (z))=(x y \bar{x})\left(x z x^{\prime}\right)=(x y \bar{x})((x z x) x) \\
= & x((y \bar{x})(x z x)) x=x((y z) x) x=x(x y z) x^{2} \\
= & \tilde{\mu}(x)(y z) .
\end{aligned}
$$

Therefore $\quad{ }^{\prime \prime}=f \circ \tilde{\rho} . \quad$ Obviously $\quad\left(p_{1} \circ \tilde{\Pi}\right)(x)=\tilde{i}(x)(1)=x^{3}=t(x)$. Then the lemma is proved.

We proceed to the proof of the theorem. It was proved in [2] that the characteristic class $\alpha \in \pi_{6}\left(S^{3}\right)$ of the fibering $\operatorname{Spin}(5) / S^{3}=$ $S p(2) / S p(1)=S^{7}$ is a generator of $\pi_{6}\left(S^{3}\right) \approx Z_{12}$ which is represented by Blakers-Massey essential mapping [1]

$$
g: S^{6} \rightarrow S^{3} .
$$

Then in the diagram
the commutativity holds. Since the suspension homomorphism E : $\pi_{6}\left(S^{6}\right) \rightarrow \pi_{7}\left(S^{7}\right)$ is an isomorphism and since $g_{*}: \pi_{6}\left(S^{6}\right) \rightarrow \pi_{6}\left(S^{3}\right)$ is onto, we have that $\Delta: \pi_{7}\left(S^{7}\right) \rightarrow \pi_{6}\left(S^{3}\right)$ is onto and that kernel $d=$ image $p_{2 *}=12\left(\pi_{7}\left(S^{7}\right)\right)$. The group $\pi_{7}\left(S^{3}\right)$ has order 2 and is generated by the image $g_{*}(\eta)=\alpha \circ \eta$ of the generator γ of $\pi_{7}\left(S^{f}\right)$ [7, Appendix]. Since $E: \pi_{i}\left(S^{i}\right) \rightarrow \pi_{s}\left(S^{i}\right)$ is an isomorphism, $d: \pi_{8}\left(S^{*}\right)$ $\rightarrow \pi_{7}\left(S^{3}\right)$ is onto. Then kernel $p_{2 *}=$ image $i_{*}=$ image $\left(i_{*} \circ J\right)=0$. Consequently we have an isomorphism

$$
p_{2 *}: \pi_{7}(\operatorname{Spin}(5)) \approx 12\left(\pi_{7}\left(S^{*}\right)\right) .
$$

From the exactness of the sequences

$$
\begin{aligned}
& \pi_{7}(\operatorname{Spin}(5)) \rightarrow \pi_{7}(\operatorname{Spin}(6)) \rightarrow \pi_{7}\left(S^{5}\right) \approx Z_{i}, \\
& \pi_{7}(\operatorname{Spin}(6)) \rightarrow \pi_{7}(\operatorname{Spin}(7)) \rightarrow \pi_{7}\left(S^{i}\right) \approx Z_{2},
\end{aligned}
$$

we have that the cokernel of the injection homomorphism i_{*} : $\pi_{\tau}(\operatorname{Spin}(5)) \rightarrow \pi_{\tau}(\operatorname{Spin}(7))$ has at most four elements. The mapping $\tilde{\mu}$ represents $f_{*}^{-1}\left(\mu_{\tau}\right) \in \pi_{7}(\operatorname{Spin}(7))$. By the above lemma, $p_{1 *}\left(f_{*}^{-1}\left(\mu_{\tau}\right)\right)$ generates $3\left(\pi_{7}\left(S^{i}\right)\right)$. From the commutativity of the diagram

we see that the cokernel of i_{*} is mapped by $p_{1 *}$ into $\pi_{i}\left(S^{*}\right) / 12\left(\pi_{7}\right.$ $\left.\left(S^{7}\right)\right) \approx Z_{12}$ and that the image contains $3\left(\pi_{7}\left(S^{7}\right)\right) / 12\left(\pi_{7}\left(S^{7}\right)\right) \approx Z_{7}$. Therefore the cokernel of i_{*} has to be isomorphic to Z_{4} and $p_{1 *}$ maps $\pi_{7}(\operatorname{Spin}(7))$ isomorphically onto $3\left(\pi_{7}\left(S^{7}\right)\right)$. This shows that $\pi_{7}(\operatorname{Spin}(7))$ is an infinite cyclic group generated by $f_{*}^{-1}\left(\rho_{7}\right)$, and then i) of the theorem is proved, by operating the covering isomor$\operatorname{phism} f_{*}: \pi_{7}(\operatorname{Spin}(7)) \rightarrow \pi_{7}(S O(7))$.
As is well known [6], $\pi_{7}(S O(8))=\left\{\sigma_{s}\right\}+i_{*} \pi_{7}(S O(7))=\left\{\sigma_{8}\right\}+\left\{\rho_{8}\right\}$. It is also known [6] that the injection homomorphism

$$
i_{*}: \pi_{7}(S O(8)) \rightarrow \pi_{7}(S O(9))
$$

is onto and its kernel is generated by $2 \sigma_{8}-\%_{8}$. Therefore $i_{*}\left(\sigma_{8}\right)=\sigma_{9}$ generates $\pi_{7}(S O(9)) \approx Z$. Since $i_{*}: \pi_{7}(S O(9)) \approx \pi_{7}(S O(n))$ and $i_{*} \sigma_{9}=\sigma_{n}$ for $n \geqq 9, \sigma_{n}$ generates $\pi_{7}(S O(n)) \approx Z$. This completes the proof of the theorem.

Corollary. $\pi_{7}(S O(5)) \approx \pi_{7}(S O(6)) \approx Z . \quad$ The cokernels of the injection homomorphisms $i_{*}: \pi_{i}(S O(i)) \rightarrow \pi_{i}(S O(i+1)), i=5,6$, are
isomorphic to Z_{2}.

REFERENCES

[1] A. L. Blakers and W. S. Massey, The homotopy groups of a triad I, Ann. of Math., 53(1951), 161-205.
[2] A. Borel and J-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. Jour. of Math., 75(1953), 409-448.
[3] H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Math. Inst. Rijks univ. te Utrecht, (1951).
[4] Y. Matsushima, Some remarks on the exceptional simple Lie groups F_{4}, Nagoya Math. Jour. 4(1952) 83-88.
[5] J-P. Serre, Quelques calculs de groupes d'homotopie, Comptes Rendus, 236(1953), 2475-2477.
[6] N. E. Steenrod, The topology of fibre bundles, Princeton, 1951.
[7] H. Toda, Generalized Whitehead products and homotopy groups of spheres, Jour. of Osaka City Univ. 3(1952), 43-82.
[8] G.W. Whitehead, A generalization of the Hopf invariant, Ann. of Math. 51(1950), 192-237.

