Note on the generator of $\pi_7(SO(n))$

By

Hirosi Toda, Yoshihiro Saito and Ichiro Yokota

(Received June 18, 1957)

The 7th homotopy group $\pi_7(SO(n))$ of the group SO(n) of the rotations in the euclidean n-space is determined by Serre [5] without details. Let

$$\sigma: S^7 \rightarrow SO(8)$$
 and $\rho: S^7 \rightarrow SO(7) \subset SO(8)$

be mappings defined by the formulas

$$\sigma(x)(y) = xy$$
 and $\rho(x)(y) = xy\bar{x}$ for $x, y \in S^7$,

where the multiplication in S^7 is that of the Cayley numbers. Denote by

$$\sigma_n \epsilon \pi_7(SO(n)), n \ge 8 \text{ and } \rho_n \epsilon \pi_7(SO(n)), n \ge 7$$

the classes represented by σ and ρ respectively, regarding SO(8) as a subgroup of SO(n), $n \ge 8$ in the natural sense. About the element ρ_7 , we have the knowledge of the result [8]:

$$p_*\rho_*\neq 0$$

under the (projection) homomorphism $p_*: \pi_7(SO(7)) \rightarrow \pi_7(S^6) \approx Z_2$. From this we can prove that " p_7 is not divisible by 2". Furthermore, we shall prove

Theorem. i) $\pi_7(SO(7))$ is a free cyclic group generated by ρ_7 . ii) $\pi_7(SO(n))$, $n \ge 9$, is a free cyclic group generated by σ_n .

As a corollary we have $\pi_7(SO(8)) \approx Z + Z = \{\sigma_s\} + \{\rho_s\}$.

The proof of the theorem is mainly devoted to the following simple lemma and results on $\pi_{\scriptscriptstyle 6}(S^3)$.

SO(7) is the set of all $\alpha \in SO(8)$ such that α fixes the unit. Spin (7) is the set of all $\widetilde{\alpha} \in SO(8)$ such that for some $\alpha \in SO(7)$ the relation

$$\alpha(x)\tilde{\alpha}(y) = \tilde{\alpha}(xy)$$

holds for all x, $y \in S^7$. In virtue of "the principle of triality" [3] we have just two of such $\tilde{\alpha}$ ($\tilde{\alpha}$ and $-\tilde{\alpha}$) for each α . By setting $f(\tilde{\alpha}) = f(-\tilde{\alpha}) = \alpha$, we have a double covering

$$f: Spin(7) \rightarrow SO(7)$$
.

The projection $p: SO(8) \rightarrow S^7$ defines fiberings $p_1: Spin(7) \rightarrow S^7$ (fibre: G_2) and $p_2: Spin(5) \rightarrow S^7$ (fibre: G_3). Define a mapping

$$t: S^7 \rightarrow S^7$$

by the formula $t(x) = x^3$. Obviously t is a mapping of degree 3.

Lemma. There exists a mapping $\tilde{p}: S^r \to \operatorname{Spin}(7)$ such that $f \circ \tilde{p} = p$ and $p_1 \circ \tilde{p} = t$, i.e., the diagram

$$S^{7} \xrightarrow{\rho} SO(7)$$

$$\downarrow t \qquad \uparrow^{\tilde{\rho}} \uparrow f$$

$$S^{7} \leftarrow p_{1} \text{ Spin (7)}$$

is commutative.

Proof. In fact, we set $\tilde{\rho}(x)(y) = xyx^2$, and we shall prove the equality $(\rho(x)(y))(\tilde{\rho}(x)(z)) = \tilde{\rho}(x)(yz)$. First we have the following formulas

$$x(yz)x = (xy)(zx)$$
 and $(y\bar{x})(xzx) = (yz)x$

for $x,y,z \in S^r$. The first formula is proved in [3], the second follows easily from the first and Lemma 2 in [4]. Now

$$(\rho(x) (y)) (\tilde{\rho}(x) (z)) = (xy\bar{x}) (xzx^2) = (xy\bar{x}) ((xzx)x)$$

$$= x((y\bar{x}) (xzx)) x = x((yz)x) x = x(xyz)x^2$$

$$= \tilde{\rho}(x) (yz).$$

Therefore $\rho = f \circ \tilde{\rho}$. Obviously $(p_1 \circ \tilde{\rho})(x) = \tilde{\rho}(x)(1) = x^3 = t(x)$. Then the lemma is proved.

We proceed to the proof of the theorem. It was proved in [2] that the characteristic class $\alpha \epsilon \pi_{\scriptscriptstyle 6}(S^3)$ of the fibering Spin(5)/ $S^3 = Sp(2)/Sp(1) = S^7$ is a generator of $\pi_{\scriptscriptstyle 6}(S^3) \approx Z_{\scriptscriptstyle 12}$ which is represented by Blakers-Massey essential mapping [1]

$$g: S^6 \rightarrow S^3$$
.

Then in the diagram

$$\begin{array}{ccc}
\pi_{7}(S^{6}) & & \pi_{6}(S^{6}) \\
E \swarrow \searrow & g_{*} & i_{*} \\
\pi_{8}(S^{7}) & \longrightarrow \pi_{7}(S^{3}) & \xrightarrow{} \pi_{7}(\operatorname{Spin}(5)) & \xrightarrow{p_{2*}} \pi_{7}(S^{7}) & \longrightarrow \pi_{6}(S^{3})
\end{array}$$

the commutativity holds. Since the suspension homomorphism E: $\pi_6(S^6) \to \pi_7(S^7)$ is an isomorphism and since $g_*: \pi_6(S^6) \to \pi_6(S^3)$ is onto, we have that $\varDelta: \pi_7(S^7) \to \pi_6(S^3)$ is onto and that kernel $\varDelta=$ image $p_{2*}=12(\pi_7(S^7))$. The group $\pi_7(S^3)$ has order 2 and is generated by the image $g_*(\eta) = \alpha \circ \eta$ of the generator η of $\pi_7(S^6)$ [7, Appendix]. Since $E: \pi_7(S^6) \to \pi_8(S^7)$ is an isomorphism, $\varDelta: \pi_8(S^7) \to \pi_7(S^3)$ is onto. Then kernel $p_{2*}=\text{image } i_*=\text{image } (i_*\circ \varDelta)=0$. Consequently we have an isomorphism

$$p_{2*}: \pi_7(\text{Spin}(5)) \approx 12(\pi_7(S^7)).$$

From the exactness of the sequences

$$\pi_7(\operatorname{Spin}(5)) \rightarrow \pi_7(\operatorname{Spin}(6)) \rightarrow \pi_7(S^5) \approx Z_2,$$

 $\pi_7(\operatorname{Spin}(6)) \rightarrow \pi_7(\operatorname{Spin}(7)) \rightarrow \pi_7(S^6) \approx Z_2,$

we have that the cokernel of the injection homomorphism i_* : $\pi_7(\operatorname{Spin}(5)) \to \pi_7(\operatorname{Spin}(7))$ has at most four elements. The mapping $\tilde{\rho}$ represents $f_*^{-1}(\rho_7) \in \pi_7(\operatorname{Spin}(7))$. By the above lemma, $p_{1*}(f_*^{-1}(\rho_7))$ generates $3(\pi_7(S^7))$. From the commutativity of the diagram

$$\pi_{7}(\operatorname{Spin}(5)) \xrightarrow{p_{2*}} \pi_{7}(S^{7})$$

$$\downarrow i_{*} \qquad p_{1*}$$

$$\pi_{7}(\operatorname{Spin}(7)),$$

we see that the cokernel of i_* is mapped by p_{1*} into $\pi_7(S^7)/12(\pi_7(S^7)) \approx Z_{12}$ and that the image contains $3(\pi_7(S^7))/12(\pi_7(S^7)) \approx Z_4$. Therefore the cokernel of i_* has to be isomorphic to Z_4 and p_{1*} maps $\pi_7(\mathrm{Spin}(7))$ isomorphically onto $3(\pi_7(S^7))$. This shows that $\pi_7(\mathrm{Spin}(7))$ is an infinite cyclic group generated by $f_*^{-1}(\rho_7)$, and then i) of the theorem is proved, by operating the covering isomorphism $f_*: \pi_7(\mathrm{Spin}(7)) \to \pi_7(\mathrm{SO}(7))$.

As is well known [6], $\pi_7(SO(8)) = {\sigma_8} + i_*\pi_7(SO(7)) = {\sigma_8} + {\rho_8}$. It is also known [6] that the injection homomorphism

$$i_*: \pi_7(SO(8)) \to \pi_7(SO(9))$$

is onto and its kernel is generated by $2\sigma_8 - \rho_8$. Therefore $i_*(\sigma_8) = \sigma_9$ generates $\pi_7(SO(9)) \approx Z$. Since $i_*: \pi_7(SO(9)) \approx \pi_7(SO(n))$ and $i_*\sigma_9 = \sigma_n$ for $n \geq 9$, σ_n generates $\pi_7(SO(n)) \approx Z$. This completes the proof of the theorem.

Corollary. $\pi_7(SO(5)) \approx \pi_7(SO(6)) \approx Z$. The cokernels of the injection homomorphisms $i_*: \pi_7(SO(i)) \rightarrow \pi_7(SO(i+1))$, i=5, 6, are

isomorphic to Z_2 .

REFERENCES

- [1] A. L. Blakers and W. S. Massey, The homotopy groups of a triad I, Ann. of Math., 53(1951), 161-205.
- [2] A. Borel and J-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. Jour. of Math., 75(1953), 409-448.
- [3] H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Math. Inst. Rijks univ. te Utrecht, (1951).
- [4] Y. Matsushima, Some remarks on the exceptional simple Lie groups F₄, Nagoya Math. Jour. 4(1952) 83-88.
- [5] J-P. Serre, Quelques calculs de groupes d'homotopie, Comptes Rendus, 236(1953), 2475-2477.
- [6] N. E. Steenrod, The topology of fibre bundles, Princeton, 1951.
- [7] H. Toda, Generalized Whitehead products and homotopy groups of spheres, Jour. of Osaka City Univ. 3(1952), 43-82.
- [8] G.W. Whitehead, A generalization of the Hopf invariant, Ann. of Math. 51(1950), 192-237.