An example of a normal local ring which is analytically reducible

By

Masayoshi Nagata

(Received January 27, 1958)

Previously the writer [2] gave an example of a normal local ring which is analytically ramified. In that example, the zero ideal of its completion is a primary ideal. In the present note, we shall show a normal local ring such that the zero ideal of its completion is not primary, which gives a counter example to a problem of the writer [3].

We shall remark here that our example is a finite separable integral extension of a regular local ring of rank 2 which contains a field k whose characteristic may be zero: we shall construct an example under the assumption that the characteristic of k is different from 2. It should be noted that even in the case of characteristic 2, a similar example can be given easily by a slight modification of our example.

(1) Construction of the example.

Let k be a field of characteristic not equal to 2. Let $w = \sum a_i x^i (a_0 = 0, a_i \in k)$ be an element of the formal power series ring $k\{x\}$ over k such that w is transcendental over k(x).

Now, let x, y, z be algebraically independent elements over k and set $z_1 = z$, $z_{i+1} = [z - (y + \sum_{j < i} a_j x^j)^2]/x^i$. Set $x = k[x, y, z_1, z_2, \cdots]_{(x, y, z_1, z_2, \cdots)}$. Then $0 = x[W]/(W^2 - z)$ is the required example.

(2) Properties of the ring r.

Since w is transcendental over k(x), we can identify z with the element $(y+w)^2$ in the power series ring $k\{x, y\}$. Then as is easily seen, every z_i is identified with an element of $k\{x, y\}$ whose

leading form is not constant. Thus we may say that \mathfrak{r} is dominated by $k\{x, y\}$. On the other hand, by the definition of z_i , there is a polynomial $f_i(x, y)$ in x and y such that $xz_{i+1} = z_i + f_i(x, y)$ ($f_i(0, 0) = 0$). Therefore every z_i is in the ideal $x\mathfrak{r} + y\mathfrak{r}$. Thus the maximal ideal of \mathfrak{r} is generated by x, y. Furthermore, it is easy to see that for any element a of \mathfrak{r} and for any given natural number n, there exists a polynomial g(x, y) such that $a-g(x, y) \in (x\mathfrak{r} + y\mathfrak{r})^n$, using the relation $xz_{i+1} = z_i + f_i(x, y)$. Thus we know that $k\{x, y\}$ is the completion of \mathfrak{r} , in view of the fact that \mathfrak{r} dominates $k[x, y]_{(x, y)}$.

In the next step, we want to prove that r is Noetherian. Let \mathfrak{p} be any prime ideal of rank 1 in \mathfrak{r} . i) Assume that $x \in \mathfrak{p}$. Since obviously $x\mathfrak{r}$ is a prime ideal, we have $\mathfrak{p} = x\mathfrak{r}$. ii) Assume now that $x \notin \mathfrak{p}$. Since every z_i is contained in k[x, y, z, 1/x], $\mathfrak{r}[1/x]$ is a ring of quotients of k[x, y, z]. Since k[x, y, z] is a unique factorization ring, $\mathfrak{r}[1/x]$ is also a unique factorization ring, which shows that $\mathfrak{pr}[1/x]$ is a principal ideal. We can choose a generator p of $\mathfrak{pr}[1/x]$ such that $p \in \mathfrak{p}$ and such that $p \notin x\mathfrak{r}$ (this is possible because $x\mathfrak{r}$ is a prime ideal and because \mathfrak{r} is dominated by a local ring). Let a be any element of \mathfrak{p} . Then there exists an integer r such that $x^ra \in p\mathfrak{r}$. Assume that r is positive. Then $x^ra = p\mathfrak{b}$ shows $\mathfrak{b} \in x\mathfrak{r}$ because $\mathfrak{p} \notin x\mathfrak{r}$ and $x\mathfrak{r}$ is prime. Thus we see that $a \in p\mathfrak{r}$, hence $\mathfrak{p} = p\mathfrak{r}$. Thus we have proved that every prime ideal of rank 1 in \mathfrak{r} is principal.

We shall recall here a theorem of Cohen [1] as follows:

A ring (commutative and having the identity) is Noetherian if (and only if) every prime ideal in the ring has a finite basis.

By virtue of this theorem, it will be sufficient to show that if \mathfrak{q} is a prime ideal of rank 2 in \mathfrak{r} , then \mathfrak{q} is maximal. Assume the contrary. Since co-rank $x\mathfrak{r}=1$ as is easily seen, $x \notin \mathfrak{q}$. Therefore $\mathfrak{qr}[1/x] \cap k[x, y, z]$ is a prime ideal of rank 2 in k[x, y, z]. Therefore the transcendence degree of $\bar{\mathfrak{r}}=\mathfrak{r}/\mathfrak{q}$ over k is 1. Let \bar{x} , \bar{y} and \bar{z} be the residue classes of x, y and z respectively modulo \mathfrak{q} . Then $\bar{\mathfrak{r}}$ is algebraic over $k[\bar{x}]$. Therefore $\bar{\mathfrak{r}}$ is a spot of rank 1. But, in the completion of $\bar{\mathfrak{r}}$, \bar{z} is identified with $(\bar{y}+\sum a_i\bar{x}^i)^2$. Since $\sum a_i\bar{x}^i$ is transcendental over $k(\bar{x})$, we see that either \bar{z} or \bar{y} is transcendental over $k(\bar{x})$, which contradicts the fact that \mathfrak{r} is algebraic over $k[\bar{x}]$.

Thus we have proved that r is Noetherian. Since the maximal

ideal is generated by x, y, we see that r is a regular local ring. Furthermore, we shall prove

Lemma. zr is a prime ideal in the regular local ring r.

Proof. Since r[1/x] is a ring of quotients of k[x, y, z], z is a prime element of r[1/x]. Since zr and xr have no common prime divisor, we see that zr is a prime ideal.

(3) The proof of the example.

Since \mathfrak{r} is a regular local ring, \mathfrak{o} is Noetherian. Since z is a prime element of \mathfrak{r} , we see that \mathfrak{o} is normal, and it is easy to see that \mathfrak{o} is a local ring. Thus \mathfrak{o} is a normal local ring. The completion of \mathfrak{o} is $k\{x,y\}[W]/(W^2-z)$. But $W^2-z=(W-(y+w))$ (W+(y+w)). Thus the zero ideal of the completion of \mathfrak{o} has two prime divisors.

Kyoto University and Harvard University

BIBLIOGRAPHY

- [1] I. S. Cohen, Commutative rings with restricted minimum condition, Duke Math. J. vol. 17 (1950), pp. 27-42.
- [2] M. Nagata, An example of normal local ring which is analytically ramified, Nagoya Math. J. vol. 9 (1955), pp. 111-113.
- [3] M. Nagata, On the chain problem of prime ideals, Nagoya Math. J, vol. 10 (1956), pp. 51-64.