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In  a  previous paper [ 1 ]  we introduced the notion of the
relative affine connection of the pair of manifolds (M , N), and
developed the theory of the torsions and curvatures. We shall
treat, in  th is  Part 2 , the g-related metrics o f th e  (M , N), and
establish the foundation of the relative Riemannian geometry.

1. The metric tensors.

Continuing the first part [ 1 ] ,  we consider two differentiable
manifolds M  and N  of dimension n. L e t (x i) and (y 1') be the
local coordinates of any points P E M  and Q E N  respectively. We
assume first that a positive-definite quadratic differential form

(1. 1) ds2 = g,v (x, y) dxidx-i

is associated with every point P (x ) of the M , where the coeffi-
cients g 1 5 (x, y) are the functions o f  (x ) and furthermore depend
upon (y )  o f  th e  observing p o in t  Q (y ). Th is fo rm  is ca lled  the
m etric form  of the M, and the tensor (g15)  of the (x)-order (0, 2)
the metric tensor of the M .  By means of this form we can define
the scalar product o f two vectors and hence the length of a vector
by the usual manners.

According to the definition [1 ] , §  1  of the g-related tensors,
the tensor, which is g-related to the metric tensor of the M, is
given by

(1. 2) g 1 1  g11 g t g .

It is clear that the quadratic form
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ds" = g y dyi'dy/

is positive-definite. We define the metric of the N  by the above
form . Thus we may say that the m etrics of the M  and N  are
g-related.

We consider the vectors u i ' and vi' of the (y)-order, which
are g-related to the vectors u i and v 1 of the (x)-order respectively,
namely

=  g 'u ,  v i ' =  g rv i  .

The scalar product of the vectors u ' and y ' is given by

= (g i j g g ii) (g ru k )(gr 74') -= gk l uk v' .

If follows that the scalar product of the vectors u ' and y' is equal
to  the one of the vectors u  and y, which are g-related to the
formers. Hence the length of the vector u ' is  the same as the
one of the u.

Let g ii and g i'i ' be the inverses of the metric tensors g i ;  and
1 ,  respectively. Making use of the g-tensors [1], § 1 and the

metric tensors, we can introduce two tensors g i j ,  and which
will be useful in the following. Namely we define

(1. 3)g . 1  —  g g k g ki , g i k g r

and then the following identities are the direct results of the above
definitions.

(1. 4)
gk i g i i ,g ik gki, g —  Ski ;

g i , i g i ' g k ;  9 g i , i ,gi' k gki , g i ,  j g i'le  —  Ski

We take the natural frames (e1)  and (e1,) , such that the equa-
tions

eiej = g i j , e 1 e1 , g 1,/

are satisfied. In  the Riemannian geometry, the condition, that
the connection preserves the metric, is imposed and leads us to
the Ricci's formula

agi .
axk  == g 11

-
1 ' h + g i l  I ,

where the F's are the coefficients of the connection-form. In our
case also, we assume that this conditions, that is,
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d(e i ej ) =d g i i ,

are satisfied. Since we defined the connection in the [1], § 1 as

de, = w ife , o  = dx +C L ,d y k ,

the Ricci's formula is  g iv e n  b y  the system o f th e  following
equations.

(1.5) axk k i + git 1-71 "

(1.6) , = + ,
axk

and furthermore we have the similar equations fo r  th e  metric
tensor of the N .  These facts mean that the metric tensors of the
M  and N  are cov ariantly  constant with respect to  the covariant
differentiation ( , ). It is immediately seen that the inverses of the
metric tensors have the same property.

2. Existence of the metric connections.

Putting together the above results, we assumed that the g-
tensors and the metric tensors were both covariantly constant.
In  this section, we shall show that there exists the connection
(a)1, (4;), such that the above assumptions hold good. Such a
connection is called to be metric.

[ A ] .  For this purpose we pay attention first to  the A-
differentiation, which was defined in  th e  [1 ] ,  4. From (1. 5)
and (1. 6) we obtain

Ag, i

(2. I) A.Th g ' i 4 - g.
1

1

Moreover we get from the [1], (1. 6) and (1. 7)

(2.2)— A ,+g ,,  A ,
A y k/

where we put

P li / , / ,
(2. 3)

+ C / g

T h e  skew-symmetric parts Si » ,  o f the A
iik =

g i l  A h ,  were called
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the components of the g-torsion of the M , and their symmetric
parts will be denoted by X, i k  . Then it follows that

(2. 4) A';„ Vi k  +S 'j k  , ,

where putting X ijk  =  g i l X i l k  and S lik =  gi'S  i l k . Substituting from
(2. 4) in  (2. 1), we get

(2. 5)

Hence, if we take

(2. 6)

. J
x k  = X (i j) k  + S C i j) le  •

1  ( A g i j  A g j k  A g ik \
i j k —  2  Axk ) '

then these quantities a re  determined by the g-tensor and the
metric tensor alone, and the equations

(2. 7) j(1k)

are obtained from (2. 5), and we have conversely (2. 5) from (2. 7).
By the same process from the equations

(2. 1')
A y e  — A )k/ ±g 1 1 A k ,

we obtain

(2. 7') X iy k /  =  A
i / y e —

S i/ W i t ' )  7

where the Ai y k ,  are defined by the similar equations to (2. 6).
Next, the equation [1 ], (4 . 22) is written in  terms of the g -

torsions as follows :

(2.8)/  = 1 g r  A g-
6 /  +S 'i k eg-j/g ke .

2 Ay k / J

Now we shall prove the
Lemma 1 . I f  w e tak e a  skew-symmetric tensor S if k  ( - =  — S )

arbitrarily , and def ine the quantities S / ,  X • i k  and by  the
equations (2. 8), (2. 7) and (2. 7') respectively, then the equations (2. 1)
and (2. 2) are satisfied, where the A 's are given by the equation (2. 4).

Since the equation (2. 1) is immediate results from (2. 6) and
(2. 7), we shall show that the equation (2. 2) is satisfied, making
use of the relation (2. 8) between the g-torsions S fj k  and Sj; k/ . We
have first from the definition of the A iik
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,

= —2
1 (Ag o  + A g ,k _ A gi, k )  e ,g ;,g 2 , ,
AAxk Ax

from which we obtain in virtue of th e  1], (4. 13)

(2. 9)
1 (A g i ; A g o A gi
2  A y k ,

Making use of (1. 2), (1. 3) and (1. 4), the first term  of the right-
hand members of the above equation is rewritten as follows :

(2. 10) 1  A g i i 1  f A g j i , A e,\
2 Ayk' g i ' g i / 2  \  Ayk' g i j  Ay"' ) g

1 Ag i i , 1
— g i i —  g  2  Ay 2 Ayk

1  Agri ,/  1 Agii , 1 Agl,
2  A y k' — 2 g "' A y k ' 2  g i i /  Ayk'

Substitution of the above and the similar two equations in (2. 9)
gives

(2. 11) A i y e  A iik g W .Pek ,

1  ( A g!,,,A r k
-

,))
2  g1(1' A y e + g 1 ( /

Since we have from (2. 8)
1 AgE,

(2. 8') S iy k , 2 g1

summation of th is and (2. 11) gives on account o f (2. 7)

1 Agc,,
(2. 12) Xiyk, = + 2  g i t  A y e )  •

Hence, making use of (2. 4), (2. 8) and (2. 12), the right-hand side
o f (2. 2) is w ritten in the form

A gip
+ e z

, (S k i— S li kgitek /gr) k, •Ay
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Thus we have (2. 2) and so prove the lemma.
W e note here that the expressions of the A-derivatives of

the g-tensors and the metric tensors are all satisfied as the con-
sequences of (2. 1) and (2. 2). In fact, according to the [1 ], (4. 13),
we have immediately from (2. 1) and (2. 2)

(2. 13)

(2. 14)

Agii
Ay e  — gr ;  A4 k ,-i-g 1 1 A /

i k ,

p x k  —

Since the g i l  and a  are the inverses of the
tively, we obtain easily

A g ii

A g ii
y k ' g l i  -A4 k t — g "

and
Agl;

k+

(2. 16)
Ag1;
A--y--k,  = A1'k'+g  As k ,.

(2. 15)

and respec-

Finally, operating the A differentiation to (1. 2), we have

Ag i ,
A x k g p i / Ar/k Alj%

A y e  -= g 1 , 1 , .

[B ]. Now we shall prove the existence of a metric connec-
tion. W e put

(2. 18) E i j e ± F i j k , C i , j/k

where Ci i k , , g f i C%,, -=gi,,,C1%, and the E's and F's are
respectively the symmetric and skew-symmetric parts of the C's
with respect to the first two indices. Substituting (2. 18) in (1. 6)
we get

(2. 17)
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1  a g i ;1 a g 1,
(2. 19) ayk, , E1 , —  2   .

Thus the symmetric parts E 's  are determined by the metric ten-
sors alone. On the other hand, the equation [1 ], (4 . 4 ) is written
in the from

— giygq--8— xi--gl3 A L ),

where O f ik .=- -- g i , / , C 1 / . It follows easily from the above that

(2. 20)
a g ;,
a x k A i  l e  •

The symmetric and skew-symmetric parts of the are clearly
given by

— ,,,k — ,,k ,,k k

i / kF  i /  k +F ijk ie , g j , g t /

respectively.

(2.21)

Therefore we obtain from (2. 20)

, * 1 g/A 1
i / k  = g i u ,  a ,ck +  2  g ' , g i)i ) A ijk l

from which it follows that
, 1 ag-',,3 1

(2. 21') F , y k = — 2 g , [ ,, a x „ + 2 g c;,giy ]

Now we shall prove the
L em m a 2 .  If  th e  E 's  are defined by (2. 19) and the F iy  k  by

(2. 21') fo r  a n  arbitrary  choice of the F  ( - = — F 5 1 0 ,  then the
equation [1 ], (1 . 6 ), that is,

(2 .2 2 )
3x '

=  — gly -  g rC ji  kd x

and (1. 6) are satisf ied, w here the 1 " s are giv en by  the equation
(2. 3) and the C 's by  (2. 18).

The equation (1. 6 ) is clearly satisfied, and so we shall verify
(2. 22). It follows from (2. 19) that
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1 a g i y  1  ago
E  iy k  —  2  a x k  +  2  a y k, gl , gyg: •

Applying the calculation similar to (2. 10), we get

1  ag e /  1  tag,' j ,

=  2  ax k  4 -  2  a y k g i" ' a y k' ) g k

1  A g e /  1 (A a g )\
2 A xk 2  g i q̀  A x k a x k ) •

Substitution of (2. 14) and (2. 17) gives

1 a l,,1(2. 23) g,(i, 
 e   + g A  ik

2 axk 2

Summing (2. 21) and (2. 23), we have (2. 20), which is written in
the form

Ci / j /k ± C i pzgl , g3 , g h: aga x
1,:A i i k

that is,
ae-V— g i , ( A !.1„—C kigkk') +gl , qk  •axk

Hence, remembering (2. 3), we obtain (2. 22) and then prove the
lemma.

Next, making use of the equations

a g i i  A  g i  a g ia g d y  A a e l ,
3i = a y k /  g k k / a Y k i Ayk' a xk g k*/

and furthermore (2. 1) and (2. 2), we obtain easily (1. 5) and [1 ] ,
(1. 7), and hence all of the expressions of the partial derivatives
o f th e  g-tensors and the metric tensors are established. Con-
sequently we obtain the

Theorem . There exists a metric connection ((4 ,  4 ) ,  and it is
uniquely determined, when the g-torsion S k  of the M  and the skew-
symmetric parts Fyik/ of the rotation of the connection of the M  are
given arbitrarily.

Finally the coefficients of the connection form are expressed
explicitly in terms of the g-tensors, the metric tensors, quantities
S iik  and F i v e , as follows.
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1  a g i i
S . k.i jk A ijk  2  a y kl i j — Sk 1 k  + St 1J j

1  a g i i
Coe —  2  a y k ,  +Fife ,

1 1
j /k / - - , -  _ 2  Ai-au/ i /  kg i c i /  - 5 ?

1  ag „ i , Ag c ,
2  ax k  g k k/ g i  Ay-it ]  "  Ay-e ]

i ki + Ski) -4-F i j e g /g : 5
1 ,

1  ag i , 1 1 aeiii
Ci i —  2  a x k  +  2  ,g [ /gy ] A i i k  2 - a x k

, 1  „ T-,,,
- }-  — • - ,k i j i 4  ijk '.5  1/ 5 J i boo2

Thus we can have the metric connections, but the above
arbitrarinesses are left. In order to determine some useful metric
connections, we shall remember the cases of the Riemannian and
the Finslerian spaces. In the following sections we shall give the
effective ideas to determine an useful metric connection.

3. T h e  metric connection without torsions.

The torsion tensor of the M  is given from (2. 3) by

T k
• 1---,

2

Following the case o f the Riemannian geometry, we assume that
the torsion tensors of  the M  and N  vanish.

Then this assumption is expressed analytically by

(3. 1) 2S 1  Jk — Fu i egrp , --- Ec i p z g rj ,

and

(3. 2) 2 S  Y I kg:1 3 E C t' k g 41/J >

where the E 's and F's are the symmetric and skew-symmetric
parts of the C ' respectively as used in the last section, and the
E's have been already determined by the metric tensors as the
equations (2. 19). We shall show that the equations (3. 1) and
(3. 2) determine uniquely the quantities S's and F's, so that the
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metric connection without torsions is uniquely determined, according
to the above theorem.

In the first place, contracting (3. 1) by e , g ij , g : ,  and making
use of (2. 8'), (2. 21) and (2. 23), we get

(3. 3) F k,2S i / i i k , — g i j ,  ci k g k

, ' k )

where the P's and Q's are the right-hand sides of the equations
(2.21) and (2. 23) respectively. Hence we obtain from (3. 3) by
means of (3. 2)

(3.4) 4S1yk, = g i „,
 A  k , ) c t  ,+( P  , ., k +Quy k ) g ke3 -

Y

It follows from the definitions of the P's and Q's that

(P iy k  + Q iy k ) g : , A i i k  .

Substituting from (2. 4) and (2. 7) and making use of (2. 8'), then
the above equation is written in the form

, a g ii , , A

---- g i i
, gy   a x i  + g e g j , g i ,  La i i k — S  i /( k /i /) + S i l j /k ,

1 Ag-c/ 1 A g /  1
'

A gl, )— -- g i - ,
k'i Ay)

- + g g i , — g i ( 1 , ,  .
2 A y 2 Ayk') 2 

Accordingly we obtain

(P u y k
a g y,

g i , ,

ax ,

Ag
c'

k g i i  A y e )  •

Substitution o f the above into (3. 4) gives finally the expression
of the g-torsin S i y k ,  as follows :

(3. 5') 1 ag-c;,S i y k , — g i ./ _  g v )
2 axi

Similarly we have the expression of the g  torsion S i ] ,  as

S  —  1  g  ag . c '
 j /

i i k a y )/  g  kJ •(3. 5)
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Thus the ,S1 i ,  are determined. On the other hand, the quantities
F i j i ,  are directly given from (3. 1) by

(3. 6) -=-- +Ski.» e k ,  •

Consequently we obtain the metric without torsions. The coeffi-
cients Ps of the connection are given by

1 a g „  a g i , a g i i(3. 7) i k  —  2  6  
,

 axk a x ;  a x ,

because o f  th e  equation (1. 5) and symmetry o f the 1 " s .  The
coefficients C's are expressible in the forms

1  (agi;
- - -

,, a g  k k

(3.8) ____ 2 a?' gk,— g1 , 0 . a y e

„ ag agk e
g  L i  a y i t g gC i g  j]le  ay i f )  •

We have also the similar expressions for the coefficients /1%, and
C i/ j / k  o f the N.

4 .  The normal metric connection.

In this section we shall define more important class of metric
connections. In the Finsler space, E . Cartan gave the five geo-
metrical axioms [2], § 7, and then determined uniquely the con-
nection, satisfying the axioms. T h e  last axiom saies that the
components are symmetric, where the F t  are used to express
the absolute differential o f a  vector when its supporting element
enjoys a parallel displacement to itself. On the other hand, in
our case, the quantities A k are thought to correspond to the
in  Finsler spaces, because these quantities are used to express
the absolute differential o f a  vector when the displacement of the
observing point is g-related to th e one o f th e origin of the
vector. On account o f these considerations we assume first that
the A „  are symmetric, that is,

I. The g-torsion S 'j k  of the manifold M  vanishes.
Since the g-torsion of the N is determined by (2. 8) in the general
case, we have under the assumption 1

—
1 e '  A gc ' .
2 Ay1/3

(4.1)
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It fo llow s from  (2. 4) and (2. 7) that the components A'ik  are
simply given by

A 
== 

1 i / A g p  6 .g/a A g j k ,(4. 2) . A x ' I •

Next, in order to determine the quantities F 11 ,/, we consider
again the infinitesimal parallelograms n- (P ) in the M  and 7/1 (Q ) in
the N ,  which were used in the [ 1 ] ,  §  2 .  If th e  sides Q Q ,=dy
and QQ,' =ay  of the n-' (Q ) are g-related to the sides P P ,= d x  and
PP,' = 8 x  o f th e 7-r ( P )  respectively, then the 7-/- (P )  and 7-c' (Q ) are
called to be g---related. As was shown in  th e  D A  (2. 9), the
torsion AP associating with the 7 r(P ) with respect to  the fixed
observing point Q  is equal to A P =2 T 4 dx -

78x k e1 . The expression
of the torsion A Q  associating with the 71 (Q ) with respect to the
fixed observing point P  is similarly given by A Q =  2T !I;k4 / 8 3, g e, , .
Hence, if the 7-r (P )  and 7rf(Q) are g-related, then we have

-=  2T k ig ilg rd x jax k ei i .

Now we give the second assumption.
I I .  I f  the parallelogram s 7 r(P ) and i i ' (Q ) are g-related, the

torsion A P associating w ith the 71- (P )  is carried into the torsion AQ
associating w ith the 7e(Q) by the mapping g: T -- T 0 .
Consequently the analytic expression of the assumption is given by

(4. 3)

which means that the torsion tensors of the M  and N  are g -
related. Making u se  o f (2. 3) and taking care o f  symmetry of
the 1V i k ,  we get

• 1 , 1 ,(4.4)r i k —  g c , gr),, j, + S ; I,/ •2 2

Then the above (4. 3) are expressed in the form

(4. 3') Cc»11o=r-- ,

where putting C ;1 1, = . Substitution (2. 18) in  (4. 3') gives

(4. 5) F k/3e: g i'
= E ic io - (Ei'CjY ) -  ' Y 1 4  e g ' g '
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where we take E i i k  --=.-E i f e g r  and F i i k  = F i i egr . As w ell as in
the last section, we set the right-hand side of (2 . 2 1 ) by Piyk
and substitute into (4 . 5 ) from (2. 21'). Then the equations

, k i(4. 5') 2 Ficikp -= Picik34-Eicik)—
\  g i  g )6  k

are obtained, where we put P i i k = P i y k e I f  we construct
from the above equations the forms 2 (F i c i k )  + F i c k i ) — F k r i d ,  and
make use of skew-symmetry of the F i j i ,  and P i p , , and further
symmetry of the E i j i ,  then the equations

2Fiik Pijk — E k C ij)

- 1- [E  k /  JI 3  
2  

(S 1 ' 5' 3 S  te l  jd e

are obtained. Therefore we get

2Fi i k , j,ke  g i; +g (
1,;:E i j k i /gkk/ E h/ i/ci

1
(S C i' J1 /  + j i )  g i  g )  .

We see easily P i y k e e g k e = P i i k ,, where the quantities P i i k ,  are
defined similar to the P i , j , k ,  namely

(4. 6) 1 ag';) 1 
P jle i  = gr'Ci 2 ay 2

Consequently we obtain the final expressions of the quantities
F i j i / as follows :

1
, r

fi,(4. 7)F 1 » / — ± g c E g k i / C i g i ) )e
2

j  k k

1  ,
- pry g i  •

4 "

Hereon, a  metric connection, which satisfies the assumptions
I  and II, has been determined by the metric tensors, the g-tensors,
and their derivatives o f the first degree. It follows from (4. 1)
that the g-torsion SI,5% , of the N  is generally not equal to zero.
However, it is conjectured that this circumstance will be unde-
sirable fo r  th e  following discussions. Therefore we assume,
instead of the I

I'. B o th  of the g-torsions of the M  and N  vanish.
It is clear that the condition
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(4. 8)
Ayk' — Ay/

is necessary and sufficient for the assumption r . We shall call
the metric connection, satisfying the assumptions r  and II, to be
normal. The coefficients F's and C's of the normal metric connec-
tion are given by the equations

1( a g i l  a g „  a g  k1  )  _
2 axk axi a x é

1
Ogo/  1 ,  

a g/01'+ 4 a y /  g  + g

1
+ -

4
- gci'g:) ay e  »

1 g, 31 ( a g 1 '  a g ki l k a g i ' k '(4.10) G ip ,/  -= 2  a y e  — 4  g c , a y e  — a y i ,  g e + 

and the similar equations for the Fli%, and Ci y h , .

5 .  Geodesics.

In  th e  first place we shall introduce the notion of the g-
related curves. Let . P(x 0)  and Q(vo)  be any points of the M  and
N  respectively, and the C : [0, 1] M  a curve in the M , issuing
from the point P(x 0 ) C(0). The equations of the C  are given by
xi = x i(t ) .  We consider a  system o f th e  o rd in a l differential
equations

dye' 
= ( x ,  y )  

dxi
dt dt

for unknown functions ye (t) of one variable t. Then there exists
an unique set of solutions ye' (t), satisfying the initial conditions
ye(0) The curve =y e ( t)  as thus defined is called to be
g-related to the curve C in the M. I n  the last section of the [1],
we used already this notion, by means o f which we defined the
path [1], (5. 3). Since the metric o f the N  is g-related to the
one of the M , we see easily from (1. 2) that the g-related curves
have the same line-elements.

Now we consider the extremal C of the integral of the line-
element

(4. 9) V I»,
1a g i k
2 ay'

ago i ,_ g t

(5. 1)



Relative Riemannian geometry II. 109

g u ( x ,  y )  ddx; ddx; dt ,

where we suppose that the curve (y) in the N is g-related to the

one (x) in the M .  I f  w e put F=A  g i i
d v   d x .1

 th en  it  is  w e ll
dt dt

known that the extremal C is given by the solution of a system
of the differential equations

a F  d  (aF ) o,
d
—
t

= (.. dxi=  ) .
a xi dt \aii

We have
aF _ (agki  + agki aye k l

a Xi  —  2

•  

F\ axi I

From (5. 1) we have

aF (agki + agki gy )
a Xi -= 2• F \ axi

Therefore the equations

aF _  1  Agki x.k

x

.1

ax i —  2• F Axi 

are obtained. Similarly we get

aF 1.
g i k x k ,axi F

d  (aF ,_____1(Agik g i k x  )  1  dF• k
i k X  •dt \axi/ F  Ax' F dt

Consequently, i f  we take the arc-length s as the parameter, then
we have the equations of the extremal C as

xd'xid  d x k(5. 2) +A'ik = 0 .
ds2d s  d s

We call such an extremal the geodesic in the M.
I f  th e  connection under consideration is normal, then the

coefficients A ii k  are equal to the A 'i k  from (4. 2), so that the above
equations are written in the forms

(5. 2') d2x1 A ,  dx5 dxk 0 .
ds2 i k  ds ds 
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By means of the [1 ] ,
 (5 . 3), we have

Theorem  I. I f  the metric connection is normal, then the notion
of a  geodesic coincides with the one of a path.

Let C and C ' be the g-related curves in the M  and N  respec-
tive ly , and the C  be the geodesic. Since the line-elements of
these curves are equal, we have

dye'
 = ( x ,  y )  

dxi 
ds ds

&ye' ( a e   4.. a e  ayk' dxi dxk d'xi 
ds2 ■axk ayk' axk I ds ds

Substituting from (5. 2') and making use of (5. 1), we obtain

 dxi dxk 4 _ a i / d'xi
Axk ds ds

=-- 4- g/i l AL) d 1-1k dxk _ g ,, A ,  dxe 
ds ds i k  ds ds
dy— dYi' -ds ds

By means of the definition we get finally

&ye' d y i' dy k '  _ 0

ds2 "  ds ds

Thus the curve C ' is  g iven  as the solution of the above equa-
tions, and hence, the C' is geodesic in the N .  Therefore

Theorem 2 .  I f  th e  curves C ' in  th e  N  is  g -re lated  to  the
geodesic in the M, then C' is also the geodesic in the N.
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