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Relative Riemannian geometry

II. On the metric connections
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Makoto MATSUMOTO
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In a previous paper [1] we introduced the notion of the
relative affine connection of the pair of manifolds (M, N), and
developed the theory of the torsions and curvatures. We shall
treat, in this Part 2, the g-related metrics of the (M, N), and
establish the foundation of the relative Riemannian geometry.

1. The metric tensors.

Continuing the first part [1], we consider two differentiable
manifolds M and N of dimension #. Let (x%) and (»") be the
local coordinates of any points Pe€ M and Q € N respectively. We
assume first that a positive-definite quadratic differential form

(1.1) ds’ = g;;(x, y) dxidx’

is associated with every point P(x) of the M, where the coeffi-
cients g;;(x, y) are the functions of (x) and furthermore depend
upon (y) of the observing point Q(y). This form is called the
metric form of the M, and the tensor (g;;) of the (x)-order (0, 2)
the metric tensor of the M. By means of this form we can define
the scalar product of two vectors and hence the length of a vector
by the usual manners.

According to the definition [17], § 1 of the g-related tensors,
the tensor, which is g-related to the metric tensor of the M, is
given by

(].. 2) gi’j’ = gijg:’g;’ .

It is clear that the quadratic form
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ds"* = gy ydy’'dy”

is positive-definite. We define the metric of the N by the above
form. Thus we may say that the metrics of the M and N are
g-related.

We consider the vectors % and v of the (y)-order, which
are g-related to the vectors # and v’ of the (x)-order respectively,
namely

w' =g, v =glv.
The scalar product of the vectors #’ and ¢’ is given by
gyt v = (g,,8181) (g4 u") (gl w') = guutv’ .

If follows that the scalar product of the vectors % and ¢’ is equal
to the one of the vectors # and », which are g-related to the
formers. Hence the length of the vector #' is the same as the
one of the w.

Let g/ and g7/ be the inverses of the metric tensors g;; and
gy respectively. Making use of the g-tensors [1], §1 and the
metric tensors, we can introduce two tensors g; and g”', which
will be useful in the following. Namely we define

(1.3) Gy =8y =Egu&y, 87 =4g""=ggl,

and then the following identities are the direct results of the ahove
definitions.

(1 4) gijgik/=g.kl/’ g:’j’gik=g§/7 gij’gik/zs.’;;,
gi’jgi/k/ =gY, g;’j'gilk =g, gi’jgi’k = 0.

We take the natural frames (¢;) and (e;), such that the equa-
tions

e,-ej = gij s e,-/e]./ = gi’j’
are satisfied. In the Riemannian geometry, the condition, that

the connection preserves the metric, is imposed and leads us to
the Ricci’s formula

98 ; "

Oxk = 81 I+ g, 1 Ik

where the I”s are the coefficients of the connection-form. In our
case also, we assume that this conditions, that is,
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d(ee;) =dg;;, dleyey) =dgy,
are satisfied. Since we defined the connection in the [1], §1 as

de. — w{e. w{ = F{,, dxk+C£k/dyk' ,

i i

the Ricci’s formula is given by the system of the followingv
equations.

(1. 5) éx; = &i; ]'yék+gil Ivgk ’
og; .
(1. 6) axk]' = £,Clv+g.,Clw,

and furthermore we have the similar equations for the metric
tensor of the N. These facts mean that the metric tensors of the
M and N are covariantly constant with respect to the covariant
differentiation (,). It is immediately seen that the inverses of the
metric tensors have the same property.

2. Existence of the metric connections.

Putting together the above results, we assumed that the g-
tensors and the metric tensors were both covariantly constant.
In this section, we shall show that there exists the connection
(w!, ©})), such that the above assumptions hold good. Such a
connection is called to be metric.

[A]. For this purpose we pay attention first to the A-
differentiation, which was defined in the [1], §4. From (1.5)
and (1.6) we obtain

; Av‘g:ij ] 2
2.1) Axt =815 Ab+gi Al

Moreover we get from the [1], (1.6) and (1.7)

i
(2 2) i%{: —gle;k/+g§/A§;k/,
Yy

where we put
v 1 ’ i/ i/ '/
A;k =1 ';,.-+C§z/gi y A;’k/ =/ 3/;/+C§/Lgi',

@. 3) i t gl
Ajwy = Aj, gl

The skew-symmetric parts S;;, of the A, ,=g;, Al, were called
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the components of the g-torsion of the M, and their symmetric
parts will be denoted by ;. Then it follows that

(2.4) Al =N\ +S5,, AUy =2\ +Shy,

where putting \j, =g\, and Sj,=g"S;,. Substituting from
(2.4) in (2.1), we get

(2. 5) 17 = )\'(ij)k+S(ij) B

Hence, if we take

1/A8; Agp Ag
(2.6 Mu=3(an + s an )

then these quantities are determined by the g-tensor and the
metric tensor alone, and the equations

2.7 Aijr = Aijk_Sj(ik)

are obtained from (2.5), and we have conversely (2.5) from (2.7).
By the same process from the equations

Ag.,.
2.1) Ag.;kf_’ =guvy Af‘k’-"gi’l' AS;// >
we obtain
(2- 7) A’i’j’k' = Ai’j’k’_sj/(i/k’) ,

where the A, /., are defined by the similar equations to (2.6).
Next, the equation [1], (4.22) is written in terms of the g-
torsions as follows:

, .+ Agd
(2.8) Siw = &1 s +Shelahel.

Now we shall prove the

Lemma 1. If we take a skew-symmetric tensor S}, (= —Si,;)
arbitrarily, and define the quantities Sy, N;;p and Ny by the
equations (2.8), (2.7) and (2.7') respectively, then the equations (2. 1)
and (2.2) are satisfied, where the N's are given by the equation (2. 4).

Since the equation (2.1) is immediate results from (2.6) and
(2.7), we shall show that the equation (2.2) is satisfied, making
use of the relation (2.8) between the g-torsions Si, and Si,,. We
have first from the definition of the A,
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; 1
A &g ygl = E<

Mgy, A S
AxF  Axi  Ax/

)gﬁfgﬁfg:f ,

from which we obtain in virtue of the [1], (4. 13)

(2.9) A8l 18N
1/Ag;; Ag.i . Ag:;
= 727(33"”] gigl+y 7 Eval—3 y,./ gé‘/gi/> .

Making use of (1.2), (1.3) and (1.4), the first term of the right-
hand members of the above equation is rewritten as follows:

2.10) 228 i1 :_< i ___> ],
( 2 Ayk/ g8 2 Ayk’ &i; Ayk/ &3
1 Agji’ s _l Agf/

9 AykTgJ’ 2 gij’A_y]a7
1 Agyy 1 Agy 1 Agir

2 AyY T2 8iit ng— z*g,-,-'m-
Substitution of the above and the similar two equations in (2.9)
gives
(2.11) Dprjw = D080 818w
1 Aghn Agl, Agu,
+—2'<gi<i’ W"‘gi(k/ ‘AAyT/—gi(i’ W) .

Since we have from (2. 8)

(2.8) Sivjrw = S8 188l + o &ij lyﬁ )

summation of this and (2.11) gives on account of (2.7)
t 53 ok 1 Agd

(2.12) )\'i’j’k’ = k'ijkgt’gj’gk’ + E iy Zy—w :

Hence, making use of (2.4), (2.8) and (2.12), the right-hand side
of (2.2) is written in the form

gill()\,j/,/k/—Kj,kgglgf/gi/) At
’ 8y
+ (S —Shgighel) = i -
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Thus we have (2.2) and so prove the lemma.

We note here that the expressions of the A-derivatives of
the g-tensors and the metric tensors are all satisfied as the con-
sequences of (2.1) and (2.2). In fact, according to the [1], (4.13),
we have immediately from (2.1) and (2.2)

Ag;;
(2.13) Ay,; =gy M +8u Nw .
Ag‘ ’
2. 14) Ax;’ = =gy At+gu Ay,

Since the g% and g4 are the inverses of the g;; and gi respec-
tively, we obtain easily

Agij lj i il J
A_x/: - —'g ]Azk'—g Azk»
2.15 .
( ) A, g_ Y 17 [ il J
Ay"' = —g"ANu—g" A,
and
Agy o
A = gV Atgl AL,
2.16
216 Agy ' v
Ay = —gy Apw+g, Ny

Finally, operating the A-differentiation to (1.2), we have

A i3 ’
Agx’: = gl’j' A%;k + gy Aglk ’
2.17)
( Agi’j’ o ’
’A'yk'r =gvy Abrwr+ gy Ny .

[B]. Now we shall prove the existence of a metric connec-
tion. We put

(2. 18) Cijk’ = E‘.jk/ +Fijk’ , Ci’j’k = Ei’j'k"'Fi’j’k .

where C;;v=g,Clv, Cyyp=gyyC¥,, and the E’s and F’s are
respectively the symmetric and skew-symmetric parts of the C’s
with respect to the first two indices. Substituting (2.18) in (1.6)
we get
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__l og;; Ey 1 agi’,i’
et 2 aykl ) i"j'k

(2. 19) Ei]-k/ = 5 axk .

Thus the symmetric parts E’s are determined by the metric ten-
sors alone. On the other hand, the equation [17], (4.4) is written
in the from :

ogY’

* g
Ci’j’k = —g,/j/gf/<~ax—; _gs/ Azk) s

where C?;j/k=gj/,/C:k/i'. It follows easily from the above that

ogis
(2. 20) C:";j/k =g —é;ik— +g§.’g5’ Aijk .

The symmetric and skew-symmetric parts of the C:'ij/k are clearly
given by

* . ,

A k
Evin=Eyy+E;wgigygr
* ; y
Fopp=Fypn+F, vgighgs,

respectively. Therefore we obtain from (2. 20)

* 1 ogyy 1
(2. 21) Fi/j,k = —§ gi[i, 78% +§ g[i’g;’] Aijk )

from which it follows that
’ 1 ag;'] 1 ;
2.21) Fyp= —Fijk'gé’g.g'g: 9 St Toxk to 808 A
Now we shall prove the
Lemma 2. If the E’s are defined by (2.19) and the F, s, by
(2.21') for an arbitrary choice of the F,,s (=—F ), then the
equation [1], (1.6), that is,

og' o
(2. 22) Db = —&y i+ giCY,

and (1.6) are satisfied, where the 1”s are given by the equation

(2.3) and the C’s by (2.18).

The equation (1.6) is clearly satisfied, and so we shall verify
(2.22). It follows from (2.19) that
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1 ag/]/ _]__ a&l

E’ k=9 ogt T 'aykl‘gf'gj’gk .

Applying the calculation similar to (2.10), we get

1 8 i’ 1 8g‘./‘/ 8gi/
= 5 *g;"/?e -+ _< ki — &’ i')) gy
2 Ox 2\ 9 Oy
__1_ Agi’j’___l__ <Ag1') 8gj/))
=9 Axt 2 &\ Agr T oyt

Substitution of (2.14) and (2.17) gives

2. 23) Efpy=1 5 & g”+ 5 &g A

Summing (2.21) and (2.23), we have (2.20), which is written in
the form

Coye+Ciwglg gl = giy a = +gugy Aiiks

that is,

a i
aij,: = —gy(AL—Civgt) +giCY, .
Hence, remembering (2.3), we obtain (2.22) and then prove the
lemma. )

Next, making use of the equations

9g;; Mg, 9g; e ogy Mgy Ogy
oxkF T Ax* ay" ’ ayk' - Ayk' Ox* 8¢

and furthermore (2.1) and (2.2), we obtain easily (1.5) and [1],
(1.7), and hence all of the expressions of the partial derivatives
of the g-tensors and the metric tensors are established. Con-
sequently we obtain the

Theorem. There exists a metric connection (!, wl), and it is
uniquely determined, when the g-torsion S%, of the M and the skew-
symmetric parts F;; of the rotation of the connection of the M are
given arbitrarily.

Finally the coefficients of the connection form are expressed
explicitly in terms of the g-tensors, the metric tensors, quantities

S;;x and F;;v as follows.
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= A..k_i ag"{ gV 48, 0—Sini+Sui;—Fiwgt
ij ij 2 ayk ij Jkt ij ij
1 9g;;
Cijk’ = E 8yk‘: +Fijk’ ,

. 1 1 agi/
Uity = Ai’j’k""’z'“ A[i’j']k—i 8it’ S_yi"]
1 agl./ . Agzx Ag[;/

o ax/: gh+ g ij/] +8ir _AyT/j

+2g18 184 (Sije—S ki + Shij) +F"i’*/g‘1’z/gj/ ’
1 8g,././ 1 } 1 agj']
Coyn="g g * g &VENBinT g B

"'_;‘ g[é'g;’](sijk_—sjki +Skij) —Fi,-k'g?/gifgi’ .

Thus we can have the metric connections, but the above
arbitrarinesses are left. In order to determine some useful metric
connections, we shall remember the cases of the Riemannian and
the Finslerian spaces. In the following sections we shall give the
effective ideas to determine an useful metric connection.

3. The metric connection without torsions.

The torsion tensor of the M is given from (2.3) by
i 3 1 i 1%
T.fk =Sh— 2~ C[jk’gk] .

Following the case of the Riemannian geometry, we assume that
the torsion temsors of the M and N vanish.
Then this assumption is expressed analytically by

(3.1) Zsijk_—F[ijk/gll:; = E[ijk’g:g )
and
(3.2 25w —Furingy = Eq i 8iry

where the E’s and F’s are the symmetric and skew-symmetric
parts of the C’ respectively as used in the last section, and the
E’s have been already determined by the metric tensors as the
equations (2.19). We shall show that the equations (3.1) and
(3.2) determine uniquely the quantities S’s and F’s, so that the
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metric connection without torsions is uniquely determined, according
to the above theorem.

In the first place, contracting (3.1) by gig}gi and making
use of (2.8), (2.21) and (2.23), we get

. (3. 3) 2Si/j/k’ +F[1/J/kgk’]

gl] Aykl]
= —Eqyingin+ P e+ Qu %) 8

where the P’s and Q’s are the right-hand sides of the equations
(2.21) and (2.23) respectively. Hence we obtain from (3.3) by
means of (3.2)

Ag.iy
(3. 4) 45;’_,’1;/ =&y Afk(’g + (P[i’j’k"'Q(;’j’k) gf’] .

It follows from the definitions of the P’s and @’s that

Qg )
ai‘; +glglhgh A

(Pyiye+Qu ) g = &80

Substituting from (2.4) and (2.7) and making use of (2.8’), then
the above equation is written in the form

gﬂ

= g”/g,,/ +gi’gj’gk’ A Sj’(k’i’)""si’j’k’
1 Ag[f’ 1 Ag_,/ 1 , Ag:/}

Egz, Nz ?gl(x 'yk/) o 8i¢; “ij, .

Accordingly we obtain
(Pt 1o+ Qi j74) 8iy

Aghs
=g, gu gin+2Sy 10— gy A;{fj}.

Substitution of the above into (3.4) gives finally the expression
of the g-torsin S;/;7 as follows:

(3.5 Si’j’k'—' 2 & g“ gin.
Similarly we have the expression of the g-torsion S, as

1 9gd
(3.5) Sie =5 & ag[,, gh.
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Thus the S;;, are determined. On the other hand, the quantities
F,;w are directly given from (3.1) by
(3.6 Fijw = (Ekiji’g;;_*'sijk_sjki+Skij) g -

Consequently we obtain the metric without torsions. The coeffi-
cients I”s of the connection are given by

1 9g: 9% 9%
oo il i el j
(3'7) [Jk’_‘ 2 g <axk+ ax" ax1>)

because of the equation (1.5) and symmetry of the /”s. The
coefficients C’s are expressible in the forms

1/9g,; ., %pne 9
(3.8) Ciw= §< aykjf +&di ‘aj;r gv—&u B

. 9g?, . ogt

—8u é%&’k’*‘gci,gj]k ‘agf—:) .
We have also the similar expressions for the coefficients /7, and
Cy ;i of the N.

4. The normal metric connection.

In this section we shall define more important class of metric
connections. In the Finsler space, E. Cartan gave the five geo-
metrical axioms [2], §7, and then determined uniquely the con-
nection, satisfying the axioms. The last axiom saies that the
components %} are symmetric, where the /"% are used to express
the absolute differential of a vector when its supporting element
enjoys a parallel displacement to itself. On the other hand, in
our case, the quantities Aj, are thought to correspond to the /'%;
in Finsler spaces, because these quantities are used to express
the absolute differential of a vector when the displacement of the
observing point is g-related to the one of the origin of the
vector. On account of these considerations we assume first that
the Aj, are symmetric, that is,

1. The g torsion Si, of the manifold M vanishes.

Since the g-torsion of the N is determined by (2.8) in the general
case, we have under the assumption 1

i 1 i’ Ag’/
4.1) Siry = o g AJ;’% .



106 Makoto Matsumoto
It follows from (2.4) and (2.7) that the components Aj, are
simply given by

Agy Agkl_Agjk :
Axt T Ay T A )

4.2) AL, — % gt <

Next, in order to determine the quantities F;;s, we consider
again the infinitesimal parallelograms #(P) in the M and #=’(€) in
the N, which were used in the [1], §2. If the sides QQ,=dy
and QQ, =3y of the #'(Q) are g-related to the sides PP,=dx and
PP/=38x of the m(P) respectively, then the #(P) and 7/(Q) are
called to be g-related. As was shown in the [1], (2.9), the
torsion AP associating with the =(P) with respect to the fixed
observing point @ is equal to AP=2T/,dx/dx*¢;. The expression
of the torsion AQ associating with the ='(Q) with respect to the
fixed observing point P is similarly given by AQ=2T ¥, dy’8y*e,.
Hence, if the =(P) and #'(Q) are g-related, then we have

AQ = 2T gV g¥dxidx* e, .

Now we give the second assumption.

1I. If the parallelograms =(P) and ='(Q) are g-related, the
torsion AP associating with the =(P) is carried into the torsion AQ
associating with the ='(Q) by the mapping g: Tp—T,.

Consequently the analytic expression of the assumption is given by
(4.3) T = Thwgirgigl,

which means that the torsion tensors of the M and N are g-
related. Making use of (2.3) and taking care of symmetry of
the Aj,, we get

(4. 4) T = ; g¥Chy, Tyw= ; gyCiry+Shw .

Then the above (4.3) are expressed in the form
4.3 CEjh'Ik] = (C[,-'u'lk’n“zs,-’i’k’) gg’gj’g’,;’ )
where putting Cj;k=CJ-,-k/g‘;/. Substitution (2.18) in (4.3') gives

(4.5) Fi;o—Fungi'gl gl
= Ei;m— (Erejrpry—28 ;1) gi'glgl,
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where we take E,,=E, g} and F,,=F,yg!. As well as in
the last section, we set the right-hand side of (2.21) by Py,
and substitute into (4.5) from (2.21’). Then the equations

4.5) 2F;c 0 = P+ Ejn— (Evre ey —2S yirw) gi'glgl

are obtained, where we put P.j,a:P,./j/kgﬁ’gj'. If we construct

1

from the above equations the forms 2(F; 0+ Fjopn—Fui ), and
make use of skew-symmetry of the F;, and P,,, and further
symmetry of the E,;, then the equations

2Fijk = Pijk—EkEijJ
1 i !k
+[Ek’ti’j’l_ 27 (SU/]./] k’+Si’k’j’)] gi’gj gil
are obtained. Therefore we get
/ i’
2F; ;v = Pi’j'kgjlg‘} g:"*‘gcilEﬂ w81 —Ewii 875
-é’ (Sciv 7w +Si7w ) Vel
We see easily Py,gi'gl gl/=P,,s, where the quantities P,; are
defined similar to the P,;,, namely

1 g’ 1 s
(4. 6) Pij// = —-_ 8 8534— Egu gh -Ai’j/k’ .

2

Consequently we obtain the final expressions of the quantities
F; ;v as follows:

1 i’ i’
4.7) Fiﬂ" = 9 (Pfjk’+g[i Ej]ki’g:/—El.-'i'[igﬁ)
1 S S il jl
—Z( i+ ;’k’,-’) g: 85 -

Hereon, a metric connection, which satisfies the assumptions
I and II, has been determined by the metric tensors, the g-tensors,
and their derivatives of the first degree. It follows from (4.1)
that the g-torsion S¥, of the N is generally not equal to zero.
However, it is conjectured that this circumstance will be unde-
sirable for the following discussions. Therefore we assume,
instead of the [

I'. Both of the g-torsions of the M and N vanish.
It is clear that the condition
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Agir  Agls

4.8 Y 28¥

s Ay AyS

is necessary and sufficient for the assumption I We shall call
the metric connection, satisfying the assumptions I’ and II, to be
normal. The coefficients /”s and C’s of the normal metric connec-
tion are given by the equations

W e () e
v (0 gy g S
+ ;]; gd' g %iii ,

(4.10) Cpypr = ”;* %i':' “% g (%;"—aégj],ﬁ g +gh agy:’f/ ) ,

and the similar equations for the 7'}, and C, .

5. Geodesics.

In the first place we shall introduce the notion of the g-
related curves. Let P(x,) and Q(y,) be any points of the M and
N respectively, and the C:[0, 1]—-M a curve in the M, issuing
from the point P(x,) =C(0). The equations of the C are given by
x'=ux'(t). We consider a system of the ordinal differential
equations

dx’
dt
for unknown functions y”'(f) of one variable ¢£. Then there exists
an unique set of solutions y¥(f), satisfying the initial conditions
9(0)=y»%. The curve y’=y"(t) as thus defined is called to be
g-related to the curve C in the M. In the last section of the [1],
we used already this notion, by means of which we defined the
path [1], (5.3). Since the metric of the N is g-related to the
one of the M, we see easily from (1.2) that the g-related curves
have the same line-elements. , ’

Now we consider the extremal C of the integral of the line-
element

dy’’ y
5.1 “(x,
(5.1) =& %)
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dxi d
| gt 0 G
where we suppose that the curve (y) in the N is g-related to the

one (x) in the M. If we put F= x/gq ‘Z: dcg , then it is well
known that the extremal C is given by the solution of a system

of the differential equations
oF d(aF>_0 ( a'x'>
ST o\s =Y, x
Oxi dt \Ox dt

aF:. = 1,(8,&{1_4_?&?% ayif) Pl
Oxi 2F\ Oxi Oy’ Oxi

We have

From (5.1) we have

oF _J (agw agu g > !
dxi 2F\ Oxi Oy i’ ’

Therefore the equations

OF _ 1 Agy
= b
Oxi oF Axi

are obtained. Similarly we get

oF _ 1

T — = o, yk

ax.‘. Fglkx ’

4 () 1 (A8 prir g ) - L F
at \B5i) = p\ag TEHEE )T p gy EaX

Consequently, if we take the arc-length s as the parameter, then
we have the equations of the extremal C as

d’xi dx’ dx*
5.2 22 AT
6-2) ds* *das ds
We call such an extremal the geodesic in the M.

If the connection under consideration is normal, then the
coefficients A%, are equal to the A}, from (4.2), so that the above
equations are written in the forms

d*xi dx’ dx* _
5. 2) YA Y —
( dss " ds ds
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By means of the [1], (5.3), we have

Theorem 1. [If the metric connection is normal, then the notion
of a geodesic coincides with the one of a path.

Let C and C’ be the g-related curves in the M and N respec-

tively, and the C be the geodesic. Since the line-elements of
these curves are equal, we have

%’l— = gi'(x, ¥) dxt ,
S

ds
axy’ <ag§’ +ag,’;' a_y"') dxi dx* o dxi
ds® oxk  oOy* Ox*/ ds ds ds*

Substituting from (5.2’) and making use of (5.1), we obtain
dy’ _Agl dxidxt | o d¥
ds? Ax* ds ds 'ods?
Y] i’ dxi dx* i’ dxi dx*
= (—g¥ Al gl A o A s
dy” dy¥
ds ds

- il i ok
= —A gl g8y

By means of the definition Ai’y,=A%,g%, we get finally

Thus the curve C’ is given as the solution of the above equa-
tions, and hence, the C’ is geodesic in the N. Therefore

Theorem 2. If the curves C' in the N is g-related to the
geodesic in the M, then C' is also the geodesic in the N.
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