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In the paper [1], we defined the notion o f Henselizations of
normal quasi-local rings and proved generalized Hensel lemma in
Henselian valuation r in g s , an d  in  th e  paper [2] we proved the
properties o f  Henselizations of norm al quasi-local rings and of
quasi-local integral domains.

In the present paper, we shall define the Henselization of an
arbitrary quasi-local rings and we shall prove that i f  a  Henselian
ring f) dominates a quasi-local ring o  then there exists one and
only one homomorphism from  the Henselization o f o  into b.
Besides some other properties of Henselizations, we shall discuss
unramifiedness. On the other hand, since the paper [2] contains
some errors, corrections to the paper will be given in  § 1.

§ 1. Corrections to  the paper [2].

(1) I n  4 ([2, Chap. H]), we stated 4 lemmes (Lemmas 4-7).
Among them, Lemma 6 is not correct (the others are correct).

What we should prove in  § 4 are really a s  follows :
L et o  be a norm al quasi-local ring w ith m ax im al ideal and

le t q  be a prim e  ideal o f  o . L e t  ô  b e  an  almost finite separable
normal extension o f  o  w ith Galois group G  and let f ) be a maximal
ideal o f  5. Let ô  b e  the decomposition ring of  a n d  s e t f,-.-=-13
0 * ,  i5-. W e denote by q* and S  an  arbitrary  prim e divisor o f  go*
and the complement of  q in o. Then, (i) q*r\ o =q, (ii) qp*e =  ee l * ,
(iii) o*s /qo* s  i s  N oetherian and (iv) go" is the intersection of all the
q*.

(i) was proved in  Lemma 4 (in a m ore general form) and the
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proof o f Lemma 4 is good. If  (ii) and (iii) are proved, then the
proof o f Lemma 7 becomes good and  (iv ) is proved. Thus we
shall prove (ii) an d  (iii). L et a  be an  element of 13 which is in
none of the other maximal ideals of i) and let f (x )  be the monic
polynomial over o which has a a s  a  ro o t. S e t ,1=o[a], m =13
Then Corollary 1 to Theorem 1 in  [2 ] shows that o*---= . 11. By
our choice o f a, f ( x )  modulo q *  has (a modulo q*) as a sim ple
ro o t. Hence o s / o s ,  which is a field , is  a  d irec t summand of
(oq /qty[x]/(f(x) modulo q) =o* s /qo*s . Since this is true for any
q*, we see that e s /qo*s  is  the direct sum o f  a  finite number of
fields, which proves (ii) and (iii).

REMARK. We see that o*/q* is separable over o/q by the above
proof.

(2) In § 6, III), we stated two lemmas and one corollary to
these lemmas. B ut these lemmas are  to be stated under the ad-
ditional condition that a  or b  in  Lemma A  o r  Lemma B respec-
tively is in  th e  decomposition r in g  o f  f). Under this additional
assumption, the proofs there work well. (The corollary should be
omitted).

(3) In order to derive Corollary 1 to Theorem 1 (in  [2]), we
used an  a lte rn ativ e  form  o f Lemma 2  in  [1 ]  without explicit
form ulation of the lemma. Therefore th e  corrected Lemma B
above (o r th e  a ltern ative  form o f Lemma 2 along th e  line of
Lemma B) should be stated at the end of § 1 or at the beginning
of §2.

(4) Among th e  words added in  proof (at th e  en d  o f [2]),
"Lemma 13" should be read a s  "lemmas stated in  the introduc-
tion".

§ 2. Henselizations of arbitrary quasi - local rings.

Let o be a quasi-local ring with maximal ideal in. We shall
define th e  H enseliza tion  o* o f  o a s  follows ;  the uniqueness will
be proved later (Theorem 3) :

Let R  be a normal quasi-local ring with an  ideal a  such that
Ria = o  and let R* be the Henselization of R .  Then 0*.---R* laR*
is the Henselization of o.

Until the uniqueness of o* will be proved, we shall fix R  so
that o*  is u n iq u e . We denote by Tt the maximal ideal of R.
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Theorem  1. o* is a  H enselian ring  dominating o.

P ro o f. Since R * is Henselian, 0 *  is Henselian, because any
homomorphic im age o f a  Henselian ring is Henselian. Since R*
dominates R, in  order to prove that 0* dominates o, it is sufficient
to prove that al?* r\ R -= -a . Let b  be an  arbitrary element of R
which is in  aR* r \ R .  Let R ' be the integral closure o f R  in  R*
and set in' =VI?* [\R'. Then  there are elements co , • , c„ of R'
and elements al , •••, a„ of a such that (i) c 0 0 ni' and (ii) co b =Ec•a i .
Let S  be a local ring dominated by R  such that (i) S is of finitely
generated type" over the prime integral domain of R  and (ii) S
contains b  and all the a i  an d  (iii) a ll the c i  a r e  integral over S.
By the finiteness of derived normal rings of local integral domains
of finitely generated type (see, for instance [5 ]) and b y  the fact
each c i  i s  in  a  finite quasi-decompositional extension of R  with
characteristic prime contained in  in', we can extend S preserving
the conditions stated above so that S is normal and that c i /co are in
the Henselization S* of S dominated by R * .  Then b G (a f\S)S* r\S.
Since S  is a norm al Noetherian local ring, S is a dense subspace
of S *  and  (a nS )S *  A S = a  which shows that b E a. Thus
Theorem 1 is proved.

We have proved that if  h is an ideal of R , then bR*
If we apply this fact to the case where b contains a, we have

Corollary 1 . I f  b is an  ideal o f  o  an d  if  o* is the  Henseliza-
tion  o f  o , then bo* r \ o ,  b.

We apply Corollary 1 to the case w here o  is  a n  integral
domain and b is a principal ideal bo (b E o). Let K  be the field of
quotients of o. Then K  can be imbedded in the total quotient
ring of o* by Theorem 4 in  [ 2 ] .  K n o *  contains o  obviously.
I f  c I b  ( b ,  c o )  is  in  If r\ o* , then co* b o*  and c o cZ bo b y  the
above observation, hence c lb  E o.

The same observation can be applied even if  o  is not an  in-
tegral dem ain. Namely, we take K  to be the total quotient ring
of o, proving

Proposition 1. I f  a  is not a z ero  divisor in  o ,  then a  is not
a z ero  divisor in 0*.

1 )  We say that a  rin g  R  is  o f  finitely generated type over another ring S  i f  R
is a  rin g  o f quotients o f a  finitely generated ring over S.



96 Masayoshi Nagata

Pro o f . Assume th a t  ab 0  (b E 0
*

). A s  in  th e  proof of
Theorem 1, w e can  red u ce  to  the case where R  i s  o f finitely
generated type over the prime in tegral domain, then R  is Noe-
therian and therefore b = O.

Thus we have
C o ro lla ry  2. I f  K  i s  th e  to tal q u o tie n t  rin g  o f  o , then

K r\o* , o. In particular, if  0* is  a norm al ring, then o is normal.
The technique we used for the proofs o f Theorem 1 and Pro-

position 1 gives m any resu lts on correspondence between ideals
of o and of Henselization o* (under certain finiteness condition
depending on the assertion), as in the case of Noetherian ring and
its completion.

For example,
Proposition 2. I f  b is  an ideal in  o  and  if  b  E  o , then bo* :

bo* (b : b)o*
Pro o f . W e m ay assume that b = 0, because, by our definition,

o*/bo* i s  the Henselization of o/b. Then we can reduce to the
Noetherian case and prove the assertion.

REMARK. Proposition 1 can  be ob tained  a s  a  corollary to
Proposition 2.

The following can be obtained as a corollary to Proposition 1:
Proposition  3 . A  m ax im al prim e div isor of  z ero in  o* lies

over that in o.
REMARK. Adaptation of the case of completions to the case of

Henselizations of Noetherian local rings is rather trivial because
of Theorem 5 which will be stated later.

T h eo rem  2. If  a Henselian ring 1 dominates o, then there exists
one and only one o-homonzorphism (f) f rom  the Henselization 0* of o
into b."

Pro o f . Let F  b e  the set of pairs (S, 0-) of subrings S  and
homomorphisms 0- su ch  th a t (1) S  i s  a quasi-local normal ring
dominated by R * and containing R  and (2) 0- is  a homomorphism
from S  into w h o s e  restriction on R  coincides with the natural
homomorphism (j), from R  onto o. L e t F ' b e  the subset o f  F

2 )  W e shall understand here that an 0-homomorphism from a ring containing 0
into another ring containing 0  is  a ring homomorphism whose restriction on 0  i s  the
identity.
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defined  by F' = {(S, 0-) ; (S, cr) E F  and if (S, o- ') E F  then 0, 02 1.
Introducing partial order in F  as usual, w e see that F ' i s  an in-
ductive set. L e t (S*, a-*

) b e  a maximal member of F ' .  Assume
that S *  R * . T h e n  S* is not Henselian, therefore there exists a
monic polynomial f(x )= x r+ a i x '+  ••• +a, which is irreducible over
S* such  that a, E S*, a ,  E s.UtR* f\S*, a , , 09NR* r\S*. Since f) is
Henselian, f) has a root a o f 0-* ( f(x)) such that a is  in the maximal
id ea l n  o f  f), hence 0-* ( f(x)) =  (x  a )g*(x ) such  that g*(x) Ef)[x]
and g * (0 ) u . B y  the existense o f d ,  w e can  extend  0-* to the
homomorphism 0-*' from S*' =S*[a] ( m e n s ,,L ai) ( a  being the root
of f (x )  w hich  is in  9.71/?*) so  that 0-*'(a) .  a. Thus (S*', 6-*') C F.
B y the maximality o f (S*, 0-*) in F ', there is a  member (S*', 0-**)
of F such that 0-*'-f. 0-**. Since (S*

, a
-*

) E F ', the restriction of 0-**
on S* is equal to 0-*• T h ere fo re  0-**(a)± a. Since a ETU?* r\S*' ,
0-**(a) must b e  in the maximal id ea l o f  t), hence g(a-**(a)) is  a
unit in b. Since f (a )= O , it fo llow s that 0-**(a)—a = 0 , which is
contradiction. Thus S * = R * .  Now the uniqueness o f 0-* shows
in particular the assertion.

C o r o l la r y .  I f  (1,0 i s  a  homomorphism f rom  a quasi-local ring o
into a  Henselian rin g  f), then there ex ists one and only  one homo-
morphism (I) from the  Henselization o f  o  in to  f), prov ided that the
restriction of  (I) on o coincides with (1)0 .

Now we prove the uniqueness of the Henselization. Let 0*' be
the Henselization of o defined by another R .  Applying Theorem 2,
we see that there are o-homomorphisms (/), (f)' from o* into o*' and
from o* ' into o* respectively. Consider the product (P'•(/). This
is an o-homomorphism from o* into o* itself, hence (f)'•(/) is identity
by Theorem 2. Sim ilarly, 43.(11 is identity. Therefore o* and 0*'
is isom orphic. T hus w e have proved, by virtue o f Theorem 2,
the following

T h e o re m  3. I f  0* and  ov are Henselizations of  a given quasi-
local rin g  o, then 0* an d  o*' are  canonically  isomorphic. Further-
m ore, any  o-homomorphism f ro m  o* into o l" i s  th e  canonical iso-
morphism.

As a corollary to Theorem 2, w e have
T h e o re m  4 .  L e t o be a quasi-local integral dom ain such that

th e  derived norm al ring  o f  o is again q u as i- lo c al. I f  a Henselian
ring  fi dominates o, then f) contains th e  Henselization 0* o f  o  (up
to isomorphism).
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Pro o f . Let 41 be the o-homomophism from o* into b and let
a* be the kernel o f (P. By Theorem  6 in  [2 ], o* is an integral
domain. Therefore, if a* ==  then  a*A  o *0, which is not the
case. Therefore a*--=0 and q) is an isomorphism.

We shall remark the following

Theorem  5. I f  o  is  a local ring, then the Henselization 0* of
o is  a local ring  and  o  is  a dense subspace of 0*. I f  o  i s  a  Noe-
therian local ring, then o* is also Noetherian.

Pro o f . Using R  and R * as before, let F  be the set of pairs
(S, 0-) as in the proof o f Theorem 2 in the case where I5=0*. F'
be the subset o f F  consisting o f all pairs (S, 0-) such that o-(S) is
a local ring containing o as a dense subspace. Then F ' is an in-
ductive set. L e t  (S*, 0-*) be a maximal member in F ' .  If S *  R * ,
then by the proof o f Theorem 1 in [2] (the first step), we have
a contradiction, which proves the first half of the assertion. 'I he
last half of the assertion is proved by the same way as the proof
o f Theorem 3 in [2].

We say that a ring R  is o f f inite ty pe over another ring S
i f  R  is  a ring of quotients of a ring which is a finite module
over S .  Then the following is easily seen :

Theorem  6. I f  a q u asi- lo c al rin g  o ' i s  o f  f in ite  ty pe  over
another quasi-local ring o dom inated by  o', then the Henselization
o'* is  a f inite module over the image of the Henselization of o under
the canonical homomorphism given by the corollary to Theorem 2.

(The uniqueness of homomorphisms (Corollary to Theorem 2)
is the key of the proof.)

§ 3. Unramifiedness.

There are many notions which are called unramifiedness. We
shall consider two o f  them in the case of finite type extensions.

Let o and o ' be quasi-local rings with maximal ideals m and
m' respectively. Assume that o' dominates o, and is o f finite type
over o.

Though we shall restrict ourselves to the case where o ' is of
finite type over o, the conditions we shall state below can be con-
sidered in a more general cases.

Each of the following (U1), (U2) gives unramifiedness and (U2)
is obviously stronger than (U1) :
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o' is unramified over o if and only if :
(U1) m' = mo' and o'/m' is separable over o/m, or
(U2) The Henselization of o' is a (separable) inertia extension

of the Henselization of o.
One convenient property of the unramifiedness in  th e  sense

of (U1) lie s  in  th e  validity of the following criterion, which is
called Zariski's criterion of unramifiedness :

Theorem 7. (Under the  assum ption that o ' i s  o f  f inite type
over o),

(1) I f  o' is  a ring of  quotients of  o [u ], w ith an element u  of
o' which is a  root of  a polynomial f (x ) over o such that denoting by
f ( x )  the derivative of  f(x), , then o ' is  unramified over o.

(2) Conversely, assume that o' is  unramified over o and let o"
be a finitely generated subring of  o' over o such that (i) o ' is  a ring
of  quotients of  o "  an d  (ii) o "  is integral ov er o. L e t ni„ •••,
be the maximal ideals of  o", where 01'1'4 =  o '.  L e t u  be an  element of
o " such that (i) u  modulo in, generates the residue class f ield o f  o'
over that o f  o and (ii) denoting by f i (x ) a  monic polynomial over o
such that f i (x ) modulo m is  the irreducible monic polynom ial for u
modulo mi ov er Dim , f , (x )  is not congruent to f f (x )  ( i+ 1 )  modulo
ni (i.e., .fi(u) in) . Then o ' is  a ring of  quotients of  o [u ] and  (ii)
u i s  a  root o f  a  monic polynomial f (x )  over o such that, f o r some
natural num bers n„ ••• , n r , f  —  f,fp  f ar , E  I l to [x ] ,  hence in  parti-
cular, if  f ' (x )  is  the derivative of f (x ), then f '(u )  is not in  in.

For the proof and references, see [6].
Corollary. I f  o ' is  unramified over o in  the sense of  (U1) and

if  p i  i s  a prim e ideal o f  o', then  o , is  unramified over ow  n o )  in
the sense o f  (U1).

Now we shall consider some cases where these two notions
coincide.

Theorem 8 .  A ssume that the derived normal ring of  o is quasi-
local. T h e n  o ' i s  unramified in  the sense o f  (U1) (if  and) only if
i t  is  unramified in  the sense o f  (U2).

In  this case, i f  o is  norm al, then o' is also normal and for any
prim e ideal p' o f  o', oil , is  unramified over o w  n o ) .

Pro o f . By Theorem 4, the Henselization o'* of o' contains the
Henselization 0* of o and o'* is a  finite o*-module by Theorem 6.
Since o'* is Henselian, there exists an inertia extension o** of o*
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whose residue class field coincides with that o f o'*. Therefore,
denoting by ni** the maximal ideal of o**, we have o'* ,  o**+ irt**o'*,
which implies o'* o * *  by Krull-Azumaya's lemma (Corollary to
Lemma 1 in [ 2 ] ) .  Thus unramifiedness o f o' in the sense of (U1)
implies that o f  (U2). (The converse is  trivial). Now we assume
that o is normal. The last assertion is a consequence of Corollary
to Theorem 7  and what we proved above. The normality o f o'
can be proved by Corollary 2  to Theorem 1.

Now we shall show how the finiteness assumption of o ' over
o is important in Theorem 8:

REMARK 1. Even i f  we assume that o is  normal, if we only
assume that, o' is a ring of quotients of an almost finite separable
integral extension of o instead o f assuming to be o f  finite type,
Theorem 8 becomes false. (Observe that in Theorem 8, we did not
assume the separability, separability is a consequence of Theorem
7).

This can be seen easily considering suitable non-discrete
valuation rings of rank 1.

REMARK 2. Even i f  we assume that o is a discrete valuation
ring o f rank 1 , i f  we assume only that o ' is a ring of quotients
of an  almost finite integral extension of o  instead of assuming
to be o f finite type, then Theorem 8  becomes false.

For, there exists a  discrete valuation ring o  such that the
completion i o f o  is an extension of degree p ,  p  being the charac-
teristic o f o, as was given in [1 , Appendix (II)].

By the way, we shall give a simple example, which shows
that the condition on o  in Theorem 8  is  important, even i f  we
assume that o  is integral domain and o ' is separable over o:

Let P  be an ordinary double point of an algebraic curve C
and let P ' be a point of the derived normal variety o f C which
corresponds to P .  Let o and o' be local rings of P  and P ' (over
a field h over which P and P ' are rational). Then o ' is unramified
over o in the sense o f (U 1 ). But, since the Henselization o f o  is
not an  integral domain and since the Henselization o f o ' is  a
valuation ring, o ' is not unramified in the sense o f (U2).

Theorem 9 .  A ssum e t h a t  o  i s  a lo c al rin g  an d  th at o ' is
unramified over o in the sense of  (U 1 ). Then o' is unram if ied in the
sense o f  (U2) i f  an d  only i f  o is  a  subspace o f  o'.



O n the theory  of  Henselian rings, III 101

Pro o f . Assume that o is  a subspace o f  o '.  Then the comple-
tion o f o ' contains the completion of o. Therefore we see that
the Henselization of o ' contains the Henselization of o. Therefore
we prove the assertion b y  the same proof as in Theorem 8.

Theorem 1 0 .  A ssum e th at o  i s  a  Noetherian local ring  and
that o ' is  unramified over o in  the  sense o f  (U 1 ).  A ssume further-
more that, f o r any prim e divisor p  of  z ero o f  o an d  f o r any f inite
integral ex tension  o f  0/p, every m ax im al ideal o f  has rank  equal
to rank  o. Then o ' is  unrami fied in  the  sense o f  (U2) i f  an d  only
if  f or any , o r equivalently f o r  a  suitable, prim ary  ideal q  belong-
ing to ni, the multiplicity  e(q) is equal to the  multiplicity  e(cio').

Pro o f . Let 0* and o '* be the Henselizations of o and o' re-
sepctively and let (p b e  the 0-homomorphism from  o *  in to  o'*.
Then, by the proof o f  Theorem 8, o '* is  an inertia extension of
q)(0*), hence e(q)(q0*)) , e(clo'*) b y  the extension formula for multi-
plicities (see [3 ] ) .  Since o' is a dense subspace of o'*, e(clo') = e(cio'*).
B y the assumption on o, zero ideal has no imbedded prime divisor
in o, hence in o* as is easily seen by virtue o f Proposition 3, and
fo r  a n y  prime div isor p *  o f z e ro  in  o * , r a n k  0*/p*=--rank 0.
T herefo re , b y  the add itiv ity  o f m ultiplicities (Corollary 1  to
Theorem 9 in  [3 ]), w e see that e(q) =e(4)(go*)) if and only if the
kernel of (/) is zero, which proves the assertion.

R E M A R K . I f  w e om it the assum ption on prime divisors of
zero of o, then  even i f  w e assume that o is  an integral domain,
Theorem 10 becomes false.

W e can get such an example by an example in [4].

Harvard University and Kyoto University
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