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Here we shall use the following notations. G,=m,(&) is the
k-th stable homotopy group of the sphere and =,(&;p) is its
p-primary component. «oB€G,,, indicates the composition of
aeG, and B€G,. The toric construction

{4, B, v} €Ghipsra1/(@0Ghypi +9°G k1)

will be defined if ¢ €G,, B€G, and v€G, satisfy the condition
aof3=Foy=0, This is different only in sign to one given in
Chapter 5 of [4]. Denote by «, €G,,., a generator of =,, (& ;p)
=Z, and choose elements «, of Gy,_,,-, inductively such that
a,e{a,_,, pe, .}, Denote by B, 1<s<p, a generator of
Tosprs-vip-n-0& ; p)=Z,, and denote by Bi the r-fold iterated
composition B0 .- o3, of B,. There exist elements «. » 1=7r<p,
such that pa; =«,, for 1=r<p—1 and pa',_,,,=q, ,,+x,37""
for some integer x. Then these elements and their compositions
generate the p-components =,(& ;p) of the stable groups G, for
R<2p(p—1)-—3.

Theorem 4.15. (c¢f. Theorem 3.13 of [6]).

Torpip-0-1(& ;D) = Zp? = {a;,} for 1=sr<p-1,

=Zp+Z,= {ay_,,} +{aeB7y  for v = p—1,

-85 p) = Z, = {a,} Jor 1=<t<p* and t==0 (mod p),

ﬂz(rp+s)(p—l)—2(r—s)(® b)) = Zp = {B17 B} Sfor 0=s<r=p-1,
Zotrprsivp-n-zr-o-1(© 5 p) = Z, = {@0B17" B}

Jor 0=s<r<p—1 and r—s:p—1,
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71'2,,2(1,-13—21,(@ ;D) = Zp = {81},
(S ;p) =0 otherwise for k< 2p*(p—1)—3,
Top2p-1-3(8 5 p) = {@oBi} = Z, or 0.

Concerning the fact 870, we have

Corollary 4.12. For an arbitrary positive integer v, there ex-
ists an element B of G, for some k such that the iterated r-fold
composition 8" =Bo --- o3 does not vanish.

Many other compositions and toric constructions for the above
generators are computed after giving several properties of the toric
construction. As an application, we calculate stable homotopy
groups of some elementary complexes in the last §.

The results of this section IV will be powerful in computation
of unstable homotopy groups of spheres. See forthcoming section
V.

Notations and results, such as (3. 10), Theorem 3. 13, etc., refer
to the preceding sections [6].

§ Toric constructions.

A suspension SX of a space X, with respect to a base point
%,, means the image of an identification

dy: Xx[—1,1] —> SX

which shrinks Xx(—1)ux,x[—1, 1]vXx (1) to a single point. In
particular, the unit (z+1)-sphere S™*' is a suspension of S” under
the identification

d,:S"x[-1,1] — S™"

of [7] (%=(—1,0,--,0)=¢,). A suspension Ef:SX—SY of a
mapping f: (X, x,)— (Y, »,) is defined by the formula

Ef(dx(x, 1)) = dy(f(x), 1), xeX, te[-1,1].

If « is the homotopy class of the above mapping f, then F«
denotes the homotopy class of Ef. If « and @ are the classes of
mappings f:(Z, z)—(Y,y,) and g:(Y,y)— (X, x,) respectively,
then Boa denotes the class of the composition gof: (Z, z,) — (X, x,).

A null-homotopy f,:(X, x,)— (Y, y) of f means a homotopy
such that f,=f and f,(X)=y,. For two null-homotopies f, and
g, :(S”, e)— (X, x,) of fo=g,, we define a difference element
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o(fy, &) €m, . (X)
by the class of the mapping %:(S"", ¢,)— (X, x,) given by

Sy, 0==t<1, yeSs”,

Wd,(y, 1)) = {g_;(y), —1<t<0, yeS™.

The following properties of d(f,, g,) are verified easily.

4.1). 1. d(f,, g)+d(g, h)=0f,, k), and in  particular,
(fy, f)=0 and d(g,, f)=—0(f:, &).

il). Let f,, &, be homotopies which depend continuously on
the both of t and s. Assume that f,,=g,, and f, (S™)
=g1.s(Sn):xo’ then b(ft.o» gt.o):b(ft.1, gt.l) .

iii). Let « and o € m,(S?) be the homotopy classes of map-
pings h: (X, x)—>(Y,y) and I :(S7, e)—(S?, ¢,) re-
spectively. Then bd(hof,, hog,)=aod(f,, g,)=hd{(f;, &)
and d(fol, giol'y=2(f,, g,)oE .

iv). For an arbitrary null-homotopy f, and an arbitrary
element o of =, (X), there exists a null-homotopy g, of
fo Such that a=»d(f,, g,).

v). Ed(f;, g)=—D0d(Ef,, Eg,).

Consider the homotopy classes «, 8 and y of mappings
a: (Y, y)—(X %), b:(S7, ¢)—>(Y, y) and c:(S?, ¢)—(S?, ¢,) re-
spectively.

Assume that

(4. 2). o3 =0 and PBoy=0.

Then there exist null-homotopies A,:(S?, e¢,)— (X, x,) and
B, :(S?, ¢)— (Y, ) of acb and boc respectively. Denote by

{“7 /3’ ry} < ”pJ.-l(X)
the set of all d(aoB,, A,oc) for arbitrary choices of «, b, ¢, A, and

B,. By the definition, {«, 3, v} depends only on «, 8 and 7.

Lemma 4.1. {«, 3, v} is a coset of the subgroup aom, (Y)
+ 7y (X)oEy in 7, (X).

pH1

Proof. Let a,, b, and ¢, be homotopies from a¢,=a, b,=b and
¢,=c, then there are null-homotopies A,;, and B,, of a,b, and
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b,oc, which depend continuously on s. Then it follows from ii)
of (4.1) that any element of {«, 3, vy} has a form d(a°B,, A,oc)
for fixed representatives «, b6 and c¢. Next for null-homotopies
Ay A/ of aob and for B,, B,/ of boc, it follows from (4.71)

d(@oB,;, A,oc)—Dbd(acB,, A/oc) = d(acB,, acB,)+d(A/oc, A,oc)
= aod(B,, B/)+d(A4/,A;)Ey.

Thus the difference of two elements of {«, 8, y} belongs to the
subgroup @ow,, (Y)+7,,,(X)oEy. Conversely any element of the
subgroup has a form aod(B,, B/)+d(A/, A))oEy by iv) of (4.1).
Therefore {@, 8,7} is a coset of the subgroup «oz,,,(Y)
+ 7,4, (X)°Ey. q.e.d.

Now we call

{C(, 18; 7} € 7rp+1(X)/(a°7tp+1(Y)+7rq+1(X)°E'Y)

the toric construction of «, B and v.

The following properties are verified without difficulties.
(4' 3)' i)- {a) By r71} j: {a) 6) 72} > {“’ B) (Yl:tr)lz} ’
{a) Bly ‘Y}i{a, /32) (Y}:{a) Bl:tﬂzv 7} lf V:Er)‘-
{al; B’ 'Y} :t {aZ’ 18) rY} >{alia2) /8; (Y}
if B=EB, y=Ev, Y=5".

ii). {a, B, vod} D{«, B, y}-ES,
{, Boy, 8} D{a, B, yod},
{C(o,@, Y 8}< {“> 180')'» 8} ’
ao{B, 4, 6} C {aof, v, 8} .

iii). _E{a, B, '7} < {Ea: E,B, E'Y} .

For a mapping a: (Y, y)— (X, x,), we construct a space
A
XY

identifying X and Y x[O, 1] by the relations x,=(y,, )=(y, 1),
tel[0,1], y€Y, and a(y)=(y, 0). Since the homotopy type of the
space X\/lc“ depends on the homotopy class @ of @, we denote
the space by

A
X\J Y.
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If Y=S", then we write X\jf’ by X\Je'*' as usual. If

Bemn,(Y) is the class of a mapping b:(S?, ¢)—(Y, »,) satisfying
(4. 2), then we denote by

Ber,(X\) ¥)

the class of the mapping &:S7"'— X\/ /1\/ given by b(d,(z, 1))
=(b(2), t) for 0<¢t<1 and E(dq(z, ))=A_,(2) for —1<¢t<0, where

A, is a null-homotopy of a@ob. B depends not only on B but on
A,. The formula p(y, t)=d(y, 2t—1) defines a shrinking map

p:(X\J ¥, X) —> (SY, ).

Proposition 4. 2. i).~ Let y€m,(S?) be an element satisfying
(4. 2), then the set of all BoE«y coincides with the image iyx{c, B3, v},

where ix: 7, (X)—>m,(X\J l/>') is the injection homomorphism.
ii). Let Yem,, (Y\Je™) be defined as above. Let @:Y\Je*"
3 ]

— X be an extension of ac . Then the set of all G+(—9) coincides
with {«, B, y}. Remark that p«(¥)=Evy, and if Y is (p—q+1)-
connected, p+1_">q, then this characterizes 9.

Proof. Define a homotopy H,:(S?*, ¢,)—(X\J IA/, x,) by

(Bst(x)) (]-‘S)t)) Ogt_g_l,

Hyd,(x, 1)) = {A_,(c(x)), —-1<t<0.

Then H,=boEc represents 50E7 and H, represents ixd(aoB,, A,oc)
of ix{«, B, v}, thus we have i). It follows directly from the de-
finition of the mappings ¢ and @ that G«(7)=d(A,oc, acB,)= —d(a-B,,
Aoc) € —{a, B, v}. The last assertion follows from Theorem II
of [2]. q.e.d.

It is seen that we may take ii) as a definition of the toric
construction.

Next we shall prove

Theorem 4.3. i). Let «, 8 and v be elements of (4.2) and
assume that 4yo8=0 for an element 6 € = (S?). Then

ao{B, 4, 8} = {a, B, y}o(—E9).
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ii). Further assume that 6:6=0 for an element &€ (S") and
that ao{f, 4, 8} and {B,«, S}oEE contain the zero elements. Then
there exist Ne{a, B, v}, p€{B, v, 6} and ve{y, 8, & such that
NoEb=cou=0, Bov=wuoEE=0 and the sum

A, ES, E& +{«a, u, EE} + {a, B, v}

contains the zero element.
It is convenient to remember the result ii) as follows :

{{a, B, v}, ES, E€t+{a, {B, v, 8}, E&} +{a, B, {7, 5, &}} =0.

Proof. i). Let a, b, ¢ and d be representatives of «, 5, v and
6 respectively and let A,, B, and C, be null-homotopies of aob, boc
and cod respectively. By 1), ii) and iii) of (4.1),

aod(boC,, B,od) = d(aoboC,, aoB,od) = d(A;oC,, aoB,od)
= MA,;°C,, aoB,od) = d(A,°C,,, aoB,od)
= 0(A,ocod, aoB,od) = d(A,oc, aoB,)oES
— —d(aoB,, A,oc)oES .

Thus a0 {B, v, 6} and {«, B, y}o(—EJ) have a common element.
Since @o{B, v, 8} and {«, B, y}o(—ES) are cosets of the same
subgroup  @o(Bo7,.,(SY) +7,,(Y)oEd)=tom . (¥ )o ES= (ctom,,,(Y)
+7,.(X)oEy)oES, then it follows the equality of i).

ii). From the assumption, there are elements g, and g,
of {8, v, 8} such that oy, =0and p,0EE=0. By Lemma 4.1, s, — s,
=Pof+&ES for some {€=,.(S?) and £€x,.(Y). By setting
p=p,—EES=p,+ B, we have that cop=poEE=O.

Let a,b,¢,d and ¢ be representatives of «, B,4,8 and €&
respectively and let A, and D, be null-homotopies of gob and doe
respectively. By Lemma 4.1, there are null-homotopies B, and
C, of boc and cod such that p=0(b-C,, B,od). Denote that
A=D0d(aoB,, A;,oc) and v=D0d(coD,, C,oe), then AoEé=—caop=0 and
Bov=—puoEE=0 by the above proof of i).

A, » and v are represented by mappings L, M and N, respec-
tively, given by

a(B,(x)), 0=i<1,
A_(c(x)), —1=t=0,
c(D,(2)), 0=i<d,
C_,(e(2)), —1=t<0.

b(Cy),  0=t<l1,

L{d (x, )=
(@5 0= B_(d(»), —1=t=<0,

M5, 1)~

N, (2 )= {
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Since M ES=0 and Bov=0, there exist null-homotopies @, :S""'—X
of LoEd and R, : S""—Y of boN. Define mappings U, W:S"*—X
by

L(ED,(x)), 0<s<1,

Q_(Ee(x)), —1=s=0,

a(R(x)), 0=s<1,

A_(Nx), —-1=s=0,

Uldyial, ) =
wd,,. (x, s)) = {

then U and W represent b®(LoED,, Q.o Ee)€ {\, ES, E€ and
daoR,, A,oN)e€ {a, 3, v} respectively.

For z€S8”, 0<r<1 and 0<0<27, we use the following
notation :

(2,7,0)=d,,..(d,z rcos 8/Max (|cos 8|, |sin8])),
7 sin /Max (|cos 0|, |sin 0])).

By deformations of 6, U and W are homotopic to mappings U’
and W’, respectively, given by

Uz, 7, 9), 0=s0<~=/2,

Ulz, 7, 0) = { Uz, 7, 0/2+7/4), =/2<60<37/2,
Uz, r, 20—27) , /2L 60 < 27,

. S Wiz, 7, (0)2—7/4), —=|2<0<=/2,

Wiz, r, 0) = | Wiz, 7, 20—m), T[2<0<m,
'\ Wiz, r, 0), T<0<37/2.

Then U’ and W’ have the following properties. For =/2<6<
37 /2, Uz, v, 0)=W'(z, 7, z—0), and thus a mapping V:S5""?—-X
given by the formula

U,(Z,r,()), #ﬂ/2§0§7/2>

0) =
V(zy 7, ) {W/(Z, r’ 0)’ ﬂ/zgeg?ﬂr/z)

represents the sum d(LoED,, Q,oEe)+d(acR,, A,oN). Further, it
is verified directly that for some homotopies S,:S™*'—Y and
T,:5""'"—> X,

f a(S,(d,(z, 1)), 0=s=<1,
V(de'l(dm(z» t)) S)) = a(M(d”(e(Z), _t))) S = 0 ’
( T (Eeld,(2 1)), —1=s=0.
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This indicates that V represents an element d(aoS,, T,oEe) of
{a, —p, E€} = —{a, s, E€}. Consequently

0 = 2(LoED,, Q,0Ee)—d(acS,, T,0Fe)+d(aR,, A,oN)
€ {\, ES, E&} +{«a, p, EE} + {«, B, v},

and ii) is proved. g.e.d.

§ Stable toric construction.

Denote by G,==,S) the stable homotopy group of the
sphere, with respect to the suspension homomorphisms E : 7., .(S)
- T (SY). G, may be identified with =y, (SY) for large
N >k+1. From the relation E(¢/o3)=Ea’oEf’, the composition
o3 € Gyy, is defined naturally for @ €G,, 8 €G,, and this operation
o is bilinear. The anti-commutativity Boa=(—1)**a-B holds [1].
Thus @oG,=Goa.

Let ¢ €G,, B€G, and y€G, satisfy (4.2). Let &’ €my,,(SV),
B €y SV and & €Emy e (SNTHE) be representatives of
«, B and 4. For sufficiently large N, the elements «’, 8/ and o
satisfy (4.2), and the toric construction {«’, B, ¢’} €y, prrr10(SY)/
(o y i jitr 11 SN+ Ty (SV)oEy’) is defined. Then the stable
toric construction

{a, B, ’Y} € Gh+lz+1+1/(“°Gk+1+1+’)’°Gh+k+1)

is defined as a limit of (—1)"'{«’, &, ¢’} in virtue of iii) of (4. 3).
The properties of i), ii) of (4.3) are valid for the stable case,

by omitting the conditions in i) and the letter E in the first in-

clusion of ii) and taking the sign (—1)* in the last of ii).
Theorem 4. 3 is translated to the following

(4.4). Q). @o{B,q, 8} =(-1)"""a, 3, y}od.
ii)' {{a’ lB, ry}’ 8) 8} +(;1)h{a’ {B’ FY, 8}’ E}
+(_1)h+k{ay B> {7) 8’ 8}}—30 .

Next we shall prove the following anti-commutativity and
Jacobi identity for stable toric constructions.

Theorem 4.4. i). {a, B, y} =(—1)y*+k+r+1{y B a}.

if). (—DM{a, B, v} +(—1)¥{B, 4, a} +(—1)*{y, a, B}=0 mod
don+1+1+BOGlz+l+l+7°Gh+k+1'
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Denote by :€G, the fundamental class, the class of the
identity of S¥.

Assume that «¢€G, has an order » >0. Then ra=dor:
=rwa=0, and the toric construction {r: «, r:} €G,,,/rG,,, 1is
defined. By i) of the above theorem, {r:, «, 7} =—{r¢, @, ¢} and
thus 2{r¢, «, ¢} =0 mod 7G,.,. We have

Corollary 4.5. If ra=0 for « €G, and for an odd integer 7,
then

{rl’; a’ V[,} = rGll-H .

According to [5], we use the following notations and properties
of reduced joins. Denote by aXb:(S?*#' 7% ¢)—(S?77, ¢,) the
reduced join of mappings a:(S?**, ¢)—(S?, ¢,) and b:(S77*, ¢,)
—(S7, e) and by o, ,:(S?*7, e)—(S?*?, ¢) a homeomorphism of
degree (—1)?? such that

bXa = o,,@Xb)ocgrp, and o, , =0, o
The following relation holds:

(@X b)o(@ Xb') = (aca’) X (bol') .

Denote by 7, the identity of S?, then aXi,=FE%a is the g-fold
iterated suspension of a. Let «’ be the class of @, then aXi, re-
presents E?«’ and i, X a= oyq0(@¥X 1500y, , ., Tepresents (—1 YVE,
Let 8 be the class of b, then the reduced join «’ X3 is the class
of aXb. From the equalities

aXb = (aci,. ;) X (i;0h) = (@Xig)o(i 1y X D)
= (1,00) X (boi,1) = (i, X b)ola Xig),
we have the equality
KB = (—1) PRI/ cEPT R = (—1)P*E? o ET+r
and thus the anti-commutativity of the composition in the stable

groups.
Now Theorem 4.4 is a direct consequence of the following

Proposition 4.6. 1i). Assume that « €=, (S?), B’ €7,.4(S9)
and o €7, ,(S") satisfy the conditions &’ X[3'=0 and B X =0,
then {EG+7 a/, Ep+h+rB’, Ep+h+q+k")'/} and (_ 1)hk+kl+lh"1{Ep+q ’,
Errii g Brkitriq’y have a common element.
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ii). Further assume that o’ KXy =0, then (—1)M{E"",
qu' h+7 /8/, Ep+h+q H kfyz} +(__1)lzh{Ep+7B/’ E[H-G-F-k,.yl Ed+k1‘ r+1a/} +(__1)1k
{E?t*9qy/, E?*" i/, E?TF "B} contains the zero element.

Proof. 1). Let a, b and c be representatives of «’, 8 and
respectively, and let A, and B, be null-homotopies of aXb and
bX c respectively. Since aXi,X1i,, i,.,XbXi, and i,., X1, Xc
represent E7* o, (—1)@+h kpothsr B and (—1)@th+ate 1Ep+h+q+kry/
respectively and since A,X1i, and 7,,,X B, are null-homotopies of
(@Xi, X l'r)°(ip+h XbXi,) and (Z.p-i-h XbX Z.r)o(ip-(-h Ki,p Xc) respec-
tively, it follows that bdl@aXB,, A, Xc)=b((@Xizs,)0 s X By),
(A, X1,)0(l prpiqrrXC)) belongs to {E"a, (—1)#tEEsth" 3
(—1)cethrati prirtatk - Similarly, (@ X B,, A,Xc)=—b(4;Xc,
aX By)= =iy XC)o(A; X1,1)), ({,XB))o(aXig,14r4,) belongs to
—{(=1) eI Ertay/  (—1)PrEPTTHIR ) EItEITRIQY Therefore
{(E®* o, Erthr g Ep+h+q+k7/} and (—1) {Ep—:qv/, Err+i g
Et#*"t '} have a common element for E=(p+h)k+(p+h+qg+k)
+14+(p+g)+pk=hk+kl+Ih+1 (mod 2).

ii). Let C, be a null-homotopy of aXc. Then C,/=(i, X, 4)°
(C, X iq)o(ip+h Kog,41) and C' = (ipXO'r.q+k)° (Cy Xigin) ol p XK g i rit)
are null-homotopies of aXi,Xc=(i,Xi,Xc)o(@aX i,¥X1,,;) and
aXigeXc= (i, X igp XC)o(aX iz, X1,,,) respectively. It follows
that d(A4,Xc, C/o(i,.,XbX1,,,)) and d((z, X bX1,)°Ct’, aXB,) belong
to {( _ 1)(p+q) 14 Ep-lfq ')’/, Eq‘érr+1 C(', ( — 1)(p+h) laEﬁ+h+r+1 B/} and {( _ l)pk
E? R, (—1)ypravwiEetitk,/  peirtktiq/y  respectively.  Since
C/o (i,,+h><b><ir+z) = (iﬁX(T,,q)O(C,Xb)O (ip+h><0'q+k.r+1) = (lﬁ XbX1i,)oCt,
then bd(a X Bt , At Xe)+ b(A,XC, ctlo(ip+h XbX ir+l)) + b((l‘p X b X ir)o
CY, aXB)=0 by i) of (4.1) and this element 1is con-
tained in ( _ 1)cp+q+k) I+t k [( _ l)hl {Eq+r (Kl’ Eprf h+7 B,, Ep %—h+q+k()/}
+ ( _ 1)k1 {Ep+q ,yi’ E9+7+ (‘(’, Epthria B!} 4 ( _ l)hk {Ef’ ; rBI, Er+ad k,y/,
E?kiq} ] Thus ii) is proved. q.e.d.

We have also

Proposition 4.7. Assume that «a e, ,(S?), BeEm, ;. (S?™)
and €, (S) satisfy the conditions €oB=0, aXy=0 and BXy=0,
then {E"c, E" 3, E?*""ky} —(—1)"{E" 0, E?*"o, E™" B} +(—1)"*0!
{E?«, E""a, E™" B} contains the zero element.

Proof. Let a,b and ¢ be representatives of «, 8 and v re-



p-primary components of homotopy groups IV. 307

spectively, and let A,, B, and C, be null-homotopies of acb, bXc
and aXc respectively. By (4.1), d({e Xi,)oB,, A, Xc)+d(A4,Xec,
Coo(bXi,.))=2(aXi,)oB,, C,o(bXi,,,)). As is seen in the pre-
vious proof, the each terms of the equality represent {aX.,,
BXt,, typrXy} =(=1)PRUE «, E" B, E*"" *o}, {1, Xy, Xy,
BXty i} =(~1)P{E?y, E™a, B8} and {€X o, 1,5y, BX 21}
=(—1)**{E" a, E?*"y, E™ 3} respectively. Then the proposition
is proved. q.e. d.

Consider an element a€G,. Let «:S¥'"—S¥ be a repre-
sentative of « with respect to given orientations of the spheres.
Let EN'™* be a cube bounded by S¥* and it is oriented coher-
ently with S¥*,  Let K=SMueM*** be a cell complex having a
characteristic map A:(EN™*' SN (K, SV) of eN**'' such that
A|SV*h=qa. We orient eM***!' such that A preserves the orienta-
tions. Now we call the element « the characteristic class of K
with respect to the given orientations. « depends on the homo-
topy type, by orientation preserving equivalences, of K.

Lemma 4.8. i). Let ¢ €G,and BE€G,. The composition cof3
is zero if and only if, for a complex K=SNvueN™**' having B as
the characteristic class, there exists a mapping F of K into SN™* such
that F|SVN represents .

ii). Let «aeG,, BeG, and €G,. aofB=0, Boy=0 and
{a, B, v} =0 (mod @oGpy;i1+v0G,..,) if and only if there exist a
cell complex K=SNueN ¥ ueN' ¥ and a mapping F of K into
SN-t satisfying the following conditions (N:large). F|SN repre-
sents ««. The characteristic class of the subcomplex SN \eNT* is
B. By shrinking SN to a point, we have a complex K|SN=SN+tk+1y
eNTEIYE having the characteristic class «.

iii). Let «€G,, BeG,, v€G,, B €Gy, v €Gy and k+1
=k +0U'. Assume that Boy=[oy'=0. Then aoB=0,&03'=0 and
{a, B, ¥ +{a, B, ¥'}=0 (mod aoGrys,+7°G, it voGuws) if
and only if there exist a cell complex K=SN\ueN-k+iyeN+ti+1y
eNTEIY and a mapping F of K into SN°" satisfying the following
conditions. F|SN represents . L=SNueN'"*' gud [/ =SN\yeNtk
are subcomplexes having the characteristic classes B and B’ respec-
tively. By shrinking L or L', we have complexes K|L=SN*¥*y
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eNtE I apd K| L' = SN*E G eNTEYIYE having the characteristic classes
v’ and «o respectively.

Proof. i) 1is obvious. ii) follows from ii) of Proposition 4.2
easily.

We prove iii). Assume that {«, 8, v} + {a, £, '} =0, then it
follows from Lemma 4.1 that there exist elements M€ {«, 5, «}
and w € {a, B, '} such that A+x=0. By Proposition 4.2, ii), —x
is represented by a composition AoC: SNttt [ SN~ guch that
A|SY represents « and, by shrinking S¥ of L to a point, C
represents «. Similarly —p is represented by a composition
AloC’: SNEHIH 5 [/ SNk guch that A|SV¥=A’|SY and, by shrink-
ing S¥ of L', C’ respresents ¢'. By setting F|L=A and F|L'=A/,
we have a mapping F of LUL’ into S¥*. Construct a complex
K=LuL'veNt¥t*2 by attaching a cell by a mapping which repre-
sents the sum of the classes of C and C’. Since the composition
of this attaching map and F represents —A—pu=0, it follows that
the mapping F can be extended over K., The complex K and the
mapping F satisfy the conditions of the lemma. Then the ex-
istence of K and F is proved. '

Conversely, assume the existence of such a complex K and a
mapping F. Let B:S¥****"1[ UL’ be the attaching map of
eNtErite "and let {B} be the homotopy class of B. Since Boy= "oy’
=0, there exist mappings C and C’ as above. For sufficiently
large N, by shrinking SV to a point, we have an isomorphism of
Tnspsra(LVL, SN) onto 7 yypr s L/ S+ 7 ppnrss(L'/SY). Then it
follows from this that j«{B}=j«({C}+{C’}) for the injection
homomorphism Jjx: Zyspiri(LVL) > 7wy gL VL, SY). By the
exactness of the homotopy sequence of the pair (LUL’, SV), it
follows that {B}={C}+ {C'} + {D} for a mapping D:SN***+ SN,
Consider Fy : 141 (LIYL) > 7 nipr 0 (SY).  FleNTH1%2 gives a
null-homotopy of FoB. Thus Fyx{B}=0. By Proposition 4.2, ii),
F+{C} € —{a, B, 4y} and Fu{C} € —{a, B, 4'}. Obviously Fy{D}
represents an element of «oG,.,,,. Therefore the relation
{a, B, v} +{a, B, v’} =0 is obtained. q.e.d.

Consider a complex K=S¥wueN***' having a characteristic
class €« €G,. Let EK=SV"'ueMN*"*?* be a suspension of K and
orient the cells of EK by the suspension classes of the orientations
in K. Then the characteristic class of EK with respect to these
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orientations is —«, because of the relation E9= —9E. The mod
p Hopf invariant H, of II [6] will be modified as follows for the
stable case. For an element « of G,, ;, the mod p Hopf invariant

H, () eZ,

is defined by the formula @®'u=(—-1)""'H,(«)-u, where
ue HMK, Z,) and '€ HN***"*K, Z,) are given by the orientations
of a complex K=S¥wueN*?*"2 having «a as the characteristic class
with respect to these orientations.

By Lemma 2.1 and Corollary 2.3, the homomophism H,:G,,_,
—Z, is onto. Since G,,, has Z, as its p-component (Theorem
3.13), H, is an isomorphism of the p-components. Therefore an
element of order p

Qe Gzp—a
is determined uniquely by the following condition
(4. 5). H,(a)=1 (mod p) and p-a, =0.

If P'u=x-»' in a complex K=S¥ueN"??~% of a characteristic
class «, then a=(—-1)""'x-«, (mod p). Similar discussion shows
that if A, u=x-u’ in a complex K=SVueM™ of a characteristic
class «, then a=(—1)"x-p"¢ (mod p"*'), where :€G, is the class
of the identity of S¥.

§ Auxiliary results from III.

S. Mukohda has pointed out that in the proof of Theorem 3. 10,
we dropped a possibility of

1 p(p—2) __ 0
G) b;i—l) = x'b 1,)

for some coefficient x and it seems that the coefficient x cannot
be determined by purely cohomological methods as in III. Then
we may calculate the following two possibilities.

4.6). If ®'b9=P=0, then Theorem 3.10 and Theorem 3.13 are
true- [f G)lb(;:%);# Oy then 77"2(1;2*1)(1:—1)‘3(@ ;p):”ﬂpz—l)(_ﬁ—l)—z(@ ,P):O .

It will be proved, however, in the next § that 7,2y, ,,-.(&;p)
contains an element of order p: B0 -+ o3,, using the results on
A¥(K,, Z,) for k<2(p—1)p(p—1)—1 (Theorem 3.10) which do
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not depend on the value of x. Therefore the case ®'6%-P:}-0
fails and we conclude that

PP =0
and Theorem 3.10 and Theorem 3.13 are true entirely.

Let N be a sufficiently large integer. Consider the sequence
K>-D>K, ,DK,>-->S8%of IIl, p. 192, and let X, be the space of
paths in K, starting from a point and ending in S¥. Let p,: X,—SV
be the projection assigning to each path the end point, then it is
easily seen that X, is a (N+k—1)-connective fibre space over SV,
Obviously, X, X; and p.=p;| X, if k=>j. Let S’ be the space of
paths starting in K, and ending in S¥, then S’ has SV as a
deformation retract and S’ is a fibre space over K, of a fibre X,.
It is verified easily that the transgression

B
4.7). T = p* o6 Hi(X,, Z,) — H™S', X,, Z,)
p*
«—— H*NKg, Z,)
is an isomorphism for N</i<<2N+k—1 and that the following
diagram is commutative.

.
HIX,;, Z,) — H*(K,, Z,)
4. 8). i* li*
. T
Hi(Xk; Zp) - Hi:l(Kk! Zp)) k>j'

We identify HV'{(X,,Z,) with HN""*(K,, Z,)=A*(K,, Z,) by
the isomorphism (4.7), and we denote the corresponding element
by the same symbol:a,=7"%a,), b =+"4b), etc., and further
a,=7'(®'a,). Since the transgression commutes with the coho-
mological operations ®” and A,, the relations in H*(X,, Z,) are
carried from those of H*(K,, Z,). We recall some necessary
results from Theorem 3.10 as follows.

4.9). i). Let k=2rp+s)(p—1)—2(r—s) and 0<s<r<p, then
HN*KX,, Z,)=Z,={b"} and ®'b°=0, where the ve-
lation ®'b9-P=0 will be valid after proved . 2 _,x,-15-»
(&;p)==0.

il). Let k=2(rp+s+1)(p—1)—2(r—s)—1, 0=s<r<p and
(r, $)==(p—1,0), then HN'MX,, Z)=Z,={c;"} and
@271 c=0,
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iii). Let k=2tp—1)—1, 0<t<p® and t==0 (mod p), then
Z,=1{a;} for =0,

SZ": {Ag,} for i=1 and t==(p—1)p—1,
HN ¥ (X, Z V=4 Z,+Z,={a,, bX\} for i=1and t=(p—1)p—1,
Z,={6"a,} for i=2p—2,
Z,={0'Aa} for i=2p—1,

Ra,=(t+1)P'Aaq,—tA P a,=0 and ¢'b>,=0.

iv). Let k=2rp(p—1)—1 and 0<r<p—1, then
Z,={a,,} for =0,
Z,={a.,} for i=1,
Z,={0Ca,,} for i=2p—2,
Z,={0'a;,} for i=2p—1,
Aa,,=Aa,=0 and A ®'a,,=0"a,,.

v). Let k=2(p—1)p(p—1)—1, then
HY 53X, Z,) =

HN+i(X,, Z,)=

Zy+Zy=Aacy-15 5, 01} for i=0,
Zy+Z,= {a/(p—l)pv A} for i=1,
Z,+Zy={Cac, 5, e, for i=2p—2,

Zﬁ+ZP+Z :{@lal‘(p—l)py A(Plcz()ojlx (PIACI()O—)I} for Z'ZZP_]-,

Aa(p—l)p:Aa/(p-l)pZO and Ad)la(pﬂ)p:@la?rnp-
Next we add the following

Lemma 4.9. Let 1<r<p, then A(F'a,, ,)=—-r(C'da,,.,)
and A,a,,)=ra;,).

Proof. By Lemma 3.12 and (3. 14), for 2<¢<rp,

x,,cP? tAq,, t==0 (mod p),

Afc®™P7tq,) = {
(c a,) x, 0O a, t=0 (mod p),

for some coefficients x, ,=1=0. According to the proof of Lemma
3.12, we see that A c®?*a)=A(rc®P?a,)=(1/2)c®?*Aq,,
where there is a misprint of the above first equality in the proof.
Then x,,=7/2. Now compare x,, and x,,,, using Lemma 3.5,
iii). First consider the case #==-—1,0 (mod p). It is calculated
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directly that c¢®"?7*"'R,=tAc®?* and c@®? *'AR,=—(t+1)
Ac®"?7*A, It follows from 6*(a,_,) = R,j* *(a,) that A(c @2~ j* \(a,))
=0*((1/H)c®™* " 'q,,))  and  A(c®PTIAF(a,))=%(—(1/(t+1))
c®?*"'Aq,. ). Applying Lemma 3.5, iii), we have the equality
1/Hx,0=(—-1/(+1)x,,. Thus tx,,=—(t+1)x,,., for the case
t==0, —1(mod p). For the case ¢=-—1(mod p), we have
Alc @27 j* Ya,))=%(—c @' " a, ,) and Alc@7P 1A j* ay))
=8%(c®**'q,,). Then, by Lemma 3.5, iii), x,,=-—=x,,, for
=-—1(mod p). Similarly, from A(c®"?7*j* a,))=6*(—cP"* ' 'a,.,)
and A(c®™?tj* Yal)=06%(c®"* " 'Aq,.,), t=0(mod p), it follows
that %, ,= —x, .., for {=0(mod p). Consequently,

r=2x,,=(—3%,,=) - = (p_l)xr.p—l =X = T Xy = 2xr,pT2:

= (p_l)xr.rp—lzxr.rp- g. €. d.

§ Generators of stable groups given by compositions.

By Theorem 3.13, the p-component nz(sl,;s_l)(p,l)_z(@;p) of
GZ(spﬁ»s-l)(p—l)—Z is Z, for 1=s<p—1. Denote by

BsEGZ(sp+s-1)(p—1)—z> s=1,2 »ﬁ"l ’
an element of order p.

Lemma 4.10. i). For 1<k<p—1 and for sufficiently large
N, there exists a cell complex LY =SN\eNTHP Dy ... yegN*t?ke-D sych
that ®*HN(LY, Z ,)=HN"**"(LY, Z,) and the class of the attaching
map of each cell has an order of a power of p.

ii). Let A:LY3—SN be an extension of a representative
A|SN¥2273 of o, and let B: SNV [N423 pheo the attaching
map of NV DI [Nti=3__ [N2=3  Then the composition
AoB : SNt2p(2-172 L ON yopresents an element of order p (N:large):
xB,, x==0 (mod p).

Proof. i) First we see that the p-component of 7y.,ec,-1y-o(L3)
vanishes for k #<p—1, in the complex LY as above. This
follows from the exact sequence 7y.,ec,-15-o(LA 1) = T noncp-13-2(LA)
= 7 nparcp-1-2 (LA LR-1) = Gk s> p-1>-» and from Theorem 3.13. Next
we remark that =, (LY) is finite for i_>2h(p—1), because of the
finiteness of G,;, 7=1-0. LY exists and it has x«a,, x==0, as the
characteristic class. Assume that we have proved the existence of
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complex LY ,=LYN ,ueNt*k e~ gatisfying the condition of i).
Let p:LYN,—>SNxk2-D he a mapping which shrinks LY, to
a Single pOint» then p* . 77:N+2k(p—1)—1(szv—1 ’ Liv—z) ~ ”N+zk(p—1)—1
(SNED D)~ G, . O(px'(a;))) belongs to the p-component of
T rokcp-n-20L1), Which vanishes. Then 9(py'(«,))=0 and there
exists an element « of the p-component of 7y_,uc,_1>-(LY1) such
that jea=pzl(a). By attaching a cell eN*2-Y to LY, with q,
we have a complex LY=LY ,vueN*t*?-b By shrinking LY, of LY
we have a complex of a characteristic class @,. Then @®'#=0 in
this complex. Concerning the shrinking map, it follows that
ETHNEDe-D.(0 in LY. Therefore ®*=(1/k)®'®*'==0 in LY,
and i) is proved by the induction on k.

ii) The existence of A follows from that the class of the
attaching map of eN**#=3+*¥»-V {5 carried into the p-component of
TN rap-srarcp-n-1(SY)  Which vanishes for 1<<k=<p—-2. Since B
represents an element of the p-component, AoB represents an
element of 7y.,,, 1,-(SV;p)=Z,. Now assume that AoB re-
presents the zero. Then A can be extended over A:LY** * SV,
Let Z=SNULN*?*-3% (0, 1] be a mapping-cylinder of A and let
Z¥=SN\yeN*2p-2\ ... \yegN 2#¢»~D he a complex obtained from Z by
shrinking LY*?*3x (1) ve,x[0, 1]. Since eN"?#72 is attached by «,,
then O®'HN(Z*, Z,))=HN"**"*Z*, Z,). It follows from i) that
@rrHN LK, Z )= HNT22™D(Z% 7). Thus ®*7'¢'=4=0 in Z*.
But this contradicts to Adem’s relation ®?7'®'=0. Therefore A-B
does not represent the zero and it represents a generator of
”N+2p(p—l)—2(SN ) P) q.e€. d

Now this § is devoted to prove the following theorem. For
the simplicity, we denote by

t
Bi = /310 °B1€Gth<1,—1)fzt

the #-fold iterated composition of 3, (8)=:). Obviously p(Bi-/3,)
=p(a,03703,)=0.

Theorem 4.11. [f 1<s<s+t<p, then ®,0B}oB3,==0 and thus
Biof,=i-0. « oSt is not divisible by p and B}1-0. «,0p3}==0 if
and Only Zf 71‘21’2(1)_1)_3(@ ,P) =1-0.

Before beginning the proof, we remark
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(4.10). Let K be a finite cell complex and let L be its subcomplex.
Assume that dim (K—LY=N+k and there are mappings f: K—SV
and g:L— X, such that pog=f|L. Then there exists an extension
g:K—> X, of g such that p,og=f.

This follows from th'e covering homotopy theorem for the
fibering p,: X,—S¥» and from the fact that the homotopy groups
of the fibre vanish for dimensions greater than N+k—2.

First we prove

a) . If 1<s<s+t<p and (s, )-=(p—1,0), then BloB,==0
implies c¢,0f3103,40.

Let k=2((s+8)p+s—1)(p—1)—2(¢+1) and let f:SV¥**—-S¥ be
a representative of B{o3,. Assume that «,0B!{cB,=B!cB0a,=0.
Then, by Lemma 4.8, i), there exists a complex K=SV**y
eNtkt2P72 having a characteristic class @, and there exists an ex-
tension F: K—SV of f. ®'#=0 in K. By (4.10), there exists a
mapping F : K— X, such that p,oF=F. Since B{cB,==0 and since
nk(G’B;p):Zp (Theorem 3.13), F'|SN** represents a generator of
the p-component of =,..(X,). By Hurewicz’'s isomorphism and
by the duality, it follows that F*:HN**(X,, Z,)—>HN %K, Z,) is
an isomorphism, and thus F*®'HV*(X,, Z,)=C'"F*H "X X,, Z,)
=@ HV ™ (K, Z,)=HN* 27K, Z,)4-0. But this contradicts to the
relation ®'(652)=0 of (4.9), i), since b5 generates HV**(X,, Z,).
Therefore we conclude that a,083%c3,==0.

Next we prove

b). If 1<s<s+t<p, then a,0B7oB,==0 implies B{oB,-0.

Let k=2((s+t—1)p+s)(p—1)—2t—1, j=2((s+t)p+s—1)(p—1)
—2(t+1) and let f:SN*t# 223 58N and q:SNtkFSNHE22T3 he re-
presentatives of Bi~'oB3, and «, respectively. By Lemma 4.9, ii),
BioB, =B B0, is represented by a composition foAoB:SN/
— L) — SN*k-2043 . SN where A|SV**=q and B is the attaching
map of LY®*—LN+*. Assume that B{o3,=0, then fecAoB is null-
homotopic and thus the mapping foA can be extended over
F:LY*—S~ such that F|LY%=f0A. By (4.10), we lift F up to
F:LY* =X, such as F=p,oF. Since a,0B!7'3,54=0 and since
7, (S ;p)=Z, (Theorem 3.13), F|SN* represents a generator
of the p-component of my..(X,). Thus F*:HN*X,, Z,)
—HNRL)%, Z,) is an isomorphism. By Lemma 4.9, ii),
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F*@®r1HN X, Zp):d"’"F"*HN'Lk(Xk, Zp):@ﬁ“HN‘k(Lj,”_*l’?, Zp)
=HN LYY, Z,)==0. But this contradicts to the relation
®+7c 7)) =0 of (4.9), iii), since ¢33y generates HV"*(X,, Z,).

Therefore we conclude BioB,==0.
¢). If aoBr1==0, then 0B is not divisible by p and B7==0.

We use the notation of b) for the case (s, £)=(0, p). In par-
ticular, k=2(p—1)p(p—1)—1. Put K =k—2p+3. f:SN*¥ SN
and a:SM**—SN*¥ gre representatives of 477! and «, respectively.
By (4.10), we lift the mappings f and fea up to f:SM* X,
and g:SM*— X, such that p,of =f and p,og=foa. Let i:X,—X,
be the injection, then foa and iog represent the same element
DB *oat)). Thus foa and iog are homotopic to each other, and
the following diagram is commutative.

gx
HN+k(SNH?) — Hpy. (X))
ax 2 ix
n Tx
) H oSV — HNv-k(Xk’) .
Obviously ax=0. Therefore guHpy..(SV**) is in the kernel of 7.
Since g represents pii(Biloq))==0, then gyuHy. (SN ~Z, by
Hurewicz’s isomorphism. By (4.9), v), Lemma 4.9, Theorem 3. 10
and by the commutativity of (4.8), we know that H¥"*(X,, Z,)
={621, a,,-0} Ac2i==0, Aa,, n=a5,1, and that a,, » and
@, ,-» are in the image of *:H*(Xy, Z,)— H*(X,, Z,) but 2
and Ac{®, are not. Then by the duality, the p-component of
Hy,1(X}) is isomorphic to Z,+Z > and ix maps the p-component
onto a subgroup of Hy..(X,/) isomorphic to Z 2 Therefore the
p-component of the kernel of 74 is a direct factor isomorphic to
Z,, and thus it coincides with gxHy.,(SV™*). This means that
DBy toat)) is not divisible by p. Therefore Sj~'oc, is not divisible
by p, since Pk : Tnee(Xe) =7y (SY) is an isomorphism.

The proof of B7==0 is similar to b). The only difficulty is to
show that F*c{”; generates HN*HLYY', Z,)). We may identify
F|SN*k with g and HN*K(L)Y, Z,) with HN**(SN**, Z,). Since
gxH . (SV*) ~ Z, is not divisible by p, it follows from the duality
that g*: HN"*(X,, Z,)—> HN**(SN**, Z,) is onto. The above dia-
gram is commutative also for the cohomological case, and g*os*
=gag¥of*=0. Since ac,-», is an i*-image, then g*a.,_,,,=0. Since
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HN*"X,, Z,) has two generators ac,_,,, and ¢, then it follows
that g*c;2,==0 and this generates HN'*(S"**, Z ). Thus B}:-0
is proved.

d). B,..=40 and BY=-0 imply a3, 0.

Since BY=4=0, 7y 2 1x,-1>-2(S;p):1-0. By (4.6), this implies
®'62=2=0. Now d) is proved similarly to the case a).

e). Assume that 87:1-0, then &,oB}-1-0 if and only if m,,5c, 1,
©;p=2,.

By (3B.16), 7,,2,-1,-4(& ; p)=2Z, implies ®'b;”=0. Similarly to
a), it follows from 7==0 and ®'b;” =0 that @,087=4=0. If 7,2, 15,
(&;p)==Z,, then 7,2, ,,,(S; p)=0 and thus «,087=0.

Now the proof of Theorem 4.11 is accomplished, because
B, 1<s<p does not vanish by the definition.

Corollary 4.12. For an arbitrary positive integer v, there ex-

ists an element B of G, for some k such that the iterated r-fold
composition (3o --- o3 does not vanish.

In fact, take B8=/3, for a prime p not less than 7.

§ Generators of stable groups given by toric constructions.

First we prove the following lemma.

Lemma 4.13. Let X be a simply connected topological space
having a finite number of generators for each homology groups. Let
{uy} be a Z,-base of H'X, Z,). Then there exist a CW-complex
K and a mapping f of K into X satisfying the following conditions.
K consists of a vertex and n-cells e corresponding to ul. f induces
isomorphisms f*: H"X, Z,)—H"(K, Z,) such that f*u, is the coho-
mology class of e. If the homotopy class of the attaching map of
a cell e has an finite orvder, then the order is a power of p.

Proof. Assume that the (z—1)-section K”' of K and a map-
ping f,.,: K" '— X are given such that the conditions of the lemma
are satisfied in dimensions less than #. Let Z=XUK"*'x (0, 1]
be a mapping-cylinder of f,_,. Identify K" 'x(1) with K",
Then it is verified that j*: H"(Z, K", Z,)->H"Z, Z,)~ H"(X, Z,)
is an isomorphism and Hi{(Z, K", Z,)=0 for i< »n. By the duality,
H(Z K*' Z)~H\/X, Z,) and H(Z, K", Z,)=0 for i< n. By
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Serre’s theory of classes, it follows that =#,(Z, K"")®Z, and
H.(Z, K", Z,) are isomorphic by Hurewicz’s homomorphism. We
choose elements A, of =,(Z, K*') such that A, corresponds to the
dual of #? and that if 9x, €=, (K" ') has a finite order then the
order is a power of p. Let g,:(E*, S*')—(Z, K"') be repre-
sentatives of A, Attaching #»-cells ¢) by g,|S""' to K", we
obtain a complex K"=K"'yv . ve,u ---. Let g,:(E*, S
— (¢, 9¢%) be the characteristic maps of ¢.. Then f,: K"—X is
defined by f,|K" '=f,_, and f,og,=pog, where p:Z—-X is the
natural projection. It is verified that K” and f, satisfy the con-
ditions of the lemma in dimensions less than xn+1. Thus the
lemma is proved by the induction. q.e.d.

Consider an element «€G, such that pa=aopc=0, then
{a, po, .} €Ginep15/ (@G, +QoG,, ,) is defined. By (4.4), i) and
by Corollary 4.5,

{, po, A lope = @o{p:, a,, pij = a°pczp—z = pac’Gzp—z =0,

and thus any element & of {«a, p:, o} satisfies pa’=ca’op.=0.
Then we may choose inductively elements

Qe {at~1v by “1} CGzt(/z_D—n t=23 .

Since pa,=0, «, belongs to the p component. Since the p-
component of G,, , vanishes, pG,, ,=G,, , and thus «, ,G,,.,
=pa, 0G,, ,=0. Similarly, oG, ;y, =0 if Gu;_1xp-1» has no
p-component, in particular, if 0< ¢{—1<7p* and ¢{—1+-p*—p—1
(Theorem 3.13). By Theorem 3.13 and Theorem 4.11, the p-
component of G2, ix,-1, is generated by Bi~'. Then we have
the following remark.

(4.11). {«a,_,, pt, o} consists of only one element «, if 1< t<p°
and t*(ﬁ—l)P {a'(p—l)p—l’ b, “l}:“(p—l)p+ {aloﬁjl)_l}- If we
add a condition Q, 15, € PGocpirpc po1>-1> then &, sy, is determined
uniquely.

The last assertion follows from the fact that the p-component
of Gupoppep-n-1 is isomorphic to Z,+Z,2 and that «,0B87™" is not
divisible by p (Theorem 4.11).

By Theorem 3. 13, the p-component of G,,p,-1>-;, 1=7<p—1,
is a cyclic group of order p*. Thus
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(4.12). For 1<r<_p, there exists an element @}, of G, pp-1r-, SUch
that paj,=a,,

Theorem 4.14. i). If 1<t<p?, then «,==0 and it is of
order p. For 1<r<p, a;, is of order p’.

ii). @peq,=0 for 1<t<p’—1and a; oc,=0 for 1<r<p and
whence we have the relations t{«,, p:, ¢} =(t+1){a,, a,, p} and
r{a,,, po, ay={a.,, o, pi}. «a, belongs to —ri{a,,,, «a, pi}.

Proof. 1). We shall prove «@,24=0 by induction on < p°.
Then i) is proved. Obviously «,==0. Assume that «, =0 is
already proved (1< t<pd).

First consider the case t—1==0 (mod p) and let k=2(t—1)
(p—1)—1. Assume that «,=0, then {«,_,, p¢, @} =0 and, by
Lemma 4.8, ii), there exist a cell complex K=SNtkyueNtetiy
eNtET22-1 and a mapping F: K— SV such that S¥*kueN* ¥ and
K/ SNtk= SNttt gNtk+2P-1 haye the characteristic classes p: and «,
respectively and that F|SM** represents «,_,. As is easily seen,
®'A==0 in K. By (4.10), lift the mapping F up to F:K—X,
such that p,cF=F. Since F|SM** represents pri(c,_,)==0 and since
7y Xes D)=7 N n(SV s p)~Z, (Theorem 3.13), then Fy: Hy. (K, Z,)
— Hy, (X, Z,) is an isomorphism by Hurewicz’s homomorphisms.
Thus F*:HV**(X,, Z,)—>HY*XK, Z,) is an isomorphism. It
follows from (4.9), iii) that F*(a,_,)==0 and thus

Fx(®'Aq, ) = O'AF*a, )= 0.
Since HN*k**r~% K, Z,)=0, then
F‘*(Ar@lat—l) = Ar@lp*(at—l) = 0’ r = 1) 2.

But these two relations contradict to the relations R,_,a,_,
=t®'Aa, ,—(¢t-1)AFP'a;,,=0 of 4.9), iii)) or —r&F'Aa,,,
=A,0'a,,, of Lemma 4.9. Consequently the assumption «,=0
lead us to the contradiction, and thus «,=-0.

Next consider the case ¢—1=7p, 1<r<p and let £k
=27’.ﬁ(17—1)—1 a/rpue {“rpv by al} = {pa;py by, “1} C {a;p> PZL, a’1}
by (4.3), ii). Assume that «,, =0 then {a/,, p*,, a,}=0. By
Lemma 4.8, ii), there exist a complex K=SNtk\yelNtkil\yeNtkizp-1
and a mapping F:K-—S?¥ such that F|S¥'* represents «;, and
A=0 and ¢'A,==0 in K. Lift F up to F:K—X, such that
proF=F. By (4.9) and by Lemma 4.9, we have a relation
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(A®'—r®'A)a,,=0. Since HN *'*»7%K, Z,)=0, then F*A6'a,,)
=AF¥'a,,)=0 and thus O'AF*a,,)=F*0"Afa,,)=0. If
F*a,,=+0, then ®'A,F*(a,,)=-0 and this contradicts to the last
equality, and therefore the assumption «,,.,=0 will be a contra-
diction. So, it is sufficient to prove that F*g,,==0. In the case
1<r<p—1, this follows easily from the fact that F|S¥** repre-
sents a generator pix(«),) of the p-component of 7y, (X)),
Consider the case r=p—1. Then F, maps the p-component,
isomorphic to Z,, of 7y, (K)~ Hy,(K) isomorphically into the
p-component, isomorphic to Z,+Z,, of 7wy (X))~ Hy,(X,). By
the duality, F*: H{(X,, Z,)—H/(K, Z,) are onto for i=N+Fk and
i=N+k+1. Since A=0in K, F¥(Ac®)=AF*(®,)=0. By (4.9),

p—1

v) and by Lemma 4.9, H¥N"**(X,, Z,) is generated by Ac{¥, and
Aipryp=—Dyac, 1, Since FYHN'®YX,, Z)=HN"*'K, Z,)=0,
it follows that A,F*a, ,,,==0 and thus F*a,_,,,=0.

il). Let k=2t(p—1)—1 and 1<¢<p*—1. Apply Lemma 4.13
to X, and let K and F:K—X, be a complex and a mapping as
in Lemma 4. 13, where generators of (4.9) are used for bases {u}
of Lemma 4.13.

First consider the case #==0 (mod p) and ¢==(p—1)p—1. In
this case, the vertex and the cells corresponding to a,, Aa,, #'a,,
(®'Aa, form a subcomplex K =SNtkyegN kil gNtkt2p-2\ joNTkr2p-1 of
K by a suitable choice of K, up to homotopy-equivalence. This
follows from the fact that each cell ¢” € K of dimension N+k+1<_
n< N+k+2p—2 does not cover SNk ueN** 1 hecause the p-com-
ponent of G, vanishes for 0=i< 2p—3 and the attaching map of
e" represents an element of p-component. Also we remark that
eN*Tk2r=2 does not cover eMNT*7! essentially, and so we may take K
such that SNtkueNT**?-2 {5 a subcomplex L’. Further we may
take F such that F|S¥"* represents an element of the p-component.

Now apply Lemma 4.8, ii) and iii) to K’ and F|K’, L=SV"*y
eN*#H Then doS=aofl'=0 and {q, B, vy} +{q, 8, ¥} =0, where
« is represented by F|S¥'* and B€G,, B €G,,;, ¥ €G,ps, v €G,
are characteristic classes of L, L', K'/L’ and K’/L respectively,
with respect to some given orientations. Concerning the corre-
spondence of the cohomological operations A and @' in K’, induced
by F* from X, and concerning the relation ({4+1) ®'Aa,=ftA(6'a,)
of 4.9), iii) and ®'(Aa,,,)=—1/7r)A,(F'a,,,), we have that
B=(—1)"*p, (mod ptr), B'=(—1)N*ka,, y=(—1)N**q,  and
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v =(—1)N*({t+1)p/t)e (mod p*¢) if t+1=0 (mod p) and o
= (-1 (1/r)p*e (mod p*) if t+1=7p. Since F*:HN®X,, Z,)
— HN*YK, Z,) is an isomorphism, then @=-0 and thus a=x«, for
some x==0 (mod p). Therefore it follows from aoB8'=0 and
{a, B, g} +{a, B, v} =0 that «a,ea,=0, {«a,, pi, a}—((t+1)/1)
{a,, a,, p}=0 if t+13=0 (mod p) and {a,, p:, .} +(p/7)
{ay, o, pe} =0 if ¢t+1=rp. Consequently we obtain the relation
tHa,, pi, ay=({t+1){a,, a,, p} for the case ¢t==0 (mod p) and
t==(p—1p—1

For the case ¢=(p—1)p—1 the proof is similar to the above
case. The only remark for this case is the fact that K has two
(N+k+1)-cells, one of which corresponds to &y, and it is not
covered by eNtF*#-! bhecause #'b6¥,=0. Then we may neglect
this (N+k+1)-cell.

Next consider the case f=7p and 1<r<p—1. By similar
discussions to the above, we have a subcomplex K’ which consists
of a vertex and the cells corresponding to a,,, a;,, #'a,, and
®'a;,. From the relations A®'a,,=®"a;, of (4.9), iv) and A,a,,
=ra;, of Lemma 4.9, we have B=(—-1)N**7p’, (mod. p°:), 5
= (=¥, oy =(—1)N*a, and y'=(—1)N"*p. (mod. p%). a=zxal,
for some x==0 (mod p). Then it follows from the relations
aof¥=0 and {a, B, v} +{«, B, ¥'}=0 of Lemma 4.8 that «; ca,=0,
arpoalzp“;poalzo and r{a;p, PZL, al}E{a;p, a,, p"}' By (4 3)’
i), {7, p'u @} ={pa,, pu @}={a,, pi, a}. Therefore the
relation 7{«,,, p:, .} ={a;,, @, pi} is obtained.

Finally consider the case t=(p—1)p (k=2(p—1)p(p—1)—1).
Obviously @, 00, =pa’, 500, =, s 0pc,=0. By Theorem
3.13, Zpinp-1-1(&;p)=0 and this contains «’, ,,,0,. Thus
Q' pyypo=0and {a',_,,, @, pi} is defined. Since {@(,_,,, @, pi}
is a coset of PGrxp-1>+Qp1559Gop-2=PGroncp-1, it contains an
element of the p-component. By Theorem 3.13 and by @,_,5,.,50
of i), Zyiap-(&; p)=Z, is generated by @, .y 1= {015, Dty O}
={a, 1, ¢, @}, Therefore {a', ,,,, @, pi}+x{, 1y, P, A}
=0 for some coefficient x. Apply Lemma 4. 8, iii) to this relation,
then there exist a complex K=SNtkygNtkilyeN ki2p=z\ N hkr2b1
and a mapping F:K—S¥ such that F|SV'* represents «,_,,, and
L=SNkyeNikit [/=SN-kyeN-k:2r-2" K[]' and K/L have the char-
acteristic classes p¢, ¢, x«, and p¢ respectively. Let u,, u,, #, and
u, be the cohomology classes mod p of SN*k, N7kl eNvkt22-2  and
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eNtk+2p-1 - respectively, given by the orientations. Then A,
=(=1)V*y,, Clu=(—1)""*"u, Clu=(—1)""*xu, and Au,
=(—1)¥"*y,. Therefore the relation (x®'A,+AFPY%u, =0 holds.
By (4.10), we lift Fup to F': K— X, such that F=p,oF. Consider
F*:H*(X,, Z,)—H*(K, Z,). As in the last part of the proof of
i), we see that F*(a., ., -0 and thus F*(a, ,,,)=yu, for some
y==0 (mod p). By 4.9), v) and by Lemma 4.9, a relation
(®P'A,+A®Yac,- 1, ,=0 holds, and it is translated to (®'A,+A®Y)
u,=0 by operating F*. Therefore we have that x=1 and
{a/(p—l)p, a, piy=— {a/wal)pv b, a'l}E'_ {a(p—l)p; by, al}'
The fact —«/, €r{q,,,, «,, p¢ follows from (4.12) and

[Ja;péﬁ{a,p_l, a,, p} E(”/(”P—l)){“rp-n by a}. q.e.d.

Let k=2(p*—1)(p—1)—2. By Theorem 3.10, HN*¥X,, Z,)
_ {b(gj)}r HN (X, Zp): {Ab(f;:%), apzq}, Adﬁi!_l:lzo, [ Ntkt2p-z
(X, Z,)=1{b}, HN*22NX,, Z,)={C'AV3-P, @'a,e.,} and
AP'AY2-P=+0. By (4.6) and by Theorem 4.11, ®'6%2-P=0.
According to Lemma 4.13, we can construct a complex K and a
mapping F: K—X, such that the vertex and the cells corresponding
to b9, APU=P and ®'AP2"P form a subcomplex K =SN*tky
eNtET yeNTRHT1 of K and F|SN** represents pig(x/8,.,) for some
x=E0 (mod p). Then it follows from ii) of Lemma 4.8

@.13).  {B,.., ps, @} =0.

§ Relations in stable groups.

Summarizing Theorem 3. 13, Theorem 4. 11 and Theorem 4. 14,
we obtain

Theorem 4. 15.

Torpp-0-(© D) =2 2 ={a7,} Sfor 1<r<p—1,

=Zp+Zy= {0 )+ {oBT} for r=p—1,
Tucp-0(©350) =2, ={a}  Sfor 1=t<p* and t==0 (mod p),
ocr pesxp-v-xr-(@ s D) =Z =B 0B} for 0=s<r=p—-1,

”2(rp+s+1)(p—x)—z(r—s)—l(@ > 17) :Zp: {a1°lgiis—1018s 571}

Sfor 0<s<r<p—1 and r—s=+=p—1,
”zPQ(p—l)—zp(@ ,P) :Zp: {:871'} s
7, (& ; p)=0 otherwise for k< 2p*(p—1)—3,
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”2p2(p—1)—3(@ D) = {a1°18’1’} = Zp or 0.

In the following, we shall investigate compositions and toric
constructions of these generators.
First consider toric constructions (s >0, # >0)

{as! p”: at} € Gz(s-:-t)(p—n-l/(asoGzt(p—1)+atOst(p—n) .

If 0<t<p® and £5-(p—1)p—1, then the p-component of G, )
vanishes, and whence «,0G,;, ,,=0. If 1< s<p+1, then the
p-component of G, ,iexp-1>-s vanishes and thus «@,0B3,=0 and
a,of377*=0. Since the p-component of G,, ., is generated by
Bt if t=(p—1)p—1, it follows that if ¢=(p—1)p—1 then
A0Gyp-1p=0 for 1<s=p+1 and oGy, ,,={q, 0B}, Similar
results hold for «,0G,,, ;. It follows then

4.14). {a,, pe, @} consists of a single element if s+t<p* and (s, t)
:‘:(L (P-‘l)ﬁ—l):’r:(f, S). {al) Pb, a(p—l)p—l} and {“(p—l)p—n Pb, al}
are cosets of {a,0B77'},

Proposition 4.16. {«_, p:, o} =« ., if s+t<p° and (s,t)
==(1, (P—l)p—l):?:(f, s). {au b, acp—l)p—l}:{a(p—np—n by, al}
:a(p—1>p+ {“101811’_1};

Proof. By i) of Theorem 4.4, {«,, pi, o} ={a,, ps, a,}.
Let s>1 and s+¢<p>. By ii) of (4.4), we have a relation
s, by, @}, po, at—{a,.., {py ., pi}, a}—{a,_, py {a,, pe,
«,}}=0. This means that for some X € {@,_,, pt, @.}, p € {pe, @,, pe}
and ve {«a,, p¢, «,}, the following relation holds:

{>\‘) pl’) at} = {as~17 4, at}+ {“s—lr IjL, V} .

Since {p:¢ ,«,, pi} CGy,-,, and since the p-component of Gy,-,»
vanishes, there exists an element x' of G, ,, such that pu'=pu.
By ii) of (4.3), {a,, p a}={ca,_,, pp, a}d{a, ,pw, pa}=
{“s—u /"/» 0} 50. Thus {as—n 122 a’t} :“s—xoczctﬂ)(p—l)‘*'at°GZs(p—1)-
Next consider {A, p¢, a,}. If s==(p—1)p, then A=a, by (4.11).
Thus {\, pe, @} ={«,, pt, @}, If s=(p—1)p, then A=a +xa; 0377}
for some coefficient x by (4.11) and {\, p¢, @} C {,, p, @} +
x{Bytoq,, pu, @} by (4.3), i). By ii) of (4.3), {8y teq,, ps, @} D
By Yo {a,, po, @} =B tot,, =0 1< t+1=<p+1) and thus {Bi toa,,
b, @} =810 0G,, 1+ 0Guxp 15 pp-n=0. Then we have the
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equality {\, pe, .} = {«a,, p¢, @,} since x°Gzt(1;—1):as"Gzt(p—l)-
Similarly {«,_,, pe, v}={«,_,, p¢, «,,}. Consequently

{as: pl') at} = {as—I) pl'r aH—l} . mOd' Ms.t:

where Ms.t:asoczt(p—l)+atoG2s(p—1)+as—1°G2(1+1)(p—1)+aH-loGZ(s-l)(p—l)'

As is seen in (4.14), M, ,=0 if s+¢=-(p—1)p or s—14-1=t¢
and M, ;155 2=Mp->p-1.=10B77'}. In the case s+i==(p—1)p
it follows from «,,, € {«,.,_,, p¢, @} that a = {a,, p:, a,} by the
above relation. The case (s, H)=((p—1)p—1,1) is obvious by
(4.11). Inthe case s+f=(p—1)p and 2< s< (p—1)p—1, it follows
fI’Ol’l’l {a(p—l)p—lv PL’ al} :“(p—l)p-‘_{alo/g{&l} that {as’ p”) at}
=« 1y, +yoB377! for some coefficient y which does not depend
on s. By Theorem 4.11 and by 4.11), «,08;™' is not divisible
by p and «,_,,, is divisible by p. Thus y=0 if and only if
Qepopyp+yaefBy™ is divisible by p. Since pa,=a, and pai, ,,
=CQp_2)p, then {a'p: by, a(p—z)p} = {az’,op(,’ by, a,(p—z)popb}z{a;: pzby
', 5 ,bope by (4.3), ii). This indicates that {aep, pe, acp_z)p}
=,y ,+y@0oB7 " is divisible by p. Therefore y=0 and {«,, p:, @}
=, , for s+i=(p—1)p and 1<s<(p—1)p—1. q.e.d.

As is seen in the last part of the preceding proof, we have
plag, p°e, @l y={a,, pi, @, } =, for 1=r=p—1. Similarly
to the proof of (4.11), we have that {«], p%, «;} consists of a
single element.

(4.15). Thus, for fixed «; such that pa,=c,, the condition a;, €
{ag, p*e, & y,}, 2=r=p determines an «, which satisfies the
condition of (4.12).

Next we shall prove

Proposition 4.17. i). «,oq,=0 for s+t<=p° and «aj,ocq,=0
Sfor rp+s<p°.

ii).
{a,, a;, pd = (t/(s"'t))asﬂ"l‘ﬁcz(su)cp—x)—l
if s+t<p* and s+1t==0 (mod p),
= ({t/r)al,+M,, if s+it=rp and 1<r<p,
{al,, a, pi =@/, +DCorpisxp-1-1

if vp+s<p* and s==0 (mod p),
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= (r/(r+u)) a,(r+u)p +sz(r+u)l,(p~1)f1
if s=up and r+ulp,

where Mt.s:pGZCs-%t)(p—l)—l lf (t) S) :}: (1r (P—l)P—]-) and Mt,s
zpcz(s+t)(p--1)—1+ {010/3]1)—1} lf (t) S)=(1> (15_1)17—1)-
iii). {a, a,, p}={p¢, a, &} and {a;,, a,, pi} ={ps, @,, a; }.

Proof. 1i). We use the induction on s. The case s=1 is
proved by ii) of Theorem 4.14. By (4.4), i) and by Proposition
4.16, «qpoa,eqpof{a,, pi, a._}={q,, «, pioc,, and a;‘poase
W0 fc, pu, @}y =1{a,, &, pio,,. Thus aeq, and o oa,
belong to GZ(H,XP_,)_IoaS_l (t=rp for the latter element). Since the
p-component of Guyiix,-1-; 18 generated by one or two of
@y, @, and @B, and since @, 0@ =, 00 =B ot 0, _,
=0 by the assumption of induction, we have Gy.ix,-1>-19¥_;=0
and hence o, =] oax;=0. Thus i) is proved by induction.

ii). Similarly to 4.11), {«,, a,, p} and {a;,, a,, pi} are
cosets of pGuisy-1n-» Of M, ,. Then it follows from Theorem
4. 14, ii) that ii) of this proposition is true for the case s=1.
We use the induction on s.

By i) of (4.4), for some elements M€ {a,, «, pi}, M€
{a7,, a,, po}, pe{a,, pe, a,_\} and v€ {p¢, @ _,, p:} the following
relations hold :

{>“,_ a,_y, p‘} - {“t» 1, p"} + {ah «,, V} =0,
N, .y, pb}_{a;p» 1 pb}—|—{d;p, a, v} =0.

By Corollary 4.5, v € pGu_1xp-15-  Since pGy,-1x,-1y has vanish-
ing p-component, v=p*v for some . It follows easily that
{a,, @, v} =0 and {«;,, a,, v} =0 and thus these terms may be
neglected in the above relations. By Proposition 4.16, =«  or
/ﬁ:“(p—l)p+xa1°'871)—l- By (4 3)> 11), {atv aloﬁil)_l) pb}>{alv «a,
PR ={a,, @, 0}>0. Therefore {a,, p pi}={a,, a, pi.
Similarly, {«;,, u, pi}={a;,, @, p}. Next, from the case s=1,
A=@E/E+1) ., +py if t+15=0 (mod p), A=(—1/r)a] ,+py if
t+1=rp and N=ra«a,, , +py, where o is some element of
Gogixp-»-1- By (4.3), ii) and by Corollary 4.5, {pv, @, ,, pe} D
v° {pe, a,_,, pi} :')'Osz(s—1)(pf1):p(')’°G2(s—1)C[,—l))‘ Then {P'}’, a,_,, pi}
=0 and thus {\, a,_,, pi}={N—pvy, «,_,, p}. Similarly {}, «,_,,
Py ={N—py, a,, p}. Consequently we obtain the following
relations.
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(t/(t+1)) {at+1’ as—l’ p['} = {at) as’ p['} lf t+1 EEO (mod P) ’
(_1/7){a;py as—l) pL}E{arpr as: p[’},
r{arp'#l) as—l) pl’} = {a;'p) as? p[’} *

Then ii) is verified by induction on s.

iii) is a direct consequence of Theorem 4.4, i). q.e.d.

Consider {«a,, p¢, B;}. By (4.4), i) and by Corollary 4.5,
P, po, BY={ay, pi, B}opi=ao{ps, B, pi} :a1°Pczcsp+s—1)cp-1)—1
=0. If 1=s<p—1, then the p-component of Gy, ,-1>-, Vanishes
by Theorem 4.15. Thus pi{«,, p:, B,} =0 implies {«,, p:, B} =0.
By (4.13), {181,—1) b, al} :ﬁp—loc.?p—z_l—alOGZ(pz—l)(p—l)—l . Since Gzp—z
has no p-component, then 8, ,0G,, ,=0. Since the p-component
of Gy, 1x,-»-1 i generated by «,._, and since o,z ,=0 by
Proposition 4. 17, then «,0Gy2_1x,-1,-,=0. Therefore {By-1, b, 1}
=0. Concerning i) of Theorem 4.4, we have

(4.16).  {B,, pr, @} = {a,, py, B} =0 for 1=s<p.
We shall prove

Proposition 4.18. Let 1<s<p.

i), @,o0B,=0 for 2=<t<p*. «,0B,=0 for 1<r<p.

ii). {a,, p:, B)={B,, p:, «}=0 for 1=t p* and
l‘:i-(ﬁ—l)P—l- {a(j)—l)/)—l’ p": Bs}:{/gsi by a(p—l)p—l}: {1871._1‘335}-

iii). {(l',, 183) pb} = {p"> ﬁsv a‘t} :sz(sp Ls—140(p-1)-2 Jfor 2§t<p2
{B., «,, p={p:, a, B}=M;, for 2=t<p’, where M;,
:sz(sp—:-s—1+t)<p—1)-z if t==(p—1)p—1 and  M; ,={B7"B}
+pcztsp~f—s—1¢t)(p—1)—2 Zf f:(l"—l)p_l-

Proof. 1). By (4.4), 1), Theorem 4.14, ii) and by (4.16),
@oB, € ¢/ (E—D){,y, @, piyoB,=(t/(t—1), o {e,, pe, B} =0 for
t==1 (mod p), arp+1°lgs€(1/r){a;p» a,, p‘}o/‘?s:(l/r)a’;po {a,, pe,
:85} =0 and “;po/gs € _r{“i’p—l) a, pb} 0/35: — 7, 0 {au by, '85} =0.
Then i) is proved.

ii). «(4.16) is the case {=1. We proceed by induction on £

The proof is quite similar to that of Proposition 4.16.
By ii) of (4.4), we have a relation {83,, p:, {«,, p¢, «,_}}+ {8,
{pe, @, pi}, a,}+ {{B,, pe, .}, po, @} =0. By Corollary 4.5,
{pe, a,, p}=0. By (4.16), {B,, p¢, .} =0. By 4.11), {«,, py,
«,_.}>«,. Then we obtain a relation {3, p¢, «,} =0, and ii) is
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proved. For the details, see the proof of Proposition 4. 16.

iii). Consider a relation {{B,, p:, .}, a,, p+{B;, {pe a,
al}, p+1{B,, pe, {a,, &, p}}=0 from ii) of (4.4). By Proposition
4.17, {a,, a,, pi}={ps, @,, a}>(1/2)a,. By ii), {B,, ps, a,}=0
and {8,, ps, {a,, a, p}}=0. Then it follows {8, «,, p«}=0.
By i) and ii) of Theorem 4.4, {p: ,@,, B,}=0 and {«,, B,, p¢}
={ps B,, a,}=—{B,, «, ﬁb}—{dz, by Bs} =(0. Thus iii) is
proved for f=2. Next let £ >2 and consider a relation {{«,_,,
b, a}, B, p"}E{“t-2> {pe, @, B}, p"}+{at—z, by, {(1',2, B, pb}}
from (4.4), ii). Thus we have {«,, B,, p¢}=0. By Theorem 4. 4,
it follows {B,, «,, p:} =0, and iii) is proved. The details of the
proof are left to the reader. q.e.d.

It follows also from a relation {{«,,,, «,, pi}, B, pi}

E{arp~n {C(” pL’ 185}: p‘}_{arp—n «,, {pl’y Bs) pb}} that
(4.17).  A{az,, B, pi} = {ps, Bs, af,} =0
Sfor 1=s<p and 1<r<p.
By (4.4), i) and by Corollary 4.5 p{B,, pt, B} =~8,0
{4 Bs, Pt} =8,00Go pis-13p-1>-,=0. Since the p-component of
Gucriooptres-2p--s vanishes for r+s<’p (Theorem 4.15), then

{B,, pt, B}=0 for r+s<p. By i) of Theorem 4.4, {B,, p¢, B}
=—1{B,, pv, B,}. Thus we have

4.18).  {B,, pt, By =0 if r+s<p orvr=sp.
We have no information to compute B,o83, for r, s >2.

Problem. Is the composition 8,083, zero or not (r, s=2)?

§ Applications for some elementary complexes.

In this §, N will denote a sufficiently large integer, so that
homotopy groups 7zn. ;(SY¥v ---) will be stable with respect to
suspensions.

i) SN\ gN+tk+1

Consider a cell complex K=S¥uveN***' having a characteristic
class « €G,. We may identify =y, ;(SY) with G; and 7, ;.,(K, SV)
with G;_, (¢f. [2]). Then we have an exact sequence
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. «@ i T Qg
: _]i’ Gi—k —_*_’ Gi * > ”N-u(K) — Gi—k~1 )

where ay(B)=aoB for B€G,; ,. Thus it follows the following
exact sequence.

(4.19). 0 — G,/(@oG;_}) ﬁ» 7 4 (K ﬂ» G,_r..nKeray — 0.

Consider an element B of G;_,_,NKer «, and let B be an
element of 7, ;(K) such that j«(B)=RB. Let » be the order of S,
then jw(rB)=Bor:=0 and thus 7B is in the image of ix. By i)
of Proposition 4. 2,

rBeiy{a, B, v  mod. ix(rG)).
We have

Lemma 4.19. For an arbitrary element o of {«a, B, 7 CG,,
there exists an element B of =y, ;(K) such that j«3=8 and rB=1ixy.

First consider the case a=p's;, t >0. Then r=p° for some
s<t. By ii) of (4.2) and Corollary 4.5, {p’¢, B, p°i} Dp*~ o
{P°e, B, Pt} =p""0p’G,;20. It follows from Lemma 4.19, that
for any B €G,_,_,n Ker (p't)x of order » there exists an element
B€my, (K) such that »B=0 and j«8=p. This means that the
sequence (4.19) splits for this case and we have

Proposition 4.20. If «a=p's, t >0, then wy, (SY\JeN)

~G;[p'G;+ {BIReG, ,, p'B=0}.

Next consider the case k=2p—3 and «a=«,€G,, ;. Let
1<2p*(p—1)—3. Then, by Theorem 4.15 and Proposition 4.17,
G;/(@,0G;_,,.,) is spanned by «, (2<t), «/, and BioB,. Also
G;2pian Ker @y is spanned by «,, @), and «,03{c3,. Let & and
&, be elements of =y, ;(K) such that j.&,=«, and j.&,,=c.,.

Proposition 4.21. For (<2p*(p—1)—3, the p-component of
T (SN eNTPP7E) is generated by &, 1<t<p*—1), &., A1=r<p),

@,0B10B, (s+1<p) and i(BioB,) (s+t<p; (s, )=(1, p—1)).

The orders of &, (tZ=—1 (mod p)), &,,.,, & ,, &L, and
x(BioB,) are p*, p°, p°, p and p respectively.

The following relations hold for suitable choices of &, and &;,;
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p&;p:“rp» p&t:(l/(t+1)) z.>I<at1L1 f07’ t$_1 (mOd P) and p&rp—l
:(1/7’) i*ar/‘p-

Proof. Obviously ju(@0B8i{cB,)=ca0BiB,. It follows from
(4.19) that =y, ,(K) is generated by &, & ,, @ocBiB,, ixq,, iya.,
and 74(B%B;). The relations follow from Lemma 4.19 and ii) of
Proposition 4.17. Thus the proposition is established. q.e.d.

Remark that Proposition 4. 20 still holds for o= x«, with some
x==0 (mod p), by multiplying x to the right sides of the last two
equations.

Similar discussions imply the following results. The proofs
are left to the reader.

(4.20). Let ¢>1, ¢q==0 (mod p) and i< 2p(p—1)—3. Then the
p-component of wy, SN\ JeNTHPV) (s gemerated by i, (1< q),
ixatl, (rp<q), & (q+1==0 (mod p)), & (¢+1=0 (mod p)), &, BB,
&,5B10B,, ix(BioB,) and iy(ct,0B%3,), the orders of which are p, p°,
p°, %, D%, b, b, b and p respectively.

4.21). For i< 2p(p—1)—3 and 1=r<p, the p-component of
7 (SV\J eNTTPPTY) s generated by iy, (¢<7p), ixC, (s<7), &,

. b .
&L,y BB, @0B%0B,, ix(BioB,) and ix(c,oBi3,), the orders of which
are p, p°, P, b', b, b, p and p respectively.

4.22). For i< 2p(p—1)—3, the p-component of 7rN+,.(SN\§]
eN2PDTY s gemerated by ix(,, ixQ,, &, &, ixB; and ix(.0p3)),
s>1, the orders of which ave p, p°, p, p°, p and p respectively.

ii). SNuUeNthilgNthThT2

Let K=SNwueNtktlygNtktitt he a cell complex such that its
subcomplex L=S¥ueN*k*! and its quotient complex K/S¥ have
characteristic classes @ €G, and B €G, respectively, with respect
to given orientations of the cells of K. « and 8 have to satisfy

aof3 = 0.

The groups 7y, ;(K) will be calculated by means of the follow-
ing two exact sequences :
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1
- = (L) —> T (K) —> Gy —> (L) — oo

I

T Gi —> 7T (K) —— 75, (K/SY) —% Gy —> -

y

’

where we regard that G; , , ,=7y.;(K, L) and 7y, (K/SM)=my.;
(K, SM). Consider shrinking maps p,:L—L/SN=8N+1 and
D, K/SN— K[/L=SN***"**_ then as is seen in 1), my.,(L) and
7y ;(K) are calculated by the following two exact sequences :

Z.1>l< j)l* a*

> Gi — ﬂN+i(L) — Gifk—1 I Gz'—l —> oy,

By

Lok N pz*
c = Gy —> N (K[SY) — Gippy —> Gy — oo

To clarify the homomorphisms 9, and 9, the following lemma
will be useful.

Lemma 4.22. ). p4O0y=Boy. If Poy=0, then O,yciy
{((’ 18’ 7}'

ii). 821-2*,>,=C¥0ry. ]fﬁz*‘?zcy, then BOV)’=O and azr")'t € — {a’, B, r)I}-
This lemma is a direct consequence of Proposition 4. 2.
iii). SN UeNtl\yeNt2p-2\ yoNt2p-1

Let K=SNueNttuelNt?2-2yeN*t271 he a cell complex such that
L=SVueM' and L'=SVueM??7* are subcomplexes and that
L L', K/|L=SN*"?t"2yeNt2t~1 and K/L'=SN*""ueN**#" have character-
istic classes p¢, x«,, pe and y«, respectively for some integers x
and y, with respect to given orientations of the cells of K.

Since N is so large, we identify homotopy groups of a pair
with that of their quotient space, for example =, (K, L)
=y ;(K/L). Then we have exact sequences

> ”N+,‘(L) i" 7TN»;«,'(I{) 'ﬁ" ”N-m'(K/L) — ”N+i—1(L) —
(pe)x I Jix

e Gi‘zpaz - Gi—z[:iz I 7tN+i(I{/L) > Gi—z/)u >,

(PL)* G 7'2* jz*

(L) — Gy, —> -

G;

i

The last two sequences are clarified in Proposition 4. 20.
First we consider the boundary homomorphism 9.
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Lemma 4.23. There exists an element &, of 7y . i1 p-(K/L)
such that jx(@,)=ca, 1<t p*, 1<r<p) and

2(&,) = fu(x+yt/(t+1))q,,, if t+1==0 (mod p),
a(&rp—l) = Z2>0<( —J’/’)“;p .

Proof. The following diagram is commutative :

) 7, (K/[L) _]_1, Tns (SN =G, iy
Uk 2 Ia/
44 Z
Gi‘Zﬁ 2= (SN —— my (L) —*—> Ty (L eN PR

\ /’,*
”N;l(S)—

a// 7-/'
The sequence —— —*, is exact. Then the lemma follows from

the following results :
() = ih(x+ty/(t+1),,,, t+1==0 (mod p),
(A, p) = ix(—y[N) 7,
Consider the injection homomorphism ji :my,; (L\veN™??77)
=N (LueN P [SNy =7y (SNTV SN =G+ Gy, By

the properties of characteristic classes, we have ji(P)=ya, +p..
It follows then

oy = y&1+p'_2,
for elements &, and pL satisfying j «&,=«, and ],*pn_pb and
they are given as in Proposition 4.2. By Proposition 4.2,
() = o, €if({pe, y,, a;} +{xa,, pi, }).
By Propositions 4.17 and 4. 16,

(e — i (x+yt/(E+1) ¥y € PCosrrxp-15-1)
or 8’((1%,,,_1)—1';(—3)/7) C‘(;p € i:k(szrp(p—Dﬂ+xa1°G2(rp—1)(p—1)) .
Since eM*' is attached to S¥ by p¢, 14(pGusi1xp-1-1)=0. Also,
since eV**#7* is attached to S¥ by x«,, f(x@0Gy,, 15 p-1)=0.
Therefore the required relations on 9 are established. q.e.d.
It follows from the lemma (1="t#<p?

(4. 23) oAa,) =0 if and only if (t+1)x+ty=0 (mod p).
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In the case (¢#+1)x+2y=0, & and 74, (i1x«},) are not
cancelled by @, and the groups =, (K) will be more complicated
than the other cases.

Now we consider the case (¢!+1)x+¢y=0 and x==0 or y==0.

Lemma 4.24. ). Let 1<t<p*—1, (t+1)x+ty=0 and y==0.
Then, for an element A, such that jyA,=da,, we have pA,=-=0.

ii). Let 1=t<p°—1, (t+1)x+ty=0 and x=0 or y==0.
Then for an element A, such that jA/ =i, if t==0 and jLA/
=50/ if t=0, we have pA,/==0.

Proof. 1i). It is sufficient to prove that j4«(pA,)==0 for
Jox : T (K) =y (K/L"). Applying Proposition 4.21 to our case
K/L’, i) is proved.

ii). For the case x==0, we consider the element A, in L’
and apply Proposition 4. 21, then we see that pA,’=i4((1/(¢+1))¢, )
if t+1==0 and pA/=ix((1/7r)a;,) if t+1=rp. Then ii) is proved
for this case. Next let x=0, then y=5=0 and {=0. In this case
we may consider that eM*?#7? is attached by a trivial maping, and
L'=SNv SN+2p—2’ LueNtep-2 [ v SN+2t-2 Consider O : 7ZNA,;.,~(SN_2P>1)
>y (LVSN?27%)  and  jhimn (LVSNPT) sy (LISNV
SN0 =G;_,+Gi_,p;. Then, as is seen in the proof of the
previous lemma,

(L) = Vodt), €i({pr, YU, AL +iplpal,),

where 7,: SN2 [ v SN*2#7% is the injection. Since 9'(a},) gives
a relation in K and since ix(pa;,)=1ix(¢,,) corresponds to pA’,,
we see that pAl =ix(—ix(rya,,,)) by Proposition 4.17, ii).
Therefore pA;,=1=0. q.e.d.
These two lemmas will be applied to investigate the 4-fold
iterated suspension E*:7;(S")—7;.(S""*) in the next section V.
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