Additive functionals of the Brownian path

By

H. P. McKean, Jr. and Hiroshi Tanaka

(Communicated by Prof. K. Itô, March 14, 1961)

1. INTRODUCTION.

A functional $\mathrm{f}(t)=\mathrm{f}(t, w)$ of $t(\geq 0)$ and a several-dimensional Brownian path $w: t \rightarrow x(t)$ is said to be additive if
1.1 $\mathrm{f}(t, w)$ depends upon t and $x(s): s \leq t$ alone.
1.2 $0=\mathrm{f}(0) \leq \mathrm{f}<+\infty$
$1.3 \quad \mathrm{f}(t \pm)=\mathrm{f}(t)$
$1.4 \quad \mathrm{f}(t)=\mathrm{f}(s)+\mathfrak{f}\left(t-s, w_{s}^{+}\right) \quad t \geq s$,
where w_{s}^{+}is the shifted path $w_{s}^{+}: t \rightarrow x(t+s)$; for example, $\mathrm{f}(t)=\int_{0}^{t} f(x(s)) d s$ is an additive functional if $f \geq 0$ is bounded and Borel.
K. Itô and H. P. McKean, Jr. [13] proved that in the 1-dimensional case such an additive functional is an integral
$1.5 \quad \mathrm{f}(t)=\int \mathrm{t}(t, b) e(d b)$
of the standard Brownian local times

1. $6 \mathrm{t}(t, a)=\lim _{b \downarrow a} \frac{\text { measure }(s: a \leq x(s)<b, s \leq t)}{b-a}$
with respect to a non-negative measure e, finite on bounded intervals.
Brownian local times are not available in $d \geq 2$ dimensions, but f can still be expressed as a (formal) Hellinger integral
$1.7 \mathrm{f}(t)=\int \frac{\text { measure }\left(s: \frac{x(s) \in d b, s \leq t) e(d b)}{d b}\right.}{d b}$
with a non-negative measure e which is smooth in the sense that
each bounded open D is the union of an increasing series of sets $B_{n}(n \geq 1)$, closed in D, such that
1.8a the charge distributions $e \mid B_{n}$ have bounded potentials $\int_{B_{n}} G d e$ $\leq n(n \geq 1)$, where G is the Green function of D;
2. 8b for large n, depending upon the path, the Brownian particle lies in B_{n} until it leaves D, i.e.,

$$
P \cdot\left[x(t) \in B_{n}, t<\min (s: x(s) \notin D), n \uparrow+\infty\right]=1,
$$

where $P .(B)$ is the probability of the event B as a function of the starting point of the Brownian motion.

The correspondence embodied in 1.7 between the class of smooth measures e and the class of additive functionals f is one to one and onto.

1. 8a implies that $e(B)=0$ unless B has positive logarithmic capacity in the 2 -dimensional case or has positive Newtonian capacity in the $d \geq 3$ dimensional case ; thus, a smooth measure cannot attach positive mass to a line in 3 dimensions, nor, in 4 dimensions, to a surface. But it can be singular relative to Lebesgue measure; the simplest example in 3 dimensions is the uniform distribution on the spherical surface $|a|=1$.

Choose $d=3, e(d b)=|b|^{a} d b$, and let G be the Green function of $D:|a|<1$; then
1.9a $\quad p=\int G d e$

$$
\begin{array}{ll}
\leq \mathrm{constant}(2+\alpha)^{-1} & \alpha>-2 \\
<+\infty \text { except at } 0 & -3<\alpha \leq-2 \\
\equiv+\infty & \alpha \leq-3
\end{array}
$$

$1.9 \mathrm{~b} \quad \mathfrak{E}(e) \equiv \iint G d e d e<+\infty \quad \alpha>-5 / 2$,
and it follows that e is smooth for $\alpha>-2$. e is not smooth for $\alpha \leq-2$; in fact, choosing $B_{n} \uparrow D$ as needed for 1.8 ,
$1.10 \quad E_{0}\left[\int_{0}^{\varepsilon}|x(s)|^{\alpha} d s, x(t) \in B_{n}, t<\varepsilon\right]$

$$
\begin{aligned}
& \leq \int_{0}^{+\infty} d s \int_{B_{n}} P_{0}\left[x(s) \in d b, \max _{1 \leq s}|x(t)|<1\right]|b|^{\infty} \\
& \leq \int_{B_{n}} G(0, b) d e<+\infty
\end{aligned}
$$

thanks to 1.8 a , and

1. $11 \lim _{\varepsilon \downarrow 0} \lim _{n \uparrow+\infty} P_{0}\left[x(t) \in B_{n}, t<\varepsilon\right]=1$
thanks to 1.8 b , while, as is not hard to prove,
$1.12 P_{0}\left[\int_{0}^{\varepsilon}|x(s)|^{\infty} d s \equiv+\infty, \varepsilon>0\right]=1$,
contradicting 1.10 .
V. A. Volkonskii $[15,16]$ also studied additive functionals, establishing a special case of the above for a wider class of motions; the method used below is similar to his.

Given a 1-dimensional diffusion with the same hitting probabilities as the standard Brownian motion :
1.13

$$
\begin{aligned}
& P_{\xi}[\min (t: x(t)=a)<\min (t: x(t)=b)] \\
& =\frac{b-\xi}{b-a} \quad a<\xi<b,
\end{aligned}
$$

W. Feller [8] explained how to express the associated generator (5) as a differential opearator based upon a speed measure e, positive on open intervals :
$1.14 \quad$ (̧) $u=\frac{u^{+}(d a)}{e(d a)}=\lim _{b \downarrow a} \frac{u^{+}(b)-u^{+}(a)}{e(a, b)}$

$$
u^{+}(a)=\lim _{b \nmid a} \frac{u(b)-u(a)}{b-a},
$$

and K. Itô and H. P. McKean, Jr. [13] found that its sample paths could be expressed as standard Brownian sample paths run with the stochastic clock f^{-1} which is the inverse function of the additive functional (local time integral) $\mathrm{f}=\int \mathrm{t} d e$ associated with the speed measure.
V. A. Volkonskiî [15] also studied such time substitutions; his method is less explicit because it does not use local times but has the advantage that it can be applied in higher dimensions.

As will be explained below, a $d \geq 2$ dimensional diffusion with Brownian hitting probabilities has as its generator the closure of a differential operator
$1.15 \quad$ ॐ $u=-\frac{e^{u}(d b)}{e(d b)}$
based upon a (smooth) speed measure e, positive on the neighborhoods of H. Cartan's fine topology [2]; moreover, the associated motion is the standard Brownian motion run with the inverse function f^{-1} of the additive functional f associated with e, and this correspondence between the class of diffusions with Brownian hitting probabilities and the class of smooth measures e positive on fine neighborhoods is one to one and onto.

2. BROWNIAN MOTION.

Choose $d \geq 2$, let $E^{d}=R^{d}$ it $d=2$, let it be the one-point compactification $R^{d}+\infty$ if $d \geq 3$, introduce the space of continuous sample paths $w:[0,+\infty) \rightarrow E^{d}$ with
2. $1 \quad w(t) \in R^{d} \quad t<\mathrm{m}_{\infty}$

$$
=\infty \quad t \geq \mathfrak{m}_{\infty},
$$

where $\mathfrak{m}_{\infty}=\mathfrak{m}_{\infty}(w) \leq+\infty$ and $\mathfrak{m}_{\infty} \equiv+\infty$ in case $d=2$, let $w(t)=$ $x(t, w)=x(t)$ as need be, note that $x(+\infty) \equiv \infty$ even if $d=2$, and, introducing the corresponding coordiante fields $\boldsymbol{B}_{t}=\boldsymbol{B}[x(s): s \leq t]$ and $\boldsymbol{B}=\boldsymbol{B}_{\infty+}$, let P.(B) be the probability (Wiener measure) of the event $B \in \boldsymbol{B}$ as a function of the starting point of the d-dimentional Brownian motion with generator $(\mathfrak{G})=\frac{\partial^{2}}{\partial b_{1}^{2}}+\frac{\partial^{2}}{\partial b_{2}^{2}}+\cdots+\frac{\partial^{2}}{\partial b_{a}^{2}} .{ }^{1}$

Brownian motion enthusiasts are familiar with the fact that the Brownian traveller starts afresh at a passage time; the full significance of this was explained by E. B. Dynkin [6] and G. Hunt [9] as follows.

An instant of time $0 \leq \mathfrak{m} \leq+\infty$ depending upon the path is said to be a Markov time if
$2.2 \quad(w: \mathrm{m}<t) \in \boldsymbol{B}_{t} \quad t \geq 0 ;$
for example, the passage time $\mathfrak{m}_{Q}=\inf (t: x(t) \in Q)$ to a closed or

[^0]open d-dimensional figure Q is a Markov time and so is $\mathfrak{m}=$ $\min \left(t: \int_{0}^{t} f(x(s)) d s=1\right)$ if $0<f \leq 1$ is a Borel function.

Given such a Markov time \mathfrak{m}, if $w_{\mathfrak{m}}^{+}$is the shifted path
$2.3 \quad w_{\mathfrak{m}}^{+}: t \rightarrow x(t+\mathrm{m})$
and if $\boldsymbol{B}_{\mathfrak{m}_{+}}$is the field of events $B \in \boldsymbol{B}$ such that
2.4 $B \cap(w: \mathrm{m}<t) \in \boldsymbol{B}_{t} \quad t \geq 0$,
then the Brownian particle starts afresh at time $t=\mathfrak{m}$, i.e., $2.5 \quad P_{a}\left[w_{\mathfrak{m}}^{+} \in B \mid \boldsymbol{B}_{\mathfrak{m}+}\right]=P_{b}(B) \quad a \in E^{d}, B \in \boldsymbol{B}, b \equiv x(\mathrm{~m})^{2}$.

Blumenthal's 01 law [1]:
2. $6 \quad P .(B)=\begin{aligned} & 0 \\ & 1\end{aligned} \quad B \in \boldsymbol{B}_{0+}=\bigcap_{\varepsilon>0} \boldsymbol{B}_{\varepsilon}$
is a special case of 2.5 .
A. R. Galmarino ${ }^{3}$ has pointed out that a non-negative Borel function \mathfrak{m} of the sample path is a Markov time if and only if
2.7a $\quad \mathrm{m}(u)<t$
2. 7b $\quad x(u, u)=x(s, v) \quad s \leq t$
imply $\mathrm{m}(u)=\mathfrak{m}(v)$ and that an event $B \in \boldsymbol{B}$ is a member of $\boldsymbol{B}_{\mathfrak{m}_{+}}$if and only if 2.7 coupled with $u \in B$ implies $v \in B$. As a simple application of this test, note that $B_{\mathfrak{m}+}$ measures both \mathfrak{m} and the past $x(\theta \wedge \mathfrak{m})(\theta \geq 0)^{4}$ because 2.7 implies $\theta \bigwedge \mathfrak{m}(u)=\theta \bigwedge \mathfrak{m}(v)<t$ and hence $x(\theta \wedge \mathrm{~m}(u), u)=x(\theta \bigwedge \mathrm{~m}(v), v)$.

Given bounded open $D \subset R^{d}$ with boundary ∂D, if $\mathrm{m}_{\partial D}$ is the exit time $\min (t: x(t) \in \partial D)$, then the hitting probability
2. $8 \quad h_{\partial D}(a, d b)=P_{a}\left[x\left(\mathrm{~m}_{\partial D}\right) \in d b\right] \quad a \in D, d b \in \partial D$
is the classical harmonic measure of $d b$ as viewed from the point a, and, if $G_{D}(a, b)$ is the classical Green function of D, then
2. $9 \quad E_{a}\left[\right.$ measure $\left(t: x(t) \in d b, t<\mathrm{m}_{\partial D}\right]=G_{D}(a, b) d b^{5} \quad a, b \in D$;

[^1]for the proofs, see J. Doob [5] and G. Hunt [9].
G. Hunt [10] has called a non-negative Borel function p excessive on D if
2. $10 \quad E_{a}\left[p(x(t)), t<\mathrm{m}_{\partial D}\right] \uparrow p(a) \quad t \downarrow 0, a \in D$.

An excessive function can be split into its greatest harmonic minorant h plus the potential $\int G_{D} d e$ of a non-negative (Riesz) measure e, indeed, Hunt's excessive functions are the same as the superharmonic functions of F. Riesz [14]. J. Doob [5] proved that an excessive function is continuous on the Brownian path $\left(t<\mathrm{m}_{\partial D}\right)$ and that a potential tends to 0 along the Brownian path ($t \uparrow \mathrm{~m}_{\partial D}$).

3. THE ASSOCIATED MEASURE OF AN ADDITIVE FUNCTIONAL.

Consider an additive functional f of the Brownian sample path as described in seition 1 , interpreting 1.1 to mean
3. $1 \mathrm{f}(t, w)$ is measurable \boldsymbol{B}_{t} for each $t \geq 0$.

The purpose of this section is to associate with f a unique non-negative measure e such that, for each bounded open $D \subset R^{d}$,
3.2 $\quad 1-p_{\alpha}=\alpha \int G p_{\alpha} d e \quad p_{\alpha}=E \cdot\left[e^{-\alpha f\left(m_{\partial} n\right)}\right], \alpha>0$,
where G is the Green funetion of D and the integral is extended over D; it will follow from 3.2 that e is smooth.

Censider, for this purpose, the additive functional
$3.3 \quad \mathrm{f}_{\alpha}(t)=\int_{0}^{t_{\wedge}{ }^{m \partial D} p_{\alpha}(x(s)) f(d s) \quad t \geq 0, ~}$
and let us begin with the following simple lemmas:
a) $1-p_{a}$ is the potential of a non-negative measure αe_{α}.
b) $E \cdot\left[\mathrm{f}_{a}\left(\mathrm{~m}_{\partial D}\right)\right]<+\infty$.
c) $\mathrm{f}_{\infty} \uparrow f$ as $\alpha \downarrow 0$.
d) $1-p_{a}=\alpha E \cdot\left[f\left(\mathrm{~m}_{\partial D}\right)\right]=\alpha \int G d e_{\alpha}$.
e) $E \cdot\left[_{0}^{\mathrm{m}^{\mathrm{m} \partial \mathrm{m}}} f(x(s)) \mathrm{f}_{\alpha}(d s)\right]=\int G f d e_{\alpha}$ if $f \geq 0$ is a Borel function.
f) $p_{\alpha}^{-1} e_{\alpha}(d b)=e(d b)$ is independent of α and of D.
g) e is unique.

Because
3. $3 \quad E .\left(1-p_{\alpha}(x(t)), t<m_{\partial D}\right)=E .\left(1-e^{-\alpha\left[\mathrm{f}\left(\mathrm{m}_{\partial \rho}\right)-\mathrm{f}(t)\right]}, t<\mathrm{m}_{\partial D}\right)$
$\uparrow 1-p_{\infty} \quad t \downarrow 0$,
$1-p_{\alpha}$ is excessive; it is, in fact, a potential thanks to
3.4

$$
\int_{\partial \dot{D}} h_{\partial \dot{D}}(a, d b)\left[1-p_{a}\right]=E_{a}\left(1-e^{-\alpha\left[\mathrm{f}\left(\mathrm{~m}_{\partial D}\right)-\mathrm{f}(\mathrm{~m} \partial \dot{D}]\right.}\right) \downarrow 0 \quad \dot{D} \uparrow D,
$$

and this completes the proof of a). As to b), p_{a} is continuous on the Brownian path because of 1 , and, since f is continuous, b) follows on letting $n \uparrow+\infty$ in
$3.5 \quad 1-p_{a}=E \cdot\left[\int_{0}^{\mu \partial \partial} e^{-\alpha\left[\mathfrak{f}\left(m_{\partial} D\right)-\mathfrak{f}(t)\right]} \mathfrak{f}(d t)\right]$

$$
\begin{aligned}
& I_{k}=\left[(k-1) 2^{-n}, k 2^{-n}\right) \\
& =\alpha E \cdot\left[\sum_{k 2^{-n}<\min ^{2} D} p_{\alpha}\left(x\left(k 2^{-n}\right)\right) e^{-\alpha \uparrow\left(I_{k}\right)} \mathrm{f}\left(I_{k}\right)\right] \text {. }
\end{aligned}
$$

Because of c), which is obvious,
3. $6 \quad \alpha^{-1}\left(1-p_{\alpha}\right)=\lim _{\varepsilon \not \downarrow 0} E .\left[\int_{0}^{\mathrm{m}_{\partial} \eta} e^{-\alpha\left[\mathrm{f}\left(\mathrm{m}_{\partial} \partial\right)-\mathrm{f}(t)\right]} f_{\varepsilon}(d t)\right]$,
and, using the method of 3.5 and $E \cdot\left[\mathrm{f}_{\varepsilon}\left(\mathrm{m}_{\partial D}\right)\right]<+\infty$, it appears that
$3.7 \quad \alpha^{-1}\left(1-p_{a}\right)=\lim _{\varepsilon \downarrow 0} E \cdot\left[\int_{0}^{\mu \partial D} p_{\alpha}(x(t)) f_{\varepsilon}(d t)\right]=E \cdot\left[\int_{0}^{\mathrm{m}_{\mathrm{\varepsilon}} \rho} p_{\alpha} d \uparrow\right]$
proving d).
K. Itô (private communication) pointed out the following neat method for proving e). Choose closed $B \subset D$ such that $e_{\alpha}(\partial B)=0$ and let e_{1} and e_{2} be the charge distributions of the potentials $p_{1}=E .\left[\int_{\rho}^{\mathrm{m} \partial D} f d \mathrm{f}_{\alpha}\right]$ and $p_{2}=E \cdot\left[\int_{0}^{\mathrm{m} \partial D}(1-f) d \mathfrak{f}_{\alpha}\right]$, in which f is the indicator function of B. Because p_{1} is harmonic outside B and differs from $\alpha^{-1}\left(1-p_{\alpha}\right)=E \cdot\left[f_{\alpha}\left(\mathrm{m}_{\partial D}\right)\right]$ by a harmonic function inside B, e_{1} is
not smaller than the restriction of e_{∞} to B, and, for the same reasons, e_{2} is not smaller than the restriction of e_{α} to $D-B$. But $p_{1}+p_{2}=\alpha^{-1}\left(1-p_{a}\right)$, whence
$3.8 \quad p_{1}=E \cdot\left[\int_{0}^{m \partial D} f d \mathrm{f}_{\infty}\right]=\int_{B} G d e_{\omega}$,
and since such figures B generate the class of Borel subsets of D, e) follows.

As to f), $p_{\infty}>0$ because $f\left(\mathfrak{m}_{\partial D}\right)<+\infty$, and, choosing $0<\beta<\alpha$, e) implies
$3.9 \int G d e_{\omega}=E .\left[\int_{0}^{\mathrm{m}_{\partial} D} p_{a} / p_{\beta} d \dot{j}_{\beta}\right]=\int G p_{\alpha} / p_{\beta} d e_{\beta}$, i.e., $d e \equiv p_{\alpha}^{-1} d e_{\infty}$ is indeqendent of α; it is also independent of D because if $\dot{D} \supset D$ and if $p_{\alpha} \equiv 0$ outside D, then, with an obvious notation,
$3.10 \quad \int G p_{a} \dot{p}_{\beta} d e=E .\left[\int_{0}^{m_{\partial} D} p_{\alpha} d \dot{f}_{\beta}\right]$

$$
=E \cdot\left[\int_{0}^{\mathfrak{m} \partial \dot{j}} p_{\alpha} d \dot{f}_{\beta}\right]-E \cdot\left[\int_{\mathfrak{m} \partial D}^{\mathrm{m}_{\partial} \dot{p}} p_{\alpha} d \dot{\mathfrak{j}}_{\beta}\right]
$$

$$
=\int \dot{G} p_{a} \dot{p}_{\beta} d \dot{e}-\int d h_{\partial D} \int \dot{G} p_{a} \dot{p}_{\beta} d \dot{e}
$$

$$
=\int G \dot{p}_{\alpha} p_{\beta} d \dot{e}
$$

g) is immediate from 3.2.
To establish the smoothness of e, take bounded open D and put $B_{n}=D \bigcap\left(p_{1} \geq n^{-1}\right)$. Because $1-p_{1}$ is a potential, B_{n} is closed in D and increases to D as $n \uparrow+\infty$; moreover, according to 3.2,
$3.11 \int_{B_{n}} G d e \leq n \int G p_{1} d e=n\left(1-p_{1}\right) \leq n$,
which is 1.8 a , and, since, along the Brownian path, $0<p_{1}$ is continuous and tends to $1\left(t \uparrow \mathrm{~m}_{\partial D}\right)$,
3. $12 \quad P \cdot\left[\inf \left(t: x(t) \notin B_{n}\right)<\mathrm{m}_{\partial D}\right]$

$$
=P \cdot\left[\inf _{t<\operatorname{ni} \partial D} p_{1}(x(t))<n^{-1}\right] \downarrow 0 \quad n \uparrow+\infty,
$$

which verifies 1.8 b .

4. UNIQUENESS.

The following simple lemma is useful in later sections: two additive functionals \mathfrak{f}_{1} and \mathfrak{f}_{2} with the same bounded mean
4.1 $\quad p=E \cdot\left[f\left(\mathrm{~m}_{\partial D}\right)\right]=\lim _{\varepsilon \nsim 0} \varepsilon^{-1}\left(1-p_{\varepsilon}\right)=\int G d e \quad \mathrm{f}=\mathrm{f}_{1}, \mathrm{f}_{2}$
are the same for $t \leq \mathrm{m}_{\partial D}$.
An argument similar to 3.5 implies

$$
\begin{align*}
& E \cdot\left(\int_{0}^{\mathrm{m}_{\partial D}}\left[\mathrm{f}_{i}\left(\mathrm{~m}_{\partial D}\right)-\mathrm{f}_{i}(t)\right] \mathrm{f}_{k}(d t)\right) \\
& =E \cdot\left(\int_{0}^{\mathrm{m}_{\partial D}} p d \mathfrak{f}_{k}\right) \\
& =\int G p d e \leq\|p\|_{\infty}^{2}<+\infty ;
\end{align*}
$$

thus, putting $\mathfrak{f}=\mathrm{f}_{2}-\mathrm{f}_{1}$,
4. 3

$$
\begin{aligned}
& E \cdot\left[\mathrm{f}\left(\mathrm{~m}_{\partial D}\right)^{2}\right] \\
& =2 E \cdot\left[\int_{0}^{\mathrm{m} \partial D}\left[\mathrm{f}\left(\mathrm{~m}_{\partial D}\right)-\mathrm{f}(t)\right] \mathrm{f}(d t)\right] \\
& =0
\end{aligned}
$$

and hence
4. $40=E \cdot\left[f\left(\mathrm{~m}_{\partial D}\right) \mid \boldsymbol{B}_{t \wedge \text { wว }^{+}}\right]=E \cdot\left[\mathfrak{f}\left(\mathrm{~m}_{\partial D}\right)-\mathrm{f}(t) \mid \boldsymbol{B}_{t \wedge \mathrm{~m}_{\partial D^{+}}}\right]+\mathfrak{f}(t)$

$$
=\mathrm{f}(t) \quad t \leq \mathfrak{m}_{\partial D}
$$

as desired.
It is a simple matter to deduce from this that two additive functionals with the same associated measure are the same; indeed, the difference p of two solutions of 3.2 satisfies $-p=\alpha \int G p d e$, which implies
$4.5 \quad 0 \geq-\int p^{2} d e=\mathfrak{E}(p d e)=\int G p d e p d e$,
and it follows that two additive functionals with the same associated measure have the same p_{α}, hence the same $\alpha^{-1}\left(1-p_{\alpha}\right)=E \cdot\left[f_{\alpha}\left(\mathrm{m}_{\partial D}\right)\right]$ $\left(<\alpha^{-1}<+\infty\right)$, and hence the same f_{∞}. But this means that the two functionals are the same up to time $m_{\partial D}$, and, to finish the proof, it is enough to make D swell out to R^{d}.

5. CONSTRUCTION OF AN ADDITIVE FUNCTIONAL FROM ITS ASSOCIATED MEASURE.

Given a smooth non-negative measure e, our task is to find an additive functional f with e as its associated measure.

Consider, for this purpose, a non-negative measure e on a bounded open figure D with bounded potential $p=\int G d e$ and finite energy $\mathscr{F}(e)=\int G d e d e$, let p_{n} be the potential $\int G f_{n} d b$ of
$5.1 \quad f_{n}=n\left(p-E .\left[p\left(x\left(n^{-1}\right)\right), n^{-1}<m_{\partial D}\right]\right)$,
let
$5.2 \quad \mathrm{f}_{n}(t)=\int_{0}^{t \wedge \mathrm{~m}^{2} D} f_{n}(x(s)) d s$,
and let us construct a functional f associated with e as a limit of f_{n} with the aid of the following simple lemmas:
a) p is a Brownian excessive function; esp. $0 \leq f_{n}$.
b) $E \cdot\left[p(x(t)), t<\mathrm{m}_{\partial D}\right] \downarrow 0$ inside D as $t \uparrow+\infty$.
c) $p_{n}=n \int_{0}^{n-1} E \cdot\left[p(x(t)), t<\mathfrak{m}_{\partial D}\right] d t$ increases to p inside D as $n \uparrow$ $+\infty$.
d) $\lim _{n++\infty} \mathfrak{F}\left(e-f_{n} d b\right)=0$, where \mathfrak{F} is the energy $\mathfrak{F}(e) \equiv \int$ Gdede.
e) $E \cdot\left[f_{n}(+\infty) \mid \boldsymbol{B}_{t \wedge \mathrm{~m}_{\partial D^{+}}}\right] \equiv \mathfrak{l}_{n}(t)$

$$
\begin{array}{ll}
=p_{n}(x(t))+\mathrm{f}_{n}(t) & \\
=\mathrm{m}_{\partial D}>t \geq 0 \\
=\mathrm{f}_{n}\left(\mathfrak{m}_{\partial D}\right) & \\
\mathrm{m}_{\partial D} \leq t,
\end{array}
$$

i.e., \mathfrak{l}_{n} is a martingate with respect to the fields $\boldsymbol{B}_{t \wedge \mathrm{~m}_{\partial D^{+}}}$; moreover, \mathfrak{l}_{n} is continuous in t.
f) $P \cdot\left[\max _{t \geq 0}\left|\mathfrak{l}_{n}\left(t, w_{s}^{+}\right)-\mathfrak{l}_{m}\left(t, w_{s}^{+}\right)\right|>\varepsilon\right]$
\leq constant $\times \varepsilon^{-2} s^{-d / 2} \sqrt{\left(5\left(f_{n} d b-f_{m} d b\right)\right.}$.
g) $P \cdot\left[\lim _{n \uparrow+\infty} \mathrm{f}_{n}\left(t, w_{s}^{+}\right)=\mathrm{f}\left(t, w_{s}^{+}\right), t \geq s>0\right]=1$.
where the limit is taken as $n \uparrow+\infty$ via suitable $n_{1}<n_{2}<$ etc., $\mathfrak{f}(t)$ is continuous, $\mathrm{f}(0) \equiv \mathrm{f}(0+)=0$, and $\mathrm{f}(t)=\mathrm{f}(s)+\mathrm{f}\left(t-s, w_{s}^{+}\right)\left(\mathrm{m}_{\partial D} \geq t \geq s\right)$. h) $E \cdot\left[f\left(\mathrm{n}_{\partial D}\right)\right]=p$.

Because p is a potential, it is excessive; a) is obvious from this, b) is obvious from the bound
$5.3 E \cdot\left[p(x(t)), t<m_{\partial D}\right] \leq\|p\|_{\infty} P \cdot\left(t<m_{\partial D}\right) \downarrow 0 \quad t \uparrow+\infty$, and c) follows from b) :
$5.4 \quad p_{n}=E \cdot\left[\int_{0}^{\mathrm{m} \partial D} f_{n}(x(s)) d s\right]$
$=n \int_{0}^{+\infty} d s E \cdot\left[p(x(s))-E_{x(s)}\left[p\left(x\left(n^{-1}\right)\right), n^{-1}<m_{\partial D}\right], s<\mathfrak{m}_{\partial D}\right]$
$=n \int_{0}^{+\infty} d s\left[E \cdot\left[p(x(s)), s<m_{\partial D}\right]-E \cdot\left[p\left(x\left(s+n^{-1}\right)\right), s+n^{-1}\right.\right.$
$\left.<\mathrm{m}_{\partial D}\right]$]
$=n \int_{0}^{n^{-1}} E \cdot\left[p(x(s)), s<m_{\partial D}\right] d s \uparrow p \quad n \uparrow+\infty$.
An application of c) establishes
$5.5 \quad \mathfrak{F}(e)=\int p d e \geq \int p_{n} d e=\int p f_{n} d b \geq \mathfrak{F}\left(f_{n} d b\right) \uparrow \mathfrak{F}(e) \quad n \uparrow+\infty$, and this implies d):
5. $6 \quad \lim _{n \uparrow+\infty} \mathfrak{F}\left(e-f_{n} d b\right)=\lim _{n+\uparrow+\infty}\left[\mathfrak{E}(e)-2 \int p_{n} d e+\mathscr{E}\left(f_{n} d b\right)\right]=0$.

Because $t \bigwedge \mathfrak{m}_{\partial D}$ is a Markov time,
5.7

$$
\begin{aligned}
& E \cdot\left[\mathrm{f}_{n}\left(\mathfrak{m}_{\partial D}\right) \mid B_{t \wedge \mathrm{~m}_{\partial D^{+}}}\right]=E \cdot\left[\int_{t \wedge \mathrm{~m}_{\partial D}}^{\mathfrak{m}_{\partial}} f_{n}(x(s)) d s \mid B_{t \wedge \mathrm{~m}_{\partial D^{+}}}\right]+\mathrm{f}_{n}(t) \\
& =E_{x\left(t \wedge \mathfrak{m}_{\partial D}\right)}\left[\int_{0}^{\mathfrak{m}_{\partial D}} f_{n} d s\right]+\mathrm{f}_{n}(t)=p_{n}(x(t))+\mathrm{f}_{n}(t) \equiv \mathfrak{l}_{n}(t) t<\mathfrak{m}_{\partial D},
\end{aligned}
$$

i.e., \mathfrak{l}_{n} is martingale, and since p_{n} is continuous and tends to 0 along the Brownian path ($t \uparrow m_{\partial D}$), \mathfrak{l}_{n} is continuous. e) is now established, and f) follows from Doob's submartingale extension of Kolmogorov's inequality [4], the Schwarz inequality
$5.8 \quad\left(\int G d e_{1} d e_{2}\right)^{2} \leq \mathfrak{F}\left(e_{1}\right) \mathfrak{F}\left(e_{2}\right)$
(see H. Cartan [2]), and the resulting
$5.9 \quad E .\left[\left|\mathfrak{l}_{n}\left(+\infty, w_{s}^{+}\right)-\mathfrak{l}_{m}\left(+\infty, w_{s}^{+}\right)\right|^{2}, s<m_{\partial D}\right]$

$$
\begin{aligned}
& \leq E \cdot\left[E_{x(s)}\left[\left|\mathrm{f}_{n}\left(\mathrm{~m}_{\partial D}\right)-\mathrm{f}_{m}\left(\mathrm{~m}_{\partial D}\right)\right|^{2}\right], s<\mathrm{m}_{\partial D}\right] \\
& \leq E \cdot\left[\int G(x(s), b)\left(f_{n}-f_{m}\right)\left(p_{n}-p_{m}\right) d b, s<\mathrm{m}_{\partial D}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\iint G(a, b) e_{n m}(d a) E \cdot\left[G(x(s), b), s<m_{\partial D}\right] e_{n m}(d b) \\
& \quad e_{n m}(d b)=\left(f_{n}-f_{m}\right) d b \\
& \leq \sqrt[F]{ }\left(e_{n m}\right)^{1 / 2} \mathfrak{F}\left(E \cdot\left[G(x(s), b), s<\mathrm{m}_{\partial D}\right] d e_{n m}\right)^{1 / 2} \\
& \leq \sqrt[G]{ }\left(e_{n m}\right)^{1 / 2} \text { constant } \times s^{-d / 2} \mathfrak{G}\left(e_{n m}\right)^{1 / 2} .
\end{aligned}
$$

Choose $n_{1}<n_{2}<$ etc. so as to make $P \cdot\left[\max _{t \geq 0}\left|l_{n}\left(t, w_{s}^{+}\right)-\mathfrak{l}_{s}(t)\right| \downarrow 0\right.$, $s>0]=1$, where \mathfrak{l}_{s} is a continuous function of t. Because $p=\lim _{n \uparrow \infty+} p_{n}$ is continuous and tends to 0 along the Brownian path ($t \uparrow \mathrm{~m}_{\partial D}$), it follows that $f_{s}(t)=\lim _{n \uparrow+\infty} f_{n}\left(t, w_{s}^{+}\right)$is continuous $(t \geq 0)$ and additive $\left(t \leq \mathfrak{m}_{\partial D}\left(w_{s}^{+}\right)\right) ;$moreover
5.10

$$
E \cdot\left[f_{n}(+\infty)^{2}\right]=2 \int G p_{n} f_{n} d b \leq 2\|p\|_{\infty}^{2}<+\infty
$$

implies
5.11

$$
\begin{aligned}
& E \cdot\left[f_{s}(t-s)\right]=\lim _{n \uparrow+\infty} E \cdot\left[f_{n}\left(+\infty, w_{s}^{+}\right)-\mathrm{f}_{n}\left(+\infty, w_{t}^{+}\right)\right] \\
& =\lim _{n \uparrow+\infty}\left[E \cdot\left(p_{n}(x(s)), s<m_{\partial D}\right)-E \cdot\left(p_{n}(x(t)), t<M_{\partial D}\right)\right] \\
& =E \cdot\left(p(x(s)), s<M_{\partial D}\right)-E \cdot\left(p(x(t)), t<m_{\partial D}\right),
\end{aligned}
$$

and, to finish the proof of g) and h), it is enough to define
5.12 $\mathrm{f}(t)=\lim _{s \downarrow 0} \mathrm{f}_{s}(t)$
and to make $s \downarrow 0$ and $t \uparrow+\infty$ in 5.11.
Now take a smooth measure e, choose $B_{n} \uparrow D$ as needed for 1.8 with the additional property that $e \mid B_{n}$ has finite energy $\mathfrak{G}\left(e \mid B_{n}\right)=\int_{B_{n} \times B_{n}} G d e d e^{6}$, let f_{n} be the additive functional associated with $e \mid B_{n}$ as in 5.12 above, and note that
$5.13 \quad E \cdot\left[\int_{0}^{\mathrm{m}_{\partial \rho} \boldsymbol{p}} f d \mathrm{f}_{n}\right]=\int_{B_{n}} G f d e \quad f \geq 0$
as in e) of section 3. It follows that if f is the indicator function

[^2]of B_{m}, then the functionals $\int_{0}^{t} f d f_{n}(n>m)$ and $\int_{0}^{t} f d f_{m}$ have the same (bounded) mean :
$5.14 \quad E \cdot\left[\int_{0}^{m_{\partial \partial}} f d f_{n}\right]=E \cdot\left[\int_{0}^{\mathfrak{m}_{\partial D}} f d \mathrm{f}_{m}\right]=\int_{B_{m}} G d e$
and are therefore identical up to time $\mathfrak{m}_{\partial D}$ according to the first uniqueness lemma for additive functionals of section 4. But this means that $\mathrm{f}_{n}=\mathrm{f}_{m}$ up to the exit time from B_{m}, and since this exit time $=m_{\partial D}$ for large m, it is legitimate to define a functional \mathfrak{f} for $t \leq \mathfrak{m}_{\partial D}$ by means of
5.15
$$
\mathrm{f}(t)=\mathrm{f}_{n}(t) \quad t \leq \inf \left(t: x(t) \notin B_{n}\right), n \geq 1
$$

Introducing $p_{\alpha}=E \cdot\left[e^{-\alpha f\left(m_{\partial D)}\right)}\right]$ and using the method of 3.5 , 5.13 implies

$$
\begin{align*}
& 1-p_{\omega}=\lim _{n \uparrow+\infty} \alpha E \cdot\left[\begin{array}{l}
\mathrm{m}_{0} \partial D \\
\left.{ }_{0} e^{-\alpha\left[\mathrm{f}\left(\mathrm{~m}_{\partial} D\right)-\mathrm{f}(t)\right]_{\mathrm{f}_{n}}}(d t)\right]
\end{array}\right. \\
& =\lim _{n \uparrow+\infty} \alpha E \cdot\left[\int_{0}^{m_{\partial \partial} D} p_{a} d \mathrm{f}_{n}\right]=\lim _{n \uparrow+\infty} \alpha \int_{B_{n}} G p_{\alpha} d e=\alpha \int G p_{\alpha} d e ;
\end{align*}
$$

in brief, e is the measure associated with f as in 3.2.
Because two additive functionals with same associated measure are the same, it follows that if e is smooth and if $D_{1} \subset D_{2} \subset e t c$. swell out to R^{d}, then the functionals f_{n} associated with $e_{n}=e \mid D_{n}$ as in 5.15 above determine an additive functional
$5.17 \quad \mathrm{f}(t)=\mathrm{f}_{n}(t) \quad t<\mathrm{m}_{\partial D_{n}}, n \geq 1$
depending upon e alone, for which 3.2 holds for each D.
f is additive for almost all Brownian paths, but of course it can be modified on a negligeable class of paths so as to be Borel in the pair (t, w) and to satisfy $1.1,1.2,1.3,1.4$, as identities; with this modification, $f i$ is the additive functional associated with e.

6. DIFFUSIONS WITH BROWNIAN HITTING PROBABILITIES.

To avoid confusion, let $w, x, m, B, \boldsymbol{B}, \boldsymbol{B}_{\mathfrak{m}^{+}}$, etc. be used to describe the Brownian motion, introduce the same paths, times, events, and fields with the new names $\dot{w}, \dot{x}, \dot{m}, \dot{B}, \dot{\boldsymbol{B}}, \dot{\boldsymbol{B}}_{\dot{\mathrm{in}}^{+}}$, etc., and take a new motion $\dot{\boldsymbol{D}}$ with probabilities $\dot{P}_{a}(\dot{B})$.
$\dot{\boldsymbol{D}}$ is said to be a diffusion if it starts afresh at each Markov time nil:
6. $1 \quad \dot{P}_{a}\left[\dot{w}_{\mathrm{in}}^{+} \in \dot{B} \mid \dot{\boldsymbol{B}}_{\mathfrak{i n}{ }^{+}}\right]=\dot{P}_{b}(\dot{B}) \quad a \in E^{d}, \dot{B} \in \dot{\boldsymbol{B}}, b \equiv \dot{x}(\mathrm{in}) ;$
it is said to have Brownian hitting probabilities if, for each bounded open D,
6. $2 \quad \dot{P}_{a}\left[\dot{x}\left(\dot{m}_{\partial D}\right) \in d b\right]=P_{a}\left[x\left(\mathfrak{m}_{\partial D}\right) \in d b\right]=h_{\partial D}(a, d b)$
$a \in D, d b \subset \partial D$.

Given such a diffusion with Brownian hitting probabilities
6. 3a $\quad \dot{p}_{\alpha} \equiv \dot{E} \cdot\left[e^{-\alpha u i \partial \nu}\right]^{7}$
solves
6.3b $\quad 1-\dot{p}_{a}=\alpha \int G \dot{p}_{a} d e$,
where $e \geq 0$ is independent of α and of $D . \quad e$ is the so-called speed measure of the diffusion; the speed measure of the Brownian motion is the Lebesgue measure $d b$. Because of $6.2, \dot{P} \cdot\left[\operatorname{Hin}_{\partial D}<\right.$ $+\infty]=1$ and $\dot{p}_{\alpha}>0$, which implies that e is smooth, i.e., that it is the associated measure of some additive functional f of the Brownian path; moreover, e is positive on the neighborhoods of H. Cartan's fine topology, and this implies that its associated additive functional satisfies
6.4 $P \cdot[\mathrm{f}(s)<\mathrm{f}(i), 0 \leq s<t]=1$.

Introducing the inverse function \mathfrak{f}^{-1} of f, it turns out that

6. $5 \quad \dot{P} \cdot(\dot{B})=P \cdot\left[x\left(f^{-1}\right) \in \dot{B}\right] \quad \dot{B} \in \dot{\boldsymbol{B}}$;

in brief, $\dot{\boldsymbol{D}}$ is identical in law to the Brownian motion run with the stochastic clock \mathfrak{f}^{-1}; moreover, each smooth measure e, positive on fine neighborhoods, is the speed measure of a diffusion with Brownian hits.

The proofs are carried out in the next few sections.

$$
7 \dot{E} \cdot(f)=\int f d \dot{P} . .
$$

7. SPEED MEASURES

Beginning with the speed measure e of 6.3 b , if a $a \in R^{d}$ and if $\operatorname{nit}_{\varepsilon}=\min (t:|\dot{x}(t)-a| \geq \varepsilon)$, then $\dot{n}_{0+}=\lim _{\varepsilon \downarrow 0} \dot{n}_{\varepsilon}$ satisfies
7. $1 \quad \dot{E}_{a}\left(e^{-\dot{\mathrm{i}}_{0}+}\right)=\dot{E}_{a}\left[e^{-\dot{\mathfrak{n}}-\dot{\mathrm{n}}\left(w_{\dot{\mathrm{mi}}}^{+}\right)}\right]=\dot{E}_{a}\left(e^{-\dot{\mathrm{m}}_{0}+}\right)^{2}, \quad \dot{\mathrm{n}}=\dot{\mathrm{n}}_{0+}$ and since $\dot{E}_{a}\left(e^{-\dot{\mathrm{n}}_{0}+}\right)=0$ implies $\dot{P}_{a}\left[\dot{\mathrm{n}}_{0}=+\infty\right]=1$, violating the fact that the dot motion has Brownian hitting probabilities, it follows that $\dot{P}_{a}\left[\dot{n i t}_{0+}=0\right]=1$.

Because
 $1-\dot{p}_{a}$ satisfies
7. $3 \quad 1-\dot{p}_{x}(a) \geq \alpha \dot{E}_{a}\left[\int_{\dot{\mathrm{im}} \partial \bar{D}}^{\mathrm{ui} \partial D} \dot{p}_{\alpha} d t\right]=\int h_{\partial \dot{D}}(a, d b)\left(1-\dot{p}_{n}\right) \quad a \in \dot{D} \subset D$, and, using 7.3 and $\dot{P}_{a}\left[1 i_{0+}=0\right]=1$ to establish
7. $4 \mathrm{a} \quad \int h_{\partial \dot{D}}(a, d b)\left(1-\dot{p}_{\alpha}\right) \downarrow 0 \quad \dot{D} \uparrow D$
7. $4 \mathrm{~b} \quad \int h_{|b-a|=\varepsilon}(a, d b)\left(1-\dot{p}_{a}\right) \uparrow 1-\dot{p}_{c} \quad \varepsilon \downarrow 0$,
it appears that $1-\dot{p}_{\alpha}$ is the potential $\alpha \int G d e_{\alpha}$ of a non-negative charge distribution αe_{α}

It remains to verify that $\dot{p}_{\alpha}^{-1} d e_{\alpha} \equiv d e$ is independent of α and of D, which is done with the aid of the additive functional $\dot{\mathfrak{f}}_{x}(t)$ $=\int_{0}^{t} \dot{p}_{\alpha}(\dot{x}(s)) d s\left(t<\dot{n}_{\partial D}\right)$ and the method of section 3 ; in outline,
$7.5 \quad 1-\dot{p}_{a}=\alpha \dot{E}_{\alpha}\left[\dot{\mathrm{f}}_{\alpha}\left(1 \mathrm{il}_{\partial D}\right)\right]=\alpha \int G d e_{\alpha}$
implies
7.6
$\dot{E}\left[\int_{0}^{\dot{\mathrm{it}} \partial s} f(\dot{x}(s)) \dot{\dot{f}}_{\alpha}(d s)\right]=\int G f d e_{\alpha}$
as in e) of section 3, and 3.9 follows as before, etc..

8. TWO DIFFUSIONS WITH BROWNIAN HITS AND THE SAME SPEED MEASURE ARE THE SAME.

Consider a pair of diffusions with Brownian hitting probabilities and the same speed measure. .

Because $6.3 \mathrm{~b}=3.2$ has unique solutions as noted in section 4 , both diffusions have the same $\dot{p}_{\alpha}=\dot{E} \cdot\left[e^{-\alpha \dot{1 i} \partial D}\right]$ and hence the same 8.1 $\quad \dot{G}_{0+}: f \rightarrow \dot{E} .\left[\int_{0}^{\dot{m} \partial D} f(\dot{x}) \dot{\dot{f}}_{\mathrm{z}}(d t)\right]=\int G f \dot{p}_{\mathrm{e}} d e$

$$
\dot{\hat{f}}_{\mathrm{z}}(t) \equiv \int_{0}^{t} \dot{p}_{\mathrm{e}}(\dot{x}(s)) d s \quad t \leq \dot{\mathrm{m}}_{\partial D}
$$

Choose $\varepsilon>0$ and introduce the Green operators
$8.2 \quad \dot{G}_{\alpha}: f \rightarrow \dot{E} .\left[\int_{0}^{\dot{m} \partial D} e^{-\alpha \dot{\dot{f}}_{\varepsilon}(t)} f(\dot{x}) \dot{\dot{f}}_{\varepsilon}(d t)\right] \quad \alpha>0$;
then
8.3 $\alpha \dot{G}_{0+} \dot{G}_{a} f=\alpha \dot{E} .\left[\int_{0}^{\dot{\mathrm{m}} \partial D} \dot{\dot{f}}_{\mathrm{e}}(d t)\left(\dot{G}_{a} f\right)(\dot{x})\right]$

$$
=\alpha \dot{E} \cdot\left[\int_{0}^{\dot{u} \partial D} \dot{f}_{\varepsilon}(d t) \int_{t}^{\dot{i} \partial D} e^{-\alpha\left[\dot{f}_{\varepsilon}(s)-\dot{f}_{\mathrm{g}}(t)\right]} f(\dot{x}(s)) \dot{\dot{f}}_{\mathrm{\varepsilon}}(d s)\right]
$$

$$
=\alpha \dot{E} \cdot\left[\int_{0}^{\dot{n_{\partial}} \partial D} e^{-\alpha \dot{f}_{\mathrm{e}}(s)} f(\dot{x}) \dot{\dot{f}}_{\mathrm{z}}(d s) \int_{0}^{s} e^{\alpha \dot{f}_{\mathrm{E}}} d \dot{\mathfrak{f}}_{\mathrm{e}}\right]
$$

$$
=\dot{E} \cdot\left[\left[_{0}^{\dot{n} \partial D}\left(1-e^{-\alpha \dot{\mathfrak{F}}_{\varepsilon}}\right) f d \dot{\mathfrak{f}}_{\varepsilon}\right]=\dot{G}_{0+} f-\dot{G}_{a} f,\right.
$$

i.e.,
$8.4 \quad \dot{G}_{\alpha}=\dot{G}_{0+}-\alpha \dot{G}_{0+} \dot{G}_{\alpha}$, and, using the bound
8. $5 \quad \dot{G}_{0+} 1=\int G \dot{p}_{\mathrm{z}} d e=\varepsilon^{-1}\left(1-\dot{p}_{\mathrm{z}}\right) \leq \varepsilon^{-1}<+\infty$,
the obvious iteration of 8.4 implies
8. $6 \quad \dot{G}_{\alpha}=\sum_{n<0}(-)^{n} \alpha^{n} \dot{G}_{0+}^{n+1} \quad \alpha<\varepsilon$.

Because \dot{G}_{α} is a Laplace transform in its dependence on $\alpha, 8.6$ implies that both diffusions have the same Green operators $(\alpha \geq 0)$ and hence the same
8. $7 \quad \dot{E} \cdot\left[\int_{0}^{\dot{\mathrm{m}}_{\infty}} e^{-\alpha t} f(\dot{x}) d t\right]=\lim _{D \uparrow R^{d}} \lim _{\varepsilon \ngtr 0} \dot{G}_{\alpha} f$.

But this implies that both diffusions have the same
$8.8 \quad \dot{P}_{a}\left[\dot{x}(t) \in d b, t<\operatorname{Hi}_{\infty}\right] \quad(t, a, b) \in(0,+\infty) \times R^{2 d}$
and hence are the same in all respects as stated in the section title.

9. SPEED MEASURES ARE POSITIVE ON FINE NEIGHBORHOODS.

Given a point a of bounded open D and a (Brownian) excessive function p on D, the set of points $b \in D$ at which $|p(b)-p(a)|<n^{-1}$ is said to be a fine neighborhood of a; the corresponding topology is called the fine topology of H. Cartan [2]. E. B. Dynkin [7] has pointed out that a point a is in the fine interior of $B \subset R^{d}$ if and only if almost all Brownian paths starting at a remain in B for some positive time. Because an excessive function in 1-dimension is concave and hence continuous, the 1-dimensional fine topology is the same as the usual one; in higher dimensions it is different.

Given a diffusion with Brownian hitting probabilities, its speed measure e has to be positive on fine neighborhoods; for the proof, it is enough to verify that if $Z \subset R^{d}$ is bounded and Borel and if $e(Z)=0$, then Z has no fine interior.

Choose an open ball D and a decreasing series of open figures D_{n} so as to have
9.1a $\quad D>D_{1}>D_{2}>e t c .>Z$
$9.1 \mathrm{~b} \quad \int_{D_{n}} G_{D} \dot{p}_{1} d e \downarrow 0 \quad n \uparrow+\infty, \dot{p}_{1}=\dot{E} .\left[e^{-\dot{m} \partial D}\right]$, and let
9.2 $\quad \dot{\dot{f}}_{1}(t)=\int_{0}^{t} \dot{p}_{1}(\dot{x}(s)) d s \quad t \leq \operatorname{ii}_{\partial D}$.

Because of
9. 3a $\quad 1-\dot{E}_{a}\left[e^{-\dot{\dot{1}}_{1}\left(\partial \mathrm{rim}_{D_{n}}\right)}\right]=\int_{D_{n}} G_{D_{n}} \dot{p}_{1} d e \leq \int_{D_{n}} G_{D} \dot{p}_{1} d e \downarrow 0$

$$
n \uparrow+\infty, a \in Z
$$

9.3b $\quad \dot{p}_{1}>0$,
it is apparent that
9. $4 \mathrm{a} \quad 1=\dot{P}_{a}\left[\mathrm{n}_{\mathrm{l}_{\partial D_{n}} \downarrow} \downarrow 0, n \uparrow+\infty\right]$

$$
\begin{aligned}
& =\dot{P}_{a}\left[\lim _{n \uparrow+\infty} \dot{x}\left(\dot{\mathrm{n}}_{\partial D_{n}}\right)=a\right] \\
& =\lim _{n \uparrow+\infty} \int h_{\partial D_{n}}(a, d b) e^{-\mid b-a_{\mid}} \quad a \in Z .
\end{aligned}
$$

But this final expression depends upon the (Brownian) hitting
probabilities $h_{\partial D}$ alone; thus,
$9.4 \mathrm{~b} \quad P_{a}\left[\lim _{n \uparrow+\infty} x\left(\mathrm{~m}_{\partial D}\right)=a\right]=1 \quad a \in Z$
for the Brownian motion also, and since almost no Brownian path meets its starting point at a positive time, it follows that
$9.5 \quad P_{a}\left[\mathrm{~m}_{\partial D_{n}} \downarrow 0, n \uparrow+\infty\right]=1 \quad a \in Z ;$
an application of Dynkin's description of fine neighborhoods completes the proof.

10. SPEED MEASURES GIVE RISE TO INCREASING ADDITIVE FUNCTIONALS.

Because the speed measure of a diffusion with Brownian hits is smooth, it has associated with it an additive functional f of the Brownian path; moreover, e is positive on fine neighborhoods, and this is reflected in the fact that f is increasing as in 6.4 : $\mathrm{f}(s)<\mathrm{f}(t)(s<t)$.

It will be enough to verify that the set A of points a at which
10.1 $\quad P_{a}(\mathrm{~m}>0)=P_{a}[\mathrm{f}(t)=0$ for some $t>0]=1$

$$
\mathrm{m}=\inf (t: f(t)>0)
$$

is vaccuous; note that A is Borel and that $P .(m>0)=0$ or 1 according to Blumenthal's 01 law.

Because A is either void or fine open and e is positive on fine neighborhoods, it is enough to show that $e(A)=0$, and, for this, it is enough to show that for each bounded open D, the points of D at which $P \cdot\left[f\left(\mathrm{~m}_{\partial D}\right)>0\right]<1$ have e-mass 0 . But this is immediate on letting $\alpha \uparrow+\infty$ in
10.2 $\quad \alpha^{-1}\left(1-p_{\alpha}\right)=\int G p_{a} d e \quad p_{a}=E \cdot\left[e^{-\alpha f\left(m_{\partial} p\right)}\right]$.
11. WHEN IS $f(+\infty)=+\infty$?

In making up the stochastic clock f^{-1} for use in 6.5, two cases arise according as $f(+\infty)=+\infty$ or not, and it is desirable to have a test for this.

Because $p \equiv P \cdot[f(+\infty)<+\infty]$ satisfies
$11.1 \quad p(a)=P_{a}\left[\mathrm{f}\left(\mathrm{m}_{\partial D}\right)<+\infty, \mathrm{f}\left(+\infty, w_{\mathrm{m}_{\partial D}}^{+}\right)<+\infty\right]$

$$
=E_{a}\left[p\left(x\left(\mathfrak{m}_{\partial D}\right)\right)\right]=\int h_{\partial D}(a, d b) p(b) \quad a \in D
$$

for bounded open D, it is harmonic and since $p \geq 0$, it must be constant; moreover, letting first t and then $n \uparrow+\infty$ in
11.2 $P \cdot[\mathrm{f}(+\infty)<n] \leq E .[\mathrm{f}(t)<n, p(x(t))] \leq P .[f(t)<n] p$, it appears that $p \leq p^{2}$ and hence that $p=0$ or 1 .

Our test states that $p=1$ if and only if one of the following conditions is met:
a) $d \geq 3$ and $1-p_{1}=\int G p_{1} d e$ admits a solution $0<p_{1} \leq 1$ on the whole of R^{d}, where G is the function of R^{d}.
b) ($5 p_{1}=p_{1}$ admits a solution $0<p_{1} \leq 1$ on the whole of R^{d}, where $\left.{ }^{(}\right) p_{1}$ is the negative of the Radon-Nikodym derivative of the Riesz measure of p_{1} with respect to e (see section 13 for the meaning of ($(\mathbb{)}$). c) $d \geq 3$ and $R^{d}=A \cup B$, where A is thin at ∞ in the sense that $P \cdot[x(t) \in A$ for some $t>n] \downarrow 0(n \uparrow \infty)$, and $\int_{B} G d e<+\infty .^{8}$

Beginning with $p=1, p_{1} \equiv E \cdot\left[e^{-\mathrm{f}(+\infty)}\right]$ is positive and ≤ 1, and, since $G_{D} \uparrow G$ as $D \uparrow R^{d}$,
11.3 $1-p_{1}=\lim _{D \uparrow R^{d}} E \cdot\left[e^{-\mathrm{f}\left(+\infty, w_{\mathrm{mI} \partial D}^{+}\right)}\right]-p_{1}$

$$
=\lim _{D \uparrow R^{d}} \int G_{D} p_{1} d e=\int G p_{1} d e
$$

Because $G \equiv+\infty$ in case $d=2$, it follows that $p=1$ implies a), that a) implies b) is clear, that c) implies $p=1$ is evident from
11.4 E. $\left[\int_{0}^{+\infty} f d \uparrow\right]=\int_{B} G d e<+\infty$,
where f is the indicator function of B, and now it remains to verify that b) implies c).

But, if $0<p_{1} \leq 1$ is a solution of $\mathscr{S} p_{1}=p_{1}$ and if h_{1} is its

[^3]harmonic part $E \cdot\left[p_{1}\left(x\left(\mathrm{~m}_{\partial D}\right)\right)\right]$ inside D, then $h_{1}-p_{1}=\int G_{D} p_{1} d e$ inside D, and, as $D \uparrow R^{d}, h_{1}$ decreases to a non-negative (and hence constant) harmonic function $p_{1}(\infty)$ such that $p_{1}(\infty)-p_{1}=\int G p_{1} d e . \quad R^{d}$ is now split into $A=\left(p_{1}<\frac{1}{2} p_{1}(\infty)\right)$ and $B=\left(p_{1} \geq \frac{1}{2} p_{1}(\infty)\right)$ and the fact that $p_{1}(\infty)-p_{1}$ excessive is used to ensure that p_{1} has a limit along the Brownian path as $t \uparrow+\infty$, permitting us to conclude from
$11.4 \mathrm{a} \quad p_{1} \leq p_{1}(\infty)$
11.4b $\quad p_{1}(\infty)=\lim _{D \uparrow R^{d}} E \cdot\left[p_{1}\left(x\left(\mathrm{~m}_{\partial D}\right)\right)\right]=E \cdot\left[\lim _{t \uparrow+\infty} p_{1}(x(t))\right]$ that A is thin at ∞. Because $0<p_{1}(\infty)$,
$11.5 \int_{B} G d e \leq 2 p_{1}(\infty)^{-1} \int G p_{1} d e<+\infty$, and this completes the verification of c).

12. PERFORMING THE TIME SUBSTITUTION.

Coming to the actual time substitution $t \rightarrow f^{-1}$ which is supposed to send the Brownian motion into the diffusion $\dot{\boldsymbol{D}}$, let f be modified on a negligeable class of Brownian paths so as to have
12.1 $0=\mathrm{f}(0) \leq \mathrm{f}(t \pm)=\mathrm{f}(t)<+\infty$
12.2 $\mathrm{f}(t)=\mathrm{f}(s)+\mathrm{f}\left(t-s, w_{s}^{+}\right) \quad t \geq s$
12.3 $\mathrm{f}(t)>\mathrm{f}(s) \quad t>s$
as identities, let x^{-1} denote the sample path
12.4 $\quad w^{-1}: t \rightarrow x^{-1}(t) \equiv x^{-1}\left(t, w^{-1}\right) \equiv x\left[\mathrm{f}^{-1}(t, w), w\right]$,
note that this path is continuous even if $f(+\infty)<+\infty(d \geq 3)$, and let us check that the motion $\dot{\boldsymbol{D}}$ with sample paths
12.5a $\quad \dot{w}: t \rightarrow \dot{x}(t)$
and probabilities
$12.5 \mathrm{~b} \quad \dot{P}_{a}(\dot{B}) \equiv P_{a}\left(w^{-1} \in \dot{B}\right)$
is the diffusion with Brownian hitting probabilities and speed measure e.

Beginning with the proof of the diffusive character 6.1 of this
motion, the problem is to check that if $n \boldsymbol{n}$ is a Markov time and if $\dot{B} \in \dot{\boldsymbol{B}}$, then
$12.6 \quad \dot{P}_{a}\left[\dot{w}_{\dot{\mathrm{m}}^{+}}^{+} \in \dot{B} \mid \dot{\boldsymbol{B}}_{\dot{\mathrm{m}}^{+}}\right]=\dot{P}_{b}(\dot{B}) \quad b \equiv \dot{x}(\dot{\mathrm{n}})$.
Given such a Markov time in,
12. $7 \quad \mathrm{~m}(w) \equiv \mathrm{f}^{-1}\left(\mathrm{ni}\left(w^{-1}\right), w\right)$
is a Markov time for the Brownian path ; indeed, using Galmarino's test, if
12.8 $\mathrm{a} \quad \mathrm{m}(u)<t$
12. $8 \mathrm{~b} \quad x(s, u)=x(s, v) \quad s \leq t$,
then
12. 9a $\quad \mathrm{f}(s, u)=\mathrm{f}(s, v) \quad s \leq t$
12.9b $\quad \mathrm{f}^{-1}(s, u)=\mathrm{f}^{-1}(s, v) \leq t \quad s \leq t=\mathrm{f}(t, u)=\mathrm{f}(t, v)$,
and it follows that

$$
\begin{array}{ll}
12.10 \mathrm{a} & \dot{\mathrm{n}}\left(u^{-1}\right)=\mathrm{f}(\mathrm{~m}(u), u)<\mathrm{f}(t, u)=\dot{t} \\
12.10 \mathrm{~b} & x^{-1}\left(s, u^{-1}\right)=x\left[\mathrm{f}^{-1}(s, u), u\right]=x\left[\mathrm{f}^{-1}(s, v), v\right] \\
& =x^{-1}\left(s, v^{-1}\right) \quad s \leq \dot{t}
\end{array}
$$

Because in was a Markov time for the dot motion, 12.10 implies
12.11a $\quad \dot{\mathfrak{n}}\left(u^{-1}\right)=\dot{\mathfrak{n}}\left(v^{-1}\right)<\dot{t}$,
and an application of 12.9 b implies
12.11b $\quad \dot{m}(u)=f^{-1}\left(\mathfrak{m}\left(u^{-1}\right), u\right)=f^{-1}\left(\mathfrak{m}\left(v^{-1}\right), v\right)=\mathfrak{m}(v) ;$
in brief, 12.8 implies, 12.11b, as needed to conclude by Galmarino's test that m is a Markov time.

Given $\dot{A} \in \dot{\boldsymbol{B}}_{\mathrm{i}^{+}}$, if $A=\left(w: w^{-1} \in \dot{A}\right)$ and if
12.12a $\quad \mathfrak{m}(u)<t$
12.12b $\quad x(s, u)=x(s, v) \quad s \leq t$
12.12c $u \in A$, then, using 12.10 ,
12.13a $\quad \dot{\mathrm{n}}\left(u^{-1}\right)<\dot{t}$
12.13b $\quad x^{-1}\left(s, u^{-1}\right)=x^{-1}\left(x, v^{-1}\right) \quad s \leq \dot{t}$
12.13c $u^{-1} \in A$,
and it follows that $v^{-1} \in \dot{A}$, or, what is the same, that $v \in A$; thus, by Galmarino's test, $A \in \boldsymbol{B}_{\mathrm{m}+}$, and now it appears that
12.14 $\dot{P}_{a}\left[\dot{A}, \dot{w}_{\text {it }}^{+} \in \dot{B}\right]$

$$
\begin{aligned}
& =P_{a}\left[w^{-1} \in \dot{A},\left(w_{\mathrm{m}}^{+}\right)^{-1} \in \dot{B}\right] \\
& =P_{a}\left[w \in A,\left(w_{\mathrm{m}}^{+}\right)^{-1} \in \dot{B}\right] \\
& =E_{a}\left[A, P_{b}\left(w^{-1} \in \dot{B}\right)\right] \quad b \equiv x(\mathrm{~m})=x^{-1}\left(\dot{\mathrm{n}}\left(w^{-1}\right), w^{-1}\right) \\
& =E_{a}\left[w^{-1} \in \dot{A}, \dot{P}_{b}(\dot{B})\right] \\
& =\dot{E}_{a}\left[\dot{A}, \dot{P}_{b}(\dot{B})\right] \quad b=\dot{x}(\dot{\mathrm{n}}),
\end{aligned}
$$

completing the proof of 12.6 .
$\dot{\boldsymbol{D}}$ is now identified as a diffusion; that it has Brownian hitting probabilities is clear, and to complete the discussion, it suffices to verify that it has e as its speed measure. But this is clear because
12.15

$$
\mathrm{m}_{\partial D}^{-1} \equiv \min \left(t: x^{-1}(t) \in \partial D\right)=\mathfrak{f}\left(\mathrm{m}_{\partial D}\right),
$$

and f has e as its associated measure.

13. GENERATORS.

Given a diffusion with Brownian hitting probabilities, the Green operators
$13.1 \quad \dot{G}_{\alpha}: f \rightarrow \dot{E} \cdot\left[\int_{0}^{+\infty} e^{-\alpha t} f(\dot{x}) d t\right] \quad \alpha>0$
map into itself the space $\dot{C}\left(E^{d}\right)$ of real, bounded, fine-continuous functions having ordinary limits at ∞ in case $d \geq 3$; in fact, if $d \geq 3$, then $\dot{P} \cdot\left[\min _{t \geq 0}|\dot{x}(t)| \geq n\right]=P \cdot\left[\min _{t \geq 0}|x(t)| \geq n\right]$ tends to 1 at ∞, so that $\dot{G}_{\alpha} f$ tends to $\alpha^{-1} f(\infty)$, and, if $a \in R^{d}(d \geq 2)$ and if the ball $D \ni a$ is so small that $1-\dot{p}_{a}(a)=1-\dot{E} \cdot\left[e^{-\alpha \dot{n} \partial D}\right]<n^{-1}$, then, inside the fine neighborhood $B=D \bigcap\left(\dot{p}_{\infty}>1-n^{-1}\right)$, the difference between 13.2a $\quad u=\dot{G}_{\alpha} f$

$$
\begin{aligned}
& =\dot{E} \cdot\left[\int_{0}^{\dot{\mathrm{u}} \partial \rho} e^{-\alpha t} f(\dot{x}) d t+e^{-\alpha \dot{\mathrm{i}} \partial \nu} \int_{0}^{+\infty} e^{-\alpha t} f\left(\dot{x}\left(t, \dot{w}_{\dot{\mathrm{i}} \partial D}^{+}\right)\right) d t\right] \\
& =\dot{E} \cdot\left[\int_{0}^{\dot{\operatorname{n}} \partial p} e^{-\alpha t} f(\dot{x}) d t+e^{-\alpha \dot{\mathrm{ui}} \partial p} u\left(\dot{x}\left(\dot{\mathrm{u}}_{\partial D}\right)\right)\right]
\end{aligned}
$$

and the harmonic (and hence continuous) function
13.2b $\quad h=\dot{E} \cdot\left[u\left(\dot{x}\left(\operatorname{lit}_{\partial D}\right)\right)\right]$
is not greater than
13.3 constant $\times\left(1-\dot{p}_{\alpha}\right)<$ constant $\times n^{-1}$.

Because
13.4 $\quad \dot{G}_{\alpha}-\dot{G}_{\beta}+(\alpha-\beta) \dot{G}_{\alpha} \dot{G}_{\beta}=0 \quad \alpha, \beta>0$,
it is evident that \dot{G}_{a} maps our space of fine continuous functions onto some subspace $D(\dot{\mathscr{S}})$ independent of α and that its null-space $\dot{G}_{\alpha}^{-1}(0)$ is likewise independent of α. But, for fine-continuous $f \in \dot{G}_{\alpha}^{-1}(0)$,
13.5 $0=\lim _{\beta \uparrow+\infty} \beta \dot{G}_{\beta} f=\dot{E} \cdot\left[\lim _{\beta \uparrow+\infty} \beta \int_{0}^{+\infty} e^{-\beta t} f(\dot{x}) d t\right]=f$
according to E. B. Dynkin's description of fine neighborhoods; thus the null-space is trivial, \dot{G}_{x} is invertable, and another application of 13.4 verifies that $\left(\dot{\xi} \equiv \alpha-\dot{G}_{\alpha}^{-1}\right.$ acting on $D(\dot{\xi})$ is independent of α.
(\dot{B}) is the so-called generator; it is closed in the sense that if $u_{n} \in D(\dot{(B)})$ and $\dot{(B} u_{n}=f_{n}$ converge pointwise under fixed bounds to u and $f \in \dot{C}\left(E^{d}\right)$, then $u \in D(\dot{B})$ and $\dot{(B)} u=f$.

Consider the differential operator
$13.6 \quad \Omega u=\frac{-e^{u}(d b)}{e(d b)} \quad|b|<+\infty$

$$
=0 \quad b=\infty, d \geq 3
$$

acting on the class $D(\mathfrak{Q})$ of functions $u \in \dot{C}\left(E^{d}\right)$ such that
a) inside each D, u is the sum of the harmonic function $h=$ $\int h_{\partial D}(a, d b) u(b)$ and the potential $\int G_{D} d e^{u}$ of its Riesz measure e^{u}.
b) $\int G_{D}\left|d e^{u}\right|$ is bounded.
c) \mathfrak{Q}, as described in 13.6 , exists and belongs to $\dot{C}\left(E^{d}\right)$.
 convergence as will now be explained.

Choose a fine-continuous function $0<p_{n} \leq 1$ tending to 0 at ∞ in the ordinary topology such that $\int G_{D} p_{n} d e$ is bounded for each bounded open D and $p_{n} \uparrow 1$ as $n \uparrow+\infty$, and introduce the additive functional $\dot{\mathrm{f}}_{n}=\int_{0}^{t} p_{n}(\dot{x}) d s(t \geq 0)$.
$\dot{x}\left(\dot{f}_{n}^{-1}\right)$ is a diffusion with Brownian hitting probabilities and speed measure $d e_{n}=p_{n} \times d e$,
13. $7 \dot{E} \cdot\left[\min \left(t: \dot{x}\left(\dot{f}_{n}^{-1}\right) \in \partial D\right)\right]=\dot{E} .\left[\dot{\dot{f}_{n}}\left(\dot{\mathrm{r}}_{\partial D}\right)\right]=\int G_{D} p_{n} d e<+\infty$, and it follows from 13.2a that if u is in the domain of its generator \dot{B}_{n}, then
13.8

$$
\begin{aligned}
& \left.u=-\dot{E} \cdot\left[\int_{0}^{\dot{u} \partial D}\left(\dot{G}_{n} u\right)(\dot{x}(t)) \dot{\mathrm{f}}_{n}(d t)\right]+E \cdot\left[u\left(\dot{x} m_{\partial D}\right)\right)\right] \\
= & -\int G_{D}\left(\dot{\mathscr{S}}_{n} u\right) p_{n} d e+a \text { harmonic function, }
\end{aligned}
$$

which is a special case of a formula of E. B. Dynkin [6] ; in brief, $13.9 \quad-e^{u}(d b)=\left(\dot{\bigotimes}_{n} u\right) p_{n} d e \quad u \in D\left(\dot{ङ}_{n}\right)$.

Choose $u=\dot{G}_{1} f \in D(\dot{\leftrightarrow})$, then
13.10

$$
u_{n} \equiv \dot{E} \cdot\left[\int_{0}^{+\infty} e^{-t} f\left(\dot{x}\left(\dot{f}_{n}^{-1}\right)\right) d t\right]
$$

tends pointwise under the bound $\|f\|_{\infty}$ to u. Because $u_{n} \in D\left(\dot{\mathscr{B}}_{n}\right)$,

$$
\Omega u_{n}=\frac{-e^{u}(d b)}{e(d b)}=p_{n} \dot{\mathscr{S}}_{n} u_{n}=p_{n}\left(u_{n}-f\right)
$$

satisfies all the conditions for u_{n} to belong to $D(\mathfrak{Q})$, and, what is more, $\mathfrak{\Omega} u_{n}$ converges pointwise under the bound $2\|f\|_{\infty}$ to $u-f=(\uplus)$; thus, $u \in D(\overline{\mathfrak{D}})$ and $\overline{\mathfrak{D}} u=\dot{G} u$, i.e.,
13.12 ఏゝ ほ.

As to the proof of $\overline{\mathfrak{\Omega}}(\dot{\mathfrak{B}}$, it is enough to show that if $u \in D(\overline{\mathfrak{D}})$, then $\dot{G}_{1}(1-\overline{\mathfrak{D}}) u=u$, and, for this, it is enough to deduce

 as to make u_{n} and $\mathfrak{\Omega} u_{n}$ converge pointwise and boundedly to u and $\overline{\mathfrak{} u=u \text {, }}$
13.13

$$
\begin{aligned}
& u_{n}-h_{n}=-\int G_{D} \Omega u d e=-\dot{E} \cdot\left[\int_{0}^{\dot{u} \partial \partial}\left(\Omega u_{n}\right)(\dot{x}) d s\right] \\
& h_{n}=\int h_{\partial D}(0, d b) u_{n}(b)
\end{aligned}
$$

implies
$13.14 \quad \dot{E} .\left[\left(u_{n}-h_{n}\right)(\dot{x}(t)), t<\operatorname{Hi}_{\partial D}\right]-\left(u_{n}-h_{n}\right)$

$$
=\dot{E} \cdot\left[\int_{0}^{t \wedge \dot{n} \partial \nu}\left(\mathfrak{Q} u_{n}\right)(\dot{x}) d s\right] \quad t \geq 0
$$

which, in turn, implies
13.15

$$
\begin{aligned}
& \dot{E} \cdot\left[(u-h)(\dot{x}(t)), t<\dot{l i}_{\partial D}\right]-(u-h) \\
& =\dot{E} \cdot\left[\int_{0}^{t \wedge \dot{u} \partial D}(\overline{\mathfrak{Z} u)(\dot{x}) d s] \quad t \geq 0}\right. \\
& h=\int h_{\partial D}(\cdot, d b) u(b),
\end{aligned}
$$

and, letting $D \uparrow R^{d}$ so as to make h tend to a bounded (and hence constant) harmonic function $h(\infty)$,
13.16a $\quad \dot{P} \cdot\left[\mathrm{nim}_{\infty}<+\infty\right]=P \cdot\left[f\left(\mathrm{~m}_{\infty}\right)<+\infty\right]=0 \quad d=2$
13.16b $\quad u(\infty)=h(\infty)=0 \quad d \geq 3$
implies
13.17 $\dot{E} \cdot\left[u(\dot{x}(t)]-u=\dot{E} \cdot\left[\int_{0}^{t} u(\dot{x}) d s\right] \quad t \geq 0\right.$,
and the desired $u \equiv 0$ follows.
The Green operators leave invariant the space $C\left(E^{d}\right)$ of bounded functions continuous in the ordinary topology of E^{d} if and only if, for each D, the mean exit time
13.18

$$
\dot{p}=\dot{E} \cdot\left[\dot{\mathrm{~m}}_{\partial D}\right]=\int G_{D} d e
$$

is continuous inside D and tends to 0 on ∂D; in this case, the generator (\dot{B}) coincides with the differential operator \mathfrak{Q} acting on the class of functions $u \in C\left(E^{d}\right)$ such that $\curvearrowleft u \in C\left(E^{d}\right)$; the reader will easily supply the details of the proof.

Here is an example in which the Green operators do not map $C\left(E^{d}\right)$ into itself.

Choose $d=3$ and $e=f \times d b$, where $f=1+\sum_{n<1} f_{n}$ and the f_{n} are the indicators of little non-overlapping open balls D_{n} converging to as $n \uparrow+\infty$ but not covering 0 itself and so small that
13.19

$$
P_{0}\left[m_{\partial D}<-\infty\right]<2^{-n} \quad n \geq 1
$$

Because of the first Borel-Cantelli lemma, $p \equiv P \cdot\left[\mathrm{~m}_{\partial D_{n}}<+\infty, i . o.\right]$ $=0$ at the origin, and it is also clear that $p \equiv 0$ on the rest of R^{3}. But then $\mathrm{f}=\int_{0}^{t} f(x(s)) d s$ is a continuous additive functional, $\mathrm{f}(s)<\mathrm{f}(t)(s<t)$, and $x\left(\mathfrak{f}^{-1}\right)$ is a diffusion with Brownian hitting probabilities and speed measure e.

Given a neighborhood D of 0 ,

$$
\begin{aligned}
13.20 & E_{0}\left[\min \left(t: x\left(f^{-1}\right) \in \partial D\right)\right] \\
& =E_{0}\left[f\left(\mathrm{~m}_{\partial D}\right)\right] \\
& \geq \sum_{n \sum_{1}} E_{0}\left[\int_{0}^{\mathrm{m}_{\partial D}} f_{n}(x(s)) d s\right] \\
& =\sum_{n \sum_{1}} \int_{D_{n}} G_{D}(0, b) d b / \text { volume }\left(D_{n}\right) \\
& =+\infty
\end{aligned}
$$

But, as E. B. Dynkin [6] has pointed out, this cannot happen for all small neighborhoods if the Green operators map $C\left(E^{d}\right)$ into itself.

14. DISCONTINUOUS ADDITIVE FUNCTIONALS.

V. A. Volkonskii [16] has studied discontinuous additive functionals ; in the present Brownian case their structure is very simple.

A functional \ddagger of the Brownian path which satisfies
14.1 $\mathfrak{t}(t, w)$ is measurable \boldsymbol{B}_{t} for each $t \geq 0$.
$14.20 \leq \mathrm{t}<+\infty$
14. $3 \quad \mathrm{t}(t-)=\mathrm{t}(t)$
14.4 $\mathrm{t}(\mathrm{t})=\mathrm{t}(\mathrm{s})+\mathrm{t}\left(t-s, w_{s}^{+}\right) \quad t \geq s$
is the sum of a continuous additive functional f and a discontinuous additive functional i with
14.5 $\quad P \cdot[\mathrm{j}(t)=\mathrm{j}(0+), t>0]=1$
14. 6a $\quad P \cdot[\mathrm{j}(0+)>0]=0$ or 1
14.6b $C(E)=0$, where E is the set of points at which
$P \cdot[\mathrm{i}(0+)>0]=1$ and C is the Newtonian (logarithmic) capacity in $d \geq 3(=2)$ dimensions. ${ }^{9}$

Consider the (discontinuous) additive functional $\dot{j}_{n}(t)=$ the sum of the jumps of t of magnitude $\geq n^{-1}$ taking place before time t, note that $\left.\dot{\mathrm{j}}_{n}(0+)>0\right) \in \boldsymbol{B}_{0+}$ so that $P \cdot\left[\dot{\mathrm{i}}_{n}(0+)>0\right]=0$ or 1 according to Blumenthal's 01 law, let E_{n} be the (Borel) set on which $P .\left[\dot{\mathrm{i}}_{n}(0+)>0\right]=1$, and introduce the least positive jumping time m of i_{n}.

If $P \cdot(\mathrm{~m}<+\infty)>0$ at some point, then
$14.7 \quad 0<P \cdot\left[0<\mathrm{m}<+\infty, \mathrm{i}_{n}(\mathrm{~m})<\mathrm{i}_{n}(\mathrm{~m}+)\right]$

$$
=P \cdot\left[0<\mathrm{m}<+\infty, x(\mathrm{~m}) \in E_{n}\right]
$$

this implies $C\left(E_{n}\right)>0{ }^{10}$, and it follows that E_{n} contains a subcompact A of positive capacity, having a (regular) point at which $P \cdot[x(t) \in A$, i.o., $t \downarrow 0]=1 .{ }^{11} \quad$ But then $P \cdot\left[\dot{\mathrm{i}}_{n}(t) \equiv+\infty, t>0\right]=1$ at that point, contradicting $\mathrm{i}_{n} \leq \mathrm{t}<+\infty$, and it follows that
14.8a $\quad P \cdot\left[\mathrm{i}_{n}(t) \equiv \mathrm{j}_{n}(0+), t>0\right] \equiv 1$
$14.8 \mathrm{~b} \quad C\left(E_{n}\right)=0$.
The rest is clear: $\dot{j}=\lim _{n \uparrow+\infty} \dot{j}_{n}$ satisfies 14.5 , the remainder $\mathrm{f}=\mathrm{t}-\mathrm{i}$ is a continuous additive functional, 14.6a is immediate from Blumenthal's 01 law, and $C(E)=\lim _{n \uparrow+\infty} C\left(E_{n}\right)=0$.

Massachusetts Institute of Technology Kyushu University

[^4]
REFERENCES

[1] R. Blumenthal: An extended Markov property. Trans. Am. Math. Soc. 85 (1957), 52-72.
[2] H. Cartan: Théorie générale du balayage en potentiel newtonien. Ann. Univ. Grenoble 22 (1946), 221-280.
[3] G. Choquet: Theory of capacities. Ann. Inst. Fourier Grenoble, 5 (1953-1956), 131-295.
[4] J. Doob: Stochastic Processes. J. Wiley and Sons. New York (1953).
[5] -: Semimartingales and subharmonic functions. Trans. Am. Math. Soc. 77 (1954), 86-121.
[6] E. B. Dynkin: Infinitesimal operators of Markov processes. Teor. Veroyat. i Primenen. 1 (1956), 38-60.
[7] - Natural topology and excessive functions connected with a Markov process. Doklady Akademii Nayk CCCP, 127 (1959), 17-19.
[8] W. Feller: The general diffusion operator and positivity preserving semi-groups in one dimension. Ann. Math. 60 (1954), 417-436.
[9] G. Hunt: Some theorems concerning Brownian motion. Trans. Am. Math. Soc. 81 (1956), 294-319.
[10] -: Markov processes and potentials (1). Illinois J. Math. 1 (1957), 44-93.
[11] O. D. Kellogg: Foundations of Potential Theory. J. Springer. Berlin (1929).
[12] K. Itô and H. P. McKean, Jr.: Potentials and the random walk. Illinois J. Math. 4 (1960), 119-132.
[13] : Diffusion. to appear.
[14] F. Riesz: Sur les fonctions subharmoniques et leur rapport a la théorie du potentiel. Acta Math. 48 (1926), 329-343.
[15] A. Volkonskiī: Random substitution of time in strong Markov process. Teor. Veroyat. i Primenen. 3 (1958), 332-350.
[16] -: Additive functionals of Markov processes. Doklady Akademii Nayk CCCP. 127 (1959), 735-738.

Note added in proof. The authors came to know that A. D. Ventsel' [19] obtained almost the same result as in sect. 3-5 of the present paper and that A. Meyer [18] studied the same problem for a more general class of Markov processes. As for signed additive functionals, E. B. Dynkin [17] constructed them using stochastic integrals in case of a Brownian motion.
[17] E. B. Dynkin: Additive functionals of a Wiener process determined by stochastic integrals. Teor. Veroyat. i Primenen. 5 (1960), 441-452.
[18] A. Meyer: Representations integrales des potentiels. C. R. Paris 251 (1960), 22 79-2280.
[19] A. D. Ventsel': Non-negative additive functionals of Markov processes. Doklady Akademi Nayk CCCP 137 (1961), 17-20

[^0]: 1 ® $/ 2$ is often used as the generator of the Brownian motion, but for our purpose it is simpler to omit the factor $1 / 2$.

[^1]: ${ }^{2} x(\mathfrak{m}) \equiv \infty$ in case $\mathfrak{m}=+\infty$; it is understood that $P_{\infty}[x(t) \equiv \infty, t \geq 0]=1$.
 ${ }^{3}$ private communication.
 ${ }^{4} a \wedge b$ is the smaller of a and b.
 ${ }^{5} \quad E .(f)=\int f d P .$.

[^2]: ${ }^{6} \mathfrak{E}\left(e \mid B_{n}\right)<+\infty$ is achieved as follows: take $\dot{D} \supset D$ with $\partial \dot{D}$ at a positive distance from ∂D, choose $\dot{B}_{n} \uparrow \dot{D}$ as needed for 1.8, and let $B_{n}=\dot{B}_{n} \cap D$; then $\mathfrak{G}\left(e \mid B_{n}\right) \leq$ $\int_{B_{n}} d e \int_{B_{n}} \dot{G} d e \leq n e\left(B_{n}\right) \leq n\left(\inf _{D \times D} \dot{G}\right)^{-1} \sup _{D} \int_{B_{n}} \dot{G} d e \leq n^{2}\left(\inf _{D \times D} \dot{G}\right)^{-1}<+\infty$.

[^3]: ${ }^{8} A \subset R^{d}(d \geq 3)$ is thin at ∞ if and only if (Wiener's test) $\sum_{n \geq 1} 2^{-n(a-2)} C\left(A_{n}\right)<$ $+\infty$, where A_{n} is the meet of A with the spherical $2^{n-1}|b|<2^{n}$ and C is the $d-$ dimensional Newtonian capacity; for the proof in the case of the d-dimensional random walk, see K. Itô and H. P. McKean, Jr. [12].

[^4]: 9 G. Choquet [3] found that if $E \subset R^{d}$ is Borel, then $\inf C(B): B$ open, $B \supset E$ $=\sup C(A): A$ compact, $A \subset E ;$ this common value is the capacity of E.
 ${ }^{10} P \cdot[x(t) \in E$ at some positive time $]$ is positive or $\equiv 0$ according as $C(E)>0$ or not; see, for example, G. Hunt [9].
 ${ }^{11}$ See O. D. Kellogg [11] for the classical significance of regular points and J. Doob [5] for the probabilistic interpretation.

