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1. INTRODUCTION.

A functional f(#)=1{(¢, w) of {(>>0) and a several-dimensional
Brownian path w: {— x(¢) is said to be additive if

1.1 (¢, w) depends upon t and x(s): s<t alone.

1.2 0=fO)<{f<+o

1.3 ftx) = 1(¥)

L4 @) =i(s)+it—swi) t=s,

where wi is the shifted path w;}: {—x({+s); for example,
f(t):SZf(x(s))ds is an additive functional if f>0 is bounded and

Borel.
K. It6 and H. P. McKean, Jr. [13] proved that in the 1-dimen-
sional case such an additive functional is an infegral

1.5  §(t) = St(t, b)e(db)

of the standard Browmnian local times

1.6 1t q) — limMmeasure (s: a < x(s) b, s 1)
) ’ o bya b_a

with respect to a non-negative measure e, finite on bounded intervals.
Brownian local times are not available in d_>2 dimensions,
but f can still be expressed as a (formal) Hellinger integral

1.7 f¢) = Smfﬁa}iure (s: fggberdb,”sgt)e(db)

with a non-negative measure ¢ which is smooth in the sense that



480 H. P. McKean, Jr. and H. Tanaka

each bounded open D is the union of an increasing series of sets
B, (n>1), closed in D, such that

1.8a the charge distributions e|B, have bounded potentials S Gde
By
<n(n>1), where G is the Green function of D;

1.8b  for large n, depending upon the path, the Brownian particle
lies in B, until it leaves D, i.e.,

Plx(t)eB,, t<min(s: x(s)¢D), nt + 0] =1,
where P.B)is the probability of the event B as a function of the
starting point of the Browmian motion.

The correspondence embodied in 1.7 between the class of smooth meas-
ures e and the class of additive functionals f is one to one and onto.

1.8a implies that e¢(B)=0 unless B has positive logarithmic
capacity in the 2-dimensional case or has positive Newtonian
capacity in the d>3 dimensional case; thus, a smooth measure
cannot attach positive mass to a line in 3 dimensions, nor, in 4
dimensions, to a surface. But it can be singular relative to
Lebesgue measure ; the simplest example in 3 dimensions is the
uniform distribution on the spherical surface |a|=1.

Choose d=3, e(db)=|b|°db, and let G be the Green function
of D: |a|<1; then

1.9a p= SGde

< constant (2+«)™! a > —2
< + o except at 0 —-3<la< -2
= 4 oo a< -3,

1.9b @(e)ESSGdede<+oo a>_5/2,

and it follows that e is smooth for «”>—2. e is not smooth for
a< —2; in fact, choosing B, 1 D as needed for 1.8,

1.10 E[S | x(s)| *ds, %(t) € B, t<6]
S"mdsgn P x(s) € db, max | x(6)| < 1]1}*

<
< SB G(0, byde < + o
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thanks to 1.8a, and

1.11  lim lim P[x(¢) € B,, t< €] =1

€40 24400

thanks to 1.8b, while, as is not hard to prove,
1.12 PO[SE | x(s)| *ds = + oo, e>0] _1,

contradicting 1. 10.

V. A. Volkonskii [15, 16] also studied additive functionals,
establishing a special case of the above for a wider class of motions;
the method used below is similar to his.

Given a 1-dimensional diffusion with the same hitting pro-
babilities as the standard Brownian motion :

1.13 P min (¢: x(¢) = @) < min (¢: x(f) = b)]
_b-¢&

== a< E<ZD,
b—a

W. Feller [8] explained how to express the associated generator
S as a differential opearator based upon a speed measure e, positive
on open intervals:

"y — u*(da) _ lim ut(b)—u*(a)

1.14
e(da) bia e(a, b)
u*(a) = lim u(b) —u(a)
bia b—a

and K. It6 and H. P. McKean, Jr. [13] found that its sample paths
could be expressed as standard Brownian sample paths run with
the stochastic clock §~' which is the inverse function of the additive

functional (local time integral) f =Stde associated with the speed
measure.

V. A. Volkonskii [15] also studied such time substitutions ;
his method is less explicit because it does not use local times but
has the advantage that it can be applied in higher dimensions.

As will be explained below, a d>2 dimensional diffusion with
Brownian hitting probabilities has as its generator the closure of a
differential operator
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1.15 _ _ ¢(ab)
Cu e(db)

based upon a (smooth) speed measure e, positive on the neigh-
borhoods of H. Cartan’s fine topology [2]; moreover, the associated
motion is the standard Brownian motion run with the inverse func-
tion f' of the additive functional f associated with e, and ks
correspondence between the class of diffusions with Brownian hitting
probabilities and the class of smooth measures e positive on fine
neighborhoods is one to one and onto.

2. BROWNIAN MOTION.

Choose d>2, let E‘=R? it d=2, let it be the one-point com-
pactification R+ oo if d>3, introduce the space of continuous
sample paths w: [0, + o)—E? with

2.1 w(t) € R? t<m,
= o0 tz l’nm ,

where m_=m_(w)<+c and m_=+oo0 in case d=2, let w(t)=
x(¢, w)=x(t) as need be, note that x(+ co)=oo0 even if d=2, and,
introducing the corresponding coordiante fields B,= B[ x(s): s<t]
and B=B,, ., let P.(B) be the probability (Wiener measure) of the
event B€ B as a function of the starting point of the d-dimentional

. . . o o 2? .
Brownian motion with generator @—é-b—%—i-gb—g +a—b§'

Brownian motion enthusiasts are familiar with the fact that
the Brownian traveller sfarts afresh at a passage time; the full
significance of this was explained by E. B. Dynkin [6] and G. Hunt
[9] as follows.

An instant of time 0<Cm<C + o depending upon the path is
said to be a Markov time if

2.2 w: mI ) €EB, t>0;

for example, the passage time meo=inf(¢: x(¢) €Q) to a closed or

1 @/2 is often used as the generator of the Brownian motion, but for our purpose
it is simpler to omit the factor 1/2.
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open d-dimensional figure @ is a Markov time and so is m=
min <t:S:f(x(s))ds=1> if 0<f<1 is a Borel function.
Given such a Markov time m, if wy; is the shifted path
2.3 wy: t— x(t+m)
and if Bum. is the field of events B€ B such that
2.4 BN\ w: m<t) €B, t>0,
then the Brownian particle sfarts afresh at time f=m, i.e.,
2.5 P,lw € B| Bmi] = P,(B) a€E, BeEB, b=x(m)>
Blumenthal’s 01 law [1]:

0

26 P(B)-; BeEB,.=[\B

is a special case of 2.5.
A. R. Galmarino® has pointed out that a non-negative Borel
Sfunction m of the sample path is a Markov time if and only if

2.72 wmu) <t
2.7 x(u, u) = x(s, v) s<t

imply m(u)=m(v) and that an event BE B is a member of Bum. if
and only if 2.7 coupled with u€ B implies vE B. As a simple
application of this test, note that Bm: measures both m and the
past x(0 /\m) (0>0)" because 2.7 implies 0 /\ m(u)=0/ m(@)< ¢
and hence x(0 A\ m(u), u)=x(6 A\ m(v), v).

Given bounded open D R? with boundary 9D, if m,, is the
exit time min (¢: x(f) € 9D), then the hitting probability

2.8 hypla, db) = P[x(nyy,) € db] a €D, db€aD

is the classical harmonic measure of db as viewed from the point
a, and, if Gp(a, b) is the classical Green function of D, then

2.9 E [measure (¢: x(f) € db, t <myp| = Gpla, b)db® a, b€ D;

2 x(m)=co in case m=4oo; it is understood that P.[x(#)=oc, t>0]=1.
3 private communication.
4 anb is the smaller of ¢ and b.

5 E.(f):SfdP..
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for the proofs, see J. Doob [5] and G. Hunt [9].
G. Hunt [10] has called a non-negative Borel function p exces-
sive on D if

2.10 E,[ p(x®), t<myp]tpl@ t,0,a€D.

An excessive function can be split into its greatest harmonic minorant
h plus the potential SGDde of a non-negative (Riesz) measure e,

indeed, Hunt’s excessive functions are the same as the superharmonic
functions of F. Riesz [14]. J. Doob [5] proved that an excessive
function is continuous on the Browmnian path (1< m,p) and that a
potential tends to O along the Browmian path (¢ 1 m,p).

3. THE ASSOCIATED MEASURE OF AN ADDITIVE FUNC-
TIONAL.

Consider an additive functional f of the Brownian sample path
as described in seition 1, interpreting 1.1 to mean

3.1 i(t, w) is measurable B, for each t >0.

The purpose of this section is fo associate with | a unique
non-negative measure e such that, for each bounded open DR,

3.2 1—p, = ((g Gp.de Do = E.[e'“i(ma")] , >0,

where G is the Green funetion of D and the integral is extended
over D; it will follow from 3.2 that e is smooth.
Ccnsider, for this purpose, the additive functional

t AMap

33 ful® = [ puxo)i@s) 10,

0

and let us begin with the following simple lemmas:

a) 1—p, is the potential of a non-negative measure de, .

b)  EJffa(nyp)]< 40
c) fatfasalO.

d) 1—p, = aE[f(myy)] = aSGde,,,.

e) E.[mm’f(x(s))fm(ds)] = ( Gfde, if £>0 is a Borel function.
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f) p.le,(db) = e(db) is independent of & and of D.
g) e is unique.

Because
3.3 E.(1—po(x(D), t < myp) = Eu(1—e LTmon) =114~y )
t1-p, t|0,

1—p, is excessive; it is, in fact, a potential thanks to
3.4 | e, db[1-p,) = E,(1—e el ~1mily Lo D1 D,
oD

and this completes the proof of a). As to b), p, is continuous on
the Brownian path because of 1, and, since f is continuous, b)
follows on letting # 1 + oo in

3.5 1—p, = E.[Smane—a[i(may)—f(t)]f(dt)]

0
>~ atE.[ = e—i(Wan(wh-n), wh-n)p—ef(Lk) f([k)]
— k2-"<mppn '
I, = [(k—1)27" k277)

=aE[ 3 puxk2)eUDf(1,)].
k2~ "<map

Because of c¢), which is obvious,
3.6 a’(l—p,) = lim E.[S"‘””e—“[“"'f’")*“’” fs(dt)] ,
€40 0

and, using the method of 3.5 and E.[f.(m,p)]< + oo, it appears
that

nan

3.7 «'1-p) = lim B[ " puanican | = B[ " padt |

proving d).
K. It6 (private communication) pointed out the following neat
method for proving e). Choose closed B D such that ¢,(0B)=0

and let ¢, and ¢, be the charge distributions of the potentials
man

pI:E.[Sma" fdf,,] and pzzE.[So (1— f)df,,], in which f is the in-

o
dicator function of B. Because p, is harmonic outside B and differs

from a'(1—p,)=E.[f.(sp)] by a harmonic function iuside B, e, is
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not smaller than the restriction of ¢, to B, and, for the same
reasons, e, is not smaller than the restriction of ¢, to D—B. But
b+ p.=a”(1—p,), whence

3.8  p — E.[S:‘“’ fdf,,] _ SBGde,,,,

and since such figures B generate the class of Borel subsets of
D, e) follows.

As to f), p, >0 because f(im,,)< + oo, and, choosing 0< B <«,
e) implies

3.9 (Gdew = B[ ™ puiodis] = | Goulpodes,

i.e., de=p;'de, is indeqgendent of «; it is also independent of D
because if D'>D and if p,=0 outside D, then, with an obvious
notation,

3.10 SGp,, Bode — E[S po,dfﬁ]
_ E. [S"‘f”" p,,df,,]— E.U"‘a"’pmdfa]

0 mop

— [ Cudode—{ anoy | Cpupoae

map

= S G pabedé .

g) is immediate from 3. 2.

To establish the smoothness of e, take bounded open D and
put B,=D/N\(p,=>n""). Because 1—p, is a potential, B, is closed
in D and increases to D as n ! + oo ; moreover, according to 3.2,

3.11 SB GdegnSGplde —a(l—p) <,

which is 1.8a, and, since, along the Brownian path, 0<p, is
continuous and tends to 1 (¢1 myp),

3.12 P.[inf (¢: x(¢) ¢ B,) < myp ]
= P-[t inf p(x@))<nJ10  nt +oo,

mon

which verifies 1. 8b.
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4. UNIQUENESS.

The following simple lemma is useful in later sections: fwo
additive functionals {, and f, with the same bounded mean

41 p=E[im)] = lime'A—p) = [Gde  T=1, 1,

are the same for t<g,p.
An argument similar to 3.5 implies

12 B(]™ T~ i01ian) |
— £.("" par, )

= [ Gade <1ipi <+
thus, putting f=f,—f,,
4.3  E.[f(myp)7]

= 28] (" [itngp) — (5@ |
=0,

and hence

4.4 0= E.[f(mop)| By s ypp 1 = E-Liap) —F@) | By 1 e 1410
= {() t<

as desired.

It is a simple matter to deduce from this that two additive
Sfunctionals with the same associated measure are the same ; indeed,

the difference p of two solutions of 3.2 satisfies — p:aSGpde,

which implies
45 0> - S pde — G(pde) — SGpdepa’e,

and it follows that two additive functionals with the same associated
measure have the same p,, hence the same a™'(1—p,)=E.[f,(1,p)]
(<Ca'<+o0), and hence the same f,. But this means that the
two functionals are the same up to time m,,, and, to finish the
proof, it is enough to make D swell out to R“.
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5. CONSTRUCTION OF AN ADDITIVE FUNCTIONAL FROM
ITS ASSOCIATED MEASURE.

Given a smooth non-negative measure e, our task is to find an
additive functional f with e as its associated measure.
Consider, for this purpose, a non-negative measure e on a

bounded open figure D with bounded potential p= SGde and finite

energy G(e) = S Gdede, let p, be the potential SGf,,db of

5.1 f, = n(p—E.[plx(n), n” < myp]),
let
5.2 £, = |

tAmpp

SFa(x(s))ds

0

and let us construct a functional { associated with ¢ as a limit of
f, with the aid of the following simple lemmas :

a) p is a Brownian excessive function; esp. 0 f,.
b) E.[p(x(®)), t<myp)| 0 inside D as t1 + oo,

n

c) p,= nS E.[ p(x(®), t < myp |dt increases to p inside D as n?

0

+ oo,
d) lim G(e—f,db) = 0, where € is the energy (S‘(e)ESGdede.

n4 400
e) E.[f,(+ )| Biamg,+ 1=1.(0)
= P (x@)+1,8) mep >2>0
= f.(Myp) My, < £,
i.e., |, is a martingate with respect to the fields By ,,+ ; moreover,
1, is continuous in t.
f) P.max|L(¢ wi)—1, ¢ wi)l >€&]
t>0
< constant x & *s~4*\/G( f,db— f,,db).
g) P.llUmf,( w)) =i wi), t >s>0]=1.
n4 oo
where the limit is taken as nt + oo via suitable n, < n,<etc., {(f)
is continuous, (0)={(0+)=0, and f(t)=f(s)+{(t —s, wi) (Mpp=t>5).
h)  E.[f(myp)]=0.
Because p is a potential, it is excessive; a) is obvious from
this, b) is obvious from the bound
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5.3 E.[p(x@), t T mop] ZPIP-(E<Tmgp) | O 21 o0,

and c) follows from b):
5.4  p — E.[S:’” f,,(x(s))ds]

= 1 dSE.L((5) ~ Eucol patn™), 17 <oy, 5 i)

= 0 dSTELp(x(s)), 5 < miop]— oL plas 7)), s+

< map]]
=" ELp), s<mapldstp nl b
An application of c) establishes

5.5  6) = | pde>|p.de = [pr.db>C(r,a0 1 6(0) nt 4o,
and this implies d):
5.6 lim G(e—f,db) = mﬁ[@(e)—zs p.de+G(f,db)] = 0.

Because ¢/\m,, is a Markov time,

5.7 E[fuman) | Bermant 1 = B[ [ 7,(x(9)ds| Brnman |+1,00)

t AMpp

= Extermon)| | 72| +1.00 = 5.(e0) +LO=10) t<mi,

i.e, [, is martingale, and since p, is continuous and tends to O

along the Brownian path (¢1 my,p), [, is continuous. e) is now
established, and f) follows from Doob’s submartingale extension of
Kolmogorov’s inequality [4], the Schwarz inequality

5.8 (S Gde,de, )Zg (e,)6(¢,)

(see H. Cartan [2]), and the resulting
5.9 E.[]L(+ 00, wi)—1,(+00, wi)|? s <myp]
L ELE ol f.(00p) = ,,(Map) [7], s < iy

< B[ [ 6s), OXfu—1,0(8,— 5,)db, s <o |
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— [{ 6@ b, (@@B.[6(x(s), b), s <maple,(ab)
enm(db) = (f”—fl)l)db
< €(e,,,) "E(E.[G(x(s), ), s < myp]de,,,)”
< G(e,,,)"”* constant xs C(e,, ).
Choose 7, < n,<_etc. so as to make P.[max|l,(¢ wi)—1(f)] |0,
s >0]=1, where [; is a continuous function of £. Because p= lim p,
"4 oo

is continuous and tends to O along the Brownian path (¢ 1 myp), it
follows that f,(#)=1lim{,({, w;) is continuous (1~>0) and additive
n44oo

(t<myp(wy)); moreover

510 E.[f,(+e0)] = 2| Gp, f,db <2l pIL < +e0
implies
511 Eff(t=9)] = lim E.[},(+ c0, wi) —{,(+ c0, wi)]
= lim [B-(£,(2(6)), s < myp) — E-(p,(x()), # < 1]
= E.(p(x(s)), s < iop) — E-(p(x(8)), £ <o)
and, to finish the proof of g) and h), it is enough to define
5.12 f{(t) = lsigl f.(2)

and to make s} 0 and ¢1 + o in 5.11.
Now take a smooth measure e, choose B, 1 D as needed for
1.8 with the additional property that e|B, has finite energy

G| B,) =S Gdede®, let f, be the additive functional associated
B

nX Bn

with ¢|B, as in 5.12 above, and note that

5.13 E.[S:’"’” fdf,,] - SB,. Gfde >0

‘as in e) of section 3. It follows that if fis the indicator function

6 @(e|B,)<+ o is achieved as follows: take b:)D with 8D at a positive distance
from 0D, choose E,, 4 D as needed for 1. 8, and let B,,=1.9,,ﬂD; then G(e¢|B,)<
§ de S Gde<ne(B,)<n( inf G)~! sup S Cdesn?(inf G) 1<+ oo .

By, By, DxD D JBy DXD

B
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of B

m?

then the functionals St fdf, (n>>m) and St fdi,, have the

same (bounded) mean :

5.14 E.[S'O"a” fdf,,] - E.[S:'” fdfm] - SBmGde

and are therefore identical up to time my,, according to the first
uniqueness lemma for additive functionals of section 4. But this
means that f,=f,, up to the exit time from B,,, and since this exit
time =mn1,, for large m, it is legitimate to define a functional f
for t<m,, by means of

5.15 f@) =) t<inf(¢: x(t)¢ B,),n>1.

Introducing p,=E.[¢~*T(")] and using the method of 3.5,
5. 13 implies
5.16 1—p, = lim aE.["‘f’De—a[f(mm—fonf”(dt)]

n4 oo 0

— lim aE.[SmaDp,,,dfn] — 1im aSBnGpmde — “S Gpode :

n4g oo 0 n4 oo

in brief, e is the measure associated with | as in 3. 2.

Because two additive functionals with same associated measure
are the same, it follows that if e is smooth and if D, D, etc.
swell out to R? then the functionals f, associated with e,=e¢|D,
as in 5.15 above determine an additive functional

517 i) = f.(5)  t<mpp,, n>1
depending upon e alone, for which 3.2 holds for each D.

f is additive for a/most all Brownian paths, but of course it
can be modified on a negligeable class of paths so as to be Borel
in the pair (4, w) and to satisfy 1.1, 1.2, 1.3, 1.4, as identities ;
with this modification, T is the additive functional associated with e.

6. DIFFUSIONS WITH BROWNIAN HITTING PROBABILITIES.

To avoid confusion, let w, x, m, B, B, B, ., etc. be used to
describe the Brownian motion, introduce the same paths, times,
events, and fields with the new names @, %, 1, B, B, Bﬁﬁ, etc.,
and take a mew motion D with probabilities P, (B).
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D is said to be a diffusion if it starts afresh at each Markov
time 11 :
6.1 Py eB|B]=PB) acE9 BeB, b=31(h);
it is said to have Brownian Aitting probabilities if, for each bounded
open D,
6.2 P [ %(i,,) € db] = P[x(myp) € db] = hyp(a, db)
a€D, db9aD.

Given such a diffusion with Brownian hitting probabilities

6.32 p,=E[e” ‘"f"‘"’] !

solves
6.3b 1—p, = aS G pude ,

where ¢ >0 is independent of « and of D. e is the so-called speed
measure of the diffusion; the speed measure of the Brownian
motion is the Lebesgue measure db. Because of 6.2, P.[ih,,<
+o00]=1 and p, >0, which implies that e is smooth, i.e., that it is
the associated measure of some additive functional f of the Brownian
path ; moreover, ¢ is positive on the meighborhoods of H. Cartan’s
fine topology, and this implies that its associated additive functional

satisfies
6.4 P.[§(s) < f(2), 0<s<t] = 1.

Introducing the inverse function i~ of f, it turns out that
6.5 P.B)=P[x(i")eB] BeB;

in brief, D is identical in law to the Brownian motion run with the
stochastic clock f~'; moreover, eaclt smooth measure e, positive on
fine meighborhoods, is the speed measure of a diffusion with Brownian
lits.

The proofs are carried out in the next few sections.

" E.(f)=| ab..
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7. SPEED MEASURES

Beginning with the speed measure ¢ of 6.3b, if a ¢ € R? and
if th,=min(¢: |2(#)—a|>¢), then 1, =1lim i, satisfies
€40

71 E (e o) — Lot @) Z B e i =y,

and since E,(e ™) =0 implies P,[1f1,. = + oo ]=1, violating the fact
that the dot motion has Brownian hitting probabilities, it follows
that P [ih,. =0]=1.
Because
7.9 1— j, = aE.[Srﬁane_a(ximn—t) dt] _ CYE.[S,haDp.m(x(l‘))dt] ’
[ 0
1— p, satisfies

titan

7.3 1-pu@ =k (177 udt] = { sla, abY1- ) aeDCD,
nan
and, using 7.3 and P,[ih,,=0]=1 to establish

7. 4a Shﬂ[',(a,db)(l—ﬁw)LO D1D

7. 4b Slz]b_a,=g(a,db)(1— )M 1—p, €10,

it appears that 1— 5, is the potential “S Gde, of a non-negative

charge distribution «e,
It remains to verify that p;'de,=de is independent of « and
of D, which is done with the aid of the additive functional {,(¢)

= St Da(2(s))ds (¢ <1i,,) and the method of section 3; in outline,

7.5 1-py = aB,[fu0h,)] = « | Gde,
implies

7.6 E[|™rteni@s| = | orde.

as in e) of section 3, and 3.9 follows as before, efc..

8. TWO DIFFUSIONS WITH BROWNIAN HITS AND THE
SAME SPEED MEASURE ARE THE SAME.

Consider a pair of diffusions with Brownian hitting probabilities
and the same speed measure. -
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Because 6.3b=3.2 has unique solutions as noted in section 4,

both diffusions have the same p,=E.[¢~*"”] and hence the same
8.1 Cu: = B[ rwian] - | Grade

L= e 1<t
Choose &€>0 and introduce the Green operators
8.2 C,:f— E.[Sf’”e—“'fe“) f(:é)fg(dt)] a>0;
then

8.3 aCuCuf = el (™ h@nC.r® |
_ b [Sman  db) gman ~affe()—fe(t)] FE())i (ds)]
= abt.[ ("7 et payf,as) [ et |
g [man( _dny fdfg] = Gy f—Gaf

i.e.,

8. 4 GO’ = G.(Hw_aG.oq_G.m )

and, using the bound

8.5 Cul=|Ghde=e(1-p)<er Choo,
the obvious iteration of 8.4 implies

8.6 Co=F(racit  ale.

Because éa, is a Laplace transform in its dependence on «, 8.6
implies that both diffusions have the same Green operators (@>0)
and hence the same

8.7 E[S e —“’f(x)dt] — lim lim G, f.

Rd 840

But this implies that both diffusions have the same
8.8 P@)€dbt<n.] (¢t a b)€ (0, +o00)x R™

and hence are the same in all respects as stated in the section title.
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9. SPEED MEASURES ARE POSITIVE ON FINE
NEIGHBORHOODS.

Given a point @ of bounded open D and a (Brownian) excessive
function p on D, the set of points &€ D at which |p(b)— p(a)|<n*
is said to be a fine neighborhood of a; the corresponding topology
is called the fine topology of H. Cartan [2]. E. B. Dynkin [7] has
pointed out that a point @ is in the fine interior of B R? if and
only if almost all Brownian paths starting at @ remain in B for
some positive time. Because an excessive function in 1-dimension
is concave and hence continuous, the 1-dimensional fine topology
is the same as the usual one; in higher dimensions it is different.

Given a diffusion with Brownian hitting probabilities, its speed
measure e has to be positive on fine neighborhoods ; for the proof, it

is enough to verify that if ZC R? is bounded and Borel and if
e(Z)=0, then Z has no fine interior.

Choose an open ball D and a decreasing series of open figures
D, so as to have

9.1a D>D>D DD, Detc. DZ
9.1b SDnGDj)lde 10 nt +oo, p = E[e0r],
and let
9.2 i) — S' h(EoNds  t< iy,
Because of
9.31 1—E,[e 1G] = SD”GD,, bude < SD”(;D bude | 0

nt +o0,a€’Z
9.3b 5, >0,

it is apparent that

9.4a 1= P,[ihy,, 10, n1 +co]
= P,_[lim £(hgp,) = a]
H¢+D°

~ lim S Top (@, db)e """ a € Z.
n4 4oo

But this final expression depends upon the (Brownian) hitting
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probabilities /,, alone; thus,
9.4b P, limx(myy) =a]=1 a€Z
N4 oo

for the Brownian motion also, and since almost no Brownian path
meets its starting point at a positive time, it follows that

9.5 P,Imyp, 10,1 +o0] =1 a€Z;

an application of Dynkin’s description of fine neighborhoods com-
pletes the proof.

10. SPEED MEASURES GIVE RISE TO INCREASING ADDITIVE
FUNCTIONALS.

Because the speed measure of a diffusion with Brownian hits
is smooth, it has associated with it an additive functional f of the
Brownian path; moreover, ¢ is positive on fine neighborhoods,
and this is reflected in the fact that f is increasing as in 6.4 :
() <F(E)(s<2).

It will be enough to verify that the set A of points @ at which
10.1  P,(m >0) = P,[f(¥) = O for some £t >0] =1

m = inf (¢: £(£) >0)

is vaccuous; note that A is Borel and that P.(m_>0)=0 or 1
according to Blumenthal’s 01 law.

Because A is either void or fine open and e is positive on fine
neighborhoods, it is enough to show that ¢(A)=0, and, for this, it
is enough to show that for each bounded open D, the points of
D at which P.[f(m,p) >0]<1 have e-mass 0. But this is immediate
on letting @t + o0 in

102 a’(1-p,) = [Gpude  po = BL].

11. WHEN IS f(4o00)=+0c0?

In making up the stochastic clock {* for use in 6.5, two cases
arise according as f(+ o)=+ o or not, and it is desirable to have
a test for this.

Because p=P.[f(+ o)<+ oo ] satisfies
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111 (@) = Pul(ma) < 40, f(-+ 00, w5,,) <420
= E[p(x(nop))] = | hsola, db)p(®) @ €D

for bounded open D, it is harmonic and since p>0, it must be
constant ; moreover, letting first £ and then # 1 + oo in

112 P[f(+ o) <<n] < E.[(8) <m, p(x(®)] < P.LIE <nlp,

it appears that p<p® and hence that p=0 or 1.

Our test states that p=1 if and only if one of the following
conditions is met :
a) d>3 and 1—p,=SGplde admits a solution 0< p,<1 on the
whole of R4, where G is the function of R°.
b) ®p,=p, admits a solution 0<_p,<1 on the whole of R? where
Sp, is the negative of the Radon-Nikodym derivative of the Riesz
measure of p, with respect to e (see section 13 for the meaning of ®).
c) d>3 and R*=A\JB, where A is thin at « in the sense that
P.[x(t) € A for some t >n] |0 (nt ), and SBGde<+<>0. s

Beginning with p=1, pIEE.[e_T(J"”)] is positive and <1,
and, since G, 1 G as D1 R9,

1.3 1-p, = lim E.[e”/CF ™ @) p,
D1t R4

= DHTHI}M S Gpp.de = S Gpde.

Because G= + o in case d=2, it follows that p=1 implies a), that
a) implies b) is clear, that c) implies p=1 is evident from

11.4 E.[S:”fdf] — SBGde< +oo,

where f is the indicator function of B, and now it remains to
verify that b) implies c).
But, if 0< p, <1 is a solution of &p,=p, and if % is its

8 AC RiI(d_>3) is thin at < if and only if (Wiener’s test) ) 2-d=2C(A,)<
VIZ[
+ oo, where A, is the meet of A with the spherical 2"-'-7'|b|<2" and C is the d-
dimensional Newtonian capacity; for the proof in the case of the d-dimensional
random walk, see K. It6 and H. P. McKean, Jr. [12].
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harmonic part E.[p,(x(myp))] inside D, then h,— p1=SGDp1de inside
D, and, as D1 R4, h, decreases to a non-negative (and hence con-
stant) harmonic function p,(o0) such that p,(c0)—p,= SGplde. R4 is

now split into A=(171<%P1(°°)) and B=(p12i171(°°)) and the fact

that p,(c0)—p, excessive is used to ensure that p, has a limit along
the Brownian path as ¢1 + oo, permitting us to conclude from

11.4a p, < pi(0)

11.4b  py(o0) =D1%I}!}d E.[p(x(myp))] = E-[}Pﬂ p(x(@®))]
that A is thin at o. Because 0<p,(e0),

11.5 SBGdeg 2p,(00) " SGplde< Yoo,

and this completes the verification of c).

12. PERFORMING THE TIME SUBSTITUTION.

Coming to the actual time substitution #—f~* which is sup-
posed to send the Brownian motion into the diffusion D, let  be
modified on a negligeable class of Brownian paths so as to have

121 0=fO)<{f(x) =) < +oo
12.2 @) = {(s)+{E—s, w) t>s
12.3  ft)>1fs) t>s

as identities, let x7' denote the sample path

12.4 w':t—-oax'O)=x"'w)=2a{"'¢ w), w],

note that this path is continuous even if (4 o0)<+ oo(d>3), and
let us check that the motion D with sample paths

12.5a w: t — 2(b)

and probabilities

12.5b P (B)=P,(w™ € B)

is the diffusion with Brownian hitting probabilities and speed
measure e.
Beginning with the proof of the diffusive character 6.1 of this
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motion, the problem is to check that if i1 is a Markov time and
ifB EB, then

126 P,[w} € BIByl=PyB) b=3(h).

n

Given such a Markov time 1h,
12.7 m(w) = §F'0h(w™), w)

is a Markov time for the Brownian path ; indeed, using Galmarino’s
test, if
12.8a m(u) <t
12.8b  x(s, u) = x(s, v) s<t,
then
12.9a  i(s, u) = {(s, v) s<t
12.9b (s, u) ={'(s,0) <t s<ft =it u =i ),
and it follows that
12.10a th(u™) = f(m(w), u) < f(¢, u) = ¢
12.10b x7'(s, u™") = x[f7'(s, w), u] = x[§7'(s, v), v]
=x'(s, 07  s<f.

Because 1t was a Markov time for the dot motion, 12. 10 implies
12.11a () = i) < f,

and an application of 12.9b implies

12.11b  hm) = f'h(@™), w) = f'(m(@™"), v) = m(@);

in brief, 12.8 implies, 12. 11b, as needed to conclude by Galmarino’s

test that m is a Markov time.
Given A € Bm+, if A=(w: w' € A) and if

12.12a m(u) <t

12.12b  x(s, u) = x(s, v) s<t
12.12¢c u € A,

then, using 12. 10,

12.13a (e ) < £

12.13b x7'(s, u) = x7Mx, 07 s<f{
12.13¢c u '€ A,
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and it follows that v='€ A, or, what is the same, that v € A ; thus,
by Galmarino’s test, A€ B, ., and now it appears that

12.14  P,[A4, o} € B]
= P,[w' €A w)"eB]

=P, [weA (w!)'eB]
= E,[A, P,(w € B)] b=zx(m) = x7'(h(w™), w™")
= E,[w € 4, P(B)]

=E,[4 P,B)] b= (h),

completing the proof of 12.6.

D is now identified as a di ffusion ; that it has Brownian hitting
probabilities is clear, and to complete the discussion, it suffices to
verify that it has e as its speed measure. But this is clear because

12.15 m3, =min (f: x7'(¢) € OD) = (),

and f has e as its associated measure.

13. GENERATORS.

Given a diffusion with Brownian hitting probabilities, the
Green operators
13.1 G f—»E.[S”e-mff(az)dt] a>0

0
map into itself the space C(E?) of real, bounded, fine-continuous
functions having ordinary limits at oo in case d>3; in fact, if
d>3, then P.[min]i’(t)lzn]=P.[mi§1[x(t)l >#n] tends to 1 at oo,
t>0 t>

so that Gdf tends to a 'f(), and, if a € R? (d >>2) and if the ball
D>a is so small that 1—ﬁm(a)=1—b".[e_“ﬁ'3”]<n“, then, inside
the fine neighborhood B=D/\(p, >1—n""), the difference between

13.2a u = G.‘,f

= B[ e pdt+em i

400
0 0

G, w,;an))dt]

- 13:.[g’*’*’"e-wf(x)dwe—"“"‘a"u(f(map))]

0

and the harmonic (and hence continuous) function
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13.2b & = E.Ju(E0hy))]
is not greater than
13.3  constant X (1— p,) < constant x n™" .

Because
13.4 G.a—‘GB""(a_ﬁ’)G'wG.B: 0 a; 18>01

it is evident that Ga, maps our space of fine continuous functions
onto some subspace D((Sﬁ) independent of « and that its null-space
G;'(0) is likewise independent of «. But, for fine-continuous
fEGZN0),
. . +oo
13.5 0 =1lim BC,f = E[ lim BS e-ﬂ'f(x)dt] —
BA-+oo cLprdae Jo
according to E. B. Dynkin’s description of fine neighborhoods ; thus
the null-space is trivial, G'm is invertable, and another application
of 13.4 verifies that $=«a—G? acting on D(®) is independent of «.
& is the so-called generator ; it is closed in the sense that if
u, € D(®) and Gu,=f, converge pointwise under fixed bounds to
u and f€C(EY), then € D(®) and Gu=7.
Consider the differential operator
_ —€¥(db)
13.6 Qu————e(db) [b] <+ o0
=0 b=o0,d>3
acting on the class D(Q) of functions « € C(E) such that
a) inside each D, u is the sum of the harmonic function h=

Shw(a, dbyu(b) and the potential SGDde“ of its Riesz measure e".

b) SGDlde"l is bounded.

c) RQu, as described in 13.6, exists and belongs to C(E?).
& is the closure Q of Q in the topology of bounded pointwise

conver gence as will now be explained.
Choose a fine-continuous function 0<7p,< 1 tending to O at

oo in the ordinary topology such that SGDp,,de is bounded for each
bounded open D and p,11 as nt + oo, and introduce the additive
functional f,— S' p(R)ds (£>>0).

0
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(7Y is a diffusion with Brownian hitting probabilities and speed
measure de,=p, X de,

13.7  E.[min (¢: (%) € 2D)] = E.[},0hyp)] = SGDp”de< too,

and it follows from 13.2a that if # is in the domain of its
generator &,, then

13.8 4= — E.[S""a”(@,,u)(x(t ))f,,(dt)]+E.[u(32mw))]

0

= —S Go(®,w)p,de+a harmonic function,

which is a special case of a formula of E. B. Dynkin [6]; in brief,
13.9 —e“(db) = B u)p,de  ucDS,).
Choose # = G, fE€ D(®), then

13.10  u, = E.[S:”e—ff(x(fn—l))dt]

tends pointwise under the bound || f}]|. to #. Because u,,ED(GS,,),

—¢*(db)

e(db) = pn($nun = pn(un_f)

13.11 Qu, =

satisfies all the conditions for #, to belong to D(X), and, what is
more, Qu, converges pointwise under the bound 2|| f||_ to u—f= Su;
thus, # € D(Q) and Qu=_GCu, ie.,

13.12 9> é.

As to the proof of QC &, it is enough to show that if
ueD(Q), then G,1—Q)u=u, and, for this, it is enough to deduce
from » € D(Q) and Qu=u that »=0.

Given such a # € D(Q) with Qu=u and choosing #, € D(Q) so
as to make u, and Qu, converge pointwise and boundedly to
and Qu=u,

1313 w,—h, = — S GpQude — —E.H:’B”(Qun)(x)ds]

h, — Sha,,(o, dbyu (b)
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implies
13.14 B[ (u,— I, )(#()), t <tigp]—(u,—I,)
_ E[St “""”(Qun)(;e)ds] 1>0,

which, in turn, implies
13.15  E.[(w—h)(£®)), t<igp]— w— 1)
_ E'.[g“‘““’(ﬁu)(x)ds] £>0

0

h:S%Ag@m@,

and, letting D1 R? so as to make /2 tend to a bounded (and hence
constant) harmonic function /(co),

13.16a P.[ih, < +o0] = P[fn )< +0] =0 d=2
13.16b () = h(x) =0 d>3

implies
13.17  B.[w(E)]—u =E.[S'u<x)ds] t>0,

and the desired #=0 follows.

The Green operators leave invariant the space C(E?) of bounded
functions continuous in the ordinary topology of E? if and only if,
for each D, the mean exit time

13.18  $ = Eu[iing,] = SGDde

is continuous inside D and tends to O on °OD; in this case, the
generator & coincides with the differential operator Q acting on the
class of functions u € C(E?) such that Tu € C(E?); the reader will
easily supply the details of the proof.
Here is an example in which the Green operators do not map

C(E?) into itself.

~ Choose d=3 and e=fxdb, where f=1+"§_]lf,, and the f, are
the indicators of little non-overlapping open Taalls D, converging
to as #1 + oo but not covering O itself and so small that
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13.19 P mgp < —oo <27 n>1.

Because of the first Borel-Cantelli lemma, p=P.[m,,,<+ oo, i.0.]

=0 at the origin, and it is also clear that p=0 on the rest of

R® But then fzgt f(x(s))ds is a continuous additive functional,
0

f(s)<f(®) (s<¥), and x(f') is a diffusion with Brownian hitting
probabilities and speed measure e.
Given a neighborhood D of 0,

13.20 E,[min(¢: x(f') € aD)]
= E,[f(myp)]

> B[ fuaonds |

- S G (0, b)db/volume (D,)
72 1JDn
— —|— oo,

But, as E. B. Dynkin [6] has pointed out, this cannot happen
for all small neighborhoods if the Green operators map C(E¢) into
itself.

14. DISCONTINUOUS ADDITIVE FUNCTIONALS.

V. A. Volkonskii [16] has studied discontinuous additive func-
tionals ; in the present Brownian case their structure is very simple.
A functional t of the Brownian path which satisfies

14.1 t(f, w) is measurable B, for each ¢ >0.

14.2 0t +

14.3 t(t—) = t(¥)

14.4 t(#) = t(s)+t(t—s, wy) t>s

is the sum of a continuous additive functional | and a discontinuous
additive functional | with

14.5 P.[i(#) = i(0+), 2 >0] =1

14.6a P.[j(0+)>0]=0o0r 1

14.6b C(E) = 0, where E is the set of points at which
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P.[{(0+)>0]=1 and C is the Newtonian (logarithmic) capacity in
d>3 (=2) dimensions.’®

Consider the (discontinuous) additive functional j,(f)= the
sum of the jumps of t of magnitude >n"" taking place before time
¢, note that j,(0+)>0) € B,, so that P.[],(0+)>>0]=0 or 1 accord-
ing to Blumenthal’s 01 law, let E, be the (Borel) set on which
P.[(,0+)>>0]=1, and introduce the least positive jumping time
m of j,.

If P.(in<+o0)>>0 at some point, then

14.7  O0<CPLO<<m < + oo, j,(m)<j,(m+)]
= PI0<m< +o0, 2(m) €E,];

this implies C(E,)>0", and it follows that E, contains a sub-
compact A of positive capacity, having a (regular) point at which
P.[x(t) € A, i.0., t|0]=1." But then P.[},({)=+ o0, { >0]=1 at
that point, contradicting i,<t< + o, and it follows that

14.8a  P.i,0)=ij,0+),t>0]=1
14.8b C(E,) =0.

The rest is clear: j= limj, satisfies 14.5, the remainder
A4 oo

f=t—1 is a continuous additive functional, 14. 6a is immediate from
Blumenthal’s 01 law, and C(E)= lim C(E,)=0.
n4 400

Massachusetts Institute
of Technology
Kyushu University

9 G. Choquet [3] found that if E(C R¢ is Borel, then
inf C(B) : B open, BOE
=supC(A) : A compact, ACE;

this common value is the capacity of E.

10 P.[x(t) € E at some positive time] is positive or =0 according as C(E)>0 or
not ; see, for example, G. Hunt [9].

' See O. D. Kellogg [11] for the classical significance of regular points and
J. Doob [5] for the probabilistic interpretation.
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