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1. INTRODUCTION.

A  functional f(t)= f(t, w) of t( >0 ) a n d  a  several-dimensional
Brownian path w:x ( t )  is said to be additive if

1. 1 f(t, w) depends upon t an d  x ( s ) : s <t  alone.
1.20  =  f ( 0 )  <  f  <  +  CC'

1 . 3 f(t± ) = f(t)
1.4f ( t )  =  f ( s ) +  f(t—s, w:) t > s ,

where w ;' i s  th e  shifted path w;' + s )  ; fo r  example,

f (t )—  f (x (s))ds is an additive functional if f 0 is bounded and

Borel.
K. Itô and H. P. McKean, Jr. [13] proved that in the 1-dimen-

sional case such an additive functional is an  integral

1. 5 f(t) = b)e(db)

of the standard Brownian local times

1 . 6 t ( t ,  a )  =  l i m  
measure (s : a < x (s) <b, s<  t) 

b b—a

with respect to a non-negative measure e, finite on bounded intervals.
Brownian local times a re  not available in  d > 2  dimensions,

but f can still be expressed a s  a  ( fo rm a l)  Hellinger integral

1. 7 f ( t ) m e a s u r e  (s: x (s) E db, s ,<t)e(db)
db

with a  non-negative measure e  which is smooth in  the sense that
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each bounded open D i s  the union o f  an  increasing series of  sets
B n (n>1), closed in  D , such that

1. 8a the charge distributions elB„ have bounded potentials Gde
<n (n >1 ) , where G  is the Green function of  D;

1. 8b f o r large n, depending upon the path, the Brownian particle
lies in B „ until it leaves D, i.e.,

P.[x(t) E B „ , t < min (s : x(s) 0 D), n f + 0 0  =  1,
where P.(B) is the probability o f  th e  ev ent B  as  a  function of the
starting point of  the Brownian motion.

The correspondence embodied in  1 .7  between the class of  smooth Meas-
ures e and the class of  additive functionals f is one to one and onto.

1. 8a implies that e(B )=0 unless B  has positive logarithmic
capacity in  th e  2-dimensional case or h as  positive Newtonian
capacity in the d > 3 dimensional case ; thus, a  smooth measure
cannot attach positive mass to  a  line in 3 dimensions, nor, in 4
dimensions, to  a surface. But it  c an  b e  s in gu la r relative to
Lebesgue measure ; the simplest example in 3 dimensions is  the
uniform distribution on the spherical surface la I =1.

Choose d= 3, e(db)=IbiV b, and let G b e  the Green function
of D : lal < 1 ; then

1.9a p  =  5 Gde

<  constant (2+a)' a> —2
< +  Do except at 0 — 3 < a  — 2

co a  — 3 ,

1.9b e ( e ) Gdede < + a >  — 5/2 ,

and it follows that e  is smooth for a> —2. e  is not sm ooth  for
a <  — 2 ; in fact, choosing B„ t D  as needed for 1. 8,

1.10E „ I x(s)i'ds, x(t) E B,,, t <&]

< 5 .  d s P,[x(s) E db, niT c x (t) < b

G(0, b)de <+ c ,
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thanks to 1. 8a, and

1.11l i r n  l i m  P o[x (t ) E Bn , t < 6 ] =  1
eyo

thanks to 1. 8b, while, as is not hard to prove,

1.12P oh  jx(s)1 'cis ± 09 , 6  > =  1,
0

contradicting 1. 10.
V . A . Volkonskii [15, 16] also studied additive functionals,

establishing a special case of the above for a wider class of motions;
the method used below is similar to his.

Given a  1-dimensional diffusion with the same hitting pro-
babilities as the standard Brownian motion :

1. 13 P & m in  (t : x(t) =  a) <m in  (t : x(t) = b)]

b — a
a < < b ,

W. Feller [8 ] explained how to express the associated generator
as a dif ferential opearator based upon a speed measure e, positive

on open intervals :

1. 14 u u+ (da) (b)— u+ (a) O
e(da) b e(a, b)

u '  ( a )  =  l i m
u(b)— u(a)

b b— a

and K. Itô and H. P. McKean, Jr. [13] found that its sample paths
could be expressed as standard Brownian sample paths run with
the stochastic clock f w h ich  is  the inverse function of the additive

functional (local time integral) f = t de associated with the speed
measure.

V . A . Volkonskii [15] also studied such time substitutions ;
his method is less explicit because it does not use local times but
has the advantage that it can be applied in higher dimensions.

As will be explained below, a d > 2  dimensional diffusion with
Brownian hitting probabilities has as its generator the closure of a
d ifferential operator
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1.15 03/,‘ — — e"(db) 
e(db)

based upon a  (smooth) speed m easure e, positive on the neigh-
borhoods of H. Cartan's fine topology [2] ; moreover, the associated
motion is the standard Brownian motion run with the inverse func-
tion f of the additive functional f associated with e , and this
correspondence between the class of  dif fusions with Brownian hitting
probabilities an d  th e  class o f  sm ooth m easures e positive on fine
neighborhoods is one to one and onto.

2. BROWNIAN MOTION.

Choose d>2, let Ed= Rd it d= 2, let it be the one-point corn-
pactffication R"+  00 i f  d > 3 ,  introduce the space o f  continuous
sample paths w: [0, + co) —> Ed with

2.1w ( t )  E Rd t < m .
=- oo t >111.0

where in_ = in_(w)G + co and nt_=. + co in case d = 2, le t  w(t)=
x(t, w)— x(t) as need be, note that x(+ c o  e v e n  if d = 2, and,
introducing the corresponding coordiante fields 13,—B[x(s): s<  t]
and l e t  P.(B) be the probability  (W iener measure) of the
event B E B  as a function of the starting point of the d-dimentional

' '  Brownian motion with generator 03= 
 a  

 + 
a  

+  • • •  +  U.ab;
Brownian motion enthusiasts are familiar with the fact that

the Brownian traveller starts af resh at a passage time ; the full
significance o f this was explained by E. B. Dynkin [6] and G. Hunt
[9 ] as follows.

An instant of time °Gm< + co depending upon the path is
said to be a Markov tim e if

2. 2 (w : m < t) E /3, t > 0 ;

for example, the passage time m 0  = inf (t : x(t) E Q) to a closed or

1 0 / 2  is often used as the generator of the Brownian motion, but for our purpose
it is simpler to omit the factor 1/2.
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open d-dimensional figure Q  i s  a  M arkov tim e and so  is  m =

min (t:r f (x (s))ds= 1 )  if  0 < f  G 1  is  a Borel function.
Given such a  M arkov time in, if w  i s  the shifted path

2.3z o nt+ : t x(t+ ni)

and if Bat+ is the f ield of events B E B  such that

2.4B  (w <  E B , t > 0  ,

then the Brownian particle starts af resh at time t=m ,  i.e.,

2.5P a [w BIBm + ]  Pb (B) b x(ni) 2.

Blumenthal's 0 1 law  [1] :

02.6P . ( B ) B  E B o +  =

is  a  special case of 2. 5.
A . R . Galmarino 3 has pointed out that a  non-negative Borel

function in  of  the sam ple path is a M arkov tim e if  an d  only i f

2.7a m ( u )  <  t
2.7bx ( u ,  u ) x(s, y) s <  t

imply m(u)---in(v ) and that an  event BE B  is  a  member o f  B i l l +  if
an d  only  i f  2 . 7  coupled w ith uEB  im plies y E B .  As a simple
application of th is test, note that Bm, measures both n i and the
past x(O A tn )  (0> 0 )  because 2.7 im plies 0 A in (0 = o A in(v) ‹ t
and hence x(0 A m(u), u)= x(e A n (v), y).

Given bounded open D J R d  with boundary S D, if  map  is the
ex it tim e min (t: x (t) E SD), then the hitting probability

2. 8 ha da, db) = Pa [x(m a D ) E db] a E D , db  E SD

is  the classical harm onic m easure of db as viewed from the point
a, and, if GD (a,b) is  the classical Green function of D , then
2. 9 E a [measure (t : x(t) E db, t <m ap] = G D (a, b)db a, b G D;

2 x ( 1 1 ) ,  in  case  m = ;  it is understood that /3 0.,[x(t)-= «-, r > 0 ] = 1 .
private communication.

4 a  A b  is  the smaller of a and b.
5 E . (  f  ) =  f d P . .
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for the proofs, see J. Doob [5] and G. Hunt [9].
G. Hunt [10] has called a non-negative Borel function p  exces-

sive on D  if

2.10 E a [p(x(t)), t <rn app p(a)t  0, a  E D .

An excessive function can be split into its greatest harmonic minorant
h  plus the p o ten tial Go de o f  a  non-negative (Riesz) measure e,
indeed, Hunt's excessive functions are the same as the superharmonic
functions of F. Riesz [1 4 ]. J. Doob [5] proved that an  excessive
function is continuous on  the  B row nian path (t<ni a, )  and that a
potential tends to 0 along the Brownian path (t map).

3. T H E  ASSOCIATED M EASURE O F  A N  A D D IT IV E  FUNC-
TIONAL.

Consider an additive functional f of the Brownian sample path
as described in seition 1, interpreting 1. 1 to mean

3. 1 f(t, w) is measurable B, f o r each t >  0.

Th e purpose o f th is section i s  to associate w ith f  a  unique
non-negative measure e such that, f o r each bounded open DRd ,

3.21  — p r c, — ce Gpc,de pc, = e
- - ,tiOltan)] , a> 0 ,

where G is  the Green funetion o f D  and the integral is extended
over D ; it w ill follow  f rom  3. 2 that e is smooth.

Ccnsider, for this purpose, the additive functional

3.3f ( t )  =  A l i t a p PjX (SM (dS) t >  0,
0

and let us begin with the following simple lemmas :

a) 1— p„ is  the potential of  a  non-negative measure ae,,.
b) E.[f„(in a ,)] < + 00 .
c) fr„ f f as ce .
d) i— p c, =  cOE.[f (ma„)] =  a  Gdeo, .

e) E .  r w f (x(s))f,,(ds)] =  Gfde,„ if  f > 0  is  a B orel function.
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f) p;le„(db) = e(db) is independent of  a and of D.
g) e is  unique.

Because

3. 3 E.(1—Pc,(x(t)), t <m a p) = E.(1—e - 4 1 ( '11'
1 — 1

( t ) -1, t < map)
t 1—p t o,

1—pa  is excessive ; it is , in  fac t, a  potential thanks to

3. 4 hab(a, db)[1— = E a (1—e—a[t(maD) - 1 (maL]) 1, 0
ap

t D,

and this completes the proof o f a ) . A s  to b), p a  is continuous on
th e  Brownian path because o f  1, and, since f is continuous, b)
follows on letting nt + 00 in

3.5 1 — p a  =  E .h
ntaDe _a[f(maD)-1(t)] f (dt)]
o

>

[

E e— cri(tIlaD (W kfy-n ), 12 -  n)e — af(h) f CIO
k2 < m i ,

= [(k —  1)2, k2 - ")

=  a E .E  E  P.(x (k2 - n))e - a" )  Rik)]
k2 - "<maD

Because of c), which is obvious,

3. 6 a - 1 (1— p a ) = lirn E . r u"e — a[ f(n i 'D)— Kt ) -1 fE (d t ) ] ,
6 ,00 0

and, using th e  method of 3.5 a n d  E. UE(IllaD)i < + co, it appears
that

3.7 a - 1 (1— p a ) =  lim E .[ E. [Ç a "  p„df]
e 4.0 0 0

proving d).
K. Itô (private communication) pointed out the following neat

method for proving e). Choose closed B D  such that e(3B )=0
an d  le t el a n d  e , be the charge d istribu tions o f the potentials= r ia n  j-df, and p2 = E .h man (1— f)df a l  in  which f  is the in-

0 0
dicator function of B .  Because p, is harmonic outside B and differs
from a'(1 — pc,) =E .[f(m , D ) ]  by a harmonic function inside B, e, is
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not smaller than the restriction of ea,  to  B, and, for the same
reasons, e, is not smaller than the restriction of e„ to D—B. But
Pi+ P2=- ( 1 - 1 (1 — P0), whence

3. 8 p, = E r °  fd fd =0
and since such figures B  generate the class of Borel subsets of
D, e) follows.

As to f), Po, > 0 because f ( i l l a D ) <  + oo , and, choosing 0<8<a,
e ) implies

3. 9 S Gdeo, = E. r o
t" Pal Podfd= GP,s1Pgdes,

i.e., de==p;ide„ is  mdeqendent o f a ; it is also independent of D
because if L D and if p 0 outside D , then, with an obvious
notation,

3. 10 G p jo d e  E . r i a n  p0,40 ]0

= E. r a i  po,c1fo i—E.il m a l ) pdid
mao

= 5 G p fi,d e— d h aD 5dP dê

= Ç Gfiap,de

g) is immediate from 3. 2.
To establish the smoothness o f e, take bounded open D  and

put B11 —DA(p 1 >n - 1 ). Because 1 —p1 i s  a potential, B . is closed
in D  and increases to D  as n t + 0 0  ;  moreover, according to 3. 2,

3. 11 Gde <nGp,de = n(1— p l ) <n  ,

which is 1. 8a, and, since, along the Brownian path, o<p, is
continuous and tends to 1 (t f niaD ),

3. 12 P. [inf (t: x(t) B.) <ni a ,,]
= 1 3-C inf Pi(x(t)) < n + 0 0 , ,

t<maD

which verifies 1. 8b.
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4. UNIQUENESS.

The following sim ple lemma is useful in  later sections : two
additive functionals f, and f, w ith the same bounded mean

4. 1 p = E.[f(m ,„)] = iim  6 - 1(1—  p = 1Gde f fi, f2
e

are the same f o r t< IllaD •
An argument similar to 3. 5 implies

4.2 E. o
n a " fi(inaD)— fi(t)1 fk(do)

=  E. CI "  Pdf  k )0

=  G p d e  HAI!, <  + .;
thus, putting f f,— f „

4.3E .  Cf (m D )2 ]

= 2E. Um"  [f(nlaD) — f(t) E d t ) ]
0

- 0 ,

and hence

4. 4 0 E. [f (1n )  Bt A  map+ ] =  E .  [f (m ap) f (t) I Bt A man + f(t)
- f(t) <  map

as  desired.
It  is  a s im p le  matter to deduce from this that two additive

functionals w ith the same associated measure are the same ; indeed,

the difference p  o f  two solutions of 3. 2 satisfies — p = ce Gpde,
which implies

4.5 0 >  —  p2 de e (p d e ) Gpdepde ,

and it follows that two additive functionals with the same associated
measure have the same 1)0, ,  hence the same (e- I(1 —pc,) =E.[f o,(ma D )]
(<ce - ' < + 00), and hence the same fc,. B u t this means that the
two functionals a re  th e  same up to time m a, , and, to finish the
proof, it is enough to make D  swell out to Rd.
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5 .  CONSTRUCTION OF AN ADDITIVE FUNCTIONAL FROM
ITS ASSOCIATED MEASURE.

Given a  smooth non-negative measure e, our task is to find an
additive functional f  with e as its associated measure.

Consider, fo r this purpose, a  non-negative measure e on a
bounded open figure D with bounded potential p = G d e  and finite

energy e(e) =Gdede, let p„ be the potential Gfn db of

5. 1 f„ = n(P—E.[P(x(n - 1 )), n - 1  <  map]) ,
let

5. 2 f n ( t ) A  ma
- P f n (X (S ))d S

and let us construct a functional f associated with e as  a  limit of
f„ with the aid of the following simple lemmas :

a) p  is a  Brownian excessive function; esp. 0< f,, .
b) E.[p(x(t)), t < ata„ ]  0  inside D  as t t + 09•

c) p„ = n5 E.[p(x(t)), t <iit aAdt increases to p  inside D  as n t
0

+ 00.
d) lim e(e— f,i db) =  0, where e is the energy (5 (e) = --- Gdede." , . .
e) E.[f„(+ 00 )1Bt A  M a p + tn(t)

= Pn (X(t))+ f,s(t) t >  0
f.( 111aD) map < t

i.e., 1„ is a martin gate with respect to the f ields B t ,„ i w i-  moreover,
1„ is continuous in  t.
f) 13 . [max I in(t, urs' )— > E]

<constant x 8 - 2 5 - d/ 2 -\ / e ( f  „db— f,n db).
g) P.[lim f n (t, w:) = f(t, w:), t >  s>  0 ] =  1 .

t  + c o

where the limit is taken as  n  + 0 0  v ia  suitable n1 <-  n2 <etc., f(t)
is continuous, f(0) = . f(0+)=0, and f(t)=f(s)+f(t —  s, w;)
h) E.[f(maD)]= P.

Because p  is  a potential, it is excessive ; a) is obvious from
this, b) is obvious from the bound
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5.3E . [P ( x ( t ) ) ,  t  <  map] < IIPI I (t <  map ) O t ± CO,

and c) follows from b) :

5. 4 p n  E . U " D  f „(x(s))ds]
0

+0.
= n o d s E . [ P ( x ( s ) ) — E x A P ( x ( 1 - 1 ) ) ,  n 1 <M op], S <111,9]

= n 0 ds[E.Cp(x (s)), s < i n a p ] — E - E P ( x ( s + n - i ) ) ,  s +

<m ap ]]
n--1

= n 0 E .E p(x (s)), s  <irtaD ]ds P n t + co .

An application of c) establishes

5.5e ( e )  =  p d e > p  „d e  = p f  „d b > „db) f (e) n  t  + 0 0 ,

and this implies d) :

5. 6 lim e(e— f„db) = lim [e(e)— 2 ,1 p „d e  e (f „d b )] = o.

Because t A m ap is a  Markov time,

5. 7 E. Cf.(1110D) I B t, ni,D+ ] = E. rnan
A

f „(x(s))d Bt A  map+ j±  fn(t)t  111bD

=  E X ( t  A  r i l a D )  h

i l l a U

f n cid+ fn (t) = P„(x(t))+ fn(t) n ( t )  t  <  map0

i.e., I n  i s  martingale, and since p n  is continuous and tends to 0
along the Brownian path (t map), rn  is continuous, e ) is now
established, and f ) follows from Doob's submartingale extension of
Kolmogorov's inequality [4 ], the Schwarz inequality

2
5. 8 Gdeide2) < e(e1)e(e2)
(see H. Cartan [2]), and the resulting

5. 9 E.E l n (+ 0 0 , 14 ) —  im ( ± (:)°, 144)1 2, s <  M a r i

< E .[E x ( s)[  f . (1 1 1 a D )— fm (ln a D )1 2 ],  s  <in aD i

< E .h G (x (s) , f „:)(Pn —  P.)db, s < irt,D
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= G(a, b)e„„,(da)E.[G(x(s), b), s <iii a D le„„,(db)
e„,„(db) = (f„— f„,)db

<e(e„,„) 1 1 2 (E.[G(x(s), b), s <inaD]cle,,,,,) 1 1 2

<(e „„,)v 2 constant x s - diV ( e ) 1 1 2 .

Choose it, <7/ 2 < etc. so as to make P.EmaxII„(t, z i4 )-1 ,( t)1  0,

s >0 ] =1, where I, is a continuous function of t. Because p = lirn
t

is continuous and tends to 0 along the Brownian path (t map ), it
follows that fs (t)=1im fn(t, ws4 )  is continuous (t > 0) and additive

(t<nt a ,(w s')) ; moreover

5.10 E .  [f„( + 00) 2 ]  =  2  Gp f l f,„db <  211p112_< +

implies

5.11E .  [f s (t— s)] =  lim  Ef,„(+ co , w-3') — f,i (+ /4 )]
+

= lim [ E - ( P . ( x ( s ) ) ,  s < E. (P,,(x(t)), t  ( map)]+..
E-(P(x(s)), s (111aD) —  E.(P(x(t)), t <map)

and, to finish the proof of g) and h), it is enough to define

5. 12 f(t) = lim f(t)
j• 0

and to make s 0 and  t +00 in 5.11.
Now take a  smooth measure e , choose B„ t D  as needed for

1. 8 with th e  additional property that el B „ has finite energy

e(el B„) G dede, let f„ be the additive functional associated
B„xnn

with el B „ as in  5. 12 above, and note that

5. 13 E.[So
manfdf nG f d e f >  0

13,

as in  e) of section 3. It follows that if f  is the indicator function

6( e  I B4O<+ 0O is achieved as follows : take DD D with ab at a positive distance

from  aD, choose i3,, t h a s  needed fo r  1. 8, and le t  B,, )D ; then B„)<

B n de n e d e < n e ( B „ ) n (  i i)nfD e) - - 1 sty dde_4112 ( i ipfp  6) < .
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of B„„ then th e  functionals fd f„ (n>m ) a n d  fdf„, have the
0 0

same (bounded) mean :

5. 14 E.r o
l a D fdfd = E. r "  f d f n i i = Gde

and are therefore identical up to time ni accord ing to the first
uniqueness lemma for additive functionals of section 4. But this
means that fn = f„, up to the exit time from B„„ and since this exit
time =m u ,  for large m, it is legitimate to define a  functional f
for t<m a „  by means of

5.15f ( t ) fn (t)t <  inf (t : x(t) n >  1 .

Introducing pc,= E . [e 'f ( 1 " " ) ]  and using the method of 3. 5,
5. 13 implies

5.16 1 —  p c„  =  lim  aE .r" e — a [ lon" ) — i( olf „(do]
nt +03 0

= lim  ceE lr°  p cd f  =  'fin cY G p c,de = a  Gp„de;

in  brief , e is  the measure associated with f as in  3. 2.
Because two additive functionals with same associated measure

are the same, it follows that if  e is smooth and if D, D2 C etc.
swell out to R d, then the functionals f„ associated with e„—elD„
as in  5. 15 above determine an additive functional

5.17f ( t ) f(t ) t < 1 1 1 D f l ,
 n >  1

depending upon e alone, for which 3. 2 holds for each D.
f is additive for alm ost all Brownian paths, but of course it

can be modified on a negligeable class of paths so as to be Borel
in  the pair (t, w) and to satisfy 1. 1, 1. 2, 1. 3, 1. 4, a s  identities;
with this modification, f i s  the additive functional associated with e.

6. DIFFUSIONS WITH BROWNIAN HITTING PROBABILITIES.

To avoid confusion, let w, x, in, B, B ,  B r it +  , etc. be used to
describe the Brownian motion, introduce the same paths, times,
events, and fields with the new names tb, Ili, E, b, 13,it + , etc.,
and take a  new motion b with probabilities Pa(I.3).
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b  is said to be a  diffusion if  it  starts af resh at each Markov
time di :

6.1P a [liq E f 3  h a ,+ ] =  Pa) a E Ed ,  E E 1 , b 1 ( t f 1 )  ;

it is said to have Brownian hitting probabilities if, for each bounded
open D,

6. 2 Pa[l(rhaD) E db] P a [x(maD )  E  db] =  hap(a, db)
a E D , d b c j ap

Given such a diffusion with Brownian hitting probabilities

6. 3a

solves

6.3b 1  —  =  a  G fi„de ,

where e > 0 is independent of a  and of D .  e  is  the so-called speed
m easure o f th e  diffusion ;  th e  speed measure o f the Brownian
motion is  the Lebesgue measure d b .  Because o f 6. 2, A [ :hap<
+ 00]-1 and > O , w hich im plies that e  is sm ooth, i.e., that it is
the associated measure of some additive functional f of the Brownian
path ; moreover, e  i s  positiv e on the neighborhoods o f  H . Cartan's
fine topology, and this im plies that its associated additive functional
satisfies

6.4P .  Ms) <  f ( t ) ,  0  < s  <t]  1 .

Introducing the inverse function f - 1  o f  f, it turns out that

6. 5 A(E) = Lx(f - ') E e ;

in brief , b  is identical in law  to the Brownian motion run w ith the
stochastic clock f - 1 ; moreover, each smooth measure e ,  positive on
fine neighborhoods, is the speed measure of  a diffusion with Brownian
hits.

The proofs are carried out in the next few sections.

' fdA •
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7 .  SPEED MEASURES

Beginning with the speed measure e of 6. 3b, if a  a E R 4  and
if iii,= min (t &), then th .  lim IN, satisfies

eyo

7. 1 (e ) =  É a  [e a t ( w lii)  ] ( e + ) 2 ,=

and since Éa (e " -) = 0 implies PaPio = +001= 1, violating the fact
that the dot motion has Brownian hitting probabilities, it follows
that P a [ili o =  =  1 .

Because

7. 21 - =  a'É.h 21al' e— a .(1 1 4 'n — t ) citj =  at,.[V t" A ,(x (o)dt],0
1— /*),, satisfies

7.31 -  A,(a) > ceÉ,,h al ". ho,dd= db)(1- AO a E f) CD ,
fll î )

and, using 7.3 and Pa[l 1l0 -- 0] = 1 to establish1- 

7.4ad b ) ( 1 - 10i 5  D

7. 4b hib-al-,(a, db)(1- ) & 0 ,

it appears that 1- fi„, is the potential cr Gde,, o f  a  non-negative

charge distribution cee,,
It remains to verify that ,h;lde,„-- de is independent o f ce and

of D, which is done with the aid of the additive functional L ( t)

=  p (x(s))ds (t < and the method of section 3 ; in  outline,
.0

7.5 1 -j5  = =  ci Gde,,

implies

7.6A h i
o
ll 'i n f (1(s))f.(ds)] =  Gfde„

as in e )  of section 3 , and 3. 9  follows as before, etc..

8. T W O  DIFFUSIONS W ITH  BRO W NIAN  H ITS AND THE
SAME SPEED MEASURE ARE THE SAM E.

Consider a pair of diffusions with Brownian hitting probabilities
and the same speed measure.
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Because 6. 3b =3. 2 has unique solutions as noted in section 4,
both diffusions have the same fio,=.t.[Ca d`")]  and hence the same

8. 1 f A .h o
th " f  (1)f ,(dt)] = Gf fie de

f,(t) ,çt fi,(1(s))ds t fl1 .0
Choose &>0 and introduce the Green operators

8.2 d c,  :  f AV"e —
 ( ;f' ( t )  f  (1)f,(dt)] a >  O;

then

8. 3 ado + a„ f  =  ce.t. h o
d l "  f ,(dt)(d f )(1)]

—  ceÊ VI "  fe(dt) V I 3 D e' r
-

i € ( s )
—

f e ( t ) ]  f  (1(s))f ,(ds)]
0

ceA.EViaD e 'f ; ( s )  f (1)f ,(ds) "  6.0 ' 4  dfd

t .r i t a "(i_e )fdfd
Lo

d 0 , f —  d c,f  ,

i.e.,

8.4 d a,  =  do , — ced 0 ,6 „ ,

and, using the bound

8.5d o+ 1  =  G.h,de fi,) < 6 - 1  < + co ,

the obvious iteration of 8. 4 implies

8.6= (—)ncendi;44 1 ce < 6  .
--,0

Because d „  is a Laplace transform in  its dependence on ce, 8. 6
implies that both diffusions have the same Green operators (a >
and hence the same

8.7A . [ r  e — cd fm d t] =  iim  iim  C „ f .

0 D t  R d  e 0

But this implies that both diffusions have the same
8. 8 P11(0 E db, t <litj (t, a, b) E (0, ± 00) X R'd

and hence are the same in all respects as stated in the section title.
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9. SPEED MEASURES ARE POSITIVE ON FINE
NEIGHBORHOODS.

Given a point a of bounded open D and a (Brownian) excessive
function p  on D, the set of points b ED at w hich p(b) — p (a) <n - '
is said to be a f ine neighborhood of a ;  the corresponding topology
is called the f ine topology o f  H . Cartan [2 ] .  E. B. D ynkin  [7 ] has
pointed out that a point a  is  in the fine interior of BCRd if and
only if  alm ost all B row nian paths starting at a  remain in  B  for
some positive time. Because an excessive function in  1-dimension
is  concave and hence continuous, the 1-dimensional f ine topology
is  the same as the usual one ;  in higher dimensions it is different.

Given a diffusion with Brownian hitting probabilities, its speed
m easure e has to be positive on fine neighborhoods ; for the proof, it
is  enough  to  verify  th at i f  Z R d  is bounded and Borel and if
e(Z)=O, then Z  has no fine interior.

Choose an open ball D  and a decreasing series of open figures
D„ so as to have
9. 1a .132 etc. Z

9. 1b GDAde 0 n t + co, h i =
Dn

and let

9.2f 1(t) = ro . h1(1(s))ds t < 111n)•

Because of

9. 3a 1  — = f  G D „ h i de <S . G D fii deD„ Dn

n t  +c o , aE Z
9.3b>  0  ,

it  is  apparent that

9.4a 1  =  P a [ d la D . 0 ,  n t  + co]
= P a[liM  1011a D „ )  =  a]

n

= db)e-ib-al a E Z .”t+00
But th is final expression depends upon the (Brownian) hitting
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probabilities h ap alone ; thus,

9.4b P a [lim  x(in,,,) = a] =1 a E Z

for the Brownian motion also, and since almost no Brownian path
meets its starting point at a  positive time, it follows that

9.5P a [1n,,„1, 0, nt + = 1 a E Z ;

an application of Dynkin's description of fine neighborhoods com-
pletes the proof.

10. SPEED MEASURES GIVE RISE TO INCREASING ADDITIVE
FUNCTIONALS.

Because the speed measure of a diffusion with Brownian hits
is smooth, it has associated with it an additive functional f  of the
Brownian path ; moreover, e  is  positive on fine neighborhoods,
and this is reflected in  the fact that f is increasing as  in  6. 4:
f(s) <f (t)(s<t).

It will be enough to verify that the set A  of points a at which

10.1 P a (nt > 0) = P a [f(t) = 0 for some t >  0] = 1
m = inf (t: f (t) >  0)

is vaccuous ; note that A  is  Borel and that P .(m >0)= 0 o r  1
according to Blumenthal's 01 law.

Because A  is either void or fine open and e  is positive on fine
neighborhoods, it is enough to show that e(A)= 0, and, for this, it
is enough to show that for each bounded open D, the points of
D at which P.[f(m a t ,)> 0 ]< 1  have e-mass 0. But this is immediate
on le ttin g  a  +  0 0  in

10.2 c'(1— p) — Gpa de E.re—af(ntan)]

11. WHEN IS f(+  DO= +  ?

In making up the stochastic clock ri for use in 6. 5, two cases
arise according as f(+ 09) —  + 09 or not, and it is desirable to have
a test for this.

Because P. [f( + 00) < + 00] satisfies
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p(a) P a[f( 111 aD) < f( + 0G, w ) <+ cx 3 i

= E.E.P(x( 111 DD))] .ç1(a, db)p(b) a E D

for bounded open D, it is harmonic and since p > 0 , i t  must be
constant ; moreover, letting first t  and then n  - I-  c o  in

11.2 P . [ f ( +  00) < n ] < E . [f ( t )< n , p (x (t ) ) ]<  P . [f ( t )< n ]p  ,

it appears that p <p 2  and hence that or 1.
Our test states that p =1  i f  and  only i f  one o f the following

conditions is m et:
a) d > 3  and 1— p,=G p i d e  admits a so lu tion  o<p

1
<1 on the

whole o f  R d , w here G  is  the function o f  R".
b) (sApi =p, admits a  solution o<p

1
<1 on the whole o f  Rd, where

op, is  the  negative o f  th e  Radon-Nikodym derivative of the R iesz
measure o f  p, with respect to e (see section 13 for the meaning of N.
c) d > 3  and Rd = AU B, where A  is thin at 00 in  the  sense that

P.[x (t) E A  f o r som e  t> n ] 0  ( n t  00), and Gde<+ 00. 8

Beginning with p =i, - ) ]  i s  positive and <1,
and, since G „  G as D  Rd,

11. 3 1 —p, = i im  E.[e - f( +
DC Rd

lirn Gdo,de =  Gp i de
DI' Rd

Because G = .-- + 00 in case d= 2, it follows that p =1  implies a), that
a) implies b) is  clear, that c) implies p = i  is evident from

11.4 E . 0  f d f l =  G d e  <  +  0 0 '

0

where f  i s  the indicator function o f B , and now it remains to
verify that b) implies c).

B u t, if o<p 1 <1  i s  a solution of ( ,= p ,  and if h, is its

ACRd(d,...-3) is  th in  at if an d  on ly if (W iener's t e s t )  y , 2 -n (d -2 )c (A „)<

+0 ., where A „ i s  the m eet o f  A  w ith  the spherical 2" - ' I b l< 2 "  and C  i s  the d-
dimensional Newtonian capacity fo r  th e  proof in  th e  ca se  o f  th e  d-dimensional
random walk, see K. Ito  and  H . P. McKean, Jr. [12].
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harmonic part EqPi(x(maD))] inside D, then h,— p i-G D P ,d e  inside
D , and, as D t R d, h1 decreases to a  non-negative (and hence con-
stant) harmonic function p1(0.) such that Pi(e°) — P i=G P ,d e . R d is

now split into A — ( 1 ) 1 < - 21 - P i (0 0 ) )  and B =(Pi> ---2--1  Pi(°°)) and the fact

that p ,(00 )- p , excessive is used to ensure that p , has a  limit along
the Brownian path as t + CX) , permitting us to conclude from

11.4a P i <P i(cx1 )
11.4b  P l (co) = lim E.[Pi(x(nlaD))] = [ lim Pi(x(t))]D t Rd
that A  is thin at co. Because o<p1(.3),

11.5G d e <  21.1( 0 0 ) -  G.pl cie <

and this completes the verification of c).

12. PERFORMING TH E TIM E SUBSTITUTION.

Coming to the actual time substitution t f - 1  which is sup-
posed to send the Brownian motion into the diffusion b, let f be
modified on a negligeable class of Brownian paths so as to have

12.1 0  f ( 0 )  <  f ( t ± )  f(t) < +  co
12.2 f(t) f(s)+ f(t — s, w-,1 ) t > s
12.3 f(t)  >  f(s ) t >  s

as identities, let x - 1  denote the sample path

12. 4 w- 1 :  t x - '(t) x - 1 (t, to - ') [f-1(t, w), w]

note that this path is continuous even if  f (+  0 0 )<  +  0 0 (d > 3 ), and
let us check that the m otion b with sample paths

12.5a t h :  t — ( t )

and  probabilities

12 .5b  P a (1.3) Pa(u) - ' E

i s  t h e  dif fusion w ith B row nian hitting probabilities a n d  speed
measure e.

Beginning with the proof of the diffusive character 6. 1 of this
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motion, the problem is to check that if i i i  is  a  Markov time and
ifh E h ,  then

12. 6 P a[th ,  E BI B th +] Pb(B)

Given such a  Markov time

12. 7 ni(w) f - 1 (11(w- '), w)

is  a Markov time for the Brownian path ; indeed, using Galmarino's
test, if

12. 8a m (u )  < t
12.8bx (s , u )  = x (s , v ) s < t ,
then
12.9af ( s ,  u) = f(s, v) s < t
12. 9b f - '(s, u) = f - 1 (s, v) < t s  < t =  f(t, u) = f(t, y),
and it follows that
12. 10a iii(u - 1 ) = f(in(u), u) < f(t, u) = I
12. 10b x - '(s, u - ')  = x[f - '(s, u), u] = x [J - 1 (s, v), v]

= x - 1 (s, v - ')s <  I .
Because ill was a  Markov time for the dot motion, 12. 10 implies

12. l ia <  I

and an application of 12. 9b implies

12. 11b iii(u) = u) = f - 1 (m(v - 1 ), v) = ut(v) ;

in  brief, 12. 8 implies, 12. 11b, as needed to conclude by Galmarino's
test that m is  a  Markov time.

Given A E hi l t+  ,  if  A----(tv : E A) and if

12. 12a ni(u) < t
12. 12b x(s, u) = x(s, v) s < t
12.12c u  E A,
then, using 12. 10,
12. 13a 111(u-  ') <  I
12. 13b x - 1 (s, u - ') = x - '(x, v - ') s  < I
12. 13c u - 1  E  A ,
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and it follows that E A, or, what is the same, that y E A ; thus,
by Galmarino's test, A E Al l + , and now it appears that

12.14P a [A, ibItt E

Pa Ew - ' E A, (W 1 E E]
= P a [w E A, (w 1 E

= E a [A , Pb (w - ' E b x(m) = x - 1 (111(w- 1 ), w - 1 )
= E a [w ' e A, Pb (h)]

Aa [A, P b (h)] b = 1(ift) ,

completing the proof of 12. 6.
b is now identified as a dif fusion; that it has Brownian hitting

probabilities is  clear, and to complete the discussion, it suffices to
verify that it has e as its speed m easure. But this is clear because

12. 15 min (t : x - 1 (t) E ,

and f has e  as its associated measure.

13. GENERATORS.

Given a diffusion with Brownian hitting probabilities, the
Green operators

13.1f  t . h 0
4 e - `"f (1)dt] ce>  0

map into itself the space e(Ed) of real, bounded, fine-continuous
functions having ordinary limits at 00 in  case d >3  ; in fact, if
d > 3, then P. [m in j l ( t )  >  n] = P. [m in x(t) I > I d  tends to 1 a t  oo ,

,--2 0 t-2-0
so that & f  tends to a - 1 f(00 ), and, if a E R d (d>2) and if the ball
D 3 a is so  sm all that 1— A ,(a)=1—  É.[e — ' 113 " ]<n - ', then, inside
the fine neighborhood B =Drv iL >i— n - ') , the difference between

13.2a u  da,f

= E. °
t h a n  e - `"f (1)dt +e " f(1(t,

= E . e-r"f(1)dt+e—"`"u(1(111an))]

and the harmonic (and hence continuous) function
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13. 2b h = É.Eu(1(iii a,))]

is not greater than
13. 3c o n s t a n t > <  (1— 1.)„) < constant x .

Because
13.4d c,— 6 +  (a — 13)& 6  = 0 a, 3 > 0 ,

it is evident that G% maps our space of fine continuous functions
onto some subspace D(( 3) independent of ce and that its null-space
d ; 1 (0 )  is likewise independent of ce. B u t ,  f o r  fine-continuous
f  E  d; 1 (0),

13.50  l i m  /3 f  = É .[ lim 3 e-13 i ( i)  d t] = f
(31. +00 t  -

according to E. B. Dynkin's description of fine neighborhoods ;  thus
the null-space i s  trivial, is  invertable, and another application
of 13.4 verifies that 63.---- - cr — d; 1 acting on D(( 3) is independent of ce.

63 is  the so-called generator ;  it  is  closed in  the sense that if
un eD(63) and (3 u  = f  converge pointw ise under fixed bounds to
u  and f  E e(E d ) ,  then u E D((3) and 63u= f.

Consider the differential operator

—e"(db)i b l < +13.6 - - u e ( d b )
= 0b  =  co ,  d >  3

acting on the class D (Z) of functions u E e (E d )  such that
a) inside each D, u  is  th e  sum o f  th e  harmonic function h =

db)u(b) and the potential Gpde" o f  its Riesz  measure e".

b) Gpideui is bounded.

c )  Z u ,  as described in  13. 6, exists and belongs to e(Ed).
63 is the closure of in  th e  topology of bounded pointwise

convergence as  will now be explained.
Choose a  fine-continuous function 0 < p „ < 1  tending to 0  at

• X )  in  the ordinary topology such that G,„.p„de is bounded for each
bounded open D and p„ f 1  as n t + oo , an d  introduce the additive
functional pn(l)ds (t>0).
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l ( :-.1 ) is a diffusion with Brownian hitting probabilities and speed
measure de n - 1 ) x  de,

13. 7 É. [min ( t: gf,T, 1) E SD )] = E.Ein ollo ]  = S GD p„de < + co ,

a n d  it fo llow s from  13. 2a that i f  u  is  in  th e  domain o f  its
generator 63„ , then

13. 8 u — E.[So
at" ((3„u)(1(t))f.(di)] + E.[u(.im w ) ))]

—5 G D (63„u)P„de + a harmonic function,

which is a special case of a formula of E. B . Dynkin [6] ; in  brief,

13. 9 —eu(db) = (63„u)p„de u E D((3,2).

Choose u  = a, f  E D(63), then

13. 10 e - t f ( ( 1 ) ) d t i
0

tends pointwise under the bound Hf W. t o  u. Because u n  E D(63„),

— e"(db)13. 11 Z u n — —pn n  „=p n (un — f )e(db)

satisfies all the conditions for u n  to belong to D (Z ), and, what is
more, Zu„ converges pointwise under the bound 21 lino  to  u— f = 63u ;
thus, u E D( )  and Zu = du, i.e.,

13.12 C.

A s  to  th e  proof of (6 3 , it is  enough  to  show that if
u E D( - ) , then d,(1—,C)u=u, and, for this, it is enough to deduce
from u E D ( )  and ,C u  u  that u 0.

Given such a  u E D ( )  with C u =u  and choosing un  E D (Z ) so
a s  to make u n  a n d  eu,, converge pointwise and boundedly to u
and u =  u ,

13. 13 u n —h,, =  — G E u d e  = —  t .r h "(Z u„)(.i)ds]
0

h„ = db)u„(b)
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implies

13.14 É .k u n — h„)(1(t)), t <iharj —  (it l i n )

= .[S :A  
e n ! )

 (C u p ) t  >  0

which, in turn, implies

13.15 É.[(u— h)(1(t)), (u — h)

= A .N A  !I lan  U)(1)dS1 >

h  =  h 0 (., db)u(b) ,

and, letting D t Rd so as to make h  tend to a  bounded (and hence
constant) harmonic function h(00),

13.16a P.[Iit„,‹ +00] = P.[f(m  ,) < +00 1 = 0 d  = 2
13.16b u(00) = h( 0 0  ) =  0d > 3

implies

13.17 A.Eumtn-u u(1)ds] t > 0 ,0

and the desired u 0  follows.
The Green operators leave invariant the space C(Ed) o f  bounded

functions continuous in  th e  ordinary topology o f  Ed i f  and only  if ,
f o r each D, the mean ex it time

13. 18 h  = =  Gpcle

is continuous inside D  and tends to  0  o n  a D ; in  th is  case, the
generator 6) coincides with the differential operator C  acting on the
class of  functions u E c (Ed) such that Cu  E C (E d ) ; the reader will
easily supply the details of the proof.

Here is an example in  which the Green operators do not map
C(Ed) into itself .

Choose d = 3  and e= f  X db, where f  =1 +E  f „ and the
 f , ,

 are
- "2 1

the indicators o f little non-overlapping open balls D„ converging
to as n f  +  0 9  but not covering 0 itself and so small that
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13.19 P 0 [ 1118,3 <  ( " 9 ]  <  2 'n > 1 .

Because of the first Borel-Cantelli lemma, p-- ---P .[il a D n < + co, i.o.]
=0 a t  the origin, and it is also  clear that p 0 on the rest of

1?3. But then f =Ç f(x(s))ds is  a  continuous additive functional,

f(s)< f (t )  (s < t ) ,  and x ( r )  is  a diffusion with Brownian hitting
probabilities and speed measure e.

Given a  neighborhood D  of 0,

13.20 E ,  [min (t : x(r) E  ap)]
= EoEf011ann

> E E a Um" f„(x(s))ds]
0

E GD (o, b)db/volume (D u )

= + co .

But, as E. B. Dynkin [6] has pointed out, this cannot happen
for all small neighborhoods if the Green operators map C(Ed) into
itself.

1 4 .  DISCONTINUOUS ADDITIVE FUNCTIONALS.

V. A. Volkonskii [16] has studied discontinuous additive func-
tionals ; in the present Brownian case their structure is very simple.

A  functional t of  the Brownian path which satisfies

14. 1 t(t, w) is measurable B, for each t >  0 .
14.2 0  <  t  <  +  co
14.3t ( t — )  =  t ( t )

14.4t ( t )  =  t(s)+t(t—s, w:) t > s

is the sum of  a continuous additive functional f and  a discontinuous
additive functional f with

14.5P . D ( t )  =  j(0+), t >  0] = 1
14.6a P . [ i (0 + )>  0 ]  =  0 or 1
14. 6b C(E) 0, where E is the set of  points at which
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P. [j (0+ )>O ]=1  and C  is  the  Newtonian (logarithmic) capacity in
d > 3  (-2 ) dimensions.'

Consider the (discontinuous) additive functional in (t) =  the
sum of the jumps o f  t of m agnitude > n - - '  taking place before time
t, note that j„(0 + ) > 0) E B o +  so that P.[j„(0 -i-) > O ]=  0 or 1 accord-
ing to B lum enthal's 01 law, let E„ b e  the (Borel) set on which
P.[1,2 (0 ± )> 0 ]= 1 , and introduce the least positive jumping time
in  o f i n .

I f  P.(1n< + 00)>0 at some point, then

14.7O < P .  [0 <111 < + oo, in(111) < in(111 + )7_1
= P.[0 < i l l  <  +00, x (m ) E  E n ] ;

th is im plies C(En ) > O '° , and it fo llow s that E n  co n ta in s a  sub-
compact A of positive capacity, having a (regular) point at which
P.[x(t) E A , i.o., t 0 ]= 1 .  "  But then P.D„(t)==-: + co, t> 0 ] = 1 at
that point, contradicting j f l < t<  +  Do, and it follows that

14. 8a [in(t) in(0+), t >o] , _ 1
14.8b C  (E„) = 0 .

Th e re s t  is  c le a r  : j=  lim  in  s a t is f ie s  14. 5, th e  remainder

f = t— j is  a continuous additive functional, 14. 6a is immediate from
Blumenthal's 01 law, and C(E)= lim C (E „) = 0 .prt+00

Massachusetts Institute
o f Technology
Kyushu University

9 G .  Choquet [3] found that i f  E C R d  is Borel, then
inf C (B ) : B  open, B E

==supC(A) : A  compact, A C E ;
this common value is  the capacity o f E.

P .[x (t )  E E  at some Positive time] is  positive o r  = 0 according a s  C (E )> 0  or
not ; see, for example, G. Hunt 19 1.

"  See 0 . D . K ellogg [1 1 ] fo r  th e  classical significance o f  regular points and
J. Doob [5] for the probabilistic interpretation.
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