J. Math. Kyoto Univ. (JMKYAZ) 47-4 (2007), 859–873

Resultants and universal coverings

By

Kohhei YAMAGUCHI

Abstract

We construct the universal coverings of spaces of self-holomorphic maps on the complex projective space $\mathbb{C}P^n$ by using the resultants, and we study their homotopy types.

1. Introduction

Let $j: S^2 = \mathbb{C}P^1 \to \mathbb{C}P^m$ be the inclusion map given by $j([x:y]) = [x:y:0:\cdots:0]$. If $1 \leq m \leq n$ and $f:\mathbb{C}P^m \to \mathbb{C}P^n$ is a continuous map, the corresponding integer of the homotopy class of $f \circ j$ in $\pi_2(\mathbb{C}P^n) \cong \mathbb{Z}$ is called the *degree* of f. Let $\operatorname{Map}_d(\mathbb{C}P^m, \mathbb{C}P^n)$ denote the space of all continuous maps $f:\mathbb{C}P^m \to \mathbb{C}P^n$ of degree d, and let $\operatorname{Map}_d(\mathbb{C}P^m, \mathbb{C}P^n)$ be the subspace consisting of all based maps $f \in \operatorname{Map}_d(\mathbb{C}P^m, \mathbb{C}P^n)$ such that $f(\mathbf{e}_m) = \mathbf{e}_n$, where $\mathbf{e}_k = [1:0:\cdots:0] \in \mathbb{C}P^k$ is a base point of $\mathbb{C}P^k$ (k = m, n). Similarly, $\operatorname{Hol}_d(\mathbb{C}P^m, \mathbb{C}P^n) \subset \operatorname{Map}_d(\mathbb{C}P^m, \mathbb{C}P^n)$ (resp. $\operatorname{Hol}_d^*(\mathbb{C}P^m, \mathbb{C}P^n) \in \mathbb{A}$ and that any holomorphic map $f:\mathbb{C}P^m \to \mathbb{C}P^n$ of degree d. Remark that $\operatorname{Hol}_d(\mathbb{C}P^m, \mathbb{C}P^n) = \emptyset$ if d < 0, and that any holomorphic map $f:\mathbb{C}P^m \to \mathbb{C}P^n$ of degree 0 is a constant map. So we always assume that $d \geq 1$.

When $m \geq 2$, we also consider the subspaces $H_d(m, n) \subset \operatorname{Hol}_d^*(\mathbb{C}\mathrm{P}^m, \mathbb{C}\mathrm{P}^n)$ and $F_d(m, n) \subset \operatorname{Map}_d^*(\mathbb{C}\mathrm{P}^m, \mathbb{C}\mathrm{P}^n)$ defined by

(1.1)
$$\begin{cases} H_d(m,n) = \left\{ f \in \operatorname{Hol}_d^*(\mathbb{C}\mathrm{P}^m, \mathbb{C}\mathrm{P}^n) : f \circ i' = \psi_d^{m-1,n} \right\}, \\ F_d(m,n) = \left\{ f \in \operatorname{Map}_d^*(\mathbb{C}\mathrm{P}^m, \mathbb{C}\mathrm{P}^n) : f \circ i' = \psi_d^{m-1,n} \right\}, \end{cases}$$

where $i': \mathbb{C}\mathbb{P}^{m-1} \to \mathbb{C}\mathbb{P}^m$ denotes the inclusion given by $i'([x_0:\cdots:x_{m-1}]) = [x_0:\cdots:x_{m-1}:0]$ and $\psi_d^{m,n} \in \operatorname{Hol}_d^*(\mathbb{C}\mathbb{P}^m,\mathbb{C}\mathbb{P}^n)$ is the based holomorphic map defined by $\psi_d^{m,n}([x_0:x_1:\cdots:x_m]) = [x_0^d:x_1^d:\cdots:x_m^d:0:\cdots:0]$. It is known that there is a homotopy equivalence $F_d(m,n) \simeq \Omega^{2m}\mathbb{C}\mathbb{P}^n$ ([9], [12]).

The principal motivation of this paper derives from the work of G. Segal [13] and J. Mostovoy [10], in which they show that the following Atiyah-Jones-Segal type homotopy (or homology) stability result holds.

²⁰⁰⁰ Mathematics Subject Classification(s). Primary 55P15, Secondly 55P35, 55P10, 46T25 Received April 13, 2007

Theorem 1.1 (G. Segal, [13]; J. Mostovoy, [10]). Let $1 \leq m \leq n$ be integers and let

$$\begin{cases} i_d : \operatorname{Hol}_d^*(\mathbb{CP}^m, \mathbb{CP}^n) \to \operatorname{Map}_d^*(\mathbb{CP}^m, \mathbb{CP}^n) \\ j_d : \operatorname{Hol}_d(\mathbb{CP}^m, \mathbb{CP}^n) \to \operatorname{Map}_d(\mathbb{CP}^m, \mathbb{CP}^n) \\ i'_d : H_d(m, n) \to F_d(m, n) \simeq \Omega^{2m} \mathbb{CP}^n \end{cases}$$

be the corresponding inclusion maps.

(i) If m = 1, the inclusions i_d and j_d are homotopy equivalences up to dimension (2n-1)d.

(ii) If $m \geq 2$, the inclusions i_d , j_d and i'_d are homotopy equivalences through dimension D(d; m, n) when m < n and homology equivalences through dimension D(d : m, n) when m = n, where $\lfloor x \rfloor$ denotes the integer part of a real number x and D(d; m, n) is the number given by

$$D(d;m,n) = (2n - 2m + 1)\left(\lfloor \frac{d+1}{2} \rfloor + 1\right) - 1.$$

Remark. A map $f: X \to Y$ is called a homotopy equivalence up to dimension D if the induced homomorphism $f_*: \pi_k(X) \to \pi_k(Y)$ is bijective when k < D and surjective when k = D. Analogously, it is called a homotopy equivalence through dimension D (resp. a homology equivalence through dimension D) if $f_*: \pi_k(X) \to \pi_k(Y)$ (resp. $f_*: H_k(X, \mathbb{Z}) \to H_k(Y, \mathbb{Z})$) is an isomorphism for any $k \leq D$.

If we recall several Atiyah-Jones-Segal type Theorems (c.f. [1], [2], [6], [13]), we may expect that the inclusions i_d, j_d , and i'_d may be homotopy equivalences through dimension D(d; m, n) for $m = n \ge 2$, and we would like to consider this problem. From now on, for m = n, we write

(1.2)
$$\begin{cases} \operatorname{Hol}_{d}(n) = \operatorname{Hol}_{d}(\mathbb{C}\mathrm{P}^{n}, \mathbb{C}\mathrm{P}^{n}), & \operatorname{Hol}_{d}^{*}(n) = \operatorname{Hol}_{d}^{*}(\mathbb{C}\mathrm{P}^{n}, \mathbb{C}\mathrm{P}^{n}), \\ \operatorname{Map}_{d}(n) = \operatorname{Map}_{d}(\mathbb{C}\mathrm{P}^{n}, \mathbb{C}\mathrm{P}^{n}), & \operatorname{Map}_{d}^{*}(n) = \operatorname{Map}_{d}^{*}(\mathbb{C}\mathrm{P}^{n}, \mathbb{C}\mathrm{P}^{n}), \\ H_{d}(n) = H_{d}(n, n) \text{ and } F_{d}(n) = F_{d}(n, n) \simeq \Omega^{2n} \mathbb{C}\mathrm{P}^{n}. \end{cases}$$

In order to settle the homotopy stability problem it seems necessary to understand the universal covering spaces $\widetilde{H_d(n)}$, $\widetilde{\operatorname{Hol}_d(n)}$ and $\widetilde{\operatorname{Hol}_d(n)}$, where \widetilde{X} denotes the universal covering of a connected space X.

Let z_k $(k = 0, 1, 2, \dots, n)$ be complex variables, let $\mathcal{H}_d(n)$ denote the space consisting of all homogenous polynomials $g \in \mathbb{C}[z_0, \dots, z_n]$ of degree d, and let $X_d(n) \subset \mathcal{H}_d(n)^{n+1}$ be the subspace consisting of all (n+1)-tuples $(f_0, \dots, f_n) \in$ $\mathcal{H}_d(n)^{n+1}$ such that the polynomials f_0, f_1, \dots, f_n have no common root except $\mathbf{0}_{n+1} = (0, \dots, 0) \in \mathbb{C}^{n+1}$.

For $(f_0, \dots, f_n) \in \mathcal{H}_d(n)^{n+1}$, let $R(f_0, \dots, f_n) \in \mathbb{C}$ denote the resultant for the forms of several variables of homogenous polynomials (f_0, \dots, f_n) defined as in [7] (see Section 2 in detail). It is known that $(f_0, \dots, f_n) \in X_d(n)$ if and only if $R(f_0, \dots, f_n) \neq 0$ for $(f_0, \dots, f_n) \in \mathcal{H}_d(n)^{n+1}$ ([7]), and we can

identify

(1.3)
$$X_d(n) = \{ (f_0, \cdots, f_n) \in \mathcal{H}_d(n)^{n+1} : R(f_0, \cdots, f_n) \neq 0 \}.$$

Define the free right \mathbb{C}^* -action on $X_d(n)$ by

(1.4)
$$(f_0, \cdots, f_n) \cdot \alpha = (\alpha f_0, \cdots, \alpha f_n)$$

for $((f_0, \dots, f_n), \alpha) \in X_d(n) \times \mathbb{C}^*$. Because any holomorphic map $f \in \operatorname{Hol}_d(n)$ is represented as $f = [f_0 : \dots : f_n]$ for some $(f_0, \dots, f_n) \in X_d(n)$ (c.f. [9], [10]), we can easily see that there is a homeomorphism

(1.5)
$$\operatorname{Hol}_d(n) \cong X_d(n)/\mathbb{C}^*.$$

If $f \in \operatorname{Hol}_d^*(n)$, since $f(\mathbf{e}_n) = \mathbf{e}_n$, it is represented as $f = [f_0 : \cdots : f_n]$ such that $(f_0, \cdots, f_n) \in Y_d(n)$, where $Y_d(n) \subset X_d(n)$ denotes the subspace consisting of all (n+1)-tuples $(f_0, \cdots, f_n) \in X_d(n)$ such that the coefficient of z_0^d of f_0 is 1 and 0 in the other polynomials f_k $(1 \le k \le n)$.

For each integer $0 \le k \le n$, define the subspace $W_k(d) \subset \mathbb{C}[z_0, \cdots, z_n]$ by

$$W_k(d) = \begin{cases} \{z_k^d + z_n g : g \in \mathcal{H}_{d-1}(n)\} & \text{if } k \neq n \\ \{z_n g : g \in \mathcal{H}_{d-1}(n)\} & \text{if } k = n \end{cases}$$

and consider the space $V_d(n) = W_0(d) \times W_1(d) \times \cdots \times W_n(d) \subset \mathbb{C}[z_0, \cdots, z_n]^{n+1}$. If $f \in H_d(n)$, it is represented as $f = [f_0 : \cdots : f_n]$ such that $(f_0, \cdots, f_n) \in X_d(n) \cap V_d(n)$, and it is easy to see that there are homeomorphisms

(1.6)
$$\operatorname{Hol}_{d}^{*}(n) \cong Y_{d}(n) \text{ and } H_{d}(n) \cong Z_{d}(n),$$

where we write $Z_d(n) = X_d(n) \cap V_d(n)$.

We also denote by $HF_d(n)$ and $HF_d^*(n)$ the homotopy fibers of the inclusions j_d : $\operatorname{Hol}_d(n) \to \operatorname{Map}_d(n)$ and i_d : $\operatorname{Hol}_d^*(n) \to \operatorname{Map}_d^*(n)$, respectively. Remark that there is a homotopy equivalence $HF_d^*(n) \simeq HF_d(n)$ (see Lemma 5.1). Then the main results of this paper are stated as follows.

Theorem 1.2.

- (i) There exists a homeomorphism $\operatorname{Hol}_d(n) \cong R^{-1}(1)$.
- (ii) There are homotopy equivalences

$$\widetilde{\operatorname{Hol}_d^*(n)} \simeq R_1^{-1}(1) \quad and \quad \widetilde{H_d(n)} \simeq R_2^{-1}(1).$$

Here, $R^{-1}(1)$, $R_1^{-1}(1)$ and $R_2^{-1}(1)$ denote the subspaces of $X_d(n)$ given by

(1.7)
$$\begin{cases} R^{-1}(1) = \{(f_0, \cdots, f_n) \in X_d(n) : R(f_0, \cdots, f_n) = 1\}, \\ R_1^{-1}(1) = \{(f_0, \cdots, f_n) \in Y_d(n) : R(f_0, \cdots, f_n) = 1\}, \\ R_2^{-1}(1) = \{(f_0, \cdots, f_n) \in Z_d(n) : R(f_0, \cdots, f_n) = 1\}. \end{cases}$$

Kohhei Yamaquchi

Although we know the fundamental group actions on the universal coverings $\operatorname{Hol}_d(n)$, $\operatorname{Hol}_d^*(n)$ and $H_d(n)$, we cannot determine whether they are nilpotent actions or not. If these inclusions are homotopy equivalences through dimension D(d; n, n), $HF_d(n)$ and $HF_d^*(n)$ must be $\lfloor \frac{d+1}{2} \rfloor$ -connected. Although we cannot prove this statement, we can show the weaker one as follows.

 $HF_d^*(n)$ and $HF_d(n)$ are simply connected. Theorem 1.3.

This paper is organized as follows. In Section 2, we construct the universal covering of $Hol_d(n)$ geometrically by using the resultant for the forms of several variables. In Section 3 and 4, we also construct the universal coverings of $\operatorname{Hol}_{d}^{*}(n)$ and $H_{d}(n)$ by using this resultant, and finally in Section 5, we give the proof of Theorem 1.3.

Resultants and the space $Hol_d(n)$ 2.

First, recall about resultants. For each $I = (i_0, \dots, i_n) \in \mathbb{Z}_{>0}^{n+1}$, we write $|I| = \sum_{k=0}^{n} i_k$ and $z^I = z_0^{i_0} z_1^{i_1} \cdots z_n^{i_n}$. We denote by $\mathcal{I}(d)$ the set

$$\mathcal{I}(d) = \{I = (i_0, \cdots, i_n) \in \mathbb{Z}_{\geq 0}^{n+1} : |I| = d\}.$$

If $(f_0, f_1, \dots, f_n) \in \mathcal{H}_{d_0}(n) \times \mathcal{H}_{d_1}(n) \times \dots \times \mathcal{H}_{d_n}(n)$, each homogenous polynomial f_k of degree d_k can be written as $f_k = \sum_{I \in \mathcal{I}(d_k)} c_{I,k} z^I$ $(c_{I,k} \in \mathbb{C})$. Then for

each such possible pair of indices (I, k) with $I \in \mathcal{I}(d_k)$ and $0 \le k \le n$, we introduce a variable $Z_{I,k}$. Then for a polynomial $P \in \mathbb{C}[Z_{I,k} : I \in \mathcal{I}(d_k), 0 \le k \le n]$, let $P(f_0, \dots, f_n)$ denote the complex number obtained by replacing variable $Z_{I,k}$ in P with the corresponding coefficient $c_{I,k}$.

Lemma 2.1 ([7], [[4]; Chap. 3, Theorem 2.3, Theorem 3.1]). For each (n + 1)-tuple $J = (d_0, \dots, d_n)$ of positive integers, there exists a unique irreducible homogenous polynomial $R_J \in \mathbb{Z}[Z_{I,k} : I \in \mathcal{I}(d_k), 0 \le k \le n]$ of degree $\sum_{k=0}^{n} d_0 \cdots d_{k-1} d_{k+1} \cdots d_n$ which satisfies the following three conditions:

(i) R_J is an irreducible polynomial even in $\mathbb{C}[Z_{I,k}: I \in \mathcal{I}(d_k), 0 \le k \le n].$ (ii) $R_J(z_0^{d_0}, z_1^{d_1}, \cdots, z_n^{d_n}) = 1.$ (iii) If $(f_0, \cdots, f_n) \in \mathcal{H}_{d_0}(n) \times \cdots \times \mathcal{H}_{d_n}(n),$

$$R_J(f_0, \cdots, f_{k-1}, \lambda f_k, f_{k+1}, \cdots, f_n) = \lambda^{d_0 \cdots d_{k-1} d_{k+1} \cdots d_n} R_J(f_0, \cdots, f_k, \cdots, f_n)$$

for any $\lambda \in \mathbb{C}^*$, and the equation $f_0 = f_1 = \cdots = f_n = 0$ has no solution except $\mathbf{0}_{n+1} \in \mathbb{C}^{n+1}$ if and only if $R_J(f_0, \cdots, f_n) \neq 0$.

In general, the polynomial R_J can be regarded as the gen-Remark. eralization of the determinant (c.f. [4], [7]). To see this, consider the case $d_0 = d_1 = \cdots = d_n = 1$. If $(f_0, \cdots, f_n) \in \mathcal{H}_1(n)^{n+1}$, each f_k can be written as $f_k = \sum_{j=0}^n c_{j,k} z_k \ (c_{j,k} \in \mathbb{C})$. If $Z_{j,k}$ denotes the corresponding variable to $c_{j,k}$ and set $J = (1, 1, \cdots, 1)$, R_J can be written as $R_J = \det(Z_{j,k})$ and $R_J(f_0,\cdots,f_n) = \det(c_{j,k}).$

From now on, we always assume that $d_0 = d_1 = \cdots = d_n = d \ge 1$, and we write

(2.1)
$$R = R_J = R_{(d,d,\cdots,d)}$$
 for $J = (d, d, \cdots, d)$.

Because $R(f_0, \dots, f_n) \neq 0$ for any $(f_0, \dots, f_n) \in X_d(n)$, R can be regarded as the map $R: X_d(n) \to \mathbb{C}^*$.

Let $G_{d,n}$ be the subgroup of \mathbb{C}^* defined by $G_{d,n} = \{g \in \mathbb{C}^* : g^{(n+1)d^n} = 1\} \cong \mathbb{Z}/(n+1)d^n$, and consider the space $\mathbb{C}^* \times_{G_{d,n}} R^{-1}(1)$, where we identify $[g\beta, (f_0, \cdots, f_n)] = [\beta, (gf_0, \cdots, gf_n)]$ in $\mathbb{C}^* \times_{G_{d,n}} R^{-1}(1)$ if $g \in G_{d,n}$ and $((\beta, (f_0, \cdots, f_n)) \in \mathbb{C}^* \times R^{-1}(1).$

Define the map $\varphi_d : \mathbb{C}^* \times_{G_{d,n}} R^{-1}(1) \to \mathbb{C}^*$ by $\varphi_d([\beta, f]) = \beta^{(n+1)d^n}$ for $[\beta, f] \in \mathbb{C}^* \times_{G_{d,n}} R^{-1}(1)$. Because R is a homogenous polynomial of degree $(n+1)d^n$ and it satisfies the equality

(2.2)
$$R(\lambda f_0, \cdots, \lambda f_n) = \lambda^{(n+1)d^n} R(f_0, \cdots, f_n)$$

for $((f_0, \dots, f_n), \lambda) \in X_d(n) \times \mathbb{C}^*$, this implies the following result.

Lemma 2.2 (c.f. [13, Proposition 6.1]).

(i) There exists a \mathbb{C}^* -equivariant homeomorphism

$$\Phi_d: X_d(n) \xrightarrow{\cong} \mathbb{C}^* \times_{G_{d,n}} R^{-1}(1)$$

such that $\varphi_d \circ \Phi_d = R : X_d(n) \to \mathbb{C}^*$.

(ii) The map $R: X_d(n) \to \mathbb{C}^*$ is a fiber bundle with non-singular fibers and structure group $G_{d,n} \cong \mathbb{Z}/(n+1)d^n$.

(iii) The monodromy $T : R^{-1}(1) \to R^{-1}(1)$ (i.e. the action of the generator of the structure group) is given by $T(f_0, f_1, \dots, f_n) = (\xi f_0, \xi f_1, \dots, \xi f_n)$, where ξ is a primitive root of unity of order $(n+1)d^n$.

Proof. (i) Let $f = (f_0, \dots, f_n) \in X_d(n)$ be an element, and let $\alpha_k \in \mathbb{C}^*$ (k = 1, 2) be two complex numbers such that $\alpha_1^{(n+1)d^n} = \alpha_2^{(n+1)d^n} = R(f)$. Consider the element $F(\alpha_k) = (\alpha_k, (\frac{f_0}{\alpha_k}, \dots, \frac{f_n}{\alpha_k})) \in \mathbb{C}^* \times R^{-1}(1)$ (k = 1, 2). In this case, since there exists some element $g \in G_{d,n}$ such that $\alpha_2 = g\alpha_1$, $[F(\alpha_1)] = [F(\alpha_2)]$ in $\mathbb{C}^* \times_{G_{d,n}} R^{-1}(1)$. So define the map $\Phi_d : X_d(n) \to \mathbb{C}^* \times_{G_{d,n}} R^{-1}(1)$ by $\Phi_d(f) = [\alpha, (\frac{f_0}{\alpha}, \dots, \frac{f_n}{\alpha})] = [\alpha, \frac{f}{\alpha}]$ for $f = (f_0 \cdots, f_n) \in X_d(n)$ if $\alpha^{(n+1)d^n} = R(f)$. Next, let $[\beta, f] \in \mathbb{C}^* \times_{G_{d,n}} R^{-1}(1)$ be any element such that $(\beta, f) = ((f_0, \dots, f_n), \beta) \in \mathbb{C}^* \times X_d(n)$. If $[\beta, f] = [\beta_1, h]$ $(\beta, \beta_1 \in \mathbb{C}^*, f, h \in R^{-1}(1))$, there exists some $g \in G_{d,n}$ such that $(\beta_1, h) = (g^{-1} \cdot \beta, g \cdot f)$. Hence, $\beta_1 \cdot h = \beta \cdot f$ and the element $\beta \cdot f = (\beta f_0, \dots, \beta f_n) \in X_d(n)$ does not depend on the choice of the representative (β, f) . So one can define the map $G_d : \mathbb{C}^* \times_{G_{d,n}} R^{-1}(1) \to X_d(n)$ by $G_d([\beta, f]) = \beta \cdot f = (\beta f_0, \dots, \beta f_n)$. If $[\beta, f] \in \mathbb{C}^* \times_{G_{d,n}} R^{-1}(1)$, because R(f) = 1, $R(\beta \cdot f) = \beta^{(n+1)d^n} R(f) =$

If $[\beta, f] \in \mathbb{C}^* \times_{G_{d,n}} R^{-1}(1)$, because R(f) = 1, $R(\beta \cdot f) = \beta^{(n+1)d^*} R(f) = \beta^{(n+1)d^*}$. Hence, $\Phi_d \circ G_d([\beta, f]) = \Phi_d(\beta \cdot f) = [\beta, \frac{\beta f}{\beta}] = [\beta, f]$, and we have $\Phi_d \circ G_d = \text{id}$. An analogous computation also shows that $G_d \circ \Phi_d = \text{id}$ and so that Φ_d is a homeomorphism.

Kohhei Yamaguchi

Furthermore, if $(f,\beta) \in X_d(n) \times \mathbb{C}^*$ with $R(f) = \alpha^{(n+1)d^n}$ $(\alpha \in \mathbb{C}^*)$, because $R(\beta \cdot f) = \beta^{(n+1)d^n} R(f) = (\beta \alpha)^{(n+1)d^n}$, $\Phi_d(\beta \cdot f) = [\beta \alpha, \frac{\beta f}{\beta \alpha}] = [\beta \alpha, \frac{f}{\alpha}] = \beta \cdot [\alpha, \frac{f}{\alpha}] = \beta \cdot \Phi_d(f)$. Hence, Φ_d is a \mathbb{C}^* -equivariant map. Because a similar computation shows that G_d is also a \mathbb{C}^* -equivariant map, Φ_d is a \mathbb{C}^* -equivariant homeomorphism.

If $f \in X_d(n)$ and $R(f) = \alpha^{(n+1)d^n}$, $\varphi_d \circ \Phi_d(f) = r([\alpha, \frac{f}{\alpha}]) = \alpha^{(n+1)d^n} = R(f)$. Hence, $\varphi_d \circ \Phi_d = R$ and the assertion (i) is proved.

(ii) It follows from (i) that we may identify R with the map φ_d . So it suffices to prove the local triviality for the map φ_d .

We write $D = (n+1)d^n$, and let $\beta \in \mathbb{C}^*$ be any element. From now on, we choose the fixed constant $\theta_0 \in \mathbb{R}$ such that $\beta = |\beta| \exp(\sqrt{-1}\theta_0)$, and set $a_0 = |\beta|^{1/D} \exp(\frac{\sqrt{-1}\theta_0}{D})$. Then because $\{\alpha \in \mathbb{C}^* : \alpha^D = \beta\} = \{ga_0 : g \in G_{d,n}\}$, we note that

$$\varphi_d^{-1}(\beta) = \{ [ga_0, f] : g \in G_{d,n}, f \in R^{-1}(1) \} = \{ [a_0, gf] : g \in G_{d,n}, f \in R^{-1}(1) \}$$

= $\{ [a_0, f] : f \in R^{-1}(1) \} \cong R^{-1}(1).$

Let $\phi(r,\theta)$ denote the function $\phi(r,\theta) = r \exp(\sqrt{-1}\theta)$ $(r > 0, \theta \in \mathbb{R})$, and let U be a sufficiently small connected open neighborhood U of β such that $\phi|U$ is injective. For example, let U be the open set given by

$$U = \left\{ \phi(r,\theta) : \frac{3|\beta|}{4} < r < \frac{5|\beta|}{4}, -\frac{\pi}{100} < \theta - \theta_0 < \frac{\pi}{100} \right\} \subset \mathbb{C}^*$$

If we remark the above isomorphism, we can see that the map $h: U \times R^{-1}(1) \to \varphi_d^{-1}(U)$ given by by $h(\phi(r,\theta), f) = [\phi(r^{1/D}, \theta/D), f]$ is a homeomorphism. Furthermore, if $q_1: U \times R^{-1}(1) \to U$ denotes the first projection, clearly the equality $\varphi_d \circ h = q_1$ holds. Hence, the local triviality is proved.

(iii) The assertion (iii) easily follows from the proof of (i). \Box

By using Lemma 2.2, we have the fibration sequence

(2.3)
$$R^{-1}(1) \xrightarrow{\subset} X_d(n) \xrightarrow{R} \mathbb{C}^*$$

We also recall from [14, Appendix] that there is a fibration sequence

(2.4)
$$\operatorname{Hol}_{d}^{*}(n) \xrightarrow{\subset} \operatorname{Hol}_{d}(n) \xrightarrow{ev} \mathbb{C}\mathrm{P}^{n},$$

where the map ev is given by $ev(f) = f(\mathbf{e}_n)$ for $f \in \operatorname{Hol}_d(n)$.

Lemma 2.3.

(i) $\pi_1(X_d(n)) \cong \mathbb{Z}$.

(ii) There is a homotopy equivalence $X_d(n) \simeq R^{-1}(1)$, and the map $R : X_d(n) \to \mathbb{C}^* \simeq K(\mathbb{Z}, 1)$ represents the generator of the based homotopy set $[X_d(n), K(\mathbb{Z}, 1)] \cong H^1(X_d(n), \mathbb{Z}) \cong \mathbb{Z}$, where $X_d(n)$ denotes the universal covering of $X_d(n)$.

Proof. (i) Let $\tilde{\mathbf{e}}_n = (1, 0, 0, \dots, 0) \in \mathbb{C}^{n+1}$ and define the map \tilde{ev} : $X_d(n) \to \mathbb{C}^{n+1} \setminus \{\mathbf{0}_{n+1}\} \simeq S^{2n+1}$ by $\tilde{ev}(f_0, \dots, f_n) = (f_0(\tilde{\mathbf{e}}_n), \dots, f_n(\tilde{\mathbf{e}}_n))$ for $(f_0, \dots, f_n) \in X_d(n)$. We also remark that there is a \mathbb{C}^* -principal bundle $\mathbb{C}^* \to X_d(n) \xrightarrow{\pi} \operatorname{Hol}_d(n) \cong X_d(n)/\mathbb{C}^*$, because (1.4) is a free action and the local triviality is satisfied. Then if $\gamma_n : S^{2n+1} \to \mathbb{C}P^n$ is a Hopf fibering, it is easy to see that $ev \circ \pi = \gamma_n \circ \tilde{ev}$. Hence, if F_0 denotes the homotopy fiber of the map \tilde{ev} , it follows from [3, Lemma 2.1] that we have the homotopy commutative diagram

such that all horizontal and vertical sequences are fibration sequences. Hence, there is a homotopy equivalence $F_0 \simeq \operatorname{Hol}_d^*(n)$ and we have the fibration sequence (up to homotopy equivalence)

(2.5)
$$\operatorname{Hol}_{d}^{*}(n) \longrightarrow X_{d}(n) \xrightarrow{ev} S^{2n+1}.$$

Since S^{2n+1} is 2-connected and $\pi_1(\operatorname{Hol}_d^*(n)) \cong \mathbb{Z}$ ([14]), there is a isomorphism $\pi_1(X_d(n)) \cong \mathbb{Z}$.

(ii) Since $R^{-1}(1)$ is connected, by using the homotopy exact sequence induced from the fibration (2.3), $R_* : \pi_1(X_d(n)) \to \pi_1(\mathbb{C}^*) = \mathbb{Z}$ is surjective. However, because $\pi_1(X_d(n)) = \mathbb{Z}$, R_* is an isomorphism and $R^{-1}(1)$ is simply connected. Hence, there is a homotopy equivalence $\widetilde{X_d(n)} \simeq R^{-1}(1)$ and $R : X_d(n) \to \mathbb{C}^* \simeq K(\mathbb{Z}, 1)$ represents the generator of $[X_d(n), K(\mathbb{Z}, 1)] \cong$ $H^1(X_d(n), \mathbb{Z}) \cong \mathbb{Z}$.

Lemma 2.4. If $f = (f_0, \dots, f_n) \in X_d(n)$, $f_k \neq 0$ for any $0 \le k \le n$.

Proof. If $f_k = 0$ for some k, the holomorphic map $g = [f_0 : \cdots : f_n] = \pi(f) \in \operatorname{Hol}_d(n)$ satisfies the condition $f(\mathbb{CP}^n) \subset \mathbb{CP}^{n-1}$. Hence, $g^* = 0$ on $H^{2n}(\mathbb{CP}^n,\mathbb{Z})$. However, because the degree of g is $d \ge 1$, the degree of g^* on $H^{2n}(\mathbb{CP}^n,\mathbb{Z})$ is $d^n \ne 0$, which is a contradiction.

Theorem 2.1. There is a homeomorphism $Hol_d(n) \cong R^{-1}(1)$.

Proof. By using (1.5) and Lemma 2.2, there is a homeomorphism

$$\operatorname{Hol}_{d}(n) \cong X_{d}(n) / \mathbb{C}^{*} \cong (\mathbb{C}^{*} \times_{G_{d,n}} R^{-1}(1)) / \mathbb{C}^{*} \cong G_{d,n} \setminus R^{-1}(1).$$

Since \mathbb{C}^* acts on $X_d(n)$ freely, the subgroup $G_{d,n}$ also acts on $R^{-1}(1)$ freely. Hence, we have the covering space sequence $G_{d,n} \to R^{-1}(1) \to \operatorname{Hol}_d(n)$. However, because $\pi_1(\operatorname{Hol}_d(n)) \cong \mathbb{Z}/(n+1)d^n \cong G_{d,n}$ and $R^{-1}(1)$ is connected, $R^{-1}(1)$ is simply connected and there is a homeomorphism $\operatorname{Hol}_d(n) \cong R^{-1}(1)$.

Corollary 2.1. There is a homotopy equivalence $X_d(n) \simeq Hol_d(n)$.

3. The space $\operatorname{Hol}_d^*(n)$

As in (1.6), we identify $\operatorname{Hol}_d^*(n) = Y_d(n)$ and consider the map R_1 : $\operatorname{Hol}_d^*(n) = Y_d(n) \to \mathbb{C}^*$ defined by the restriction $R_1 = R|Y_d(n)$. If we recall that $(f_0, \lambda f_1, \lambda f_2, \dots, \lambda f_n) \in \operatorname{Hol}_d^*(n)$ and the equality

(3.1)
$$R_1(f_0, \lambda f_1, \lambda f_2, \cdots, \lambda f_n) = \lambda^{nd^n} R_1(f_0, \cdots, f_n)$$

holds for any $((f_0, \dots, f_n), \lambda) \in \operatorname{Hol}_d^*(n) \times \mathbb{C}^*$, by using a complete analogous proof of Lemma 2.2 one can show the following result.

Lemma 3.1.

(i) There exists a \mathbb{C}^* -equivariant homeomorphism

$$\Psi_d : \operatorname{Hol}_d^*(n) \xrightarrow{\cong} \mathbb{C}^* \times_{G_{d,n}^*} R_1^{-1}(1)$$

such that $\psi_d \circ \Psi_d = R_1 : \mathbb{C}^* \times_{G^*_{d,n}} R_1^{-1}(1) \to \mathbb{C}^*$, where $G^*_{d,n} = \{g \in \mathbb{C}^* : g^{nd^n} = 1\} \cong \mathbb{Z}/nd^n$. and the map $\psi_d : \mathbb{C}^* \times_{G^*_{d,n}} R_1^{-1}(1) \to \mathbb{C}^*$ is given by $\psi_d([\beta, f]) = \beta^{nd^n}$.

(ii) The map $R_1 : \operatorname{Hol}_d^*(n) \to \mathbb{C}^*$ is a fiber bundle with non-singular fibers and structure group $G_{d,n}^*$.

(iii) The monodromy $T_1: R_1^{-1}(1) \to R_1^{-1}(1)$ is given by

$$T_1(f_0, f_1, \cdots, f_n) = (f_0, \xi_1 f_1, \xi_1 f_2, \cdots, \xi_1 f_n),$$

where ξ_1 is a primitive root of unity of order nd^n .

Hence, we have the fibration sequence

(3.2)
$$R_1^{-1}(1) \xrightarrow{\subset} \operatorname{Hol}_d^*(n) \xrightarrow{R_1} \mathbb{C}^*.$$

Theorem 3.1. There is a homotopy equivalence $\operatorname{Hol}_{d}^{*}(n) \simeq R_{1}^{-1}(1)$ and there is a fibration sequence $\operatorname{Hol}_{d}^{*}(n) \to \operatorname{Hol}_{d}(n) \to S^{2n+1}$.

Proof. By using the fibration sequences (2.3) and (3.2), we obtain the homotopy commutative diagram

where all horizontal and vertical sequences are fibration sequences.

If we consider the fibration sequences $R_1^{-1}(1) \to R^{-1}(1) \to S^{2n+1}$, because S^{2n+1} is 2-connected and $R^{-1}(1)$ is simply connected, $R_1^{-1}(1)$ is simply connected. Then, because $R_1^{-1}(1)$ is connected, by using the homotopy exact sequence induced from the fibration sequence $R_1^{-1}(1) \to \operatorname{Hol}_d^*(n) \xrightarrow{R_1} \mathbb{C}^*$, $R_{1*}: \pi_1(\operatorname{Hol}_d^*(n)) \xrightarrow{\cong} \pi_1(\mathbb{C}^*)$ is an isomorphism. Hence, there is a homotopy equivalence $\operatorname{Hol}_d^*(n) \simeq R_1^{-1}(1)$. Moreover, because $\operatorname{Hol}_d(n) \simeq R^{-1}(1)$, the homotopy fibration sequence $R_1^{-1}(1) \to R^{-1}(1) \to S^{2n+1}$ reduces to the desired homotopy fibration sequence.

Remark. It is known that there is a homotopy equivalence $\operatorname{Hol}_d(1) \simeq \operatorname{Hol}_d^*(1) \times S^3$ ([5], [11]). Hence, the homotopy fibration sequence given in Theorem 3.1 is trivial if n = 1.

Since $(f_0, \alpha f_1, \alpha f_2, \cdots, \alpha f_n) \in \operatorname{Hol}_d^*(n)$ for any $(f, \alpha) = ((f_0, \cdots, f_n), \alpha) \in \operatorname{Hol}_d^*(n) \times \mathbb{C}^*$, we can define the right \mathbb{C}^* -action on $\operatorname{Hol}_d^*(n)$ by

(3.3)
$$(f_0, \cdots, f_n) \cdot \alpha = (f_0, \alpha f_1, \alpha f_2, \cdots, \alpha f_n)$$

for $((f_0, \dots, f_n), \alpha) \in \operatorname{Hol}_d^*(n) \times \mathbb{C}^*$. By using Lemma 2.4, we can easily see that (3.3) is a free \mathbb{C}^* -action.

Proposition 3.1. $\pi_1(\operatorname{Hol}_d^*(n)/\mathbb{C}^*) \cong \mathbb{Z}/nd^n$ and there is a homeomorphism $\operatorname{Hol}_d^*(n)/\mathbb{C}^* \cong R_1^{-1}(1)$, where $\operatorname{Hol}_d^*(n)/\mathbb{C}^*$ denotes the universal covering of the orbit space $\operatorname{Hol}_d^*(n)/\mathbb{C}^*$.

Proof. It follows from Lemma 3.1 that there is a homeomorphism

 $\mathrm{Hol}_d^*(n)/\mathbb{C}^*\cong (\mathbb{C}^*\times_{G_{d,n}^*} R_1^{-1}(1))/\mathbb{C}^*\cong G_{d,n}^*\backslash R_1^{-1}(1).$

Since the group $G_{d,n}^*$ acts on $R_1^{-1}(1)$ freely, there is a covering space sequence $G_{d,n}^* \to R_1^{-1}(1) \to \operatorname{Hol}_d^*(n)/\mathbb{C}^*$. However, since $R_1^{-1}(1)$ is simply connected, $\pi_1(\operatorname{Hol}_d^*(n)/\mathbb{C}^*) \cong G_{d,n}^* \cong \mathbb{Z}/nd^n$ and there is a homeomorphism $\operatorname{Hol}_d^{\widetilde{}}(n)/\mathbb{C}^* \cong R_1^{-1}(1)$.

Corollary 3.1. There is a homotopy equivalence $\widetilde{\operatorname{Hol}_d^*(n)} \simeq \operatorname{Hol}_d^*(n)/\mathbb{C}^*$.

4. The space $H_d(n)$

In this section, we construct the universal covering $H_d(n)$ explicitly. For this purpose, we identify $H_d(n) = Z_d(n)$ and consider the map $R_2 : H_d(n) \to \mathbb{C}^*$ defined by the restriction $R_2 = R|H_d(n)$.

Since $(f_0, \dots, f_{n-1}, \lambda f_n) \in H_d(n)$ and the equality

(4.1)
$$R_2(f_0, \cdots, f_{n-1}, \lambda f_n) = \lambda^{d^n} R_2(f_0, \cdots, f_{n-1}, f_n)$$

holds for any $((f_0, \dots, f_n), \lambda) \in H_d(n) \times \mathbb{C}^*$, by using a complete analogous proof of Lemma 2.2 one can show the following result.

Kohhei Yamaguchi

Lemma 4.1.

(i) There is a \mathbb{C}^* -equivariant homeomorphism

$$f_d: H_d(n) \xrightarrow{\cong} \mathbb{C}^* \times_{H_{d,n}} R_2^{-1}(1)$$

such that $r_d \circ f_d = R_2 : H_d(n) \to \mathbb{C}^*$, where $H_{d,n} = \{g \in \mathbb{C}^* : g^{d^n} = 1\} \cong \mathbb{Z}/d^n$ and the map $r_d : \mathbb{C}^* \times_{H_{d,n}} R_2^{-1}(1) \to \mathbb{C}^*$ is given by $r_d([\beta, f]) = \beta^{d^n}$.

(ii) The map $R_2 : H_d(n) \to \mathbb{C}^*$ is a fiber bundle with non-singular fibers and structure group $H_{d,n}$.

(iii) The monodromy $T_2: R_2^{-1}(1) \to R_2^{-1}(1)$ is given by

$$T_2(f_0, f_1, \cdots, f_n) = (f_0, \cdots, f_{n-1}, \xi_2 f_n),$$

where ξ_2 is a primitive root of unity of order d^n .

Let $j'_d: H_d(n) \to \operatorname{Hol}^*_d(n)$ denote the inclusion.

Theorem 4.1. If $n \ge 2$, $j'_{d*} : \pi_1(H_d(n)) \xrightarrow{\cong} \pi_1(\operatorname{Hol}^*_d(n)) = \mathbb{Z}$ is an isomorphism.

Proof. From now on, we identify $\operatorname{Hol}_d^*(n) = Y_d(n)$ and $H_d(n) = Z_d(n)$ as in (1.6). If $(f_0, f_1) \in \operatorname{Hol}_d^*(1) \subset \mathbb{C}[z_0, z_1]^2$, it can be written as

$$f_0 = f_0(z_0, z_1) = z_0^d + z_1 g_0(z_0, z_1), \quad f_1 = f_1(z_0, z_1) = z_1 g_1(z_0, z_1)$$

for some homogenous polynomial $g_k = g_k(z_0, z_1) \in \mathbb{C}[z_0, z_1]$ (k = 0, 1). Then, if we change $z_1 \mapsto z_n$ in f_0 and f_1 , we can easily see that the element

$$\varphi(f_0, f_1) = (f_0(z_0, z_n), z_1^d, z_2^d, \cdots, z_{n-1}^d, f_1(z_0, z_n))$$
$$= (z_0^d + z_n g_0(z_0, z_n), z_1^d, z_2^d, \cdots, z_{n-1}^d, z_n g_1(z_0, z_n))$$

is contained in $H_d(n)$. So define the subspace $G_d(n) \subset H_d(n)$ by

$$G_d(n) = \{\varphi(f_0, f_1) : (f_0, f_1) \in \operatorname{Hol}_d^*(1)\} \cong \operatorname{Hol}_d^*(1).$$

Next, consider the subspace $G'_d(n) \subset H_d(n)$ defined by

$$G'_{d} = \left\{ (f_{0}, \epsilon_{1} z_{1}^{d}, \cdots, \epsilon_{n-1} z_{n-1}^{d}, f_{1}) : f_{0}, f_{1} \in \mathbb{C}[z_{0}, \cdots, z_{n}], \epsilon_{k} \in \mathbb{C}^{*} \right\} \cap H_{d}(n).$$

Consider the subspaces $G_d(n) \subset G'_d(n) \subset H_d(n)$. Since $n \geq 2$, the complement of $G_d(n)$ in $G'_d(n)$ and that of $G'_d(n)$ in $H_d(n)$ are of codimension 1. So the complement of $G_d(n)$ in $H_d(n)$ is of codimension 2, and the inclusion $j''_d: G_d(n) \to H_d(n)$ induces an epimorphism $j''_d: \pi_1(G_d(n)) \to \pi_1(H_d(n))$. However, because $\pi_1(G_d(n)) \cong \pi_1(\operatorname{Hol}^*_d(1)) \cong \mathbb{Z}$ by [13], there is an isomorphism $\pi_1(H_d(n)) \cong \mathbb{Z}/l$ for some integer $l \geq 0$.

Next, because $G_d(n) \subset H_d(n) \subset \operatorname{Hol}_d^*(n)$, the complement of $G_d(n)$ in $\operatorname{Hol}_d^*(n)$ is codimension > 2 and the inclusion $j'_d \circ j''_d : G_d(n) \to \operatorname{Hol}_d^*(n)$ also induces an epimorphism $j'_d \circ j''_d : \pi_1(G_d(n)) \to \pi_1(\operatorname{Hol}_d^*(n))$. Hence, by using

 $\pi_1(G_d(n)) = \pi_1(\operatorname{Hol}_d^*(n)) = \mathbb{Z}$ ([14]), $j'_{d*} \circ j''_{d*} : \pi_1(G_d(n)) \xrightarrow{\cong} \pi_1(\operatorname{Hol}_d^*(n))$ is an isomorphism. So that if we recall the composite of homomorphisms

$$\mathbb{Z} = \pi_1(G_d(n)) \xrightarrow{j'_{d^**}} \pi_1(H_d(n)) \xrightarrow{j'_{d^*}} \pi_1(\operatorname{Hol}^*_d(n)) = \mathbb{Z}$$

and recall that $\pi_1(H_d(n)) = \mathbb{Z}/l$, we have l = 0 and $j'_{d*} : \pi_1(H_d(n)) \xrightarrow{\cong} \pi_1(\operatorname{Hol}^*_d(n)) = \mathbb{Z}$ is an isomorphism.

Since $(f_0, \dots, f_{n-1}, \alpha f_n) \in H_d(n)$ for any $((f_0, \dots, f_n), \alpha) \in H_d(n) \times \mathbb{C}^*$, if we identify $H_d(n) = Z_d(n)$ as in (1.6), we can define the right \mathbb{C}^* -action on $H_d(n)$ by

(4.2)
$$(f_0, \cdots, f_n) \cdot \alpha = (f_0, \cdots, f_{n-1}, \alpha f_n)$$

for $((f_0, \dots, f_n), \alpha) \in H_d(n) \times \mathbb{C}^*$. It is easy to see that the action (4.2) is free by using Lemma 2.4. Similarly, consider the right $\operatorname{GL}_n(\mathbb{C})$ action on $\operatorname{Hol}_d^*(n)$ given by the matrix multiplication

(4.3)
$$(f_0, f_1, \cdots, f_n) \cdot A = (f_0, f_1, \cdots, f_n) \begin{pmatrix} 1 & \mathbf{0}_n \\ {}^t\mathbf{0}_n & A \end{pmatrix}$$

for $((f_0, f_1, \dots, f_n), A) \in \operatorname{Hol}_d^*(n) \times \operatorname{GL}_n(\mathbb{C})$. By using Lemma 2.4, we can see that the above right $\operatorname{GL}_n(\mathbb{C})$ -action on $\operatorname{Hol}_d^*(n)$ is free, and we obtain the following commutative diagram of fibration sequences

where the natural inclusions $i''_d : \mathbb{C}^* \to H_d(n)$ and $\hat{j}_d : \mathbb{C}^* \to \mathrm{GL}_n(\mathbb{C})$ are defined by

$$\begin{cases} i_d''(\alpha) = (z_0^d, \cdots, z_n^d) \cdot \alpha = (z_0^d, z_1^d, \cdots, z_{n-1}^d, \alpha z_n^d), \\ \hat{j}_d(\alpha) = \begin{pmatrix} E_n & 0 \\ 0 & \alpha \end{pmatrix} \quad (E_n : (n \times n) \text{ identity matrix}) \end{cases}$$

Lemma 4.2. $\pi_1(H_d(n)/\mathbb{C}^*) \cong \mathbb{Z}/d^n$.

Proof. Consider the commutative diagram of exact sequences induced from (4.3):

Since \hat{j}_{d*} and j'_{d*} are isomorphisms by Theorem 4.1, q_{d*} is so. However, because there is an isomorphism $\pi_1(\operatorname{Hol}_d^*(n)/\operatorname{GL}_n(\mathbb{C})) \cong \mathbb{Z}/d^n$ by [14], we have an isomorphism $\pi_1(H_d(n)/\mathbb{C}^*) \cong \mathbb{Z}/d^n$.

Kohhei Yamaguchi

Theorem 4.2. There is a homotopy equivalence $\widetilde{H_d(n)} \simeq R_2^{-1}(1)$.

Proof. It follows from Lemma 4.1 that there is a fibration sequence

(4.5)
$$R_2^{-1}(1) \xrightarrow{\subset} H_d(n) \xrightarrow{R_2} \mathbb{C}^*.$$

If $\mu_0 : \mathbb{C}^* \to \mathbb{C}^*$ denotes the map given by $\mu_0(\alpha) = \alpha^{d^n}$ for $\alpha \in \mathbb{C}^*$, it is the d^n -fold covering projection. Furthermore, for $\alpha \in \mathbb{C}^*$, by using Lemma 2.1,

$$R_2 \circ i''_d(\alpha) = R(z_0^d, \cdots, z_{n-1}^d, \alpha z_n^d) = \alpha^{d^n} R(z_0^d, \cdots, z_n^d) = \alpha^{d^n} = \mu_0(\alpha).$$

Hence, $R_2 \circ i''_d = \mu_0$ and it follows from [[3], Lemma 2.1] that there is a homotopy commutative diagram

$$\mathbb{Z}/d^{n} \longrightarrow R_{2}^{-1}(1) \longrightarrow H_{d}(n)/\mathbb{C}^{*}$$

$$\downarrow \qquad \cap \downarrow \qquad \parallel$$

$$\mathbb{C}^{*} \xrightarrow{i''_{d}} H_{d}(n) \longrightarrow H_{d}(n)/\mathbb{C}^{*}$$

$$\mu_{0} \downarrow \qquad R_{2} \downarrow \qquad \downarrow$$

$$\mathbb{C}^{*} \xrightarrow{=} \mathbb{C}^{*} \longrightarrow *$$

where all horizontal and vertical sequences are fibration sequences.

Consider the homotopy fibration sequence $\mathbb{Z}/d^n \to R_2^{-1}(1) \to H_d(n)/\mathbb{C}^*$. Since $\pi_1(H_d(n)/\mathbb{C}^*) \cong \mathbb{Z}/d^n$ (by Lemma 4.2) and $R_2^{-1}(1)$ is connected, $R_2^{-1}(1)$ is simply connected. Hence, by using (4.5) we also obtain a homotopy equivalence $\widetilde{H_d(n)} \simeq R_2^{-1}(1)$.

Corollary 4.1.

(i) There is a homeomorphism $H_d(n)/\mathbb{C}^* \cong R_2^{-1}(1)$, where $H_d(n)/\mathbb{C}^*$ denotes the universal covering of the orbit space $H_d(n)/\mathbb{C}^*$.

(ii) There is a homotopy equivalence $H_d(n) \simeq H_d(n) / \mathbb{C}^*$.

Proof. Since the assertion (ii) easily follows from (i) and Theorem 4.2, it remains to show (i). It follows from Lemma 4.1 that there is a homeomorphism

$$H_d(n)/\mathbb{C}^* \cong (\mathbb{C}^* \times_{H_{d,n}} R_2^{-1}(1))/\mathbb{C}^* \cong H_{d,n} \setminus R_2^{-1}(1).$$

By using Lemma 2.4, we can see that the group $H_{d,n}$ acts on $R_2^{-1}(1)$ freely. Hence, there is a covering space sequence $H_{d,n} \to R_2^{-1}(1) \to H_d(n)/\mathbb{C}^*$. Since $\pi_1(H_d(n)/\mathbb{C}^*) \cong \mathbb{Z}/d^n \cong H_{d,n}$ (by Lemma 4.2) and $R_2^{-1}(1)$ is connected, there is a homeomorphism $H_d(n)/\mathbb{C}^* \cong R_2^{-1}(1)$.

Proof of Theorem 1.2. The assertion follows from Theorem 2.1, Theorem 3.1 and Theorem 4.2. $\hfill \Box$

5. Homotopy fibers

In this section we give the proof of Theorem 1.3.

Lemma 5.1. There is a homotopy equivalence $HF_d^*(n) \simeq HF_d(n)$.

Proof. Consider the evaluation map $e : \operatorname{Map}_d(n) \to \mathbb{CP}^n$ given by $e(f) = f(\mathbf{e}_n)$. Then it follows from the fibration sequence (2.3) and [3, Lemma 2.1] that there is a commutative diagram

such that all horizontal and vertical sequences are fibration sequences. Then the assertion easily follows from the diagram chasing. $\hfill \Box$

Proof of Theorem 1.3. It suffices to show that HF_d^* is simply connected. If d = 1, the assertion follows from Theorem 1.1, and assume $d \ge 2$. Because $i_{d*} : \pi_1(\operatorname{Hol}_d^*(n)) \xrightarrow{\cong} \pi_1(\operatorname{Map}_d^*(n))$ is bijective by [14], it is sufficient to show that i_d induces a surjection on π_2 . Let $i'' : \mathbb{CP}^{n-1} \to \mathbb{CP}^n$ denote the inclusion given by $i''([x_0 : \cdots : x_{n-1}] =$

Let $i'': \mathbb{C}P^{n-1} \to \mathbb{C}P^n$ denote the inclusion given by $i''([x_0:\cdots:x_{n-1}] = [x_0:\cdots:x_{n-1}:0]$, and define the restriction map $r': \operatorname{Map}_d^*(\mathbb{C}P^n, \mathbb{C}P^n) \to \operatorname{Map}_d^*(\mathbb{C}P^{n-1}, \mathbb{C}P^n)$ by $r'(f) = f \circ i''$. Then we have the fibration sequence

(5.1)
$$F_d(n) \xrightarrow{j'} \operatorname{Map}_d^*(n) \xrightarrow{r'} \operatorname{Map}_d^*(\mathbb{C}\mathrm{P}^{n-1}, \mathbb{C}\mathrm{P}^n).$$

Define the map $g''_d: \Omega^{2n} \mathbb{CP}^n \to F_d(n)$ by

$$g_d''(\varphi) = \nabla \circ (\varphi_d^{n,n} \vee \varphi) \circ \mu' : \mathbb{C}\mathrm{P}^n \xrightarrow{\mu'} \mathbb{C}\mathrm{P}^n \vee S^{2n} \xrightarrow{\varphi_d^{n,n} \vee \varphi} \mathbb{C}\mathrm{P}^n \vee \mathbb{C}\mathrm{P}^n \xrightarrow{\nabla} \mathbb{C}\mathrm{P}^n$$

for $\varphi \in \Omega^{2n} \mathbb{C}\mathbb{P}^n$, where $\nabla : \mathbb{C}\mathbb{P}^n \vee \mathbb{C}\mathbb{P}^n \to \mathbb{C}\mathbb{P}^n$ is a folding map, and $\mu' : \mathbb{C}\mathbb{P}^n \to \mathbb{C}\mathbb{P}^n \vee S^{2n}$ denotes the co-action map obtained by collapsing the hemisphere of 2n-cell e^{2n} in the mapping cone $\mathbb{C}\mathbb{P}^n = \mathbb{C}\mathbb{P}^{n-1} \cup_{\gamma_{n-1}} e^{2n}$. Note that $g''_d : \Omega^{2n}_0 \mathbb{C}\mathbb{P}^n \xrightarrow{\simeq} F_d(n)$ is a homotopy equivalence ([9]). Let $\epsilon_d : \operatorname{Hol}_d^*(1) \to H_d(n)$ be the inclusion given by $\epsilon_d(f,g) = (f,g,z_2^d,\cdots,z_n^d)$, where we identify $\operatorname{Hol}_d^*(1)$ with the space consisting of all pair $(f,g) \in \mathbb{C}[z_0,z_1]^2$ of homogenous polynomials of the same degree d with no common root except $\mathbf{0}_2 = (0,0) \in \mathbb{C}^2$ such that the coefficient of z_0^d of f is 1 and that of g is 0. It is routine to check

Kohhei Yamaquchi

that the following diagram is homotopy commutative

$$(5.2) \qquad \begin{array}{ccc} \operatorname{Hol}_{d}^{*}(1) & \stackrel{\epsilon_{d}}{\longrightarrow} & \operatorname{H}_{d}(n) & \stackrel{j'}{\longrightarrow} & \operatorname{Hol}_{d}^{*}(n) \\ & i \mid \cap & i''_{d} \mid \cap & i_{d} \mid \cap \\ & \Omega_{d}^{2} \mathbb{C} \mathbb{P}^{1} & F_{d}(n) & \stackrel{j'}{\longrightarrow} & \operatorname{Map}_{d}^{*}(n) \\ & *[d] \mid \cong & g''_{d} \mid \cong \\ & \Omega_{0}^{2} \mathbb{C} \mathbb{P}^{1} & \stackrel{\epsilon}{\longrightarrow} & \Omega^{2n} \mathbb{C} \mathbb{P}^{n} \\ & \Omega_{0}^{2} \mathbb{C} \mathbb{P}^{1} & \stackrel{\epsilon}{\longrightarrow} & \Omega^{2n} \mathbb{C} \mathbb{P}^{n} \\ & \Omega_{1}^{2} S^{3} & \stackrel{\Omega^{2} E^{2n-2}}{\longrightarrow} & \Omega^{2n} S^{2n+1} \end{array}$$

where $E^{2n-2}: S^3 \to \Omega^{2n-2}S^{2n+1}$ denotes the (2n-2)-fold suspension, *[d] is the d-times loop sum with the identity map on S^2 , $i: \operatorname{Hol}_d^*(1) \to \Omega_d^2 \mathbb{CP}^1$ is an inclusion and the map ϵ is given by

$$\epsilon(f)(x \wedge s_2 \wedge s_3 \wedge \dots \wedge s_n) = [f(x) : s_2 : \dots : s_n]$$

for $(f, x) \in \Omega_0^2 \mathbb{C} \mathbb{P}^1 \times S^2$ and $s_j \in S^1$ $(j = 2, 3, \dots, n)$. Since $\operatorname{Map}_d^*(\mathbb{C} \mathbb{P}^{n-1}, \mathbb{C} \mathbb{P}^n)$ is 2-connected ([9]), the map j' induces a surjection on π_2 . By Theorem 1.1, $i_* : \pi_2(\operatorname{Hol}_d^*(1)) \to \pi_2(\Omega_d^2 \mathbb{C} \mathbb{P}^1)$ is an isomorphism if $d \geq 3$ and an epimorphism if d = 2. Because $\Omega^2 E_*^{2n-2} : \pi_2(\Omega^2 S^3) \xrightarrow{\cong}$ $\pi_2(\Omega^{2n}S^{2n+1})$ is an isomorphism, by applying π_2 to the diagram (5.2), we see that $i_{d*}: \pi_2(\operatorname{Hol}_d^*(n)) \to \pi_2(\operatorname{Map}_d^*(n))$ is also a surjection.

Acknowledgements. The author is indebted to Professors M. A. Guest, A. Kozlowski and M. Murayama for numerous helpful conversations concerning the topology of spaces of holomorphic maps and covering spaces.

> DEPARTMENT OF INFORMATION MATHEMATICS UNIVERSITY OF ELECTRO-COMMUNICATIONS Сноги, Токуо 182-8585, Јаран e-mail: kohhei@im.uec.ac.jp

References

- [1] M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Comm. Math. Phys. 59 (1978), 97–118.
- [2] C. P. Boyer, J. C. Hurtubise, B. M. Mann and R. J. Milgram, *The topology* of instanton moduli spaces, I: The Atiyah-Jones conjecture, Ann. of Math. **137** (1993), 561–609.
- [3] F. R. Cohen, J. C. Moore and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. 110 (1979), 549-565.

- [4] D. A. Cox, J. Little and D. O'Shea, Using algebraic geometry, Grad. Texts in Math. 185, Springer-Veralg, 2005.
- [5] M. A. Guest, A. Kozlowski, M. Murayama and K. Yamaguchi, *The homo-topy type of spaces of rational functions*, J. Math. Kyoto Univ. **35** (1995), 631–638.
- [6] M. A. Guest, A. Kozlowski and K. Yamaguchi, Spaces of polynomials with roots of bounded multiplicity, Fund. Math. 116 (1999), 93–117.
- [7] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, *Discriminants, resultants and multidimensional determinants*, Birkhäuser, 1994.
- [8] A. Kozlowski and K. Yamaguchi, Spaces of holomorphic maps between complex projective spaces of degree one, Topology Appl. 132 (2003), 139– 145.
- J. M. Møller, On spaces of maps between complex projective spaces, Proc. Amer. Math. Soc. 91 (1984), 471–476.
- [10] J. Mostovoy, Spaces of rational maps and the Stone-Weierstrass Theorem, Topology 45 (2006), 281–293.
- [11] Y. Ono and K. Yamaguchi, Group actions on spaces of rational functions, Publ. Res. Inst. Math. Sci. 39 (2003), 173–181.
- [12] S. Sasao, The homotopy of Map (CP^m, CPⁿ), J. London Math. Soc. 8 (1974), 193–197.
- [13] G. B. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39–72.
- [14] K. Yamaguchi, Fundamental groups of spaces of holomorphic maps and group actions, J. Math. Kyoto Univ. 44 (2004), 479–492.