Resultants and universal coverings

By
Kohhei Yamaguchi

Abstract

We construct the universal coverings of spaces of self-holomorphic maps on the complex projective space $\mathbb{C P}^{n}$ by using the resultants, and we study their homotopy types.

1. Introduction

Let $j: S^{2}=\mathbb{C P}{ }^{1} \rightarrow \mathbb{C P}{ }^{m}$ be the inclusion map given by $j([x: y])=$ $[x: y: 0: \cdots: 0]$. If $1 \leq m \leq n$ and $f: \mathbb{C P}^{m} \rightarrow \mathbb{C P}^{n}$ is a continuous map, the corresponding integer of the homotopy class of $f \circ j$ in $\pi_{2}\left(\mathbb{C P}^{n}\right) \cong \mathbb{Z}$ is called the degree of f. Let $\operatorname{Map}_{d}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right)$ denote the space of all continuous maps $f: \mathbb{C P} \rightarrow \mathbb{C P}^{n}$ of degree d, and let Map ${ }_{d}^{*}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right)$ be the subspace consisting of all based maps $f \in \operatorname{Map}_{d}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right)$ such that $f\left(\mathbf{e}_{m}\right)=\mathbf{e}_{n}$, where $\mathbf{e}_{k}=[1: 0: \cdots: 0] \in \mathbb{C P}^{k}$ is a base point of $\mathbb{C P}^{k}(k=m, n)$. Similarly, $\operatorname{Hol}_{d}\left(\mathbb{C P}{ }^{m}, \mathbb{C P}^{n}\right) \subset \operatorname{Map}_{d}\left(\mathbb{C P}^{m}, \mathbb{C P}{ }^{n}\right)$ (resp. $\left.\operatorname{Hol}_{d}^{*}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right) \subset \operatorname{Map}_{d}^{*}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right)\right)$ be the corresponding the subspace of all (resp. based) holomorphic maps $f: \mathbb{C} P^{m} \rightarrow \mathbb{C P}^{n}$ of degree d. Remark that $\operatorname{Hol}_{d}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right)=\emptyset$ if $d<0$, and that any holomorphic map $f: \mathbb{C P} \rightarrow \mathbb{C P}^{n}$ of degree 0 is a constant map. So we always assume that $d \geq 1$.

When $m \geq 2$, we also consider the subspaces $H_{d}(m, n) \subset \operatorname{Hol}_{d}^{*}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right)$ and $F_{d}(m, n) \subset \operatorname{Map}_{d}^{*}\left(\mathbb{C P}^{m}, \mathbb{C P}{ }^{n}\right)$ defined by

$$
\left\{\begin{array}{l}
H_{d}(m, n)=\left\{f \in \operatorname{Hol}_{d}^{*}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right): f \circ i^{\prime}=\psi_{d}^{m-1, n}\right\} \tag{1.1}\\
F_{d}(m, n)=\left\{f \in \operatorname{Map}_{d}^{*}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right): f \circ i^{\prime}=\psi_{d}^{m-1, n}\right\}
\end{array}\right.
$$

where $i^{\prime}: \mathbb{C} P^{m-1} \rightarrow \mathbb{C} P^{m}$ denotes the inclusion given by $i^{\prime}\left(\left[x_{0}: \cdots: x_{m-1}\right]\right)=$ $\left[x_{0}: \cdots: x_{m-1}: 0\right]$ and $\psi_{d}^{m, n} \in \operatorname{Hol}_{d}^{*}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right)$ is the based holomorphic map defined by $\psi_{d}^{m, n}\left(\left[x_{0}: x_{1}: \cdots: x_{m}\right]\right)=\left[x_{0}^{d}: x_{1}^{d}: \cdots: x_{m}^{d}: 0: \cdots: 0\right]$. It is known that there is a homotopy equivalence $F_{d}(m, n) \simeq \Omega^{2 m} \mathbb{C P}{ }^{n}([9],[12])$.

The principal motivation of this paper derives from the work of G. Segal [13] and J. Mostovoy [10], in which they show that the following Atiyah-JonesSegal type homotopy (or homology) stability result holds.

2000 Mathematics Subject Classification(s). Primary 55P15, Secondly 55P35, 55P10, 46T25 Received April 13, 2007

Theorem 1.1 (G. Segal, [13]; J. Mostovoy, [10]). Let $1 \leq m \leq n$ be integers and let

$$
\left\{\begin{array}{l}
i_{d}: \operatorname{Hol}_{d}^{*}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right) \rightarrow \operatorname{Map}_{d}^{*}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right) \\
j_{d}: \operatorname{Hol}_{d}\left(\mathbb{C P}^{m}, \mathbb{C P}\right) \rightarrow \operatorname{Map}_{d}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right) \\
i_{d}^{\prime}: H_{d}(m, n) \rightarrow F_{d}(m, n) \simeq \Omega^{2 m} \mathbb{C P}^{n}
\end{array}\right.
$$

be the corresponding inclusion maps.
(i) If $m=1$, the inclusions i_{d} and j_{d} are homotopy equivalences up to dimension $(2 n-1) d$.
(ii) If $m \geq 2$, the inclusions i_{d}, j_{d} and i_{d}^{\prime} are homotopy equivalences through dimension $D(d ; m, n)$ when $m<n$ and homology equivalences through dimension $D(d: m, n)$ when $m=n$, where $\lfloor x\rfloor$ denotes the integer part of a real number x and $D(d ; m, n)$ is the number given by

$$
D(d ; m, n)=(2 n-2 m+1)\left(\left\lfloor\frac{d+1}{2}\right\rfloor+1\right)-1 .
$$

Remark. A map $f: X \rightarrow Y$ is called a homotopy equivalence up to dimension D if the induced homomorphism $f_{*}: \pi_{k}(X) \rightarrow \pi_{k}(Y)$ is bijective when $k<D$ and surjective when $k=D$. Analogously, it is called a homotopy equivalence through dimension D (resp. a homology equivalence through dimension D) if $f_{*}: \pi_{k}(X) \rightarrow \pi_{k}(Y)$ (resp. $f_{*}: H_{k}(X, \mathbb{Z}) \rightarrow H_{k}(Y, \mathbb{Z})$) is an isomorphism for any $k \leq D$.

If we recall several Atiyah-Jones-Segal type Theorems (c.f. [1], [2], [6], [13]), we may expect that the inclusions i_{d}, j_{d}, and i_{d}^{\prime} may be homotopy equivalences through dimension $D(d ; m, n)$ for $m=n \geq 2$, and we would like to consider this problem. From now on, for $m=n$, we write

$$
\left\{\begin{array}{l}
\operatorname{Hol}_{d}(n)=\operatorname{Hol}_{d}\left(\mathbb{C P}{ }^{n}, \mathbb{C P}{ }^{n}\right), \quad \operatorname{Hol}_{d}^{*}(n)=\operatorname{Hol}_{d}^{*}\left(\mathbb{C P}^{n}, \mathbb{C P}^{n}\right), \tag{1.2}\\
\operatorname{Map}_{d}(n)=\operatorname{Map}_{d}\left(\mathbb{C P}^{n}, \mathbb{C P}^{n}\right), \quad \operatorname{Map}_{d}^{*}(n)=\operatorname{Map}_{d}^{*}\left(\mathbb{C P}^{n}, \mathbb{C P}^{n}\right), \\
H_{d}(n)=H_{d}(n, n) \text { and } F_{d}(n)=F_{d}(n, n) \simeq \Omega^{2 n} \mathbb{C P}^{n}
\end{array}\right.
$$

In order to settle the homotopy stability problem it seems necessary to understand the universal covering spaces $\widetilde{H_{d}(n)}, \widetilde{\operatorname{Hol}_{d}^{*}(n)}$ and $\widetilde{\operatorname{Hol}_{d}(n)}$, where \widetilde{X} denotes the universal covering of a connected space X.

Let $z_{k}(k=0,1,2, \cdots, n)$ be complex variables, let $\mathcal{H}_{d}(n)$ denote the space consisting of all homogenous polynomials $g \in \mathbb{C}\left[z_{0}, \cdots, z_{n}\right]$ of degree d, and let $X_{d}(n) \subset \mathcal{H}_{d}(n)^{n+1}$ be the subspace consisting of all ($n+1$)-tuples $\left(f_{0}, \cdots, f_{n}\right) \in$ $\mathcal{H}_{d}(n)^{n+1}$ such that the polynomials $f_{0}, f_{1}, \cdots, f_{n}$ have no common root except $\mathbf{0}_{n+1}=(0, \cdots, 0) \in \mathbb{C}^{n+1}$.

For $\left(f_{0}, \cdots, f_{n}\right) \in \mathcal{H}_{d}(n)^{n+1}$, let $R\left(f_{0}, \cdots, f_{n}\right) \in \mathbb{C}$ denote the resultant for the forms of several variables of homogenous polynomials $\left(f_{0}, \cdots, f_{n}\right)$ defined as in [7] (see Section 2 in detail). It is known that $\left(f_{0}, \cdots, f_{n}\right) \in X_{d}(n)$ if and only if $R\left(f_{0}, \cdots, f_{n}\right) \neq 0$ for $\left(f_{0}, \cdots, f_{n}\right) \in \mathcal{H}_{d}(n)^{n+1}([7])$, and we can
identify

$$
\begin{equation*}
X_{d}(n)=\left\{\left(f_{0}, \cdots, f_{n}\right) \in \mathcal{H}_{d}(n)^{n+1}: R\left(f_{0}, \cdots, f_{n}\right) \neq 0\right\} . \tag{1.3}
\end{equation*}
$$

Define the free right \mathbb{C}^{*}-action on $X_{d}(n)$ by

$$
\begin{equation*}
\left(f_{0}, \cdots, f_{n}\right) \cdot \alpha=\left(\alpha f_{0}, \cdots, \alpha f_{n}\right) \tag{1.4}
\end{equation*}
$$

for $\left(\left(f_{0}, \cdots, f_{n}\right), \alpha\right) \in X_{d}(n) \times \mathbb{C}^{*}$. Because any holomorphic map $f \in \operatorname{Hol}_{d}(n)$ is represented as $f=\left[f_{0}: \cdots: f_{n}\right]$ for some $\left(f_{0}, \cdots, f_{n}\right) \in X_{d}(n)$ (c.f. [9], [10]), we can easily see that there is a homeomorphism

$$
\begin{equation*}
\operatorname{Hol}_{d}(n) \cong X_{d}(n) / \mathbb{C}^{*} \tag{1.5}
\end{equation*}
$$

If $f \in \operatorname{Hol}_{d}^{*}(n)$, since $f\left(\mathbf{e}_{n}\right)=\mathbf{e}_{n}$, it is represented as $f=\left[f_{0}: \cdots: f_{n}\right]$ such that $\left(f_{0}, \cdots, f_{n}\right) \in Y_{d}(n)$, where $Y_{d}(n) \subset X_{d}(n)$ denotes the subspace consisting of all $(n+1)$-tuples $\left(f_{0}, \cdots, f_{n}\right) \in X_{d}(n)$ such that the coefficient of z_{0}^{d} of f_{0} is 1 and 0 in the other polynomials $f_{k}(1 \leq k \leq n)$.

For each integer $0 \leq k \leq n$, define the subspace $W_{k}(d) \subset \mathbb{C}\left[z_{0}, \cdots, z_{n}\right]$ by

$$
W_{k}(d)= \begin{cases}\left\{z_{k}^{d}+z_{n} g: g \in \mathcal{H}_{d-1}(n)\right\} & \text { if } k \neq n \\ \left\{z_{n} g: g \in \mathcal{H}_{d-1}(n)\right\} & \text { if } k=n\end{cases}
$$

and consider the space $V_{d}(n)=W_{0}(d) \times W_{1}(d) \times \cdots \times W_{n}(d) \subset \mathbb{C}\left[z_{0}, \cdots, z_{n}\right]^{n+1}$. If $f \in H_{d}(n)$, it is represented as $f=\left[f_{0}: \cdots: f_{n}\right]$ such that $\left(f_{0}, \cdots, f_{n}\right) \in$ $X_{d}(n) \cap V_{d}(n)$, and it is easy to see that there are homeomorphisms

$$
\begin{equation*}
\operatorname{Hol}_{d}^{*}(n) \cong Y_{d}(n) \quad \text { and } \quad H_{d}(n) \cong Z_{d}(n) \tag{1.6}
\end{equation*}
$$

where we write $Z_{d}(n)=X_{d}(n) \cap V_{d}(n)$.
We also denote by $H F_{d}(n)$ and $H F_{d}^{*}(n)$ the homotopy fibers of the inclusions $j_{d}: \operatorname{Hol}_{d}(n) \rightarrow \operatorname{Map}_{d}(n)$ and $i_{d}: \operatorname{Hol}_{d}^{*}(n) \rightarrow \operatorname{Map}_{d}^{*}(n)$, respectively. Remark that there is a homotopy equivalence $H F_{d}^{*}(n) \simeq H F_{d}(n)$ (see Lemma 5.1). Then the main results of this paper are stated as follows.

Theorem 1.2.
(i) There exists a homeomorphism $\widetilde{\operatorname{Hol}_{d}(n)} \cong R^{-1}(1)$.
(ii) There are homotopy equivalences

$$
\widetilde{\operatorname{Hol}_{d}^{*}(n)} \simeq R_{1}^{-1}(1) \quad \text { and } \quad \widetilde{H_{d}(n)} \simeq R_{2}^{-1}(1)
$$

Here, $R^{-1}(1), R_{1}^{-1}(1)$ and $R_{2}^{-1}(1)$ denote the subspaces of $X_{d}(n)$ given by

$$
\left\{\begin{array}{l}
R^{-1}(1)=\left\{\left(f_{0}, \cdots, f_{n}\right) \in X_{d}(n): R\left(f_{0}, \cdots, f_{n}\right)=1\right\}, \tag{1.7}\\
R_{1}^{-1}(1)=\left\{\left(f_{0}, \cdots, f_{n}\right) \in Y_{d}(n): R\left(f_{0}, \cdots, f_{n}\right)=1\right\}, \\
R_{2}^{-1}(1)=\left\{\left(f_{0}, \cdots, f_{n}\right) \in Z_{d}(n): R\left(f_{0}, \cdots, f_{n}\right)=1\right\} .
\end{array}\right.
$$

Although we know the fundamental group actions on the universal coverings $\widetilde{\operatorname{Hol}_{d}(n)}, \widetilde{\operatorname{Hol}_{d}^{*}(n)}$ and $\widetilde{H_{d}(n)}$, we cannot determine whether they are nilpotent actions or not. If these inclusions are homotopy equivalences through dimension $D(d ; n, n), H F_{d}(n)$ and $H F_{d}^{*}(n)$ must be $\left\lfloor\frac{d+1}{2}\right\rfloor$-connected. Although we cannot prove this statement, we can show the weaker one as follows.

Theorem 1.3. $\quad H F_{d}^{*}(n)$ and $H F_{d}(n)$ are simply connected.
This paper is organized as follows. In Section 2, we construct the universal covering of $\operatorname{Hol}_{d}(n)$ geometrically by using the resultant for the forms of several variables. In Section 3 and 4, we also construct the universal coverings of $\operatorname{Hol}_{d}^{*}(n)$ and $H_{d}(n)$ by using this resultant, and finally in Section 5, we give the proof of Theorem 1.3.

2. Resultants and the space $\widetilde{\operatorname{Hol}_{d}(n)}$

First, recall about resultants. For each $I=\left(i_{0}, \cdots, i_{n}\right) \in \mathbb{Z}_{\geq 0}^{n+1}$, we write $|I|=\sum_{k=0}^{n} i_{k}$ and $z^{I}=z_{0}^{i_{0}} z_{1}^{i_{1}} \cdots z_{n}^{i_{n}}$. We denote by $\mathcal{I}(d)$ the set

$$
\mathcal{I}(d)=\left\{I=\left(i_{0}, \cdots, i_{n}\right) \in \mathbb{Z}_{\geq 0}^{n+1}:|I|=d\right\}
$$

If $\left(f_{0}, f_{1}, \cdots, f_{n}\right) \in \mathcal{H}_{d_{0}}(n) \times \mathcal{H}_{d_{1}}(n) \times \cdots \times \mathcal{H}_{d_{n}}(n)$, each homogenous polynomial f_{k} of degree d_{k} can be written as $f_{k}=\sum_{I \in \mathcal{I}\left(d_{k}\right)} c_{I, k} z^{I}\left(c_{I, k} \in \mathbb{C}\right)$. Then for each such possible pair of indices (I, k) with $I \in \mathcal{I}\left(d_{k}\right)$ and $0 \leq k \leq n$, we introduce a variable $Z_{I, k}$. Then for a polynomial $P \in \mathbb{C}\left[Z_{I, k}: I \in \mathcal{I}\left(d_{k}\right), 0 \leq k \leq n\right]$, let $P\left(f_{0}, \cdots, f_{n}\right)$ denote the complex number obtained by replacing variable $Z_{I, k}$ in P with the corresponding coefficient $c_{I, k}$.

Lemma 2.1 ([7], [[4]; Chap. 3, Theorem 2.3, Theorem 3.1]). For each $(n+1)$-tuple $J=\left(d_{0}, \cdots, d_{n}\right)$ of positive integers, there exists a unique irreducible homogenous polynomial $R_{J} \in \mathbb{Z}\left[Z_{I, k}: I \in \mathcal{I}\left(d_{k}\right), 0 \leq k \leq n\right]$ of degree $\sum_{k=0}^{n} d_{0} \cdots d_{k-1} d_{k+1} \cdots d_{n}$ which satisfies the following three conditions:
(i) R_{J} is an irreducible polynomial even in $\mathbb{C}\left[Z_{I, k}: I \in \mathcal{I}\left(d_{k}\right), 0 \leq k \leq n\right]$.
(ii) $R_{J}\left(z_{0}^{d_{0}}, z_{1}^{d_{1}}, \cdots, z_{n}^{d_{n}}\right)=1$.
(iii) If $\left(f_{0}, \cdots, f_{n}\right) \in \mathcal{H}_{d_{0}}(n) \times \cdots \times \mathcal{H}_{d_{n}}(n)$,
$R_{J}\left(f_{0}, \cdots, f_{k-1}, \lambda f_{k}, f_{k+1}, \cdots, f_{n}\right)=\lambda^{d_{0} \cdots d_{k-1} d_{k+1} \cdots d_{n}} R_{J}\left(f_{0}, \cdots, f_{k}, \cdots, f_{n}\right)$
for any $\lambda \in \mathbb{C}^{*}$, and the equation $f_{0}=f_{1}=\cdots=f_{n}=0$ has no solution except $\mathbf{0}_{n+1} \in \mathbb{C}^{n+1}$ if and only if $R_{J}\left(f_{0}, \cdots, f_{n}\right) \neq 0$.

Remark. In general, the polynomial R_{J} can be regarded as the generalization of the determinant (c.f. [4], [7]). To see this, consider the case $d_{0}=d_{1}=\cdots=d_{n}=1$. If $\left(f_{0}, \cdots, f_{n}\right) \in \mathcal{H}_{1}(n)^{n+1}$, each f_{k} can be written as $f_{k}=\sum_{j=0}^{n} c_{j, k} z_{k}\left(c_{j, k} \in \mathbb{C}\right)$. If $Z_{j, k}$ denotes the corresponding variable to $c_{j, k}$ and set $J=(1,1, \cdots, 1), R_{J}$ can be written as $R_{J}=\operatorname{det}\left(Z_{j, k}\right)$ and $R_{J}\left(f_{0}, \cdots, f_{n}\right)=\operatorname{det}\left(c_{j, k}\right)$.

From now on, we always assume that $d_{0}=d_{1}=\cdots=d_{n}=d \geq 1$, and we write

$$
\begin{equation*}
R=R_{J}=R_{(d, d, \cdots, d)} \quad \text { for } J=(d, d, \cdots, d) \tag{2.1}
\end{equation*}
$$

Because $R\left(f_{0}, \cdots, f_{n}\right) \neq 0$ for any $\left(f_{0}, \cdots, f_{n}\right) \in X_{d}(n), R$ can be regarded as the map $R: X_{d}(n) \rightarrow \mathbb{C}^{*}$.

Let $G_{d, n}$ be the subgroup of \mathbb{C}^{*} defined by $G_{d, n}=\left\{g \in \mathbb{C}^{*}: g^{(n+1) d^{n}}=\right.$ $1\} \cong \mathbb{Z} /(n+1) d^{n}$, and consider the space $\mathbb{C}^{*} \times_{G_{d, n}} R^{-1}(1)$, where we identify $\left[g \beta,\left(f_{0}, \cdots, f_{n}\right)\right]=\left[\beta,\left(g f_{0}, \cdots, g f_{n}\right)\right]$ in $\mathbb{C}^{*} \times_{G_{d, n}} R^{-1}(1)$ if $g \in G_{d, n}$ and $\left(\left(\beta,\left(f_{0}, \cdots, f_{n}\right)\right) \in \mathbb{C}^{*} \times R^{-1}(1)\right.$.

Define the map $\varphi_{d}: \mathbb{C}^{*} \times_{G_{d, n}} R^{-1}(1) \rightarrow \mathbb{C}^{*}$ by $\varphi_{d}([\beta, f])=\beta^{(n+1) d^{n}}$ for $[\beta, f] \in \mathbb{C}^{*} \times_{G_{d, n}} R^{-1}(1)$. Because R is a homogenous polynomial of degree $(n+1) d^{n}$ and it satisfies the equality

$$
\begin{equation*}
R\left(\lambda f_{0}, \cdots, \lambda f_{n}\right)=\lambda^{(n+1) d^{n}} R\left(f_{0}, \cdots, f_{n}\right) \tag{2.2}
\end{equation*}
$$

for $\left(\left(f_{0}, \cdots, f_{n}\right), \lambda\right) \in X_{d}(n) \times \mathbb{C}^{*}$, this implies the following result.
Lemma 2.2 (c.f. [13, Proposition 6.1]).
(i) There exists a \mathbb{C}^{*}-equivariant homeomorphism

$$
\Phi_{d}: X_{d}(n) \xrightarrow{\cong} \mathbb{C}^{*} \times_{G_{d, n}} R^{-1}(1)
$$

such that $\varphi_{d} \circ \Phi_{d}=R: X_{d}(n) \rightarrow \mathbb{C}^{*}$.
(ii) The map $R: X_{d}(n) \rightarrow \mathbb{C}^{*}$ is a fiber bundle with non-singular fibers and structure group $G_{d, n} \cong \mathbb{Z} /(n+1) d^{n}$.
(iii) The monodromy $T: R^{-1}(1) \rightarrow R^{-1}(1)$ (i.e. the action of the generator of the structure group) is given by $T\left(f_{0}, f_{1}, \cdots, f_{n}\right)=\left(\xi f_{0}, \xi f_{1}, \cdots, \xi f_{n}\right)$, where ξ is a primitive root of unity of order $(n+1) d^{n}$.

Proof. (i) Let $f=\left(f_{0}, \cdots, f_{n}\right) \in X_{d}(n)$ be an element, and let $\alpha_{k} \in \mathbb{C}^{*}$ ($k=1,2$) be two complex numbers such that $\alpha_{1}^{(n+1) d^{n}}=\alpha_{2}^{(n+1) d^{n}}=R(f)$. Consider the element $F\left(\alpha_{k}\right)=\left(\alpha_{k},\left(\frac{f_{0}}{\alpha_{k}}, \cdots, \frac{f_{n}}{\alpha_{k}}\right)\right) \in \mathbb{C}^{*} \times R^{-1}(1)(k=1,2)$. In this case, since there exists some element $g \in G_{d, n}$ such that $\alpha_{2}=g \alpha_{1}$, $\left[F\left(\alpha_{1}\right)\right]=\left[F\left(\alpha_{2}\right)\right]$ in $\mathbb{C}^{*} \times_{G_{d, n}} R^{-1}(1)$. So define the map $\Phi_{d}: X_{d}(n) \rightarrow$ $\mathbb{C}^{*} \times_{G_{d, n}} R^{-1}(1)$ by $\Phi_{d}(f)=\left[\alpha,\left(\frac{f_{0}}{\alpha}, \cdots, \frac{f_{n}}{\alpha}\right)\right]=\left[\alpha, \frac{f}{\alpha}\right]$ for $f=\left(f_{0} \cdots, f_{n}\right) \in$ $X_{d}(n)$ if $\alpha^{(n+1) d^{n}}=R(f)$. Next, let $[\beta, f] \in \mathbb{C}^{*} \times_{G_{d, n}} R^{-1}(1)$ be any element such that $(\beta, f)=\left(\left(f_{0}, \cdots, f_{n}\right), \beta\right) \in \mathbb{C}^{*} \times X_{d}(n)$. If $[\beta, f]=\left[\beta_{1}, h\right]\left(\beta, \beta_{1} \in \mathbb{C}^{*}\right.$, $\left.f, h \in R^{-1}(1)\right)$, there exists some $g \in G_{d, n}$ such that $\left(\beta_{1}, h\right)=\left(g^{-1} \cdot \beta, g \cdot f\right)$. Hence, $\beta_{1} \cdot h=\beta \cdot f$ and the element $\beta \cdot f=\left(\beta f_{0}, \cdots, \beta f_{n}\right) \in X_{d}(n)$ does not depend on the choice of the representative (β, f). So one can define the map $G_{d}: \mathbb{C}^{*} \times_{G_{d, n}} R^{-1}(1) \rightarrow X_{d}(n)$ by $G_{d}([\beta, f])=\beta \cdot f=\left(\beta f_{0}, \cdots, \beta f_{n}\right)$.

If $[\beta, f] \in \mathbb{C}^{*} \times_{G_{d, n}} R^{-1}(1)$, because $R(f)=1, R(\beta \cdot f)=\beta^{(n+1) d^{n}} R(f)=$ $\beta^{(n+1) d^{n}}$. Hence, $\Phi_{d} \circ G_{d}([\beta, f])=\Phi_{d}(\beta \cdot f)=\left[\beta, \frac{\beta f}{\beta}\right]=[\beta, f]$, and we have $\Phi_{d} \circ G_{d}=\mathrm{id}$. An analogous computation also shows that $G_{d} \circ \Phi_{d}=\mathrm{id}$ and so that Φ_{d} is a homeomorphism.

Furthermore, if $(f, \beta) \in X_{d}(n) \times \mathbb{C}^{*}$ with $R(f)=\alpha^{(n+1) d^{n}}\left(\alpha \in \mathbb{C}^{*}\right)$, because $R(\beta \cdot f)=\beta^{(n+1) d^{n}} R(f)=(\beta \alpha)^{(n+1) d^{n}}, \Phi_{d}(\beta \cdot f)=\left[\beta \alpha, \frac{\beta f}{\beta \alpha}\right]=\left[\beta \alpha, \frac{f}{\alpha}\right]=$ $\beta \cdot\left[\alpha, \frac{f}{\alpha}\right]=\beta \cdot \Phi_{d}(f)$. Hence, Φ_{d} is a \mathbb{C}^{*}-equivariant map. Because a similar computation shows that G_{d} is also a \mathbb{C}^{*}-equivariant map, Φ_{d} is a \mathbb{C}^{*}-equivariant homeomorphism.

If $f \in X_{d}(n)$ and $R(f)=\alpha^{(n+1) d^{n}}, \varphi_{d} \circ \Phi_{d}(f)=r\left(\left[\alpha, \frac{f}{\alpha}\right]\right)=\alpha^{(n+1) d^{n}}=$ $R(f)$. Hence, $\varphi_{d} \circ \Phi_{d}=R$ and the assertion (i) is proved.
(ii) It follows from (i) that we may identify R with the map φ_{d}. So it suffices to prove the local triviality for the map φ_{d}.

We write $D=(n+1) d^{n}$, and let $\beta \in \mathbb{C}^{*}$ be any element. From now on, we choose the fixed constant $\theta_{0} \in \mathbb{R}$ such that $\beta=|\beta| \exp \left(\sqrt{-1} \theta_{0}\right)$, and set $a_{0}=|\beta|^{1 / D} \exp \left(\frac{\sqrt{-1} \theta_{0}}{D}\right)$. Then because $\left\{\alpha \in \mathbb{C}^{*}: \alpha^{D}=\beta\right\}=\left\{g a_{0}: g \in G_{d, n}\right\}$, we note that

$$
\begin{aligned}
\varphi_{d}^{-1}(\beta) & =\left\{\left[g a_{0}, f\right]: g \in G_{d, n}, f \in R^{-1}(1)\right\}=\left\{\left[a_{0}, g f\right]: g \in G_{d, n}, f \in R^{-1}(1)\right\} \\
& =\left\{\left[a_{0}, f\right]: f \in R^{-1}(1)\right\} \cong R^{-1}(1) .
\end{aligned}
$$

Let $\phi(r, \theta)$ denote the function $\phi(r, \theta)=r \exp (\sqrt{-1} \theta)(r>0, \theta \in \mathbb{R})$, and let U be a sufficiently small connected open neighborhood U of β such that $\phi \mid U$ is injective. For example, let U be the open set given by

$$
U=\left\{\phi(r, \theta): \frac{3|\beta|}{4}<r<\frac{5|\beta|}{4},-\frac{\pi}{100}<\theta-\theta_{0}<\frac{\pi}{100}\right\} \subset \mathbb{C}^{*}
$$

If we remark the above isomorphism, we can see that the map $h: U \times R^{-1}(1) \rightarrow$ $\varphi_{d}^{-1}(U)$ given by by $h(\phi(r, \theta), f)=\left[\phi\left(r^{1 / D}, \theta / D\right), f\right]$ is a homeomorphism. Furthermore, if $q_{1}: U \times R^{-1}(1) \rightarrow U$ denotes the first projection, clearly the equality $\varphi_{d} \circ h=q_{1}$ holds. Hence, the local triviality is proved.
(iii) The assertion (iii) easily follows from the proof of (i).

By using Lemma 2.2, we have the fibration sequence

$$
\begin{equation*}
R^{-1}(1) \xrightarrow{C} X_{d}(n) \xrightarrow{R} \mathbb{C}^{*} . \tag{2.3}
\end{equation*}
$$

We also recall from [14, Appendix] that there is a fibration sequence

$$
\begin{equation*}
\operatorname{Hol}_{d}^{*}(n) \xrightarrow{\subset} \operatorname{Hol}_{d}(n) \xrightarrow{e v} \mathbb{C} P^{n} \tag{2.4}
\end{equation*}
$$

where the map $e v$ is given by $e v(f)=f\left(\mathbf{e}_{n}\right)$ for $f \in \operatorname{Hol}_{d}(n)$.

Lemma 2.3.

(i) $\pi_{1}\left(X_{d}(n)\right) \cong \mathbb{Z}$.
(ii) There is a homotopy equivalence $\widetilde{X_{d}(n)} \simeq R^{-1}(1)$, and the map R : $X_{d}(n) \rightarrow \mathbb{C}^{*} \simeq K(\mathbb{Z}, 1)$ represents the generator of the based homotopy set $\left[X_{d}(n), K(\mathbb{Z}, 1)\right] \cong H^{1}\left(X_{d}(n), \mathbb{Z}\right) \cong \mathbb{Z}$, where $\widetilde{X_{d}(n)}$ denotes the universal covering of $X_{d}(n)$.

Proof. (i) Let $\tilde{\mathbf{e}}_{n}=(1,0,0, \cdots, 0) \in \mathbb{C}^{n+1}$ and define the map $\tilde{e v}$: $X_{d}(n) \rightarrow \mathbb{C}^{n+1} \backslash\left\{\mathbf{0}_{n+1}\right\} \simeq S^{2 n+1}$ by $\tilde{e v}\left(f_{0}, \cdots, f_{n}\right)=\left(f_{0}\left(\tilde{\mathbf{e}}_{n}\right), \cdots, f_{n}\left(\tilde{\mathbf{e}}_{n}\right)\right)$ for $\left(f_{0}, \cdots, f_{n}\right) \in X_{d}(n)$. We also remark that there is a \mathbb{C}^{*}-principal bundle $\mathbb{C}^{*} \rightarrow X_{d}(n) \xrightarrow{\pi} \operatorname{Hol}_{d}(n) \cong X_{d}(n) / \mathbb{C}^{*}$, because (1.4) is a free action and the local triviality is satisfied. Then if $\gamma_{n}: S^{2 n+1} \rightarrow \mathbb{C P}^{n}$ is a Hopf fibering, it is easy to see that $e v \circ \pi=\gamma_{n} \circ \tilde{e v}$. Hence, if F_{0} denotes the homotopy fiber of the map $\tilde{e v}$, it follows from [3, Lemma 2.1] that we have the homotopy commutative diagram

such that all horizontal and vertical sequences are fibration sequences. Hence, there is a homotopy equivalence $F_{0} \simeq \operatorname{Hol}_{d}^{*}(n)$ and we have the fibration sequence (up to homotopy equivalence)

$$
\begin{equation*}
\operatorname{Hol}_{d}^{*}(n) \longrightarrow X_{d}(n) \xrightarrow{\tilde{e v}} S^{2 n+1} \tag{2.5}
\end{equation*}
$$

Since $S^{2 n+1}$ is 2 -connected and $\pi_{1}\left(\operatorname{Hol}_{d}^{*}(n)\right) \cong \mathbb{Z}([14])$, there is a isomorphism $\pi_{1}\left(X_{d}(n)\right) \cong \mathbb{Z}$.
(ii) Since $R^{-1}(1)$ is connected, by using the homotopy exact sequence induced from the fibration (2.3), $R_{*}: \pi_{1}\left(X_{d}(n)\right) \rightarrow \pi_{1}\left(\mathbb{C}^{*}\right)=\mathbb{Z}$ is surjective. However, because $\pi_{1}\left(X_{d}(n)\right)=\mathbb{Z}, R_{*}$ is an isomorphism and $R^{-1}(1)$ is simply connected. Hence, there is a homotopy equivalence $\widehat{X_{d}(n)} \simeq R^{-1}(1)$ and $R: X_{d}(n) \rightarrow \mathbb{C}^{*} \simeq K(\mathbb{Z}, 1)$ represents the generator of $\left[X_{d}(n), K(\mathbb{Z}, 1)\right] \cong$ $H^{1}\left(X_{d}(n), \mathbb{Z}\right) \cong \mathbb{Z}$.

Lemma 2.4. If $f=\left(f_{0}, \cdots, f_{n}\right) \in X_{d}(n), f_{k} \neq 0$ for any $0 \leq k \leq n$.
Proof. If $f_{k}=0$ for some k, the holomorphic map $g=\left[f_{0}: \cdots: f_{n}\right]=$ $\pi(f) \in \operatorname{Hol}_{d}(n)$ satisfies the condition $f\left(\mathbb{C P}^{n}\right) \subset \mathbb{C P}{ }^{n-1}$. Hence, $g^{*}=0$ on $H^{2 n}\left(\mathbb{C P}^{n}, \mathbb{Z}\right)$. However, because the degree of g is $d \geq 1$, the degree of g^{*} on $H^{2 n}\left(\mathbb{C P}^{n}, \mathbb{Z}\right)$ is $d^{n} \neq 0$, which is a contradiction.

Theorem 2.1. There is a homeomorphism $\widetilde{\operatorname{Hol}_{d}(n)} \cong R^{-1}(1)$.
Proof. By using (1.5) and Lemma 2.2, there is a homeomorphism

$$
\operatorname{Hol}_{d}(n) \cong X_{d}(n) / \mathbb{C}^{*} \cong\left(\mathbb{C}^{*} \times_{G_{d, n}} R^{-1}(1)\right) / \mathbb{C}^{*} \cong G_{d, n} \backslash R^{-1}(1)
$$

Since \mathbb{C}^{*} acts on $X_{d}(n)$ freely, the subgroup $G_{d, n}$ also acts on $R^{-1}(1)$ freely. Hence, we have the covering space sequence $G_{d, n} \rightarrow R^{-1}(1) \rightarrow \operatorname{Hol}_{d}(n)$.

However, because $\pi_{1}\left(\operatorname{Hol}_{d}(n)\right) \cong \mathbb{Z} /(n+1) d^{n} \cong G_{d, n}$ and $R^{-1}(1)$ is connected, $R^{-1}(1)$ is simply connected and there is a homeomorphism $\widehat{\operatorname{Hol}_{d}(n) \cong}$ $R^{-1}(1)$.

Corollary 2.1. \quad There is a homotopy equivalence $\widetilde{X_{d}(n)} \simeq \widetilde{\operatorname{Hol}_{d}(n)}$.

3. The space $\widetilde{\operatorname{Hol}_{d}^{*}(n)}$

As in (1.6), we identify $\operatorname{Hol}_{d}^{*}(n)=Y_{d}(n)$ and consider the map R_{1} : $\operatorname{Hol}_{d}^{*}(n)=Y_{d}(n) \rightarrow \mathbb{C}^{*}$ defined by the restriction $R_{1}=R \mid Y_{d}(n)$. If we recall that $\left(f_{0}, \lambda f_{1}, \lambda f_{2}, \cdots, \lambda f_{n}\right) \in \operatorname{Hol}_{d}^{*}(n)$ and the equality

$$
\begin{equation*}
R_{1}\left(f_{0}, \lambda f_{1}, \lambda f_{2}, \cdots, \lambda f_{n}\right)=\lambda^{n d^{n}} R_{1}\left(f_{0}, \cdots, f_{n}\right) \tag{3.1}
\end{equation*}
$$

holds for any $\left(\left(f_{0}, \cdots, f_{n}\right), \lambda\right) \in \operatorname{Hol}_{d}^{*}(n) \times \mathbb{C}^{*}$, by using a complete analogous proof of Lemma 2.2 one can show the following result.

Lemma 3.1.

(i) There exists $a \mathbb{C}^{*}$-equivariant homeomorphism

$$
\Psi_{d}: \operatorname{Hol}_{d}^{*}(n) \xrightarrow{\cong} \mathbb{C}^{*} \times{ }_{G_{d, n}^{*}} R_{1}^{-1}(1)
$$

such that $\psi_{d} \circ \Psi_{d}=R_{1}: \mathbb{C}^{*} \times_{G_{d, n}^{*}} R_{1}^{-1}(1) \rightarrow \mathbb{C}^{*}$, where $G_{d, n}^{*}=\left\{g \in \mathbb{C}^{*}\right.$: $\left.g^{n d^{n}}=1\right\} \cong \mathbb{Z} / n d^{n}$. and the map $\psi_{d}: \mathbb{C}^{*} \times_{G_{d, n}^{*}} R_{1}^{-1}(1) \rightarrow \mathbb{C}^{*}$ is given by $\psi_{d}([\beta, f])=\beta^{n d^{n}}$.
(ii) The map $R_{1}: \operatorname{Hol}_{d}^{*}(n) \rightarrow \mathbb{C}^{*}$ is a fiber bundle with non-singular fibers and structure group $G_{d, n}^{*}$.
(iii) The monodromy $T_{1}: R_{1}^{-1}(1) \rightarrow R_{1}^{-1}(1)$ is given by

$$
T_{1}\left(f_{0}, f_{1}, \cdots, f_{n}\right)=\left(f_{0}, \xi_{1} f_{1}, \xi_{1} f_{2}, \cdots, \xi_{1} f_{n}\right)
$$

where ξ_{1} is a primitive root of unity of order $n d^{n}$.
Hence, we have the fibration sequence

$$
\begin{equation*}
R_{1}^{-1}(1) \xrightarrow{C} \operatorname{Hol}_{d}^{*}(n) \xrightarrow{R_{1}} \mathbb{C}^{*} \tag{3.2}
\end{equation*}
$$

Theorem 3.1. There is a homotopy equivalence $\widetilde{\operatorname{Hol}_{d}^{*}(n)} \simeq R_{1}^{-1}(1)$ and there is a fibration sequence $\widetilde{\operatorname{Hol}_{d}^{*}(n)} \rightarrow \widetilde{\operatorname{Hol}_{d}(n)} \rightarrow S^{2 n+1}$.

Proof. By using the fibration sequences (2.3) and (3.2), we obtain the homotopy commutative diagram

where all horizontal and vertical sequences are fibration sequences.
If we consider the fibration sequence $R_{1}^{-1}(1) \rightarrow R^{-1}(1) \rightarrow S^{2 n+1}$, because $S^{2 n+1}$ is 2 -connected and $R^{-1}(1)$ is simply connected, $R_{1}^{-1}(1)$ is simply connected. Then, because $R_{1}^{-1}(1)$ is connected, by using the homotopy exact sequence induced from the fibration sequence $R_{1}^{-1}(1) \rightarrow \operatorname{Hol}_{d}^{*}(n) \xrightarrow{R_{1}} \mathbb{C}^{*}$, $R_{1 *}: \pi_{1}\left(\operatorname{Hol}_{d}^{*}(n)\right) \xrightarrow{\cong} \pi_{1}\left(\mathbb{C}^{*}\right)$ is an isomorphism. Hence, there is a homotopy equivalence $\widetilde{\operatorname{Hol}_{d}^{*}(n)} \simeq R_{1}^{-1}(1)$. Moreover, because $\widetilde{\operatorname{Hol}_{d}(n)} \simeq R^{-1}(1)$, the homotopy fibration sequence $R_{1}^{-1}(1) \rightarrow R^{-1}(1) \rightarrow S^{2 n+1}$ reduces to the desired homotopy fibration sequence.

Remark. It is known that there is a homotopy equivalence $\widetilde{\operatorname{Hol}_{d}(1)} \simeq$ $\operatorname{Hol}_{d}^{*}(1) \times S^{3}([5],[11])$. Hence, the homotopy fibration sequence given in Theorem 3.1 is trivial if $n=1$.

Since $\left(f_{0}, \alpha f_{1}, \alpha f_{2}, \cdots, \alpha f_{n}\right) \in \operatorname{Hol}_{d}^{*}(n)$ for any $(f, \alpha)=\left(\left(f_{0}, \cdots, f_{n}\right), \alpha\right) \in$ $\operatorname{Hol}_{d}^{*}(n) \times \mathbb{C}^{*}$, we can define the right \mathbb{C}^{*}-action on $\operatorname{Hol}_{d}^{*}(n)$ by

$$
\begin{equation*}
\left(f_{0}, \cdots, f_{n}\right) \cdot \alpha=\left(f_{0}, \alpha f_{1}, \alpha f_{2}, \cdots, \alpha f_{n}\right) \tag{3.3}
\end{equation*}
$$

for $\left(\left(f_{0}, \cdots, f_{n}\right), \alpha\right) \in \operatorname{Hol}_{d}^{*}(n) \times \mathbb{C}^{*}$. By using Lemma 2.4, we can easily see that (3.3) is a free \mathbb{C}^{*}-action.

Proposition 3.1. $\pi_{1}\left(\operatorname{Hol}_{d}^{*}(n) / \mathbb{C}^{*}\right) \cong \mathbb{Z} / n d^{n}$ and there is a homeomorphism $\operatorname{Hol}_{d}^{*}(n) / \mathbb{C}^{*} \cong R_{1}^{-1}(1)$, where $\operatorname{Hol}_{d}^{*}(n) / \mathbb{C}^{*}$ denotes the universal covering of the orbit space $\operatorname{Hol}_{d}^{*}(n) / \mathbb{C}^{*}$.

Proof. It follows from Lemma 3.1 that there is a homeomorphism

$$
\operatorname{Hol}_{d}^{*}(n) / \mathbb{C}^{*} \cong\left(\mathbb{C}^{*} \times_{G_{d, n}^{*}} R_{1}^{-1}(1)\right) / \mathbb{C}^{*} \cong G_{d, n}^{*} \backslash R_{1}^{-1}(1)
$$

Since the group $G_{d, n}^{*}$ acts on $R_{1}^{-1}(1)$ freely, there is a covering space sequence $G_{d, n}^{*} \rightarrow R_{1}^{-1}(1) \rightarrow \operatorname{Hol}_{d}^{*}(n) / \mathbb{C}^{*}$. However, since $R_{1}^{-1}(1)$ is simply connected, $\pi_{1}\left(\operatorname{Hol}_{d}^{*}(n) / \mathbb{C}^{*}\right) \cong G_{d, n}^{*} \cong \mathbb{Z} / n d^{n}$ and there is a homeomorphism $\operatorname{Hol}_{d}^{*}(n) / \mathbb{C}^{*} \cong$ $R_{1}^{-1}(1)$.

Corollary 3.1. There is a homotopy equivalence $\widetilde{\operatorname{Hol}_{d}^{*}(n)} \simeq \widetilde{\operatorname{Hol}_{d}^{*}(n) / \mathbb{C}}$.

4. The space $\widetilde{H_{d}(n)}$

In this section, we construct the universal covering $\widetilde{H_{d}(n)}$ explicitly. For this purpose, we identify $H_{d}(n)=Z_{d}(n)$ and consider the map $R_{2}: H_{d}(n) \rightarrow$ \mathbb{C}^{*} defined by the restriction $R_{2}=R \mid H_{d}(n)$.

Since $\left(f_{0}, \cdots, f_{n-1}, \lambda f_{n}\right) \in H_{d}(n)$ and the equality

$$
\begin{equation*}
R_{2}\left(f_{0}, \cdots, f_{n-1}, \lambda f_{n}\right)=\lambda^{d^{n}} R_{2}\left(f_{0}, \cdots, f_{n-1}, f_{n}\right) \tag{4.1}
\end{equation*}
$$

holds for any $\left(\left(f_{0}, \cdots, f_{n}\right), \lambda\right) \in H_{d}(n) \times \mathbb{C}^{*}$, by using a complete analogous proof of Lemma 2.2 one can show the following result.

Lemma 4.1.

(i) There is a \mathbb{C}^{*}-equivariant homeomorphism

$$
f_{d}: H_{d}(n) \stackrel{(}{\cong} \mathbb{C}^{*} \times_{H_{d, n}} R_{2}^{-1}(1)
$$

such that $r_{d} \circ f_{d}=R_{2}: H_{d}(n) \rightarrow \mathbb{C}^{*}$, where $H_{d, n}=\left\{g \in \mathbb{C}^{*}: g^{d^{n}}=1\right\} \cong \mathbb{Z} / d^{n}$ and the map $r_{d}: \mathbb{C}^{*} \times_{H_{d, n}} R_{2}^{-1}(1) \rightarrow \mathbb{C}^{*}$ is given by $r_{d}([\beta, f])=\beta^{d^{n}}$.
(ii) The map $R_{2}: H_{d}(n) \rightarrow \mathbb{C}^{*}$ is a fiber bundle with non-singular fibers and structure group $H_{d, n}$.
(iii) The monodromy $T_{2}: R_{2}^{-1}(1) \rightarrow R_{2}^{-1}(1)$ is given by

$$
T_{2}\left(f_{0}, f_{1}, \cdots, f_{n}\right)=\left(f_{0}, \cdots, f_{n-1}, \xi_{2} f_{n}\right)
$$

where ξ_{2} is a primitive root of unity of order d^{n}.
Let $j_{d}^{\prime}: H_{d}(n) \rightarrow \operatorname{Hol}_{d}^{*}(n)$ denote the inclusion.
Theorem 4.1. If $n \geq 2, j_{d *}^{\prime}: \pi_{1}\left(H_{d}(n)\right) \xrightarrow{\cong} \pi_{1}\left(\operatorname{Hol}_{d}^{*}(n)\right)=\mathbb{Z}$ is an isomorphism.

Proof. From now on, we identify $\operatorname{Hol}_{d}^{*}(n)=Y_{d}(n)$ and $H_{d}(n)=Z_{d}(n)$ as in (1.6). If $\left(f_{0}, f_{1}\right) \in \operatorname{Hol}_{d}^{*}(1) \subset \mathbb{C}\left[z_{0}, z_{1}\right]^{2}$, it can be written as

$$
f_{0}=f_{0}\left(z_{0}, z_{1}\right)=z_{0}^{d}+z_{1} g_{0}\left(z_{0}, z_{1}\right), \quad f_{1}=f_{1}\left(z_{0}, z_{1}\right)=z_{1} g_{1}\left(z_{0}, z_{1}\right)
$$

for some homogenous polynomial $g_{k}=g_{k}\left(z_{0}, z_{1}\right) \in \mathbb{C}\left[z_{0}, z_{1}\right](k=0,1)$. Then, if we change $z_{1} \mapsto z_{n}$ in f_{0} and f_{1}, we can easily see that the element

$$
\begin{aligned}
\varphi\left(f_{0}, f_{1}\right) & =\left(f_{0}\left(z_{0}, z_{n}\right), z_{1}^{d}, z_{2}^{d}, \cdots, z_{n-1}^{d}, f_{1}\left(z_{0}, z_{n}\right)\right) \\
& =\left(z_{0}^{d}+z_{n} g_{0}\left(z_{0}, z_{n}\right), z_{1}^{d}, z_{2}^{d}, \cdots, z_{n-1}^{d}, z_{n} g_{1}\left(z_{0}, z_{n}\right)\right)
\end{aligned}
$$

is contained in $H_{d}(n)$. So define the subspace $G_{d}(n) \subset H_{d}(n)$ by

$$
G_{d}(n)=\left\{\varphi\left(f_{0}, f_{1}\right):\left(f_{0}, f_{1}\right) \in \operatorname{Hol}_{d}^{*}(1)\right\} \cong \operatorname{Hol}_{d}^{*}(1)
$$

Next, consider the subspace $G_{d}^{\prime}(n) \subset H_{d}(n)$ defined by

$$
G_{d}^{\prime}=\left\{\left(f_{0}, \epsilon_{1} z_{1}^{d}, \cdots, \epsilon_{n-1} z_{n-1}^{d}, f_{1}\right): f_{0}, f_{1} \in \mathbb{C}\left[z_{0}, \cdots, z_{n}\right], \epsilon_{k} \in \mathbb{C}^{*}\right\} \cap H_{d}(n)
$$

Consider the subspaces $G_{d}(n) \subset G_{d}^{\prime}(n) \subset H_{d}(n)$. Since $n \geq 2$, the complement of $G_{d}(n)$ in $G_{d}^{\prime}(n)$ and that of $G_{d}^{\prime}(n)$ in $H_{d}(n)$ are of codimension 1. So the complement of $G_{d}(n)$ in $H_{d}(n)$ is of codimension 2 , and the inclusion $j_{d}^{\prime \prime}: G_{d}(n) \rightarrow H_{d}(n)$ induces an epimorphism $j_{d *}^{\prime \prime}: \pi_{1}\left(G_{d}(n)\right) \rightarrow \pi_{1}\left(H_{d}(n)\right)$. However, because $\pi_{1}\left(G_{d}(n)\right) \cong \pi_{1}\left(\operatorname{Hol}_{d}^{*}(1)\right) \cong \mathbb{Z}$ by [13], there is an isomorphism $\pi_{1}\left(H_{d}(n)\right) \cong \mathbb{Z} / l$ for some integer $l \geq 0$.

Next, because $G_{d}(n) \subset H_{d}(n) \subset \operatorname{Hol}_{d}^{*}(n)$, the complement of $G_{d}(n)$ in $\operatorname{Hol}_{d}^{*}(n)$ is codimension >2 and the inclusion $j_{d}^{\prime} \circ j_{d}^{\prime \prime}: G_{d}(n) \rightarrow \operatorname{Hol}_{d}^{*}(n)$ also induces an epimorphism $j_{d}^{\prime} \circ j_{d *}^{\prime \prime}: \pi_{1}\left(G_{d}(n)\right) \rightarrow \pi_{1}\left(\operatorname{Hol}_{d}^{*}(n)\right)$. Hence, by using
$\pi_{1}\left(G_{d}(n)\right)=\pi_{1}\left(\operatorname{Hol}_{d}^{*}(n)\right)=\mathbb{Z}([14]), j_{d *}^{\prime} \circ j_{d *}^{\prime \prime}: \pi_{1}\left(G_{d}(n)\right) \stackrel{\cong}{\rightrightarrows} \pi_{1}\left(\operatorname{Hol}_{d}^{*}(n)\right)$ is an isomorphism. So that if we recall the composite of homomorphisms

$$
\mathbb{Z}=\pi_{1}\left(G_{d}(n)\right) \xrightarrow{j_{d *}^{\prime \prime}} \pi_{1}\left(H_{d}(n)\right) \xrightarrow{j_{d *}^{\prime}} \pi_{1}\left(\operatorname{Hol}_{d}^{*}(n)\right)=\mathbb{Z}
$$

and recall that $\pi_{1}\left(H_{d}(n)\right)=\mathbb{Z} / l$, we have $l=0$ and $j_{d *}^{\prime}: \pi_{1}\left(H_{d}(n)\right) \xrightarrow{\cong}$ $\pi_{1}\left(\operatorname{Hol}_{d}^{*}(n)\right)=\mathbb{Z}$ is an isomorphism.

Since $\left(f_{0}, \cdots, f_{n-1}, \alpha f_{n}\right) \in H_{d}(n)$ for any $\left(\left(f_{0}, \cdots, f_{n}\right), \alpha\right) \in H_{d}(n) \times \mathbb{C}^{*}$, if we identify $H_{d}(n)=Z_{d}(n)$ as in (1.6), we can define the right \mathbb{C}^{*}-action on $H_{d}(n)$ by

$$
\begin{equation*}
\left(f_{0}, \cdots, f_{n}\right) \cdot \alpha=\left(f_{0}, \cdots, f_{n-1}, \alpha f_{n}\right) \tag{4.2}
\end{equation*}
$$

for $\left(\left(f_{0}, \cdots, f_{n}\right), \alpha\right) \in H_{d}(n) \times \mathbb{C}^{*}$. It is easy to see that the action (4.2) is free by using Lemma 2.4. Similarly, consider the right $\mathrm{GL}_{n}(\mathbb{C})$ action on $\operatorname{Hol}_{d}^{*}(n)$ given by the matrix multiplication

$$
\left(f_{0}, f_{1}, \cdots, f_{n}\right) \cdot A=\left(f_{0}, f_{1}, \cdots, f_{n}\right)\left(\begin{array}{cc}
1 & \mathbf{0}_{n} \tag{4.3}\\
{ }^{t} \mathbf{0}_{n} & A
\end{array}\right)
$$

for $\left(\left(f_{0}, f_{1}, \cdots, f_{n}\right), A\right) \in \operatorname{Hol}_{d}^{*}(n) \times \operatorname{GL}_{n}(\mathbb{C})$. By using Lemma 2.4, we can see that the above right $\mathrm{GL}_{n}(\mathbb{C})$-action on $\operatorname{Hol}_{d}^{*}(n)$ is free, and we obtain the following commutative diagram of fibration sequences

where the natural inclusions $i_{d}^{\prime \prime}: \mathbb{C}^{*} \rightarrow H_{d}(n)$ and $\hat{j_{d}}: \mathbb{C}^{*} \rightarrow \mathrm{GL}_{n}(\mathbb{C})$ are defined by

$$
\left\{\begin{array}{l}
i_{d}^{\prime \prime}(\alpha)=\left(z_{0}^{d}, \cdots, z_{n}^{d}\right) \cdot \alpha=\left(z_{0}^{d}, z_{1}^{d}, \cdots, z_{n-1}^{d}, \alpha z_{n}^{d}\right), \\
\hat{j_{d}}(\alpha)=\left(\begin{array}{cc}
E_{n} & 0 \\
0 & \alpha
\end{array}\right) \quad\left(E_{n}:(n \times n) \text { identity matrix }\right) .
\end{array}\right.
$$

Lemma 4.2. $\quad \pi_{1}\left(H_{d}(n) / \mathbb{C}^{*}\right) \cong \mathbb{Z} / d^{n}$.
Proof. Consider the commutative diagram of exact sequences induced from (4.3):

$$
\begin{array}{cccc}
\pi_{1}\left(\mathbb{C}^{*}\right) & \longrightarrow i_{d *}^{\prime \prime} & \pi_{1}\left(H_{d}(n)\right) & \longrightarrow \\
\hat{j}_{d *} \downarrow \cong & \pi_{1}\left(H_{d}(n) / \mathbb{C}^{*}\right) & \longrightarrow 0 \\
\pi_{1}\left(\mathrm{GL}_{n}(\mathbb{C})\right) \longrightarrow & q_{d *} \downarrow \\
& \pi_{1}\left(\operatorname{Hol}_{d}^{*}(n)\right) \longrightarrow & \pi_{1}\left(\operatorname{Hol}_{d}^{*}(n) / \mathrm{GL}_{n}(\mathbb{C})\right) \longrightarrow 0
\end{array}
$$

Since $\hat{j}_{d_{*}}$ and $j_{d *}^{\prime}$ are isomorphisms by Theorem 4.1, $q_{d_{*}}$ is so. However, because there is an isomorphism $\pi_{1}\left(\operatorname{Hol}_{d}^{*}(n) / \mathrm{GL}_{n}(\mathbb{C})\right) \cong \mathbb{Z} / d^{n}$ by [14], we have an isomorphism $\pi_{1}\left(H_{d}(n) / \mathbb{C}^{*}\right) \cong \mathbb{Z} / d^{n}$.

Theorem 4.2. There is a homotopy equivalence $\widetilde{H_{d}(n)} \simeq R_{2}^{-1}(1)$.
Proof. It follows from Lemma 4.1 that there is a fibration sequence

$$
\begin{equation*}
R_{2}^{-1}(1) \xrightarrow{\subset} H_{d}(n) \xrightarrow{R_{2}} \mathbb{C}^{*} \tag{4.5}
\end{equation*}
$$

If $\mu_{0}: \mathbb{C}^{*} \rightarrow \mathbb{C}^{*}$ denotes the map given by $\mu_{0}(\alpha)=\alpha^{d^{n}}$ for $\alpha \in \mathbb{C}^{*}$, it is the d^{n}-fold covering projection. Furthermore, for $\alpha \in \mathbb{C}^{*}$, by using Lemma 2.1,

$$
R_{2} \circ i_{d}^{\prime \prime}(\alpha)=R\left(z_{0}^{d}, \cdots, z_{n-1}^{d}, \alpha z_{n}^{d}\right)=\alpha^{d^{n}} R\left(z_{0}^{d}, \cdots, z_{n}^{d}\right)=\alpha^{d^{n}}=\mu_{0}(\alpha)
$$

Hence, $R_{2} \circ i_{d}^{\prime \prime}=\mu_{0}$ and it follows from [[3], Lemma 2.1] that there is a homotopy commutative diagram

where all horizontal and vertical sequences are fibration sequences.
Consider the homotopy fibration sequence $\mathbb{Z} / d^{n} \rightarrow R_{2}^{-1}(1) \rightarrow H_{d}(n) / \mathbb{C}^{*}$. Since $\pi_{1}\left(H_{d}(n) / \mathbb{C}^{*}\right) \cong \mathbb{Z} / d^{n}\left(\right.$ by Lemma 4.2) and $R_{2}^{-1}(1)$ is connected, $R_{2}^{-1}(1)$ is simply connected. Hence, by using (4.5) we also obtain a homotopy equivalence $\widetilde{H_{d}(n)} \simeq R_{2}^{-1}(1)$.

Corollary 4.1.

(i) There is a homeomorphism $\widetilde{H_{d}(n) / \mathbb{C}^{*}} \cong R_{2}^{-1}(1)$, where $\widetilde{H_{d}(n) / \mathbb{C}^{*}}$ denotes the universal covering of the orbit space $H_{d}(n) / \mathbb{C}^{*}$.
(ii) There is a homotopy equivalence $\widetilde{H_{d}(n)} \simeq \widetilde{H_{d}(n) / \mathbb{C}^{*}}$.

Proof. Since the assertion (ii) easily follows from (i) and Theorem 4.2, it remains to show (i). It follows from Lemma 4.1 that there is a homeomorphism

$$
H_{d}(n) / \mathbb{C}^{*} \cong\left(\mathbb{C}^{*} \times_{H_{d, n}} R_{2}^{-1}(1)\right) / \mathbb{C}^{*} \cong H_{d, n} \backslash R_{2}^{-1}(1)
$$

By using Lemma 2.4, we can see that the group $H_{d, n}$ acts on $R_{2}^{-1}(1)$ freely. Hence, there is a covering space sequence $H_{d, n} \rightarrow R_{2}^{-1}(1) \rightarrow H_{d}(n) / \mathbb{C}^{*}$. Since $\pi_{1}\left(H_{d}(n) / \mathbb{C}^{*}\right) \cong \mathbb{Z} / d^{n} \cong H_{d, n}($ by Lemma 4.2$)$ and $R_{2}^{-1}(1)$ is connected, there is a homeomorphism $\widetilde{H_{d}(n) / \mathbb{C}^{*}} \cong R_{2}^{-1}(1)$.

Proof of Theorem 1.2. The assertion follows from Theorem 2.1, Theorem 3.1 and Theorem 4.2.

5. Homotopy fibers

In this section we give the proof of Theorem 1.3.

Lemma 5.1. \quad There is a homotopy equivalence $H F_{d}^{*}(n) \simeq H F_{d}(n)$.

Proof. Consider the evaluation map $e: \operatorname{Map}_{d}(n) \rightarrow \mathbb{C P} n$ given by $e(f)=$ $f\left(\mathbf{e}_{n}\right)$. Then it follows from the fibration sequence (2.3) and [3, Lemma 2.1] that there is a commutative diagram

such that all horizontal and vertical sequences are fibration sequences. Then the assertion easily follows from the diagram chasing.

Proof of Theorem 1.3. It suffices to show that $H F_{d}^{*}$ is simply connected. If $d=1$, the assertion follows from Theorem 1.1, and assume $d \geq 2$. Because $i_{d *}: \pi_{1}\left(\operatorname{Hol}_{d}^{*}(n)\right) \stackrel{\cong}{\rightrightarrows} \pi_{1}\left(\operatorname{Map}_{d}^{*}(n)\right)$ is bijective by [14], it is sufficient to show that i_{d} induces a surjection on π_{2}.

Let $i^{\prime \prime}: \mathbb{C P}{ }^{n-1} \rightarrow \mathbb{C} P^{n}$ denote the inclusion given by $i^{\prime \prime}\left(\left[x_{0}: \cdots: x_{n-1}\right]=\right.$ $\left[x_{0}: \cdots: x_{n-1}: 0\right]$, and define the restriction map $r^{\prime}: \operatorname{Map}_{d}^{*}\left(\mathbb{C P}{ }^{n}, \mathbb{C P}^{n}\right) \rightarrow$ $\operatorname{Map}_{d}^{*}\left(\mathbb{C P}^{n-1}, \mathbb{C P}^{n}\right)$ by $r^{\prime}(f)=f \circ i^{\prime \prime}$. Then we have the fibration sequence

$$
\begin{equation*}
F_{d}(n) \xrightarrow{j^{\prime}} \operatorname{Map}_{d}^{*}(n) \xrightarrow{r^{\prime}} \operatorname{Map}_{d}^{*}\left(\mathbb{C P}^{n-1}, \mathbb{C P}^{n}\right) . \tag{5.1}
\end{equation*}
$$

Define the map $g_{d}^{\prime \prime}: \Omega^{2 n} \mathbb{C} P^{n} \rightarrow F_{d}(n)$ by

$$
g_{d}^{\prime \prime}(\varphi)=\nabla \circ\left(\varphi_{d}^{n, n} \vee \varphi\right) \circ \mu^{\prime}: \mathbb{C P}^{n} \xrightarrow{\mu^{\prime}} \mathbb{C P}^{n} \vee S^{2 n} \xrightarrow{\varphi_{d}^{n, n} \vee \varphi} \mathbb{C} \mathrm{P}^{n} \vee \mathbb{C P}^{n} \xrightarrow{\nabla} \mathbb{C P}^{n}
$$

for $\varphi \in \Omega^{2 n} \mathbb{C P}^{n}$, where $\nabla: \mathbb{C P}^{n} \vee \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n}$ is a folding map, and $\mu^{\prime}: \mathbb{C P}^{n} \rightarrow \mathbb{C P}^{n} \vee S^{2 n}$ denotes the co-action map obtained by collapsing the hemisphere of $2 n$-cell $e^{2 n}$ in the mapping cone $\mathbb{C P}{ }^{n}=\mathbb{C P}^{n-1} \cup_{\gamma_{n-1}} e^{2 n}$. Note that $g_{d}^{\prime \prime}: \Omega_{0}^{2 n} \mathbb{C P} \xrightarrow{\sim} F_{d}(n)$ is a homotopy equivalence $([9])$. Let $\epsilon_{d}: \operatorname{Hol}_{d}^{*}(1) \rightarrow$ $H_{d}(n)$ be the inclusion given by $\left.\epsilon_{d}(f, g)\right)=\left(f, g, z_{2}^{d}, \cdots, z_{n}^{d}\right)$, where we identify $\operatorname{Hol}_{d}^{*}(1)$ with the space consisting of all pair $(f, g) \in \mathbb{C}\left[z_{0}, z_{1}\right]^{2}$ of homogenous polynomials of the same degree d with no common root except $\mathbf{0}_{2}=(0,0) \in \mathbb{C}^{2}$ such that the coefficient of z_{0}^{d} of f is 1 and that of g is 0 . It is routine to check
that the following diagram is homotopy commutative

where $E^{2 n-2}: S^{3} \rightarrow \Omega^{2 n-2} S^{2 n+1}$ denotes the ($2 n-2$)-fold suspension, $*[d]$ is the d-times loop sum with the identity map on $S^{2}, i: \operatorname{Hol}_{d}^{*}(1) \rightarrow \Omega_{d}^{2} \mathbb{C P}^{1}$ is an inclusion and the map ϵ is given by

$$
\epsilon(f)\left(x \wedge s_{2} \wedge s_{3} \wedge \cdots \wedge s_{n}\right)=\left[f(x): s_{2}: \cdots: s_{n}\right]
$$

for $(f, x) \in \Omega_{0}^{2} \mathbb{C P}{ }^{1} \times S^{2}$ and $s_{j} \in S^{1}(j=2,3, \cdots, n)$.
Since $\operatorname{Map}_{d}^{*}\left(\mathbb{C P}^{n-1}, \mathbb{C P}^{n}\right)$ is 2-connected ([9]), the map j^{\prime} induces a surjection on π_{2}. By Theorem 1.1, $i_{*}: \pi_{2}\left(\operatorname{Hol}_{d}^{*}(1)\right) \rightarrow \pi_{2}\left(\Omega_{d}^{2} \mathbb{C} P^{1}\right)$ is an isomorphism if $d \geq 3$ and an epimorphism if $d=2$. Because $\Omega^{2} E_{*}^{2 n-2}: \pi_{2}\left(\Omega^{2} S^{3}\right) \xrightarrow{\cong}$ $\pi_{2}\left(\Omega^{2 n} S^{2 n+1}\right)$ is an isomorphism, by applying π_{2} to the diagram (5.2), we see that $i_{d *}: \pi_{2}\left(\operatorname{Hol}_{d}^{*}(n)\right) \rightarrow \pi_{2}\left(\operatorname{Map}_{d}^{*}(n)\right)$ is also a surjection.

Acknowledgements. The author is indebted to Professors M. A. Guest, A. Kozlowski and M. Murayama for numerous helpful conversations concerning the topology of spaces of holomorphic maps and covering spaces.

> Department of Information Mathematics University of Electro-Communications Chofu, Tokyo 182-8585, Japan e-mail: kohhei@im.uec.ac.jp

References

[1] M. F. Atiyah and J. D. S. Jones, Topological aspects of Yang-Mills theory, Comm. Math. Phys. 59 (1978), 97-118.
[2] C. P. Boyer, J. C. Hurtubise, B. M. Mann and R. J. Milgram, The topology of instanton moduli spaces, I: The Atiyah-Jones conjecture, Ann. of Math. 137 (1993), 561-609.
[3] F. R. Cohen, J. C. Moore and J. A. Neisendorfer, The double suspension and exponents of the homotopy groups of spheres, Ann. of Math. 110 (1979), 549-565.
[4] D. A. Cox, J. Little and D. O'Shea, Using algebraic geometry, Grad. Texts in Math. 185, Springer-Veralg, 2005.
[5] M. A. Guest, A. Kozlowski, M. Murayama and K. Yamaguchi, The homotopy type of spaces of rational functions, J. Math. Kyoto Univ. 35 (1995), 631-638.
[6] M. A. Guest, A. Kozlowski and K. Yamaguchi, Spaces of polynomials with roots of bounded multiplicity, Fund. Math. 116 (1999), 93-117.
[7] I. M. Gelfand, M. M. Kapranov and A. V. Zelevinsky, Discriminants, resultants and multidimensional determinants, Birkhäuser, 1994.
[8] A. Kozlowski and K. Yamaguchi, Spaces of holomorphic maps between complex projective spaces of degree one, Topology Appl. 132 (2003), 139145.
[9] J. M. Møller, On spaces of maps between complex projective spaces, Proc. Amer. Math. Soc. 91 (1984), 471-476.
[10] J. Mostovoy, Spaces of rational maps and the Stone-Weierstrass Theorem, Topology 45 (2006), 281-293.
[11] Y. Ono and K. Yamaguchi, Group actions on spaces of rational functions, Publ. Res. Inst. Math. Sci. 39 (2003), 173-181.
[12] S. Sasao, The homotopy of $\operatorname{Map}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right)$, J. London Math. Soc. 8 (1974), 193-197.
[13] G. B. Segal, The topology of spaces of rational functions, Acta Math. 143 (1979), 39-72.
[14] K. Yamaguchi, Fundamental groups of spaces of holomorphic maps and group actions, J. Math. Kyoto Univ. 44 (2004), 479-492.

