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Existence and uniqueness of positive periodic
solutions for a class of differential delay

equations

By

Min-Jei Huang and Duo-Yuan Chen

Abstract

The existence of a unique positive periodic solution for the differen-
tial delay equation x′(t) = −a(t)x(t) + b(t)f (x(t − c(t))) is established.
Our method is based on Hilbert’s projective metric and the contraction
mapping principle.

1. Introduction

Much work has been carried out on the existence of positive periodic solu-
tions for various types of functional differential equations (see, e.g., [3], [6], [8]
and references therein). One of the most common approaches to a problem of
this nature is to use Krasnoselskii’s fixed-point theorem ([5]). In this paper we
consider the differential delay equation

(1.1) x′(t) = −a(t)x(t) + b(t)f (x(t − c(t))) ,

where a, b and c are continuous ω-periodic real-valued functions with
∫ ω

0
a(t)dt

> 0,
∫ ω

0
b(t)dt > 0 and b(t) ≥ 0 for t ∈ R. Under certain conditions on f , we

shall show that the equation (1.1) has a unique positive ω-periodic solution.
The technique of proof is based on the following observation. Solving (1.1) is
equivalent to finding a continuous ω-periodic function x(t) such that

(1.2) x(t) =
∫ t+ω

t

G(t, s)b(s)f (x(s − c(s))) ds,

where

G(t, s) =
e

R s
t

a(u)du

e
R ω
0 a(u)du − 1

, 0 ≤ t ≤ ω, t ≤ s ≤ t + ω.
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Equation (1.2) is a fixed-point equation for the map

(Ax) (t) =
∫ t+ω

t

G(t, s)b(s)f (x(s − c(s)))ds.

The idea is to introduce Hilbert’s projective metric on an appropriate cone in
which the contraction mapping principle can be applied.

Much of the work in this paper is motivated by results which appear in
Bushell [1] and Potter [7]. In Section 2, we introduce the projective metric and
review the basic properties of positive operators. Section 3 contains an estimate
of the contraction ratio for the linear integral operator

(Lx) (t) =
∫ t+ω

t

G(t, s)b(s)x(s)ds.

The main results are given in Theorems 4.1 and 4.2.

2. Projective metric

Let X be a real Banach space, and let K be a closed solid cone in X, that
is, a closed subset K with the properties: (i) K̊, the interior of K, is not empty,
(ii) aK + K ⊂ K for all a ≥ 0 and (iii) K ∩ (−K) = {0}. Then K defines a
reflexive and transitive partial ordering on X by x ≤ y if and only if y−x ∈ K.

For x, y ∈ K̊, we let

M(x, y) = inf {λ : x ≤ λy} and m(x, y) = sup {µ : µy ≤ x} .

The Hilbert projective metric is defined in K̊ by

d(x, y) = log
M(x, y)
m(x, y)

.

Lemma 2.1 (Bushell [1]). For x, y ∈ K̊,

(a) 0 < m(x, y) ≤ M(x, y) < ∞.

(b) m(x, y)y ≤ x ≤ M(x, y)y.

(c) d(λx, µy) = d(x, y) for all λ, µ > 0.

We define for r > 0, Er =
{

x ∈ K̊ : ‖x‖ = r
}
. Then {Er, d} is a metric

space for all r > 0 ([1]). Moreover,

Lemma 2.2 (Bushell [2], Huang-Huang-Tsai [4]). Suppose that the
norm in X is monotonic, that is, 0 ≤ x ≤ y implies ‖x‖ ≤ ‖y‖. Then {Er, d}
is a complete metric space for all r > 0.

Definition 2.1. Let T : K̊ → K̊, and let p ∈ R. We say that
(a) T is increasing (respectively, decreasing) if x, y ∈ K̊ and x ≤ y imply

Tx ≤ Ty (respectively, Tx ≥ Ty).
(b) T is homogeneous of degree p if T (λx) = λpTx for all x ∈ K̊ and λ > 0.
(c) T is p-concave (respectively, p-convex) if T (λx) ≥ λpTx (respectively,

T (λx) ≤ λpTx) for all x ∈ K̊ and 0 < λ < 1.
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If T is homogeneous of degree p, it is clear that T is p-concave and p-convex.
Note that T is p-concave (respectively, p-convex) if and only if T (µx) ≤ µpTx
(respectively, T (µx) ≥ µpTx) for all x ∈ K̊ and µ > 1. An important fact is that
increasing p-concave and decreasing (−p)-convex operators are p-contractions
in Hilbert’s projective metric.

Theorem 2.1 (Potter [7]). Let the norm in X be monotonic, and let p
≥ 0. Suppose that T : K̊ → K̊ is either increasing p-concave or decreasing

(−p)-convex. Then

d (Tx, Ty) ≤ pd (x, y) for all x, y ∈ Er.

Definition 2.2. If T : K̊ → K̊, the projective diameter 	(T ) of T is
defined by

	(T ) = sup
{

d (Tx, Ty) : x, y ∈ K̊
}

,

and the contraction ratio k(T ) of T is defined by

k(T ) = inf
{

λ : d (Tx, Ty) ≤ λd (x, y) for all x, y ∈ K̊
}

.

If T is linear, there is a relation between its contraction ratio and its
projective diameter.

Theorem 2.2 (Bushell [1]). If T : K̊ → K̊ is a linear mapping, then

k(T ) = tanh
	(T )

4
.

3. Preliminaries

Throughout this paper, we shall assume that X is the Banach space of
continuous ω-periodic real-valued functions on R with the norm

‖x‖ = sup {|x(t)| : 0 ≤ t ≤ ω} ,

and that K is the closed cone of nonnegative functions in X so that K̊ is the
set of positive functions in X. Note that the norm in X is monotonic.

We consider the differential delay equation of the form

(3.1) x′(t) = −a(t)x(t) + b(t)f (x(t − c(t)))

and suppose that
(H1) a(t), b(t) and c(t) are continuous ω-periodic real-valued functions.
(H2) α ≡ ∫ ω

0
a(t)dt > 0.

(H3) β ≡ ∫ ω

0
b(t)dt > 0 and b(t) ≥ 0 for t ∈ R.

(H4) the function f is continuous and positive.
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To study the existence of positive ω-periodic solutions for (3.1), we define
the nonlinear integral operator A : K̊ → K̊ by

(Ax) (t) =
∫ t+ω

t

G(t, s)b(s)f (x(s − c(s)))ds,

where

G(t, s) =
e

R s
t

a(u)du

eα − 1
, 0 ≤ t ≤ ω, t ≤ s ≤ t + ω.

An elementary computation then shows that the existence of a unique positive
ω-periodic solution of (3.1) is equivalent to the existence of a unique fixed point
of A in K̊.

Now define F : K̊ → K̊ by

(3.2) (Fx) (t) = f (x(t − c(t)))

and define the linear integral operator L : K̊ → K̊ by

(3.3) (Lx) (t) =
∫ t+ω

t

G(t, s)b(s)x(s)ds

so that A = L ◦ F .
We shall require some estimates concerning the projective diameter 	(L)

of L. For this, let

a∗ = max
0≤t≤ω

a(t) and a∗ = min
0≤t≤ω

a(t).

Since α > 0, we have a∗ > 0. Let us consider first the case a∗ < 0. In this case,

(3.4)
ea∗ω

eα − 1
≤ G(t, s) ≤ ea∗ω

eα − 1

for 0 ≤ t ≤ ω and t ≤ s ≤ t + ω. So, if x ∈ K̊, we have

ea∗ω

eα − 1

∫ ω

0

b(s)x(s)ds ≤ (Lx) (t) ≤ ea∗ω

eα − 1

∫ ω

0

b(s)x(s)ds

for 0 ≤ t ≤ ω. This implies that

M (Lx, x0) ≤ ea∗ω

eα − 1

∫ ω

0

b(s)x(s)ds

and

m (Lx, x0) ≥ ea∗ω

eα − 1

∫ ω

0

b(s)x(s)ds,

where x0(t) ≡ 1 for all t ∈ R. It follows from the definition of d that

d (Lx, x0) ≤ (a∗ − a∗)ω for all x ∈ K̊,
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and hence, by the triangle inequality, that

d (Lx, Ly) ≤ 2 (a∗ − a∗)ω for all x, y ∈ K̊.

This shows that

	(L) ≤ 2 (a∗ − a∗)ω.

Considering next the case a∗ ≥ 0, we have

(3.5)
1

eα − 1
≤ G(t, s) ≤ eα

eα − 1

for 0 ≤ t ≤ ω and t ≤ s ≤ t+ω. From this, we obtain in the same way as above
the result that

	(L) ≤ 2α.

Since L is linear, we can now apply Theorem 2.2 to obtain the following lemma.

Lemma 3.1. Let L be given by (3.3). Then the contraction ratio k(L)
of L satisfies

k(L) ≤
{

1/δ if a∗ < 0
1/η if a∗ ≥ 0,

where

δ =
e(a∗−a∗)ω + 1
e(a∗−a∗)ω − 1

and η =
eα + 1
eα − 1

.

4. Main results

We consider first the case f(x) = xp so that (3.1) is now

(4.1) x′(t) = −a(t)x(t) + b(t) [x(t − c(t))]p .

Theorem 4.1. Suppose that (H1) to (H3) hold.
(a) If a∗ < 0, then the equation (4.1) has a unique positive ω-periodic

solution provided −δ < p < δ and p �= 1.
(b) If a∗ ≥ 0, then the equation (4.1) has a unique positive ω-periodic

solution provided −η < p < η and p �= 1.

Proof. By our remarks at the beginning of Section 3, the theorem will be
proved when it is shown that the operator A = L ◦ F has a unique fixed point
in K̊. Here, F : K̊ → K̊ is defined by

(Fx) (t) = [x(t − c(t))]p ,

which is homogeneous of degree p.
If p ≥ 0, then F is increasing. If, on the other hand, p < 0, then F is

decreasing. In either case, we have

(4.2) d (Fx, Fy) ≤ |p| d (x, y) for all x, y ∈ E1
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by Theorem 2.1. Now consider the operator Ã : E1 → E1 given by

Ãx = Ax/ ‖Ax‖ .

It follows from Lemma 2.1(c), Lemma 3.1 and (4.2) that for all x, y ∈ E1,

d
(
Ãx, Ãy

)
= d (L(Fx), L(Fy)) ≤ k(L)d (Fx, Fy)

≤
{ |p|

δ d (x, y) if a∗ < 0
|p|
η d (x, y) if a∗ ≥ 0

,

where |p| /δ < 1 and |p| /η < 1 by our hypotheses on p. Thus, Ã is a contraction
in Hilbert’s projective metric. Since {E1, d} is complete, there exists a unique z

in E1 such that Ãz = z. Thus, Az = ‖Az‖ z. If we set x = ‖Az‖ 1
1−p z, it follows

that x is the unique fixed point of A in K̊. This proves the theorem.

Remark 1. Theorem 4.1 may not be true in the linear case p = 1. For
example, if b(t) ≡ b > 0 and c(t) ≡ 0 for all t, where b �= α/ω, then the equation
x′(t) = −a(t)x(t) + bx(t) has no positive ω-periodic solution.

We consider next the case where
(H5) f : [0,∞) → (0,∞) is a continuous decreasing function and satisfies

f(λx) ≤ λpf(x) for all x ≥ 0 and 0 < λ < 1.

Obviously in (H5) it is necessary that p ≤ 0. Simple examples of such f are
given by f(x) = (1 + x)p + (1 + x)q , where p < q ≤ 0 or f(x) = 1/ log (2 + x)
for p = −1.

Theorem 4.2. Suppose that (H1), (H2), (H3) and (H5) hold.
(a) If a∗ < 0, then the equation (3.1) has a unique positive ω-periodic

solution provided −δ < p ≤ 0.
(b) If a∗ ≥ 0, then the equation (3.1) has a unique positive ω-periodic

solution provided −η < p ≤ 0.

Proof. Since f satisfies condition (H5), the operator F defined by (3.2)
is decreasing and p-convex. Thus, by Theorem 2.1,

d (Fx, Fy) ≤ |p| d (x, y) for all x, y ∈ Er.

Now for each r > 0, define Ar : Er → Er by

Arx = rAx/ ‖Ax‖ .

As in the proof of Theorem 4.1, we find that

d (Arx, Ary) ≤
{ |p|

δ d (x, y) if a∗ < 0
|p|
η d (x, y) if a∗ ≥ 0
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for all x, y ∈ Er. So, Ar is a contraction by our hypotheses on p. Since {Er, d} is
complete, Ar has a unique fixed point in Er. Thus, for each r > 0, there exists a
unique pair (xr, λr) ∈ Er×(0,∞) such that Axr = λrxr, where λr = ‖Axr‖ /r.
We now want to prove that there is exactly one r such that λr = 1. This will
imply that the operator A has a unique fixed point in K̊, and so, by our previous
remarks, the theorem follows.

Since f is decreasing and xr ∈ Er, we have

f(r) ≤ f (xr(s − c(s))) ≤ f(0) for all s.

Thus, by (3.4) and (3.5), we find that{
ea∗ω

eα−1f(r)β ≤ ‖Axr‖ ≤ ea∗ω

eα−1f(0)β if a∗ < 0
1

eα−1f(r)β ≤ ‖Axr‖ ≤ eα

eα−1f(0)β if a∗ ≥ 0
,

where β =
∫ ω

0
b(t)dt > 0. In either case, we conclude that

(4.3) lim
r→0

λr = ∞ and lim
r→∞λr = 0.

The continuity of f implies that A : K̊ → K̊ is continuous in the norm
topology. By an argument similar to that in the proof of Theorem 3.4 ([4]),
we can prove that the mapping r → λr is continuous. Moreover, it is strictly
decreasing. To prove this, let r < s and for simplicity of notation, let M =
M (xs, xr) and m = m (xs, xr). Then mxr ≤ xs ≤ Mxr. Since the norm is
monotonic, we have mr ≤ s ≤ Mr so that M ≥ s

r > 1. We now show that
m > 1 also. Suppose on the contrary that m ≤ 1. Then, since F is decreasing
and p-convex,

mpFxr ≥ F (mxr) ≥ Fxs ≥ F (Mxr) ≥ MpFxr.

This gives {
M (Fxs, Fxr) ≤ mp

m (Fxs, Fxr) ≥ Mp

and so d (Fxs, Fxr) ≤ |p| d (xs, xr). It follows that

d (xs, xr) = d (Axs, Axr) ≤ k(L)d (Fxs, Fxr) ≤ k(L) |p| d (xs, xr) .

But k(L) |p| < 1 and so d (xs, xr) = 0. As a result, M = m, which contradicts
the fact that M > 1. Hence m > 1 and so xr ≤ xs. Since A is decreasing,
we have λsxs = Axs ≤ Axr = λrxr so that xs ≤ (λr/λs) xr. This gives
(λr/λs) ≥ M > 1 and therefore λr > λs as required.

The fact that there is exactly one r such that λr = 1 now follows from
(4.3) and the intermediate value theorem. This completes the proof of the
theorem.

Remark 2. (a) The result of Theorem 4.2 is only proved in [6] if −1 <
p ≤ 0. (b) The argument in the proof of Theorem 4.2 cannot be applied directly
to the case f(x) = xp, p < 0, since f(0) is undefined.
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Finally, We consider the case where

(H6) f : (0,∞) → (0,∞) is a continuous increasing function and satisfies

f(λx) ≥ λpf(x) for all x > 0 and 0 < λ < 1.

Obviously in (H6) it is necessary that p ≥ 0. Then the operator F defined
by (3.2) is increasing and p-concave. Since L is linear and positive, it follows
that A = L◦F is increasing and p-concave. By Theorem 3.4 of [4], we have the
following result.

Theorem 4.3. Suppose that (H1), (H2), (H3) and (H6) hold, where
0 ≤ p < 1. Then the equation (3.1) has a unique positive ω-periodic solution.

Remark 3. (a) Theorem 4.3 is also proved in [6]. (b) The requirement
0 ≤ p < 1 is critical for Theorem 4.3 to hold. Indeed, the function f(x) = x
satisfies condition (H6) for any p ≥ 1. However, the example in Remark 1 shows
that the conclusion of Theorem 4.3 is not true in this linear case.
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