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Strong unique continuation property for some
second order elliptic systems with two

independent variables

By

Makoto Sanada

Abstract

We show the strong unique continuation property for certain elliptic
systems of second order with two independent variables.

1. Introduction

In this paper we prove the strong unique continuation property for some
second order systems with two independent variables. As far as we know, there
are few results for second order systems. On the other hand, there are many
results for first order systems (for example [1], [3], [4] and [5]). In [3], Hile and
Protter obtained an interesting result. They considered a system of the form

(1.1) |∂xu + N(x, y)∂yu| ≤ M |u| for all (x, y) ∈ Ω

where Ω is a nonempty open connected subset of R2 containing the origin and
N(x, y) is an n×n matrix with complex entries of the class C1(Ω). They proved,
roughly speaking, that if N is a normal elliptic matrix, any u satisfying (1.1)
and

(1.2) lim
r→0

exp (x2 + y2)−β/2u(x, y) = 0 for all β ≥ 0

vanishes in Ω where r =
√

x2 + y2.
Okaji improved (1.2) in [5]. He proved that: Suppose that all the eigen-

values of N(0, 0) are ζ or ζ̄ with a non-real complex number ζ. Then there is a
positive constant M0 such that if u ∈ C1 satisfies the inequality

(1.3) |∂xu + N(x, y)∂yu| ≤ M |u|/r for all (x, y) ∈ Ω

with M < M0 and vanishes of infinite order at the origin, then u is identically
zero.
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Assuming that u verifies (1.3) and vanishes of infinite order at the origin
he derives a stronger vanishing of u at the origin. Therefore he could use a
stronger weight function than the usual weight r−β.

We study the strong unique continuation property of solutions to some
second order elliptic systems verifying (1.2) or vanishing of infinite order at
the origin. In both cases we reduce our system to a first order system. In
particular, in the case that u vanishes of infinite order at the origin we use a
similar method as [5]. Then we shall apply Grammatico’s result in [2].

We emphasize that there is no regularity assumptions on the eigenvalues
of N as well as in [3] and [5].

2. Main results

Let Ω be a nonempty open connected subset of R2 containing the origin.
We define Ω̇ = Ω\{0} and B(ρ) = {(x, y); x2 + y2 ≤ ρ2}. We denote by r
the distance between (x, y) and the origin. The letter C stands for a generic
constant whose value may vary from line to line. X1(Ω) denotes the class of
functions f defined on Ω satisfying the following properties (2.1) and (2.2):

(2.1) f(x, y) ∈ C0(Ω̄) ∩ C1(Ω̇)

where Ω̄ is the closure of Ω and

(2.2) |∇f(x, y)| = O(r−1)

where we shall use the notation g(x, y) = O(h(x, y)) if

lim
ρ→0

sup
0≤r≤ρ

|g(x, y)/h(x, y)| < ∞.

X1,κ(Ω) denotes the class of functions f ∈ X1(Ω) satisfying the following prop-
erties (2.3) and (2.4): f(x, y) is Hölder continuous of order κ, that is, there
exists a positive C such that

(2.3) |f(x, y) − f(x′, y′)| ≤ C|(x, y) − (x′, y′)|κ

for all (x, y), (x′, y′) ∈ Ω and

(2.4) |∇f(x, y)| = o(r−1)

where we shall use the notation g(x, y) = o(h(x, y)) if

lim
ρ→0

sup
0≤r≤ρ

|g(x, y)/h(x, y)| = 0.

Put L(k) = ∂x + Nk(x, y)∂y, k = 1, 2 where Nk(x, y) is an n× n normal matrix
with complex entries of the class X1(Ω). Moreover we shall assume that there
exists a positive number δ such that

|Imλ
(k)
j (x, y)| ≥ δ j = 1, 2, . . . , n

for all (x, y) ∈ Ω where λ
(k)
j (x, y), j = 1, 2, . . . , n, are the eigenvalues of Nk(x, y).
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Theorem 2.1. Let L = L(1)L(2). Let u ∈ H2
loc(Ω;Cn) satisfy

(2.5) |Lu| ≤ C0r
−β0 |u| + C1r

−1|∇u|
with some C0, C1 ≥ 0 and β0 ∈ R. If u satisfies

(2.6) lim
r→0

exp(r−β)
∫

B(r)

(|u|2 + |∇u|2)dxdy = 0 for all β > 0,

then u is identically zero in Ω.

Corollary 2.1. Let L = ∂2
x+A(x, y)∂2

y where A(x, y) is an n×n normal
matrix with complex entries of the class X1(Ω). Let µj(x, y), j = 1, 2, . . . , n, be
the eigenvalues of A(x, y) and suppose that there exists a positive number δ
such that

dist(µj(x, y), (−∞, 0]) ≥ δ j = 1, 2, . . . , n

for all (x, y) ∈ Ω. Let u ∈ H2
loc(Ω;Cn) satisfy (2.5) with some C0, C1 ≥ 0 and

β0 ∈ R. If u satisfies (2.6), then u is identically zero in Ω.

Corollary 2.2. Let L = ∂2
x+2B(x, y)∂2

xy +A(x, y)∂2
y where A(x, y) and

B(x, y) are n × n Hermitian matrices with complex entries of the class X1(Ω)
and satisfy AB = BA. Suppose that L is elliptic, that is, there exists a positive
δ such that

(2.7) ((ξ2 + 2B(x, y)ξη + A(x, y)η2)v, v) ≥ δ(ξ2 + η2)1/2|v|2

for any (ξ, η) ∈ R2 \{(0, 0)} and any v ∈ Cn. Let u ∈ H2
loc(Ω;Cn) satisfy (2.5)

with some C0, C1 ≥ 0 and β0 ∈ R. If u satisfies (2.6), then u is identically zero
in Ω.

Remark 1. For L = L(1)L(2) · · ·L(m), we obtain a similar result as
Theorem 2.1 if Nk(x, y), k = 1, 2, . . . , m, belong to the class Cm(Ω).

Next we relax the assumption (2.6). In this case, we consider the system
of differential operators L = ∂2

x + N(x, y)2∂2
y where N(x, y) is an n×n normal

matrix with complex entries of the class X1,κ(Ω). Let λj(x, y), j = 1, 2, . . . , n,
be eigenvalues of N(x, y). We suppose that there exists a positive number δ
such that

|Reλj(x, y)| ≥ δ j = 1, 2, . . . , n

for all (x, y) ∈ Ω. Moreover we suppose that there exists a ∈ R such that

λj(0, 0) = a or − a j = 1, 2, . . . , n.

Theorem 2.2. Let u ∈ H2
loc(Ω;Cn) satisfy

(2.8) |Lu| ≤ C0r
−2|u| + C1r

−1|∇u|
with C0 ≥ 0 and 0 ≤ C1 < min{1, |a|}/√2. If u satisfies

(2.9) lim
r→0

r−β

∫
B(r)

(|u|2 + |∇u|2)dxdy = 0 for all β > 0,

then u is identically zero in Ω.
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Remark 2. In [6], he proved a similar result as Theorem 2.2 with n = 1
in Rd.

Corollary 2.3. Let L = ∂2
x+A(x, y)∂2

y , where A(x, y) is an n×n normal
matrix with complex entries of the class X1,κ(Ω). Let µj(x, y) be eigenvalues of
A(x, y) and suppose that there exists a positive number δ such that

dist(µj(x, y), (−∞, 0]) ≥ δ j = 1, 2, . . . , n

for all (x, y) ∈ Ω. Moreover we suppose that there exists a positive number a
such that

µj(0, 0) = a j = 1, 2, . . . , n.

Let u ∈ H2
loc(Ω;Cn) satisfy (2.8) with C0 ≥ 0 and 0 ≤ C1 < min{1,

√
a}/√2.

If u satisfies (2.9), then u is identically zero in Ω.

3. Proof of Theorem 2.1

Let P = ∂x + M(x, y)∂y where M(x, y) is an n × n normal matrix with
complex entries of the class C0(Ω̄) ∩ C1(Ω) and

|Im(eigenvalues of M(x, y))| ≥ δ.

Then in [3], they proved the following estimate.

Proposition 3.1 (Hile and Protter [3]). There exists a positive C such
that

(3.1) C

∫∫
Ω

e2ϕ|Pu|2dxdy ≥ β2

∫∫
Ω

e2ϕr−β−2|u|2dxdy

for any u ∈ C1
0 (Ω) and any large β where ϕ = r−β.

Remark 3. In [3], they assume M(x, y) ∈ C0(Ω̄) ∩ C1(Ω). We obtain
the same result if M(x, y) ∈ X1(Ω).

We may assume Ω ⊂ B(1). By Proposition 3.1 we have the following
Carleman estimate.

Lemma 3.1. There exists a positive C such that

C

∫∫
e2ϕr−2γ |L(2)u|2dxdy ≥ β2

∫∫
e2ϕr−β−2−2γ |u|2dxdy

for any large β and any u ∈ C1
0 (Ω̇) where ϕ = r−β and γ is a linear function

of β.

Proof. Applying (3.1) with P = L(2) and u = r−γu, we have

C

∫∫
e2ϕ|L(2)(r−γu)|2dxdy ≥ β2

∫∫
e2ϕr−β−2−2γ |u|2dxdy.



S.U.C.P for second order elliptic systems with two independent variables 813

Since L(2) is a first order operator

|L(2)(r−γu)|2 ≤ Cr−2γ |L(2)u|2 + Cγ2r−2γ−2|u|2.
Therefore we obtain the desired estimate in Lemma 3.1 if β is large enough.

We require the following elliptic estimate.

Lemma 3.2. There exists a positive C such that∫∫
|∇u|2dxdy ≤ C

∫∫
(|L(2)u|2 + |u|2)dxdy

for any u ∈ C1
0 (Ω̇).

Proof. Using a partition of unity, we reduce the problem to the case of
finite number of constant matrices {N2(xj , yj)}N

j=1. Then the assertion can be
easily verified in the standard manner.

Applying Lemma 3.2 with u = eϕr−γu, we have the following elliptic
estimate with weight function.

Lemma 3.3. There exists a positive C such that∫∫
e2ϕr−2γ |∇u|2dxdy ≤ C

∫∫
e2ϕr−2γ(|L(2)u|2 + β2r−2β−2|u|2)dxdy

for any u ∈ C1
0 (Ω̇) and any large β where γ = γ0β + γ1 with γ0, γ1 ∈ R.

In order to prove Theorem 2.1, it suffices to prove the following Carleman
estimate.

Proposition 3.2. There exists a positive number C such that∫
Ω

e2ϕ|Lu|2dxdy ≥ Cβ2

∫
Ω

e2ϕr−2|∇u|2dxdy + Cβ4

∫
Ω

e2ϕr−2β−4|u|2dxdy

for all large β ≥ 0 and any u ∈ C2
0 (Ω̇).

Proof. Applying (3.1) with P = L(1) and u = L(2)u, we have

(3.2) C

∫∫
e2ϕ|Lu|2dxdy ≥ β2

∫∫
e2ϕr−β−2|L(2)u|2dxdy.

By Lemma 3.1 we have

(3.3) β2

∫∫
e2ϕr−β−2|L(2)u|2dxdy ≥ β4

∫∫
e2ϕr−2β−4|u|2dxdy.

On the other hand, by Lemma 3.3 we have

β2

∫∫
e2ϕr−β−2|L(2)u|2dxdy ≥ β2

∫∫
e2ϕr−2|L(2)u|2dxdy

≥ Cβ2

∫∫
e2ϕr−2|∇u|2dxdy − Cβ4

∫∫
e2ϕr−2β−4|u|2dxdy.

(3.4)
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Combining (3.2), (3.3) and (3.4), we obtain the desired estimate in Proposition
3.2.

Next we shall prove Corollary 2.1.

Proof. We define

B(x, y) = (2πi)−1

∮
Γ

√
ζ (ζ − A(x, y))−1dζ

where Γ is a closed curve in C\(−∞, 0] enclosing µj(x, y) (j = 1, 2, . . . , n),
symmetric with respect to the real axis and

√
ζ means r1/2eθ/2 when ζ = reθ.

Then applying Theorem 2.1 with N1(x, y) = iB(x, y) and N2(x, y) = −iB(x, y),
we can prove Corollary 2.1. In fact, from the first resolvent equation

(z − A)−1(ζ − A)−1 = {(z − A)−1 − (ζ − A)−1}/(ζ − z),

we have

B2 = (2πi)−2

∮
Γ

√
z (z − A)−1dz

∮
Γ−

√
ζ (ζ − A)−1dζ

= (2πi)−2

∮
Γ

√
z (z − A)−1{

∮
Γ−

√
ζ /(ζ − z)dζ}dz

+ (2πi)−2

∮
Γ−

√
ζ (ζ − A)−1{

∮
Γ

√
z /(z − ζ)dz}dζ

where Γ− is a closed curve inside Γ and satisfies the same conditions as Γ. From∮
Γ−

√
ζ /(ζ − z)dζ = 0 and (2πi)−1

∮
Γ

√
z /(z − ζ)dz =

√
ζ,

it verifies

B(x, y)2 = (2πi)−1

∮
Γ−

ζ(ζ − A)−1dζ = A(x, y).

In what follows, we denote this B(x, y) by
√

A(x, y). Since Γ is symmetric, we
have √

A(x, y)
∗

= (2πi)−1

∮
Γ

√
ζ (ζ − A(x, y)∗)−1dζ.

Hence it easily follows that
√

A(x, y) is a normal matrix. Moreover it is easy
to see that the eigenvalues of

√
A(x, y) are √

µj and entries of
√

A(x, y) belong
to X1(Ω).

In the rest of this section, we shall prove Corollary 2.2.

Proof. From our hypothesis, there exists a unitary matrix U(x, y) such
that

U∗AU = diag




λ1

. . .
λn


 and U∗BU = diag




µ1

. . .
µn


 .
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Hence

U∗(A − B2)U = diag




λ1 − µ2
1

. . .
λn − µ2

n


 .

By (2.7) we see that λj(x, y)−µj(x, y)2 ≥ δ (j = 1, 2, . . . , n) for any (x, y) ∈ Ω.
Repeating the same arguments as the proof of Corollary 2.1 we can define√

A(x, y) − B(x, y)2. Since eigenvalues of
√

A − B2 are
√

λj − µ2
j and µj ∈ R,

we have

|Im(eigenvalues of B ± i
√

A − B2)| = |Im(µj ± i
√

λj − µ2
j )|

=
√

λj − µ2
j ≥ δ.

By Theorem 2.1 with N1(x, y) = B(x, y)+i
√

A(x, y) − B(x, y)2 and N2(x, y) =
B(x, y) − i

√
A(x, y) − B(x, y)2, we obtain the desired conclusion of Corollary

2.2.

4. Proof of Theorem 2.2

First we shall give the proof of Theorem 2.2 with a = 1. We consider

L0 = ∂2
xu + N(0, 0)2∂2

yu.

Then the first result we will show is the Carleman estimate of L0.

Proposition 4.1. For an arbitrary positive B < 1, there exists a posi-
tive number β0(B) such that if β ≥ β0 with β ∈ N + 1/2 then

(1 + ε)
∫∫

r−2β+2|L0u|2dxdy

≥ B/2
∫∫

r−2β|∇u|2dxdy + εβ2/4
∫∫

r−2β−2|u|2dxdy.

for any u ∈ C2
0 (Ω̇) and any positive ε.

Proof. By our hypothesis there exists a unitary matrix U0 such that
U−1

0 L0U0 = (∂2
x+∂2

y)I. Introduce the polar coordinates (x, y) = (r cos θ, r sin θ)
and making the change of variables z = log r we see the following.

Lemma 4.1. For arbitrary B < 1 and B′ < 1, there exists a positive
β0 = β0(B, B′) such that if β ≥ β0 with β ∈ N + 1/2 then

(1 + ε)
∫∫

e−2βz|(∂2
z + ∂2

θ )u|2dzdθ ≥ αB

∫∫
e−2βz|∂θu|2dzdθ

+ (1 − α)B′
∫∫

e−2βz|∂zu|2dzdθ + εβ2/4
∫∫

e−2βz|u|2dzdθ

for any positive ε > 0, any α ∈ [0, 1] and u ∈ C2
0 (Ω̇).
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Proof. We use the same method as [2]. We show it briefly (see [2] in
detail). Putting u = eβzv, we have∫∫

e−2βz|(∂2
z + ∂2

θ )u|2dzdθ =
∫∫

|∂2
zv + 2β∂zv + β2v + ∂2

θv|2dzdθ.

By integration by parts, it follows that

2Re(∂2
zv, ∂zv) = 2Re(∂zv, v) = 2Re(∂zv, ∂2

θv) = 0,

2Re(∂2
zv, v) = −2‖∂zv‖2,

2Re(∂2
zv, ∂2

θv) = 2‖∂2
z,θv‖2,

2Re(v, ∂2
θv) = −2‖∂θv‖2,

where (·, ·) is the L2 inner product, and ‖ · ‖ is the L2 norm. Therefore, we
have∫∫

e−2βz|(∂2
z + ∂2

θ )u|2dzdθ ≥ 2β2‖∂zv‖2 + ‖∂2
θv‖2 − 2β2‖∂θv‖2 + β4‖v‖2.

We use Fourier series expansion of v(z, ·) ∈ L2(S1) :

v(z, θ) =
∑
k∈Z

vk(z)eikθ,

∫ 2π

0

|v|2dθ =
∑
k∈Z

|vk(z)|2.

Note that

∂θv(z, θ) =
∑
k∈Z

ikvk(z)eikθ,

∫ 2π

0

|∂θv|2dθ =
∑
k∈Z

k2|vk(z)|2,

∂2
θv(z, θ) =

∑
k∈Z

(−k2)vk(z)eikθ,

∫ 2π

0

|∂2
θv|2dθ =

∑
k∈Z

k4|vk(z)|2.

Thus, we have∫∫
e−2βz|(∂2

z + ∂2
θ )u|2dzdθ ≥ 2β2‖∂zv‖2 +

∑
k∈Z

(β2 − k2)2
∫

|vk|2dz.

For any positive B < 1, there exists β0(B) such that if β ≥ β0(B) with β ∈
N + 1/2, we have

∑
k∈Z

(β2 − k2)2
∫

|vk|2dz ≥ B
∑
k∈Z

k2

∫
|vk|2dz = B‖∂θv‖2.

Hence, we have

(4.1)
∫∫

e−2βz|(∂2
z + ∂2

θ )u|2dzdθ ≥ B

∫∫
e−2βz|∂θu|2dzdθ.
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On the other hand, for any positive B′, there exists β1(B′) such that if β ≥
β1(B′) with β ∈ N + 1/2, we have∑

k∈Z

(β2 − k2)2
∫

|vk|2dz ≥ B′β2
∑
k∈Z

∫
|vk|2dz = B′β2‖v‖2.

Hence, we have∫∫
e−2βz|(∂2

z + ∂2
θ )u|2dzdθ ≥ B′(β2‖v‖2 + ‖∂zv‖2)

≥ B′‖∂zv + βv‖2

= B′
∫∫

e−2βz|∂zu|2dzdθ.

(4.2)

Combining (4.1) and (4.2), for any positive B > 1 and B′ > 1 there exists
β0(B, B′) such that if β ≥ β0(B, B′) with β ∈ N + 1/2, we have∫∫

e−2βz|(∂2
z + ∂2

θ )u|2dzdθ

≥ αB

∫∫
e−2βz|∂θu|2dzdθ + (1 − α)B′

∫∫
e−2βz|∂zu|2dzdθ

(4.3)

for any α ∈ [0, 1]. We recall that the inequality

(4.4)
∫∫

e−2βz|(∂2
z + ∂2

θ )u|2dzdθ ≥ β2/4
∫∫

e−2βz|u|2dzdθ

holds (see the appendix of [2] ). (4.3) and (4.4) show the desired conclusion of
Lemma 4.1.

Now, we proceed to the proof of Proposition 4.1. From Lemma 4.1 with
B = B′ and α = 1/2, it follows

(1 + ε)
∫∫

r−2β+2|(∂2
x + ∂2

y)u|2dxdy

≥ B/2
∫∫

r−2β|∇u|2dxdy + εβ2/4
∫∫

r−2β−2|u|2dxdy,

which proves the desired result.

Proposition 4.1 and (2.3) give the following Carleman inequality with a
remainder term.

Proposition 4.2. For arbitrary B < 1, there exists a positive β0 =
β0(B) such that if β ≥ β0 with β ∈ N + 1/2 then

(4.5)

(1+ε)(1+δ)
∫∫

r−2β+2|Lu|2dxdy+C(1+ε)(1+δ−1)
∫∫

r−2β+2+2κ|∂2
yu|2dxdy

≥ B/2
∫∫

r−2β|∇u|2dxdy + εβ2/4
∫∫

r−2β−2|u|2dxdy

for any positive ε, δ and any u ∈ C2
0 (Ω̇).
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Proof. We can write

Lu = L0u + (N(x, y)2 − N(0, 0)2)∂2
yu,

and

|N(x, y)2 − N(0, 0)2| ≤ Crκ

because of their Hölder continuity. Using

|Lu − (N(x, y)2 − N(0, 0)2)∂2
yu|2

≤ (1 + δ)|Lu|2 + C(1 + δ−1)|(N(x, y)2 − N(0, 0)2)∂2
yu|2,

the proof is clear.

We require the following elliptic estimate.

Lemma 4.2. There exists a positive constant C such that∫∫
Ω

(|∂2
xu|2 + |∂2

yu|2)dxdy ≤ C

∫∫
Ω

(|Lu|2 + |∇u|2 + |u|2)dxdy

for any u ∈ C2
0 (Ω).

Applying Lemma 4.2 with u = r−βu, we have

Lemma 4.3. There exists a positive constant C such that

∫∫
Ω

r−2β(|∂2
xu|2 + |∂2

yu|2)dxdy

≤ C

∫∫
Ω

r−2β(|Lu|2 + β2r−2|∇u|2 + β4r−4|u|2)dxdy

for any u ∈ C2
0 (Ω̇).

Proposition 4.3. Under the assumption of Theorem 2.2, there exist
positive constants C2 and C3 such that∫∫

0≤R(x,y)≤ρ

(|u|2 + |∇u|2 + |∂2
xu|2 + |∂2

yu|2)dxdy ≤ C2 exp(−C3ρ
−κ)

for any small positive ρ.

Proof. Let χ(r) be a nonnegative function belonging to C1
0 ([0, 2)) such

that χ(r) = 1 when 0 ≤ r < 1. We shall consider ũ(x, y) = χ(Mβ1/κr)u(x, y).
Here, M is a large positive parameter, which will be determined later. By
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Proposition 4.2 and Lemma 4.3, we have

(B/2 − C/K)
∫∫

r−2β|∇ũ|2dxdy + (ε/4 − C/K)β2

∫∫
r−2β−2|ũ|2dxdy

+ (Kβ2)−1

∫∫
r−2β+2(|∂2

xũ|2 + |∂2
y ũ|2)dxdy

≤ {(1 + ε)(1 + δ) + C(Kβ2)−1}
∫∫

r−2β+2|Lũ|2dxdy

+ C(1 + ε)(1 + δ−1)
∫∫

r−2β+2+2κ|∂2
y ũ|2dxdy

(4.6)

where K is a large parameter which will be determined later. On the other
hand, for all positive ε1 we have

∫∫
r−2β+2|Lũ|2dxdy ≤ (1 + ε1)

∫∫
r−2β+2|χLu|2dxdy + C(1 + ε−1

1 )×

×
∫∫

B(2M−1β−1/κ)\B(M−1β−1/κ)

r−2β+2(M2β2/κ|∇u|2 + M4β4/κ|u|2)dxdy.

(4.7)

because of

1 ≤ M2β2/κr2 ≤ 4 if (x, y) ∈ B(2M−1β−1/κ) \ B(M−1β−1/κ).

From (2.8), we have

∫∫
r−2β+2|χLu|2dxdy ≤ (1 + ε2)(1 + ε3)C2

1

∫∫
r−2β|∇ũ|2dxdy

+ C(1 + ε2)(1 + ε−1
3 )C2

1M2β2/κ

∫∫
B(2M−1β−1/κ)\B(M−1β−1/κ)

r−2β|u|2dxdy

+ (1 + ε−1
2 )C2

0

∫∫
r−2β−2|ũ|2dxdy

(4.8)

for all positive ε2 and ε3. Thus, combining (4.6), (4.7) and (4.8), we see that

T1

∫∫
r−2β|∇ũ|2dxdy + T2β

2

∫∫
r−2β−2|ũ|2dxdy

+ (Kβ2)−1

∫∫
r−2β+2(|∂2

xũ|2 + |∂2
y ũ|2)dxdy

≤ T3

∫∫
r−2β+2+2κ|∂2

y ũ|2dxdy

+ T4

∫∫
B(2M−1β−1/κ)\B(M−1β−1/κ)

r−2β+2(M2β2/κ|∇u|2 + M4β4/κ|u|2)dxdy

+ T5M
2β2/κ

∫∫
B(2M−1β−1/κ)\B(M−1β−1/κ)

r−2β|u|2dxdy,
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where

T1 = B/2 − C/K − (1 + ε1)(1 + ε2)(1 + ε3){(1 + ε)(1 + δ) + C(Kβ2)−1}C2
1 ,

T2 = (ε/4 − C/K) − (1 + ε1)(1 + ε−1
2 ){(1 + ε)(1 + δ) + C(Kβ2)−1}C2

0β−2

and T3, T4, T5 are positive constants depending only on δ, ε1 and ε3. Take
ε, δ, ε1, ε2 and ε3 to be small enough. Moreover taking K to be large enough,
by our assumption, T1 and T2 are positive if β is large enough. Choose M such
that T3M

−2κ < 1/(8K). Then it holds that

T3r
2κ ≤ 1/(2Kβ2)

if (x, y) ∈ B(2M−1β−1/κ). Then it follows that

T1

∫∫
B(1/2M−1β−1/κ)

r−2β|∇u|2dxdy

+ T2β
2

∫∫
B(1/2M−1β−1/κ)

r−2β−2|u|2dxdy

+ (2Kβ2)−1

∫∫
B(1/2M−1β−1/κ)

r−2β+2(|∂2
xu|2 + |∂2

yu|2)dxdy

≤ C

∫∫
B(2M−1β−1/κ)\B(M−1β−1/κ)

r−2β |∇u|2dxdy

+ C

∫∫
B(2M−1β−1/κ)\B(M−1β−1/κ)

r−2β−2|u|2dxdy.

Therefore, we conclude that∫∫
B(1/2M−1β−1/κ)

(|∇u|2 + |u|2 + |∂2
xu|2 + |∂2

yu|2)dxdy

≤ C2−2β+2(Mβ1/κ)4β2×
×

∫∫
B(2M−1β−1/κ)\B(M−1β−1/κ)

(|∇u|2 + |u|2 + |∂2
xu|2 + |∂2

yu|2)dxdy

for any large β ∈ N + 1/2. This gives the conclusion of Proposition 4.3.

Now we recall an estimate in the case of a first order system. Let P =
∂x + M(x, y)∂y where M(x, y) is an n× n normal matrix with complex entries
of the class X1,κ(Ω) and

|Im(eigenvalues of M(x, y))| ≥ δ.

Moreover suppose that all the eigenvalues of M(0, 0) are ζ or ζ̄ with a non-real
complex number ζ. Then in [5], he proved the following estimate.

Proposition 4.4 (Okaji [5]). For a sufficiently small Ω̃, there exists a
positive C independent of Ω̃ such that

C

∫∫
Ω̃

eβ(log r)2 |Pu|2r−1dxdy ≥ β

∫∫
Ω̃

r−2| log r|eβ(log r)2 |u|2r−1dxdy

for any u ∈ C1
0 (Ω̇) and any large β.
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By Proposition 4.4 with u = r−1| log r|1/2u we have the following estimate.

Lemma 4.4. For a sufficiently small Ω̃, there exists a positive C inde-
pendent of Ω̃ such that∫∫

Ω̃

r−2| log r|eβ(log r)2 |Pu|2r−1dxdy ≥ Cβ

∫∫
Ω̃

r−4| log r|2eβ(log r)2 |u|2r−1dxdy

for any u ∈ C1
0 (Ω̇) and any large β.

Thus, we have the following Carleman estimate with a stronger weight
function.

Proposition 4.5. For a sufficiently small Ω̃, there exists a positive C
independent of Ω̃ such that∫

Ω̃

eβ(log r)2 |Lu|2r−1dxdy ≥ Cβ

∫∫
Ω̃

r−2| log r|eβ(log r)2 |∇u|2r−1dxdy

+ Cβ2

∫∫
Ω̃

r−4| log r|2eβ(log r)2 |u|2r−1dxdy

for any u ∈ C2
0 (Ω̇) and any large β.

Proof. Putting

L̃ =
(

0 In

In 0

)
∂x +

(
N 0
0 −N

)
∂y and U =

(
u
u

)
,

it follows that

L̃U =
(

∂xu + N(x, y)∂yu
∂xu − N(x, y)∂yu

)
, L̃2U =

(
Lu + A(x, y)u
Lu + B(x, y)u

)

where A(x, y)u = −Nx∂yu+NNy∂yu and B(x, y)u = Nx∂yu+NNy∂yu. Since
|A(x, y)u|, |B(x, y)u| ≤ Cr−1|∇u| we have∫

eβ(log r)2 |Lu|2r−1dxdy ≥ C

∫
eβ(log r)2 |L̃(L̃U)|2r−1dxdy

− C

∫
eβ(log r)2r−2|∇u|2r−1dxdy.

By Proposition 4.4 with P = L̃ and u = L̃U we have

C

∫∫
Ω̃

eβ(log r)2 |L̃(L̃U)|2r−1dxdy ≥ β

∫∫
Ω̃

r−2| log r|eβ(log r)2 |L̃U |2r−1dxdy

for a sufficiently small Ω̃. Moreover applying Lemma 4.4 with P = L̃ and u = U
we have∫∫

Ω̃

r−2| log r|eβ(log r)2 |L̃U |2r−1dxdy

≥ Cβ

∫∫
Ω̃

r−4| log r|2eβ(log r)2 |U |2r−1dxdy.
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On the other hand, we have

∫∫
Ω̃

r−2| log r|eβ(log r)2 |L̃U |2r−1dxdy ≥ C

∫∫
Ω̃

r−2| log r|eβ(log r)2 |∇u|2r−1dxdy

from

|L̃U |2 = |∂xu + N(x, y)∂yu|2 + |∂xu − N(x, y)∂yu|2
= 2|∂xu|2 + 2|N(x, y)∂yu|2
≥ 2 min{1, δ2}|∇u|2.

Thus we obtain the desired estimate in Proposition 4.5.

Theorem 2.2 with a = 1 follows from Proposition 4.3 and 4.5.

Proof. Suppose that R0 is sufficiently small so that Proposition 4.5 holds
for Ω̃ = B(R0). Fix 0 < R1 < R0 and take δ > 0 and a smooth function
χδ ∈ C∞

0 (0, R0) such that

χδ(r) =

{
1 if δ ≤ r ≤ R1

0 if r ≤ δ/2
, |χ′

δ(r)| =

{
Cδ−1 if δ/2 ≤ r ≤ δ

C if R1 ≤ r ≤ R0

and

|χ′′
δ (r)| =

{
Cδ−2 if δ/2 ≤ r ≤ δ

C if R1 ≤ r ≤ R0

for a positive constant C. By Proposition 4.5 it follows that

Cβ

∫∫
B(R1)\B(δ)

r−2| log r|eβ(log r)2 |∇u|2r−1dxdy

+ Cβ2

∫∫
B(R1)\B(δ)

r−4| log r|2eβ(log r)2 |u|2r−1dxdy

≤ Cβ

∫∫
B(R0)

r−2| log r|eβ(log r)2 |∇(χδu)|2r−1dxdy

+ Cβ2

∫∫
B(R0)

r−4| log r|2eβ(log r)2 |χδu|2r−1dxdy

≤
∫∫

B(R0)

eβ(log r)2 |L(χδu)|2r−1dxdy.
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From (2.8) we have∫∫
B(R0)

eβ(log r)2 |L(χδu)|2r−1dxdy

≤ C

∫∫
B(R0)\B(R1)

eβ(log r)2(|Lu|2 + |∇u|2 + |u|2)r−1dxdy

+
∫∫

B(R1)\B(δ)

eβ(log r)2 |Lu|2r−1dxdy

+ C

∫∫
B(δ)\B(δ/2)

eβ(log r)2(|Lu|2 + δ−2|∇u|2 + δ−4|u|2)r−1dxdy

≤ C

∫∫
B(R0)\B(R1)

eβ(log r)2(r−2|∇u|2 + r−4|u|2)r−1dxdy

+ C

∫∫
B(R1)\B(δ)

eβ(log r)2(r−2|∇u|2 + r−4|u|2)r−1dxdy

+ C

∫∫
B(δ)\B(δ/2)

eβ(log r)2(δ−2r−2|∇u|2 + δ−4r−4|u|2)r−1dxdy.

Therefore we have

(Cβ − C)
∫∫

B(R1)\B(δ)

r−2| log r|eβ(log r)2 |∇u|2r−1dxdy

+ (Cβ2 − C)
∫∫

B(R1)\B(δ)

r−4| log r|2eβ(log r)2 |u|2r−1dxdy

≤ C

∫∫
B(R0)\B(R1)

eβ(log r)2(r−2|∇u|2 + r−4|u|2)r−1dxdy

+ C

∫∫
B(δ)\B(δ/2)

eβ(log r)2(δ−2r−2|∇u|2 + δ−4r−4|u|2)r−1dxdy.

Since

C

∫∫
B(δ)\B(δ/2)

eβ(log r)2(δ−2r−2|∇u|2 + δ−4r−4|u|2)r−1dxdy

≤ Ceβ(log δ/2)2δ−4

∫∫
B(δ)

|∇u|2dxdy + Ceβ(log δ/2)2δ−8

∫∫
B(δ)

|u|2dxdy,

this integral tend to zero if δ → 0 by Proposition 4.3. Hence letting δ tend to
zero it follows that

(Cβ − C)
∫∫

B(R1)

r−2| log r|eβ(log r)2 |∇u|2r−1dxdy

+ (Cβ2 − C)
∫∫

B(R1)

r−4| log r|2eβ(log r)2 |u|2r−1dxdy

≤ C

∫∫
B(R0)\B(R1)

eβ(log r)2(r−2|∇u|2 + r−4|u|2)r−1dxdy.
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Thus we have

(Cβ − C)R2
1| log R1|

∫∫
B(R1)

(|∇u|2 + |u|2)dxdy

≤ C

∫∫
B(R0)\B(R1)

(|∇u|2 + |u|2)dxdy < ∞.

Letting β large enough, we have that u is identically zero in B(R1). By Theorem
2.1 with N1(x, y) = iN(x, y) and N2(x, y) = −iN(x, y) we have that u is
identically zero in Ω.

Next we prove Theorem 2.2 with a ∈ R.

Proof. Setting v(x, y) = u(x, ay) it follows that

|(∂2
x + a−2N(x, ay)2∂2

y)v(x, y)| = |L(u(x, ay))|
≤ C0r

−2|u(x, ay)| + C1r
−1|(∇u)(x, ay)|

≤ C0r
−2|v(x, y)| + C1r

−1 max{1, |a|−1}|∇v(x, y)|.
By Theorem 2.2 with a = 1, v is identically zero in Ω if C1 < min{1, |a|}/√2.
Therefore u is identically zero in Ω.

Finally we shall prove Corollary 2.3.

Proof. We define
√

A(x, y) in the same way as the proof of Corollary 2.1.
Then

√
A(x, y) satisfies the assumptions of Theorem 2.2 because the eigenval-

ues of
√

A(x, y) are
√

µj(x, y). Hence, by Theorem 2.2 with N(x, y) =
√

A(x, y)
the proof is complete.
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