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On T direction of algebroidal function

By

Zhaojun Wu

Abstract

In this paper, by using the sphere characteristic function T (r, w),
we define and establish the existence of a new singular direction for the
algebroidal function w, namely a T direction, for which the characteristic
function T (r, w) is used as a comparison function. This extended the
previous result due to Guo, Zheng and Ng in [Bull. Austral. Math. Soc.
69(2004), 277-287].

1. Introduction and results

Let w = w(z) be a ν−valued algebroidal function defined by the irreducible
equation

(1.1) Aν(z)wν +Aν−1(z)wν−1 + · · · +A1(z)w + A0(z) = 0,

where Aj(z)(j = 0, 2, · · · , ν) are entire functions without any common zeros.
The studies of the singular direction for algebroidal function w(z) due to Valiron
[1] concerning the Borel directions and the Julia directions, were generalized in
1960’s for algebroidal functions, see Toda [2]. Recently, Lü Yinian [3], [4] and
Lü, Yinian, Gu Yongxing [5] proved some more precise versions than Valiron
[1] and Toda [2] for the Julia directions and the Borel directions for algebroidal
functions. A ray arg z = θ is called a Borel direction of order ρ(0 < ρ < ∞)
for a ν−valued algebroidal function w(z), if it has the following property: for
every 0 < ε < π,

lim sup
r→∞

logn(r, θ, ε, a)
log r

≥ ρ,

for all a in C∞ := C ∪ {∞} with at most 2ν exceptions, where n(r, θ, ε, a) is
the number of the solution of w(z) = a in {z : θ − ε < arg z < θ + ε} ∩ {|z| <
r}, counting with multiplicities. Lü Yinian and Gu Yongxing [5] proved the
following.
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Theorem A. Suppose that w(z) is a ν−valued algebroidal function of
order ρ(0 < ρ <∞) defined by (1.1). Then there at least exists a Borel direction
of order ρ of w(z).

Recalling the definition of the Borel direction, this characterization is ef-
fective only for the finite and positive order functions. When the order ρ = 0
or ∞, it is not better to use the order to characterize the growth of w. In this
case, Zheng Jianhua [6] considered the T direction which gives another singu-
lar direction for the meromorphic function. We follow Zheng’s definition. Let
{z : θ−ε < arg z < θ+ε} be a sector. A radial arg z = θ is called a T direction
of a meromorphic function f(z) provided that for any given b ∈ C∞, with the
exceptional values at most two values, for arbitrary small ε > 0,

lim sup
r→∞

N(r, θ, ε, a)
T (r, f)

> 0,

where N(r, θ, ε, a) is a integrated counting function which counts the zero points
of f(z) − b in {z : θ − ε < arg z < θ + ε}.

Now we give an analogy to the definition of Zheng for the T direction of
algebroidal function.

Definition 1.1. A ray arg z = θ is called a T direction for a ν−valued
algebroidal function w(z), provided that for any 0 < ε < π/2,

lim sup
r→∞

N(r, θ, ε, a)
T (r, w)

> 0,

holds for any given a in C∞ with at most 2ν exceptions.

Recently the existence theorem of the T direction of a meromorphic func-
tion is established, see Guo H., Zheng J. H. and T. W., Ng [7]. It is shown
that any meromorphic function f(z) has at least one T direction provided that
lim sup
r→∞

T (r, f)/(log r)2 = +∞. Note that we have an example due to Ostro-

vskii [8]. Namely there is a transcendental meromorphic function such that
T (r, f) = O(log2 r) and which has no T directions (and no Julia direction). In
this note, we consider a generalization of the T directions for an algebroidal
function and state the main results here.

Theorem 1.1. Let w(z) be a ν−valued algebroidal function on the
whole complex plane defined by (1.1). If

(1.2) lim sup
r→∞

T (r, w)
(log r)2

= +∞,

then w(z) has at least one T direction.

2. Notations and lemmas

Suppose that w = w(z) is a ν−valued algebroidal function defined by the
expression (1.1) on the whole complex plane. Now, we give some standard
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notations and fundament results which can be found in [9]. The single valued
domain of definition of w(z) is a ν sheets covering of z plane, a Riemann surface,
denoted by R̃z. It is denoted by z̃ that the point in R̃z whose projection in the
z plane is z. The part of R̃z, which covers a disk |z| < r, is denoted by |z̃| < r.
Write

S(r, w) =
1
π

∫ ∫
|ez|<r

( |w′(z)|
1 + |w(z)|2

)2

dw, T (r, w) =
1
ν

∫ r

0

S(t, w)
t

dt.

S(r, w) is called the mean covering number of |z̃| ≤ r into w sphere under the
mapping w = w(z), T (r, w) is called the characteristic function of w(z). The
order of algebroidal function w(z) is denoted by

ρ = lim sup
r→∞

log T (r, w)
log r

.

Put

N(r, a) =
1
ν

∫ r

0

n(t, a) − n(0, a)
t

dt+
n(0, a)
ν

log r,

m(r, w) =
1

2πν

∫
|ez|=r

log+ |w(reiθ)|dθ, z = reiθ,

where n(r, a) is the number of zeros, counted according to their multiplicities,
of w(z) − a in |z̃| ≤ r. We have

T (r, w) = m(r, w) +N(r,∞) +O(1).

Let n(r, R̃z) be the number of the branch points of R̃z in |z̃| ≤ r, counted with
the order of branch. Denote

N(r, R̃z) =
1
ν

∫ r

0

n(t, R̃z) − n(0, R̃z)
t

dt+
n(0, R̃z)

ν
log r.

By [9],

(2.1) N(r, R̃z) ≤ 2(ν − 1)T (r, w) +O(1).

We define an angular domain �(θ0, δ) = {z|| arg z − θ0| < δ}, 0 ≤ θ0 <

2π, 0 < δ < π
2 . The part of R̃z which lies over �(θ0, δ) is denoted by �̃(θ0, δ).

Let n(r, θ0, δ, a) be the number of w(z) − a in �̃(θ0, δ)
⋂{|z̃| ≤ r} and let

n(r,�(θ0, δ), R̃z) be the number of the branch points in the same region. Put

N(r, θ0, δ, a) =
1
ν

∫ r

0

n(t, θ0, δ, a)
t

dt

N(r,�(θ0, δ), R̃z) =
1
ν

∫ r

0

n(r,�(θ0, δ), R̃z)
t

dt

In order to prove the Theorem 1.1, we give some lemmas as following.
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Lemma 2.1. Let S(r) be a positive continuous non-decreasing function
of r in [0,+∞). Suppose that

lim inf
r→∞

log S(r)
log r

= µ < +∞,

lim sup
r→∞

S(r)
log2 r

= +∞.

Then for any h > 0, there exist the sequences {rn} and {Rn}, R1−o(1)
n ≤ rn ≤

Rn(n→ ∞), satisfying

lim
n→∞

S(rn)
log2 rn

= +∞, S(ehRn) ≤ ehµS(Rn)(1 + o(1))(n→ ∞).

Lemma 2.1 can be found in [10] and the following Lemma 2.2 due to [3].

Lemma 2.2. Suppose that w(z) is a ν−valued algebroidal function in
an angular domain �0 = {z : | arg z − θ| < δ0}. Let Ω = {z : | arg z − θ| ≤ δ}
be an angular domain, contained in �0, where θ ∈ [0, 2π) and 0 < δ ≤ δ0. The
part of R̃z which lies over Ω is denoted by Ω̃. Let

S(r,Ω, w) =
1
π

∫ ∫
eΩ

( |w′(z)|
1 + |w(z)|2

)2

dw,

and a1, a2, · · · , aq (q > 2) be q distinct points on w sphere C∞. Then for
arbitrarily constant λ > 1 and positive integer α, we have

(q − 2)S(r,Ω, w) ≤ 2
q∑
j=1

n(λ2αr,�0, aj) + (1 +
1
α

)n(λ2αr,�0, R̃z)

+ (q − 2)S(λ2α,Ω, w) +
2A

(1 − k) log λ
log+ r.

where A is a constant depending only on a1, a2, · · · , aq, and k(0 < k < 1)
depending only on δ, δ0, α and λ.

Lemma 2.3. Let B(r) be a positive and continuous function in [0,+∞)
which satisfies lim sup

r→∞
logB(r)

log r = ∞. Then there exist continuously differentiable

functions ρ(r) and U(r), which satisfy the following conditions.
1. ρ(r) ↓ 0 and ρ

′
(r) monotone increasing.

2. lim
r→∞ rρ

′
(r) log r log log r = 0.

3. For sufficient large r, we have B(r) 
 U(r) = rexp(
1

ρ(r) ), where ” 
 ”
note that B(r) ≤ U(r) and there is a sequence {rn} → ∞, such that B(rn) =
U(rn).

4. U(R) < (1 + o(1))U(r), where R = r + r log r
logU(r) log2 logU(r)

.

A proof of Lemma 2.3 can be found in [11] and the following Lemma 2.4
due to [2].
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Lemma 2.4. Let w(z) be a ν−valued algebroidal function defined by
(1.1) in |z| < 1 and {a1, a2, · · · , aq} be q(> 2) distinct complex numbers. Put
q∑
j=1

n(1, aj) <∞, n(1, R̃z) <∞. Then

(q − 2)S(r, w) ≤
q∑
j=1

n(1, aj) + n(1, R̃z) +
A

1 − r
,

where 0 < r < 1 and A is a constant depending only upon {a1, a2, · · · , aq}.
Lemma 2.5. Suppose that w(z) is a ν−valued algebroidal function de-

fined by (1.1) in the sector Ω(ψ1, ψ2) = {z : ψ1 < arg z < ψ2}(ψ1 < ψ2), con-
tinuously differentiable functions ρ(r) and U(r) satisfy the condition 1, 2, 4 that
stated in Lemma 2.3, T (r,Ω(ψ1, ψ2), w) ≤ U(r) = rexp( 1

ρ(r) ) and {a1, a2, · · · , aq}
be q(≥ 2) distinct points. Then for arbitrary ψ, δ

′
, δ(0 < δ

′
< δ, ψ1 < ψ − δ <

ψ − δ
′
< ψ2) we have

(q − 2)T (r,Ω(ψ − δ
′
, ψ + δ

′
), w) ≤

q∑
j=1

N(R,Ω(ψ − δ, ψ + δ), aj)

+N(R,Ω(ψ − δ, ψ + δ), R̃z) + o(U(r)).

Proof. A proof of Lemma 2.3 can be found in [12]. For the sake of con-
venience, here we only give an outline of the proof. Put

f(z) =
(ze−iψ)

π
δ + 2(ze−iψ)

π
2δR

π
2δ −R

π
δ

(ze−iψ)
π
δ − 2(ze−iψ)

π
2δR

π
2δ −R

π
δ
.

It is easy to verify that f(z) maps conformally the sector E : {|z| <
R} ∩ {| arg z − ψ| ≤ δ} into the unit disc |f(z)| < 1.

Put F := {r0 ≤ |z| ≤ r} ∩ {| arg z − ψ| ≤ δ
′}, M = max{ 1

1−|f(z)| : z ∈ F}.
We can prove that M is bounded by using the argument adopted by Sun in
Lemma 7 of [11], and hence we omit the details. Since M is bounded, we
know that f(z) maps conformally F into some region in unit disc. By applying
Lemma 2.4,

(q − 2)S(r,Ω(ψ − δ
′
, ψ + δ

′
), w)

≤
q∑
j=1

n(R,Ω(ψ − δ, ψ + δ), aj) + n(R,Ω(ψ − δ, ψ + δ), R̃z)

+O(R
3π
δ log2 U(r)/ log r).

Since U(r) = rexp( 1
ρ(r) ), R = r + r log r

logU(r) log2 logU(r)
, we have

dR =

[
1 +

1 + o(1)
exp( 1

ρ(r)) log2 logU(r)
− o(1)

exp( 1
ρ(r)) log r

]
dr,

dR

R
=

[
1 +

o(1)
exp( 1

ρ(r))

]
dr

r
= (1 + o(1)ρ(r))

dr

r
,
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and

(q − 2)
(

1 − ρ

(
1
2
r

))∫ r

1
2 r

S(r,Ω(ψ − δ
′
, ψ + δ

′
), w)

r
dr

≤ (q − 2)
∫ r

1
2 r

S(r,Ω(ψ − δ
′
, ψ + δ

′
), w)

r
(1 + o(1)ρ(r))dr

≤ (q − 2)
∫ r

0

S(r,Ω(ψ − δ
′
, ψ + δ

′
), w)

R
dR

<

q∑
j=1

∫ R

0

n(R,Ω(ψ − δ, ψ + δ), aj)
R

dR +
∫ R

0

n(R,Ω(ψ − δ, ψ + δ), R̃z)
R

dR

+O(r
2π
δ log2 U(r))

=
q∑
j=1

N(R,Ω(ψ − δ, ψ + δ), aj) +N(R,Ω(ψ − δ, ψ + δ), R̃z)

+O(r
2π
δ log2 U(r)).

Hence

(q − 2)T (r,Ω(ψ − δ
′
, ψ + δ

′
), w)

≤
q∑
j=1

N(R,Ω(ψ − δ, ψ + δ), aj) +N(R,Ω(ψ − δ, ψ + δ), R̃z)

+O(r
2π
δ log2 U(r)) + (q − 2)ρ(

r

2
)T (

r

2
,Ω(ψ − δ

′
, ψ + δ

′
), w)

≤
q∑
j=1

N(R,Ω(ψ − δ, ψ + δ), aj)

+N(R,Ω(ψ − δ, ψ + δ), R̃z) + o(U(r) + qU(
r

2
)).

By U( r2 ) ≤ (1/2)
exp( 1

ρ( r
2 ) )U(r) = o(1)U(r). Combining the above two inequali-

ties Lemma 2.5 follows.

Lemma 2.6. Let w(z) be a ν−valued algebroidal function defined by
(1.1) on the whole complex plane and satisfies (1.2). Let m(m ≥ 4) be a pos-
itive integer, θ0 = 0, θ1 = 2π

m , · · · , θm−1 = (m−1)2π
m , θm = θ0, and �(θi) =

{z|| arg z − θi| < 2π
m }, i = 0, 1, · · · ,m − 1;�(θm) = �(θ0). Then among these

m angular domains {�(θi)}, there is at least an angular domain �(θi) such
that the relative expression

lim sup
r→∞

N(r,�(θi), a)
T (r, w)

> 0,

holds for all a ∈ C∞ with at most 2ν exceptions.



On T direction of algebroidal function 773

Proof. We need to consider two different cases.

Case 1. Suppose that lim inf
r→∞

log T (r,w)
log r = µ < +∞. Suppose the lemma

2.6 does not hold. Then for any angular domain �(θi)(1 ≤ i ≤ m−1), we have
q = 2ν + 1 distinct points aji (j = 1, 2, · · · , q) in C∞ such that

(2.2)
m−1∑
i=0

q∑
j=1

N(r,�(θi+1), a
j
i+1) = o(T (r, w)).

Let α be arbitrary positive integer. Put

θi,k =
2πi
m

+
2πk
αm

, 0 ≤ i ≤ m− 1, 0 ≤ k ≤ α− 1, θi,0 = θi.

For sufficient large r, let

�i,k = {z||z| < λ2αr, θi,k ≤ arg z < θi,k+1},

where λ > 1. Then

{|z| < λ2αr} =
α−1∑
k=0

m−1∑
i=0

�i,k,

Hence there must be one k0(0 ≤ k0 ≤ α− 1), such that

m−1∑
i=0

n(�i,k0 , R̃z) ≤
1
α
n(λ2αr, R̃z).

Define the angular domains

Ωi =
{
z|θi,k0 + θi,k0+1

2
≤ arg z ≤ θi+1,k0 + θi+1,k0+1

2

}
,

�0
i = {z|θi,k0 < arg z < θi+1,k0+1} ⊂ �(θi+1).

Since �0
i only covers �i,k0 twice, we have

(2.3)
m−1∑
i=0

n(λ2αr,�0
i ; R̃z) ≤

(
1 +

1
α

)
n(λ2αr, R̃z).

Applying Lemma 2.2 to �0
i ,Ωi, we have

(q − 2)S(r,Ωi, w) ≤ 2
q∑
j=1

n(λ2αr,�0
i , a

j
i+1) +

(
1 +

1
α

)
n(λ2αr,�0

i , R̃z)

+ (q − 2)S(λ2α,Ωi, w) +
2A

(1 − k) log λ
log+ r.
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Since S(r, w) =
m−1∑
i=0

S(r,Ωi, w). Adding both sides of the above expression from

i to m− 1, we can obtain

(q − 2)S(r, w)

≤ 2
m−1∑
i=0

q∑
j=1

n(λ2αr,�(θi+1), a
j
i+1) +

(
1 +

1
α

)2

n(λ2αr, R̃z) +O(log r).

Divided both sides of the above expression by r, and then integrating both
sides from 1 to r, thus we obtain

(q − 2)T (r, w) ≤ 2
m−1∑
i=0

q∑
j=1

N(λ2αr,�(θi+1), a
j
i+1)

+
(

1 +
1
α

)2

N(λ2αr, R̃z) +O(log2 r).

Applying (2.1) and (2.2) to the above inequality shows that

(2.4) (q − 2)T (r, w) ≤
(

2
(

1 +
1
α

)2

(ν − 1) + o(1)

)
T (λ2αr, w) +O(log2 r).

By the hypothesis and applying Lemma 2.1 to T (r, w), we have

lim
n→∞

T (rn, w)
log2 rn

= +∞, T (λ2αRn, w) ≤ λ2αµT (Rn, w),

and where R1−o(1)
n ≤ rn ≤ Rn(n→ ∞). From this we can obtain

lim
n→∞

T (Rn, w)
log2Rn

= +∞.

In (2.4), we let r = Rn and obtain

(q − 2)T (Rn, w) ≤
(

2
(

1 +
1
α

)2

(ν − 1) + o(1)

)
λ2αµT (Rn, w) +O(log2Rn).

Hence

q − 2 ≤ 2(1 +
1
α

)2(ν − 1)λ2αµ.

By a simple calculation, we can obtain that q − 2 ≤ 2(ν − 1). This contradicts
q = 2ν + 1.

Case 2. Suppose that lim inf
r→∞

log T (r,w)
log r = +∞. That is to say w(z) is

an infinite order function. By Lemma 2.3, there exists U(r) satisfying the
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conditions that stated in Lemma 2.3. We can assert that there is at least an
angular domain �(θi) such that the relative expression

(2.5) lim sup
r→∞

N(r,�(θi), a)
U(r)

> 0,

holds for all a ∈ C∞ with at most 2ν exceptions. In fact, if this is not the case,
then for any angular domain �(θi)(1 ≤ i ≤ m−1), we have q = 2ν+1 distinct
points aji ∈ C∞(j = 1, 2, · · · , q) such that for any i and j,

(2.6) N(r,�(θi+1), a
j
i+1) = o(U(r)).

Let α be arbitrary positive integral, put

θi,k =
2πi
m

+
2πk
αm

, 0 ≤ i ≤ m− 1, 0 ≤ k ≤ α− 1, θi,0 = θi,

and �i,k = {z||z| < R, θi,k ≤ argz < θi,k+1}. Then {|z| < R} =
α−1∑
k=0

m−1∑
i=0

�i,k.

Hence there must be one k0(0 ≤ k0 ≤ α− 1), such that

m−1∑
i=0

n(�i,k0 , R̃z) ≤
1
α
n(R, R̃z).

Let the angular domain

Ωi =
{
z|θi,k0 + θi,k0+1

2
≤ arg z ≤ θi+1,k0 + θi+1,k0+1

2

}
,

�0
i = {z|θi,k0 < arg z < θi+1,k0+1} ⊂ �(θi+1).

Since �0
i only cover �i,k0 twice, we have

m−1∑
i=0

n(R,�0
i , R̃z) ≤

(
1 +

1
α

)
n(R, R̃z),

by a simple calculation, we can obtain that

m−1∑
i=0

N(R,�0
i , R̃z) ≤

(
1 +

1
α

)
N(R, R̃z) +O(1).

Applying Lemma 2.5 to �0
i ,Ωi, we have

(q − 2)T (r,Ωi, w) ≤
q∑
j=1

N(R,�0
i , a

j
i ) +N(R,�0

i , R̃z) + o(U(r)),

Adding both sides of the above expression from i = 0 to m− 1, applying (2.6),
we can further obtain that

(q − 2)T (r, w) ≤
(

1 +
1
α

)
N(R, R̃z) + o(U(r)).
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From (2.1),

(q − 2)T (r, w) ≤ 2(ν − 1)
(

1 +
1
α

)
T (R,w) + o(U(r)).

Furthermore, we can have

(q − 2)
T (r, w)
U(r)

≤ 2(ν − 1)
(

1 +
1
α

)
T (R,w)
U(r)

+
o(U(r))
U(r)

= 2(ν − 1)
(

1 +
1
α

)
T (R,w)
U(R)

U(R)
U(r)

+
o(U(r))
U(r)

From Lemma 3, we have q−2 ≤ 2(ν−1)(1+ 1
α ). Letting α→ ∞, we have q−2 ≤

2(ν − 1). This contradicts q = 2ν + 1 and hence (2.5) follows. Furthermore, we
have

lim sup
r→∞

N(r,�(θi), a)
T (r, w)

= lim sup
r→∞

N(r,�(θi), a)
U(r)

U(r)
T (r, w)

≥ lim sup
r→∞

N(r,�(θi), a)
U(r)

lim inf
r→∞

U(r)
T (r, w)

> 0

and hence Lemma 2.6 holds.

3. The proof of the Theorem 1.1

Proof. By Lemma 2.6, for arbitrary positive integer m, there exists an
angular domain �(θm) = {z|| arg z − θm| < 2π

m } such that for any a, we have

(3.1) lim sup
r→∞

N(r,�(θm), a)
T (r, w)

> 0,

except for 2ν exceptions at most. Choosing subsequence of {θm}, still denote it
{θm}, we assume that θm → θ0. Put L : arg z = θ0. Then L is the T direction
of Theorem 1.1.

In fact, for any δ(0 < δ < π/2), when m is sufficiently large, we have
�(θm) ⊂ �(θ0, δ). By (3.1), we obtain

lim sup
r→∞

N(r, θ0, δ, a)
T (r, w)

≥ lim sup
r→∞

N(r,�(θm), a)
T (r, w)

> 0

at most 2ν exceptions for a. Hence Theorem 1.1 holds in this case.

4. Examples of T direction of algebroidal function

In order to give an example of T direction of algebroidal function, we firstly
prove the following Theorem 4.1.
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Theorem 4.1. Let w(z) be a ν−valued algebroidal function on the
whole complex plane defined by the following irreducible equation

(4.1) g(z)wν − h(z) = 0,

where g(z)( �≡ 0), h(z) are entire functions without any common zeros. Let
f(z) = h(z)

g(z) . Suppose that L : arg z = θ is a T direction of f(z). Then L must
be a T direction of w(z).

Proof. We can follows from (4.1) that

N(r, w) =
1
ν
N(r, g(z) = 0) =

1
ν
N(r, f);

m(r, w) =
1

2πν

ν∑
i=1

∫ 2π

0

log+ ν

√
|f(reiθ)|dθ =

1
ν
m(r, f).

Hence T (r, w) = 1
νT (r, f). Suppose that L : arg z = θ is a T direction of f(z).

Then for any ε > 0, we have

lim sup
r→∞

N(r, θ, ε, f = a)
T (r, f)

> 0

holds for any value a, except for 2 exceptions at most. Since for any b ∈ C∞,
we have

N(r, θ, ε, wν = b) = N(r, θ, ε, f = b).

Then

lim sup
r→∞

N(r, θ, ε, wν = b)
T (r, w)

> 0,

holds for any value b, except for 2 exceptions at most. Therefore,

lim sup
r→∞

N(r, θ, ε, w = ν
√
b)

T (r, w)
> 0,

holds for any value b, except for 2 exceptions at most. Let b0 ∈ C∞ be an
exception, then there exist ν values xi, i = 1, 2, · · · , ν such that xνi = b0 and

lim sup
r→∞

N(r, θ, ε, w = xi)
T (r, w)

= 0, i = 1, 2, · · · , ν.

Therefore,

lim sup
r→∞

N(r, θ, ε, w = a)
T (r, w)

> 0,

holds for any value a, except for 2ν exceptions at most i.e. L is a T direction
of w(z).

We are now in the position to construct an example of T direction for
algebroidal function.
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Example 4.1. Let

f(z) =

+∞∏
n=0

(1 − z
e
√

n )

+∞∏
n=0

(1 + z
e
√

n )
=

+∞∏
n=0

e
√
n − z

e
√
n + z

.

Since the exponent of convergence of sequence {e
√
n} is zero (In fact, for any

ε > 0, Σ(e
√
n)−ε converges), and Σ(e

√
n)−1 converges, using a theorem in

J. K. Langley [15, p35], we have
+∞∏
n=0

(1 − z
e
√

n ) and
+∞∏
n=0

(1 − z
e
√

n ) converges.

Hence
+∞∏
n=0

e
√

n−z
e
√

n+z
converges. It follows from Sauer [13] that, T (r, f(z)) = ( 1

3 +

o(1)) log3 r. Suppose that f(z) = h(z)
g(z) , where g(z), h(z) are entire functions, for

any ν ≥ 2,

g(z)wν − h(z) = 0,

give a ν−valued algebroidal function w(z). By the proof of Theorem 4.1, we
have w(z) is of zero order of growth and satisfies (1.2). It follows from Zheng
[14] that, f(z) has exactly two T directions, the negative and positive imag-
inary axis. Using Theorem 4.1, the negative and positive imaginary axis are
T directions of algebroidal function w(z). In fact, we can derive that there is
no T direction other than the two directions on imaginary axis. The Mobius
transformations e

√
n−z

e
√

n+z
map the right half plane to the interior of the unit disk

and the left half plane to the exterior of the unit disk. Hence there is no T
direction of f(z) other than the two directions on imaginary axis.
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