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1. Introduction

Consider the first order partial differential equation

(1. 1) M [u ] — u— A k (x, t) a
a
x k u— B (x , t)u = O,

3t k 1

where u  is  a  vector-valued function with N  components ;  A k  and
B  are matrices of order N , infinitely differentiable with respect to
t  and x  (x i , x 2 , ••• , x 1). Consider the Cauchy problem for this
equation with given initial value at t = 0 .  We say that the Cauchy
problem for (1. 1) is  w ell posed for the future in  the space 6 , if
i )  for any given in itial value u(x, 0) E 6 ,  there exists a unique
solution u(x , t)E 6  t > 0 ,  which takes the given initial value at
t= 0 , i i)  this linear mapping u(x, 0)--> u(x , t) is continuous from 6x

into 6 , . Here 6  is the space of all infinitely differentiable func-
tions with customary topology, (see L. Schwartz [8 ]) 1 ) : f li —> 0  in 6,

1 )  I n  th is  paper, especially in  sec tion  1, w e fo llow ed  the notations of
Schwartz's treatise [8]. W e u sed  the following linear topological spaces : 6 ',  e " ( 11),

ei2 (Q ), e izoo c ) (Q ),  u .  being an open set in R ", and e_ (g)7 2 ). We shall

explain briefly. e " (0 . )  is the space of all functions f ( x ) ,  m-times continuously differ-
entiable with the topology : -> 0, i f  D Y ;(x ) ,  1P1 m, converge to  0  uniformly on
any compact in u. 67 2 ( .1) is the Hilbert space of all functions f ( x )  belonging to L2 (.2)
with their derivatives (in distribution sense) up to order m, with the inner product :
(f ,  g ) --  .72 (Dvf, q 2 ( l o c ) ( L . 1 )  is  the space o f  all functions f ( x )  such that

Dvf(x) E L'ioc(U.), for I P I M ,  with the topology :  f ;  - .0 , if fo r any compact K  of U.,

Dvf i (x )  - > 0 in  L 2 (K ) ,  for I v 1< m . Finally, f(x , t) c`' _ (c ) r2 ), if the mapping t--->f(x, t)
r .072 is infinitely differentiable for t < 0.
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if fo r any compact K  and any integer I), D f 1 converge uniformly
to 0 on K.

In the study o f hyperbolic systems, it is always assumed that
(H) E A k (x, has only real eigenvalues fo r  any (x, t
w h ere  is  a non-zero real vector.

Our purpose is to prove the following

Theorem 1.1 . Assume that, fo r s o m e  (+0 )  real, the matrix
E A k (0, 0)g has a non real eigenvalue, then (1. 1) is not well posed
in any small neighborhood of the origin.

From this it follows the following interesting

Corollary. Assume the coefficients A k (x , t) and B(x, t) to be
analy tic functions of x  and t. I f  we make the same assumption as
that o f  Theorem 1. 1, then there ex ists a function * 0(x) E g, defined
in a neighborhood of x =0, such that there exists no solution u(x, t) E g
o f  (1 .1) satisfy ing u(x, 0)=Ak0 (x), in  any small neighborhood o f  the
origin.

Remark 1. This corollary is also true even if  we restrict there
the domain of existence of u(x, t )  to  a half-space, that is, for
instance for t>0.

Remark 2. Theorem 1. 1 was proved at first by Petrowsky [6]
in the case where the coefficients depend only on t. In the case
of variable coefficients, P. D. Lax proved this under the condition
that this non real eigenvalue is simple [3]. O u r  proof is a direct
extension of that of Petrowsky and quite different from that of
L ax ". T h e  above corollary was proved by Lax in  [3 ], however
we present here our proof.

We shall prove Theorem 1. 1 in section 3. Here we prove
the corollary, assuming Theorem 1. 1 to be true. This proof was
borrowed fairly from H6rmander's paper [2], p. 135.

2 )  We should mention that our proof is based on the theory o f th e  singular
integral operators (in the sense of Calder6n and Zygmund). More precisely, we used
the localisation of singular integral operators both in x  and I space. We showed its
utility in our previous paper : Le problème de Cauchy pour les systèmes hyperboliques
et paraboliques. Mem. Coll. Sci. Univ. Kyoto, 32, 181-212 (1959).
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W e assume now :
i) The coefficients are analytic functions ;
ii) For each A[r(x) E S( f ), 12 being an arbitrary open set in x space
containing the origin (x=0), once fixed for all, there exists a solu-
tion u(x, t) E 8 in a neighborhood of the origin, which may depend
on Jr.

From Holmgren's Theorem, it follows this : Define a familly
of open sets

(1.2)D p  =  { ( x , x 1 2  < p } ,  0<  p < p 0
 (small) ,

then any solution u(x, t) G 6 1 o f  /14- Pd= 0 with a given initial value
is unique in D 0 . Now  we prove

Lemma 1. 1. Under the assumptions i) and ii), there exists a 8 >0
such that, f o r any function 110 )  E 6(S2), there exists a unique solution
in  61600, satisfy ing u(x, 0)=*(x).

Proof. Take a sequence 80= p„>&.
 l > 8 2 >••• >E n  • • • --> 0 ;Denote by

An ,,, the set of all functions Jr(x) of g(11) such that 1) the solution
u(x, t) having Ip(x) as initial value has at least D "  as its existence

E+2
domain : m o re  precisely, M [u ]=  0, u(x, t)E 61, 2

n

 ( D " )  ;  u ( X  ,  0)
= * (x ) for x E D,n n (t=  0),

2) u(x, t)11E a ,2< m , where ilk  means the customary norm of

the functions in 8 k,-,2(D0 n ) :  1 fq-=,E 11DY11,2 2.

The set A „ ,  is symmetric convex and closed. The first two pro-
pentes are evident. We need only to show that A n ,„, is closed.
Suppose th a t *„ E 11, 0 E  (1 -2). Corresponding to 1ff we have

M+2
th e  sequence un (x, t). Since un  is bounded in e  L 2  ( D e n ) ,  we can

choose a convergent subsequence u
[29:

n p  in g (namely, they con-

verge on any compact of D „  in  g, -topology). Furthermore, if
necessary, by taking again its subsequence, we can assume this
subsequence to be weakly convergent (as a Hilbert space) in
E14-1 UT-2

gL2 (An)• We denote this limit by uo E 'T O  ( D " ) .  Then, unp—>uo
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weakly implies that u„ satisfies 2 ) ,  and by  Sobolev, u o E 8'(De„),
[f l
L 2 C la )

+1
and M [u o]= 0. (Den ,)  implies that, since un i,  are- c  

uniformly convergent on every compact in D ,n (t  = 0), w e have
uo (x, 0 ) = 1 P 0 ( x ) ,  which proves that A„,,„ is closed. Since \.]

=642), one o f A„,,„, say Anoi s  o f  second category, therefore
it contains an open set of 6( f2). Since An o ,,,,,„ is symmetric and
convex, it contains a  neighborhood o f  0  in  a n ) .  This implies
that, fo r any IJ(x) E 6(0,), there exists a unique solution u(x, t)E
M+2

g i 2 (/),,,0), a fortiori E ei(D,„0 ) satisfying u(x, 0)—qr(x). The proof
is thus complete.

Lemma 1. 2. Th e  mapping Ifr(x) E g(1-2)—>u(x, t) E g'(D,), D, being
defined in the previous lemma, is continuous.

P roo f. This is the closed graph theorem o f Banach.

Proof of the co ro lla ry . Assume that. for every Ilf(x) E 6(S2) ,  there
exists a solution u(x, t) E  g  in a neighborhood of the origin. Then,
by Lemma 1. 1 and 1, 2, there exists D ,(& > 0 ) such that lif(x)E

u(X , t) E W (D,) is continuous. However Theorem 1. 1 says
that, under the assumtion stated there. this mapping cannot be
continuous (as we shall see in the proof o f this theorem, we need
not to assume u(x, t) E 6, it is enough to assume u(x, t) G g'). This
contradiction proves the corollary.

We remarked (Remark 1) that the corollary is also true even
if we assume that the existence domain o f u in {(x , t); t> 0 ,
t+lx1 2 < p } ,  where p may depend on the initial value Ik(x). We
restrict ourselves to point out how to modify the proof o f Lemma
1. 1. A t  first we extend all functions u(x, t) defined in D , ,  to
An  a s  follows (see, Schwartz, [ 7 ] )  :  F o r t< 0 ,  define ui (x, t)

=  a ,u (x , — 24 ), where P = [ - ] +2  a ,  being determined uniquely

by the condition that this function has the same traces on the

hyperplane t= 0  as those o f  u(x, t) up to order p —1—[  21  j +1;
namely, ( — v)k a,=1, k=0, 1, ,  p — 1. N o w  û (x , t)=u (x  t)+

v =1

u,(x, t) is defined in An , and we have D'a(x, t)=D'u(x, t)+ D'u,(x, t)
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fo r  11H< p = [ -
1

]+  2 , the derivatives being taken in distribution2
sense, for both traces on t = 0 o f u  and u , up to order p — 1 coin-
cide. Moreover I p  is bounded. Then we choose a subsequence
of u„ as follows :  un p  l c ,  weakly in 62(D,,—  (t = 0 )) . Next consider
the subsequence u,,  t o  {n } ,  and  choose again a
subsequence in such a way that this new subsequence converge in

6 ; ;L C A n ) .

R e m a r k  3 .  I t  is desired that th e  corollary is proved in the
following form :  there exists a function I/r0(x) E S , such that there
exists no solution u(x, t) G 61. We don't know whether this is true
o f n o t. However, as the proof shows, we can say that there

exists no solution u(x, t) G 6[ 2 1 1 2 , 1 being the dimension of the space.
Theorem 1. 1. is of course true for higher order single equa-

tions, not only for kowalewskians but also for.p evolution equations.
We say here that the linear single equation

(1. 3) M[u] — u+a,(x , t ;)  
a  m -1  u +a,( M-2x, t ;  3  a uarn a x  a r - i ax  la r - 2

a
••• t ; )u —  0

is p-evolution (p : positive integer), if
( p )  ai (x, t ; 0  is  a polynomial in o f  degree < ip .  We donote
this highest homogeneous part (principal part as p-evolution) of
degree ip  by hi (x, t

There are infinitely many possible choices o f p  for a given
equation. Namely, i f  (1. 3) is po-evolution, then it is of course
p-volution for any p> p o .  However, in this case, the correspond-
ing principal part becomes h 1 O ( i= 1, 2, ••• , m) which is a trivial
choice of p .  Taking into account o f this remark, we have

T h e o re m  1. 2 . Consider the characteristic equation (as p--evolution):

P(X ) = + h,(x, t ; + 122(x, t ; + • • • + h„x, t ; = O.

W e denote the roots by  Xi (x, t real =1= 0).
I f  fo r  som e x o , one of roots, say  X, has a positive real part :



114 Sigeru Mizohata

(1. 4) Real part Xi (xo , 0 ; eo) > 0 ,

then the f orw ard Cauchy problem with in itia l tim e t=0 is not w ell
posed in  S17,2 in  any small neighborhood o f  t = O.

The theorem is true even if we replace there T7,2 by 93 or 6
However, we should remark the following fact : In the case of
the equations with constant coefficients, if (1. 3) is not kowalew-
sk ian , then the Cauchy problem is not well posed in  6, see
G5.rding [1].

W e can consider th e  corollary corresponding to that of
Theorem 1. 1. We can say the following fact : For the parabolic
equation of the form

(1. 5) M [u] — u— a i i (x, t) u— E ai (x, t)  3
  uat axiax; ax,

c(x, ou = 0;

where E ai i (x, t ) 1 > c L
 2 ,  c  is  a positive constant ;  the coeffi-

cients are in 93, consider the backward Cauchy problem in  T72.
Then there exists a  qr(x) E 1),-; such that there exists no solution
u(x, t) E 6_(T;)" with the initial value *(x ) (at t= 0) in  any small
neighborhood of t= O. In fact, we know that the backward Cauchy
problem for this equation is unique in this space, see [4].

We shall give a brief proof o f Theorem 1. 2 in the last section.
Now  w e give a  rough sketch of the proof o f Theorem 1. 1.

A t first, we remark that, i f  necessary by replacing e  by -e, we
can assume

(1.5) Imaginary part X1(0, 0 ; < 0 , iej= 1.

Then, consider the convolution operator Mo :M o —  i.z U°A , where

A p e = A k(0, 0) . We shall prove in section 2  that, so far as
we restrict the sequence of the initial values in a convenient way,
then this operator gives a  good approximation to  M . More ex-
p lic ite ly , we define u„(x, 0)= exp (in 'x )i/f (x ), where AJ(x) is  an
analytic function whose Fourier transform has its support located
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only in  a  small neighborhood o f e .  Now we assume the con-
tinuity in 6, then

(3.7) m ax u (x , t)I < 0(nh) f o r  0 < t <  T ',

S2 being a compact chosen closely to the origin. Finally using the
inequality obtained in section 2, w e show that (3. 7) is  a  con-
tradiction.

2 .  Operator M , approximating to M.

Take a  function I3(x) G C -  a n d  a( ) e C-  o f  small supports,
which take the value 1 in a neighborhood o f x=0 and e  respec-
tively. We shall define these sizes later. Define

(2. 1) = n) ,

and, denoting the Fourier inverse image of this function by a„(x),
define

(2. 2) ant" = an(x)* f(x) .

Our aim is to show that the convolution operator

(2. 3) A/0 —  i. ,4 0 e Aat
is, in a certain sense, a first approximation of M.

A t first, apply 3(x ) to (1. 1),

(2. 4) ine(x)u] = E A kRk (x) u ,

where 3 ak(x)— gx).ax,.
Now, since M  acts on /3(x) u, it does not change if we modify

the coefficients A k  and B  outside the support of [3(x). Therefore
we can write (2. 4 ) in the form

(2.5)
E k ax

a

x,.
[

'
e u ]

 =  
E  71

"
(x )u

 '

where the oscillations of A k  and 13 become small, when the size
o f Supp (3) become small.
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Next, we define exp ( —8/At), ( 6 ' >O), b y

(2.6)( e x p  (  —  8 ' A  t) it) exP( —  I  I  t) b* ) •

This is  the elementary solution of the evolution equation,for t>0,

(

a  1-8/A )u = o.at
Denote

(2. 7) 7„(t) = exp ( — 8/At) cr„ .

Apply this convolution operator to (2. 5), then

(2.8)   — E A.„ a
a
x k  -8/A- B ) [ 7 ( x ) u ]

E Akkiku- E (7„ -Ak - 71o.) a  [8(x) i d
ax,

- (7./3 - B7.0(x)u) .

Now we consider the left-hand side. We denote this operator by

/1-f — 8/AL Consider the operator E Ai, . — SIA. S in ce  StA  actsax k

on the functions of the form cen v, w e can replace there S t b y  ,q2.
Si is defined as follows : W e call the support of a( ) on the unit
sp h ere  th e  projection fro m  the origin . T h e n  w e  change the
symbol i E A k (x, t)  ,./  outside the support of a( ) on the sphere.
T hus w e obtain  a  singular integral operator  JL  H e re  w e  c a n
assume that the oscillation of 0- . (S t) becomes smaller and smaller
i f  we choose the sizes of the supports of a  and R sm aller and
smaller.

N o w  w e  w a n t  to  examine th is  situation more precisely.
Consider the eigenvalues A.7, • • • , X`,', of i 240e =i E A,.(0, 0 ) : .  I f
eventually som e o f them are pure im aginary, we translate them
b y  —6 (6>0, sm all), then we can assume that

(2  9 ) 
Real part X 7 - 6 ,  • • •  ,  4 , - 6 >  66, 8 >  0, N 1 >1  ,

. 
Real part 4 , 1 - 8, • • • , Xcl„ — 6 <  — 66.

Then, by a known theorem (see for instance, [6] p. 24, Lemma 5),
we can find a non-singular matrix No such that



Some remarks on the Cauchy problem

x.7

117

N o •iA oe • N(71 =
X? 0

• • •
o .a j

=

X?„
8where , being defined in (2. 9).la?i

 < 4 N

Denote

(2. 11) Gr(A ) = iA oe +0- 04) . Then

(2. 12) = (5)0 + NoANE, 1)N o = (l0+21,)No •

Now we define the sizes of the supports of /3 and a  and T : If
we take these sizes and T  small, we shall have, denoting the
(i, j)-e lem en t of 21, by el$e,),

6 (2.13)0 - ( C r i S 1 ) ( X ,  t  ; < 
4N

,f o r  0 < t <  T

Now we want to derive an inequality. A t first we state a lemma
on singular integral operators.

Lemma 2. 1. Let H  be a singular integral operator (in the sense
o f Calderón and Zygmund).
i) I f  OE= inf. Real part 0- (H )(x ; ) > 0 , then

Real part (HAu, u) > -1 7- (Au, u)- C i llu112

2

where C, is a constant.
ii) Let M =suplo - (H )(x  ; 01 , then

u)l <  2M(Au, u)+

C, being a constant.
W e don't give the p roo f. The reader will easily verify by

consulting our previous paper [5 ].
8Now we assume in (2. 8), 8/ - 6 +  ,  p= 0 , positive integer,

2P
then, it can be written
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(2. 14)
{ a t  (m o +  E - 8/1) A — Bo [ v( ") ] = Nof,

where f  is  the right-hand side o f  (2. 8) ; Bo (x, t)— N0B(x, 01\4 1,
and

(2.15) v(n) = 7.13(x) No u

Hereafter we omit the suffix (n) of v( n) .
Consider now

(2. 16) S(t) = Hv1(t)I12 —  E Ilv 1(t)112 , where vi (t)= vi (x, t )  is  thej=1
i-th component of v.

j=Nrki

S V ) 2 R e(v i , (v i ) t ) — 2Re(v , ( v ) )i=1

----- E 2Re(vi , (X7— 8' + cl̀ ,21) A.vi ) — E 2Re(v;  , po, - 8' + dS,7)Avi )i i

+ E E 2Re(v1 , (a% + dg,) ) Avk) —  E E 2Re(v;  , (a3 k + cP,N)Avk)i k j j  k  j

+ E 2Re(vi , f )  E 2Re(v;  , f )  —  E 2Re(vi , E bi k vk ) — E 2Re(v;  , E bikvk),k i k

where f  is the i  th component of No f, and B 0 = (b ).
B y the previous lemma, the first row o f th e  right-hand side is
greater than

28( E (Av 1 ,v1) +  E (Ay;  ,v; ))— CI Iv112 "

In the same way, the second row is greater than

—N 
2 8  

( E (Av„ 0+ E (A.v;  , v 3 )) — ClIv112 .
2 N  i

The last row is greater than

- I IIN0 fH .  Hence

S V )  >  8 (Av1, Vi)} CIIVH2 — 2 11VL 11N 0 f

> {d istance  (0 , SuPP 2-2H0 IINof H.

3 )  Throughout this paper we may use the symbol C  in  order to re- present
positive constants. Sometimes it expresses a positive constant which can be chosen
independently o f n.
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Assuming distance (0, Supp (b))>4C, we have for vw,

(2. 17) d8 ( n )S(t ; /in > nilv 112
- 01v

( n )

dt 2

In fact, distance (0, Supp (î,C))) > (3/4) n,

3. P r o o f  of T heorem  1.1.

We prove this theorem by contradiction. We assume therefore
(1. 1) to be well posed in 6.

At first we define a series of solutions u„(x, t) of (1. 1). Namely
we define their initial values. Let ' i\b- ( )  be a function whose sup-
port is located in a small neighborhood of ; On the support of

A
IfrA (0, C ( )  -= 1  ; we assume 1*(01 2  =  1. We define then

(3.1) 17r ) = n e ) .  Namely

(3.2) qk(x) = exp (inex)*(x) .

Now we define un (x , t) by

(3. 2) M [u ] = O, u „ (x , 0) = NCT I , n  = 1, 2, •••

To consider a n u „(x , t) means that we take only a high frequency
part of un (x , t)  (t being parameter). Now we want to show that

(3.3) 11 anR(x)Nou„(x, 0)1 I = c+ 0 (  1  ), c  is a positive constant.

a„,8(x) un(x, 0) = ceng x )* .( x )  R (x )  an*.(x)+ (a.)8 (x) — 3(x) cf„)*„(x) .

Here a n *„(x )=*,,(x ), fo r cf„( ) =1  on the support of Ifitn ( ) . Hence
the first term o f th e  right-hand side is ,e(x)1p ,„(x)— exp (ine x) x
ie(x )*(x ). Since IP(x) is analytic we have

(3.4) 18(x) an*.(x)11 = I 0(x) iff(x)lz d = c > 0 .

Now we look at the last term . We know that
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(an (x) — 13(x) an ) u —  ce n (x — y){( y) — 13(x)} u(y)dy .

By Taylor expansion : ii( Y) — 0(x) = E  ( v— x)'' (x) ±  E  ( Y- x) '' x
.,,,1 ‹, v!

/ (x, y ), we see that the last integral is equal to
ivi=p+i 11

(3. 6) E  ( -
 !

1 ) H  R (x )(xv  an )* u  + E  ( - 1 ) M  xi,Jvi‹, v . 1,1=p±, v!

(x, y)(x — y) an (x — y)u(y)dy .

When we put u=Afr,i (x ), the first terms corresponding to E
are all zero, since (.e an)**n(x) const. ci,̀ ,')(01Airn(0= O.

Next, the last term s are majorized b y  cl (x'' an)(x)Idx.

N o w  l (x' )(x) is majorized b y  const. l a ( )  d =  const.

(

1 ) 1 l ac" ( I - )  1 c1  < const . (  1  ) 1''l 1 , / being the dimension
n Supp(ce,) n n

of the space. On the other hand, for l x l > 2

w a n o )  _   1  2 k (x,,Ix1 „ cenxx) _<  const. x
l x l l x l 2 k

lA ke )(0 1 c i  <  clox rils2kt. (1n)11,1-J-2k- 1

This shows that, if  we take l x  > 1 , then

(3.6)s ç ( x cen(x))(x)1dx —  0 ( n [

Thus we proved (3. 3).
Now we put u t )  in (2. 8) and 8' =6 + By hypothesis,

there exist a positive integer h and a neighborhood (in x, t  space)
S i  o f (x, t) 0 and small T ' such that

(3.7) m ax u(x, t ) < 0(nh) f o r  0 < t <  T '.(, ,t)EK2
By taking the support of 4(x ) small, we can assume that the sup-
port o f R (x ) is contained in 12, therefore we have

(3. 8) 10(x)un (x, t) 0(n"),f o r  0  < t  < T ' .
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Now we consider the right-hand side o f (2. 8), we want to show
that it is expressed, modulo bounded functions (in L2-sense) with
respect to n, as linear combination of

4(x)u„
(3.9) -\/ n exp + ) A t  .\/ n 11x  (   1  2 .) )4k(x)un ,

' n

whose coefficients being bounded operators in  1,2 (bounded with
respect to n too). Namely

(3. 10) n  E  C ( t )  exp  —  + ) At} x
2

N/n '''.4 " (  ) (1 ‘ ) 0 '(x )u (x , t)+  0(1)
V n

where I q ( t )  1,1 ,(L 2; L 2 ) <const. independent o f  n ;1<17I +1 ,cl <
m =2(h + l),

T o see th is, take the most delicate part of (2. 8), (y„Ak — ;Ly n ) x
a  r

U8(X) un ]. Denoting 'I r k  merely by A , and using, as previously,

(3.11)
1)11, I DV1 ( x v 7 n )   a  [/3(x)u]

ax k

a+  E  A,(x, y)(fry„)(x—y)-- —[1-i(y)u n (y, t)]dy ,ayk
where

(3. 12) m 2(h +/) ,

where we chose m so as to make the last terms o f (3. 11) bounded
(with respect to n). Take at first a term of the first part : (x 27„)
a  [4(x)u n ]. The convolution operator (e7 n )  9  h as its  Fourier

ax ka x k
im age const. D -(e) ek = const. DTexP { + 8 ) I I  t} a„(M lz .
Leibniz,

(3. 13) DIexP { (&+ 8 ) I 1/1 cea n
E M texp —  (6+8)1 t}]Dv2a,(C) •

axk
the Taylor expansion, this can be expressed as

By
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In general, we have

D" exP { = t) exP {—  I = 6  + 6),

where t)I < C {1 (t1 1 )k }/ IC H f o r  IC>1.k-,
I IaSince ( (t l )k ) exp (— I t )  is bounded, we have finallyk=1

(3. 14) I:4 exp { — (6+ 8) q , t)exp {--(6+--2-8 )10 }

where Ip a , <  c ,  , f o r  1C > 1 .

Hence, there is no question as regards to  the terms I 1)1 1> 1 in
the right-hand side o f (3. 13). A s regards to  th e  term s vi =0,

(hence H21>1), w e  have a,̀,'2) (0  1,= n ( - ) c e e 2 V ) .  S in c e  k  I n  is

uniformly bounded (with respect to n) on the support of a,,(),, we
see that (3. 10) is true for any of the first terms in  (3. 11). There-
fore we need only to show that the last terms of (3. 11) is  0(1).
These terms are majorized by the form (by Young's Theorem)

(3. 16) c
a (x'y k )(x)

ax,.
dx)Hgx)u nil •

    

Now we want to estimate the above integral. Take Fourier trans-
form of the integrand : c' k ( ) .  This is majorized by c' I 7,̀ ,' ( ) J.
Taking into account o f  I ce,' ) ( ) I < c ( ) 1v1 , and of (3.14), we have

(3. 17)

This implies

17eVi<c(J---r - '
n / •

(3. 18)
a  

 (x
,

y,i)(x)
ax,.

--
< const. „  1 1  e)(0 I <const. (

1

--)
1 '1 - 1 1

   

= c 1 (  1 )h(  1  
—

)n
(— c

n n •

On ther other hand, for Ix I > 2 , putting
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( x  ) ( x ) -  
I 2 k

/ IX 1" / (fry .)(x ), w e see that th is  is
ax k o x k

majorized by

krY;,i'' ) (0 ]
(1 )2 k ,  0 ,1-1 c ( 1 ) 2 k /  ± 11,1_1_21

<  c < c o n s t .  jsuppcao

choosing k' =1, we have

(3. 19) a ( x '  f l ) (x )axk

<   1   (  l )

xI 2 1 \ n
for

      

where c  does not depend on n.

Finally we have

(3. 20)( 3 . 1 6 ) 1 )m 0(  1
h 

)11,8(x) u,i(x, t)11 = 0(1)( 1   ) "
n n n •

We can see that the same reasoning on the rest terms of (2. 8)
will give (3. 10).

In view of (3. 10), we consider next all the functions appearing
there :

f + At} N/nexp 2   ce,(;Yyn -1.10"( x ) un (x ,  t )

where y and IC  satisfy the condition mentioned there. Namely, we
make th e  same process for these functions as for y /3 (x )u :  we

/3(x)replace in the above reasoning /3(x) , {3 k ( x ) , exp (8 +8)A t}  a„—>

exp + )A t} ce"». In total, we are led to consider all func-

tions o f the form :

(3. 21) O' n ) (P, y, K) un  =  Y n i7 1-1 " exp — (8 +
2

At} ceVY.9'(x) un
P

where p<171+1K1<m, p = 0, 1, • , m.

We shall then have the equations analogous to (2. 8) for all these
functions. Namely, we have the equations of the form (2.14), where
i) tc) Nou„,

ii) th e  right-hand side Nof is expressed, modulo bounded func-
tions, a s  a  linear combination o f  th e  functions (3. 21), whose
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coefficients are \ / n  x (uniformly bounded operators in  L 2 ) .
Now we return to section 2. For each e ( n ) (P, 'Y, ONoun(x, t),

consider S(t), denoted by S(t ; e( n)(p, 7, fc)Arou „) .  Finally define

(3. 32) Sn(t) = E  S(t ; enP, 7, 10 Noun(x, t));
( r n(t) = E 110(P, 7, , ) Noun(x. 0112

where th e  summation is extended over all functions in  (3. 21).
Taking into account of the fact that the support of (0 '"(p , K )
N oun) ,  t )  is contained in  th at o f a n ( 0 ,  i f  w e  ap p ly  th e  in-
equality (2. 17), we shall have

1 (3.33)S ( t ) >  8nœn(t)—C-\/ -n Grn (t)— Oa) ,
2

_  8where C is  a constant. Since for n  large, —
1

8n — CN/n > n,
2 4

(3.34)( e x p  (  8  nt)S n ( t ) )  >  0(1) exp 8  n t)
4 t 4 •

Now we know that, since at t=0 all functions ffn) (p, r, K)Noun

have their components 0 except the first components, we have
Sn (0)>S(0 ; 7.13(x)N0un) =11cenR(x) .11P„(x)li2, a n d  th is  is  e q u a l to

c2+ 0(1 ) ,  by (3. 3). Hence

(3. 35) Sn(0) > c2I2 for n  large.

By integration of (3. 34), we have

(3.36) S n (t) >  6.2 e x p  8   n t) -0 ( 1 ) for n  l a r g e  0 < t <  r  .
2 4 n

On the other hand, taking into account of (3. 21) and (3. 7),
w e  s e e  t h a t  110 'n ) (P, K)Nounl <const. n H 1' 11 IS'(x)un(x,t)112

=0(nm±")=0(n 4 ").
Since S ( t ) < Œ ( t ) ,

 it follows

(3. 37) Sn(t) < 0(n' ' 21) fo r  0 < t <  T .

(3. 36) and (3. 37) cannot be compatible unless t= O. The proof of
Theorem 1. 1 is thus complete.
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4 .  P ro o f o f T heorem  1. 2.

In principle, this proof is the same as that o f Theorem 1. 1.
Therefore, we want to explain how to reduce this proof to the
previous on e . We treat here the kowalewskians (p=1).

aA t first, denoting u, = u, u,— u,••• ,u m —
a t — i

tt, we considerat
an equivalent system to (1. 3) :

'  0 1
01

1
0

A = = , u =

—am  — a 1 ••  —a,

Apply 0(x) to L Eu], then

(4.2)L [ R ( x ) u ] +  E  c„(x, t ;  a   ) [ (x)u] =  0,
ax

ul
u2

u„,

where, denoting C, =

C1 .  C 2 , V • • • C t,,, V ,

(4. 3) ci ,,(x , t ; 0  is o f order ( in  )---<_)n + 1 — i —

Now we apply 7„(t) to (4. 2) just in the same way as in the sec-
tion 2, we then have

(4. 4) 1.,[7„4(x )u]+(y „L -1,7„)[4(x )u]+7„ E  c , [4 (x )u ] = 0.

Taking into account of (4. 1), we have here

(4. 5) y„L— Ly n  =

Now we insert a process which was not done in the case of
the first order system. Denote

(A + 1)m - 1

(3. 6) Em(A) =

  

O
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Instead o f  u  itself, we consider E„,(A )u . Then it follows from
(4. 2),

(4. 7) (EniLET2)[E,n'7n19(x)u]+ (7nA — A7,,)E; 1 [E„,,e(x)u]

+ 7  E  C ,(x  t ;  a  ) E ;TE n z i3(x)u] = 0 .ax
Now consider the first term . We can express it by singular inte-
gral operators :

(4.8)(   asa— )C7,,E„,,e(x )ulat
where

j) 93 is a bounded operator in L 2
;

01
01

0
. .

0  1
—hm  —h m ,  —hi

(4 . 9 ) ii) a-CR) = ; hi = h i (x, t lei) •

Next, we see that (7„A — Aryn ) E,T2 has just the same property as

E  (7.Ak — A k 7  
a

„)  in  (2. 8). Finally, denoting C,E,7, 1 = C „  we seeaxk
th a t th e  term  c corresponding to ci ,, has th e  order of
differentiation < (m +1 — i —  HI) — (m—  i) =1— H .  This shows that

E C [8 ' ( x )u ]  has the same property as 7n  E A k Ok u in  (2. 8).
Finally, we define u„(x, 0) by

 

(4. 10) NoE„,(A)u„(x, 0) =

 

where N , is defined by G- (30 in the same way as in (2. 10). (4. 10)
can be written

 

(4. 10)' un(x, 0) = Em (A) - 1 N (7'

 

Obviously, un (x, 0) E 3;17,2 n 33. Finally we remark that
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(4. 11) la,,N oEn i0(x)u,,(x, 0 )1 1 1 2 > 1  g x ) c N oE u (x ,  0)

1[13(x)(ce„No Em ) — (cf „A ToE,,,) 4(x)]u n (x,0)

—1113(x )* (x ) — 0 ( 1 ) ,  b y  the same reason as in (3. 6) .

T hus w e can  verify  easily  th at, rep lac ing  a T ,8 (x )N 0un in  the
previous section by (N oEm(A))ce,7)3 g)(x)u,, the analogous reasoning
can be carried out.
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