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1. Introduction

Consider the first order partial differential equation

L1 Mu]=-2u— S Ax, )2 u—Bx, hu =0,
ot X,

l
k=1
where u is a vector-valued function with N components; A, and
B are matrices of order N, infinitely differentiable with respect to
t and x=(x,, x,, -+, x,). Consider the Cauchy problem for this
equation with given initial value at t=0. We say that the Cauchy
problem for (1.1) is well posed for the future in the space &, if
i) for any given initial value u(x, 0)€§,, there exists a unique
solution u(x, t) €€, ., t>>0, which takes the given initial value at
t=0, ii) this linear mapping u(x, 0)— u(x, ¢) is continuous from &,
into 8, ;. Here & is the space of all infinitely differentiable func-
tions with customary topology, (see L. Schwartz [8])”: f;—0 in §,

1) In this paper, especially in section 1, we followed the notations of
Schwartz's treatise [8]. We used the following linear topological spaces: &, £7(Q),
B, Doy E72(Q), EFac1oey(2), L being an open set in R* and £_(DF.). We shall
explain briefly. &€™(Q) is the space of all functions f(x), m-times continuously differ-
entiable with the topology: f;—0, if DVf;(x), |»|<m, converge to O uniformly on
any compact in Q. &7,(Q) is the Hilbert space of all functions f(x) belonging to L?(Q)
with their derivatives (in distribution sense) up to order m, with the inner product:
fy g)rm_z.m(D“f, D¥g)r2. Efacieey(L2) is the space of all functions f(x) such that

DVf(x) € L?o(L), for |v|<m, with the topology: f;—0, if for any compact K of €,
D¥f;(x) =0 in L%(K), for |v|<m. Finally, f(x, t) € &_(9}3), if the mapping t—f(x, t)
¢ D7, is infinitely differentiable for #<C0.
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if for any compact K and any integer v, D*f; converge uniformly
to 0 on K.

In the study of hyperbolic systems, it is always assumed that
H) >3 Au(x, t)§,=A-E has only real eigenvalues for any (x, ¢;§),
where & is a non-zero real vector.

Our purpose is to prove the following

Theorem 1.1. Assume that, for some & (==0) real, the matrix
>3 A0, 0)E} has a non real eigenvalue, then (1.1) is not well posed
in any small neighborhood of the origin.

From this it follows the following interesting

Corollary.  Assume the coefficients Ay(x, t) and B(x, t) to be
analytic functions of x and t. If we make the same assumption as
that of Theorem 1.1, then there exists a function r(x) €8, defined
in a neighborhood of x=0, such that there exists no solution u(x, t)€ §
of (1.1) satisfying u(x, 0)=(x), in any small neighborhood of the
origin.

Remark 1. This corollary is also true even if we restrict there
the domain of existence of w(x, ) to a half-space, that is, for
instance for ¢>0.

Remark 2. Theorem 1.1 was proved at first by Petrowsky [6]
in the case where the coefficients depend only on #. In the case
of variable coefficients, P. D. Lax proved this under the condition
that this non real eigenvalue is simple [3]. Our proof is a direct
extension of that of Petrowsky and quite different from that of
Lax®. The above corollary was proved by Lax in [3], however
we present here our proof.

We shall prove Theorem 1.1 in section 3. Here we prove
the corollary, assuming Theorem 1.1 to be true. This proof was
borrowed fairly from Hoérmander’s paper [27], p. 135.

2) We should mention that our proof is based on the theory of the singular
integral operators (in the sense of Calderén and Zygmund). More precisely, we used
the localisation of singular integral operators both in x and ¢ space. We showed its
utility in our previous paper: Le probléme de Cauchy pour les systémes hyperboliques
et paraboliques. Mem. Coll. Sci. Univ. Kyoto, 32, 181-212 (1959).
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We assume now :
i) The coefficients are analytic functions ;
iil) For each (x) € §(Q), Q being an arbitrary open set in x-space
containing the origin (x=0), once fixed for all, there exists a solu-
tion u(x, t)€ & in a neighborhood of the origin, which may depend
on v,

From Holmgren’s Theorem, it follows this: Define a familly
of open sets

(1.2) Do = {(x, )12l +|x[*<p}, O0<lp<p, (small),

then any solution u(x, )€ &' of M[«]=0 with a given initial value
is unique in D,. Now we prove

Lemma 1.1. Under the assumptions i) and ii), there exists a £>0
such that, for any function r(x) € 8(Q), there exists a unique solution
in 8'(D,), satisfying u(x, 0)=r(x).

Proof. Take a sequence 60:,00>é1>82>...>5”...—>0;Denote by

A, ,. the set of all functions (x) of §(Q) such that 1) the solution

u(x, t) having +(x) as initial value has at least D,, as its existence
{142

domain: more precisely, M[u]=0, u(x, t)ec%’Eg] (D.,, ) ; u(x, 0)

=vr(x) for x€ D, N (t=0),

2)  |u(x, t)||[£]+2<m, where || ||, means the customary norm of
2
the functions in &,(D,,): |IfIfi= 33 1D/l
Vi<k

The set A, ,, is symmetric convex and closed. The first two pro-

perites are evident. We need only to show that A, , is closed.

Suppose that v, € A, ,,—v,€&Q). Corresponding to 4yr,, we have
[:]+2

the sequence u,(x, t). Since u, is bounded in &, (D,,), we can
AL
choose a convergent subsequence u,, in 8, (namely, they con-
l

= J+1
verge on any compact of D,, in 8,[22 | ~topology). Furthermore, if
necessary, by taking again its subsequence, we can assume this
subsequence to be weakly convergent (as a Hilbert space) in

[%]“ [%]+2
6=~ (D.,). We denote this limit by u,€ £,,~ (D,,). Then, u,,—u,
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weakly implies that #, satisfies 2), and by Sobolev, u,€§'(D,,),

Ll
and M[u,]=0. w,,—~u, in 8,,22(,],,6) (D.,) implies that, since u,, are
uniformly convergent on every compact in D, N (¢=0), we have
uy(x, 0)=1,(x), which proves that A, , is closed. Since \J A4, ,,

=6(Q2), one of A, ,, say A,, ., is of second category, therefore
it contains an open set of §(Q). Since A, ,, is symmetric and
convex, it contains a neighborhood of 0 in &(Q). This implies
that, for any +(x)€ &(Q2), there exists a unique solution u(x, ¢) €

a2
8%] (Den,), a fortiori € (D,

is thus complete.

) satisfying u(x, 0)=+(x). The proof

€n0

Lemma 1.2. The mapping (x)€ 8(Q)—>u(x, t)€ &' (D,), D, being
defined in the previous lemma, is continuous.

Proof. This is the closed graph theorem of Banach.

Proof of the corollary. Assume that. for every y(x) € §(Q), there
exists a solution u(x, ) €& in a neighborhood of the origin. Then,
by Lemma 1.1 and 1,2, there exists D, (€_>0) such that (x)€
8(Q)— u(x, t) € 8(D,) is continuous. However Theorem 1.1 says
that, under the assumtion stated there. this mapping cannot be
continuous (as we shall see in the proof of this theorem, we need
not to assume u(x, ¢) € §, it is enough to assume u(x, £)€§'). This
contradiction proves the corollary.

We remarked (Remark 1) that the corollary is also true even
if we assume that the existence domain of # in Dj={(x, t); ¢ >0,
t+|x|°<p}, where p may depend on the initial value 4(x). We
restrict ourselves to point out how to modify the proof of Lemma
1.1. At first we extend all functions u(x, ¢) defined in D;, to

D,, as follows (see, Schwartz, [7]): For #<(0, define u,(x, t)
= éavu(x, —vt), where p=[—é—]+2, a, being determined uniquely

by the condition that this function has the same traces on the
hyperplane ¢=0 as those of u(x, ¢) up to order p—1=[~é—]+1;
namely, Zi} (—v)a,=1, k=0,1,---,p—1. Now d(x, H)=u(x, t)+

u,(x, t) is defined in D,,, and we have DYi(x, t) =D u(x, t)+ D*u,(x, ¢)
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for |u|<p=[%]+2, the derivatives being taken in distribution

sense, for both traces on =0 of # and #, up to order p—1 coin-
cide. Moreover ||i#]|, is bounded. Then we choose a subsequence
of u, as follows: u,,—u, weakly in §,.(D:,—(¢=0)). Next consider
the subsequence u,, corresponding to {z,}, and choose again a
subsequence in such a way that this new subsequence converge in

p—1 ~

8’]}(/0:)(Dtn)'

Remark 3. It is desired that the corollary is proved in the
following form: there exists a function +r(x) € 8, such that there

exists no solution u(x, t)€8'. We don’t know whether this is true
of not. However, as the proof shows, we can say that there

exists no solution u(x, ¢) € 8[%]”, ! being the dimension of the space.

Theorem 1.1. is of course true for higher order single equa-
tions, not only for kowalewskians but also for. p- -evolution equations.
We say here that the linear single equation

o 9 \o"! 2 \om
1.3 M[u =_u+a1<x)t;__> u+a <x)t;_> U+
(1.3) L] ot ox/ot™ ! : ox /ot ?

+a,,,<x, t;i>u =0
ox

is p-evolution (p: positive integer), if

(p) aix, t;& is a polynomial in & of degree <ip. We donote
this highest homogeneous part (principal part as p-evolution) of
degree ip by hix, t:&).

There are infinitely many possible choices of p for a given
equation. Namely, if (1.3) is p,—evolution, then it is of course
p-volution for any p_>p,. However, in this case, the correspond-
ing principal part becomes #2,=0 ({=1, 2, ---, m) which is a trivial
choice of p. Taking into account of this remark, we have

Theorem 1.2. Consider the characteristic equation (as p-evolution):
P\) = N+ hy(x, t; iE)N" 4 hy(x, 3 iE)NTE e b (x, £51E) = 0.

We denote the roots by A(x, t ;&) (£ real==0).
If for some x,, &, one of roots, say M, has a positive real part:
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(1. 4) Real part A (x,, 0;&,) >0,

then the forward Cauchy problem with initial time t=0 is not well
posed in Dy, in any small neighborhood of t=0.

The theorem is true even if we replace there 9;, by B or §".
However, we should remark the following fact: In the case of
the equations with constant coefficients, if (1.3) is not kowalew-
skian, then the Cauchy problem is not well posed in & see
Garding [1].

We can consider the corollary corresponding to that of
Theorem 1.1. We can say the following fact: For the parabolic
equation of the form

2

2 L C; 2
1.5 M[u]l= L u— S a;(x, t)-° — S'ayx, ¢t _
(1.5 L] ot f,j=xa’(x )ax,.axju aix )axiu

c(x, Hu = 0;

where > a;(x, £)§,E,>cl&|?, ¢ is a positive constant; the coeffi-
cients are in %, consider the backward Cauchy problem in ..
Then there exists a r(x)€D;, such that there exists no solution
u(x, t) € (D) with the initial value y(x) (at £=0) in any small
neighborhood of ¢£=0. In fact, we know that the backward Cauchy
problem for this equation is unique in this space, see [4].

We shall give a brief proof of Theorem 1.2 in the last section.

Now we give a rough sketch of the proof of Theorem 1. 1.
At first, we remark that, if necessary by replacing & by —&, we
can assume

(1.5) Imaginary part 2,0, 0;8)< 0, [&=1.

Then, consider the convolution operator M, : M(,:%—iAo’é"A, where

AL =31 A,0,0)&. We shall prove in section 2 that, so far as
we restrict the sequence of the initial values in a convenient way,
then this operator gives a good approximation to M. More ex-
plicitely, we define u,(x, 0)= exp (in°x)y(x), where +r(x) is an
analytic function whose Fourier transform has its support located
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only in a small neighborhood of & Now we assume the con-
tinuity in &, then

3.7 meagx lu(x, 1)< 0(") for 0L T,

Q being a compact chosen closely to the origin. Finally using the
inequality obtained in section 2, we show that (3.7) is a con-
tradiction.

2. Operator M, approximating to M.

Take a function B(x)eC” and «(§)€C” of small supports,
which take the value 1 in a neighborhood of x=0 and & respec-
tively. We shall define these sizes later. Define

@1 an(é) = alt/n),

and, denoting the Fourier inverse image of this function by a,(x),
define

2.2) a,f = a,(x)xf(x) .

Our aim is to show that the convolution operator
2.3) M, =2 —iAgA
ot
is, in a certain sense, a first approximation of M.
At first, apply 8(x) to (1.1),
2. 4) M[B(x)u] = > ABu(x)u,

where B,(x)= %B(x).
k

Now, since M acts on B(x)«, it does not change if we modify
the coefficients A, and B outside the support of B(x). Therefore
we can write (2.4) in the form

@5 (2T AZ-B)su] - S Aswu,
ot o

where the oscillations of A4, and B become small, when the size

of Supp (B) become small.
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Next. we define exp (—&At), (§'”>0), by
(2.6) (exp (—&At)u) = exp (=& |E|H)u).

This is the elementary solution of the evolution equation,for #_>0,
(-—8—-I—8’A>u =0.
ot
Denote

2.7 7.(t) = exp (—&Ad)c,, .
Apply this convolution operator to (2.5), then
@8 (2 - D42 -¥A-B)vsu]
ot oxy
= B A B 0l A (B
— (VB —Br,)(B(x)u) .

Now we consider the left-hand side. We denote this operator by
M—&AI  Consider the operator 3 /T,,aixk:ﬂm. Since J(A acts

on the functions of the form «,v, we can replace there .4 by ..
H is deﬁr'xed as follows: We call the support of «(§) on the unit
sphere the projection from the origin. Then we change the
symbol 73 A.(x, t)&,./|&| outside the support of «(§) on the sphere.
Thus we obtain a singular integral operator 4. Here we can
assume that the oscillation of (%) becomes smaller and smaller
if we choose the sizes of the supports of « and B smaller and

smaller.
Now we want to examine this situation more precisely.

Consider the eigenvalues AY, -+, A% of i4E=i 3 A0, 0)&. If
eventually some of them are pure imaginary, we translate them

by —&(&>>0, small), then we can assume that
(g RealPart M—&.-2%-e>60, 830, N>1,
' Real part A% ., —& -+ A% —&< —66.

Then, by a known theorem (see for instance, [6] p. 24, Lemma 5),
we can find a non-singular matrix N, such that



Some remarks on the Cauchy problem 117

NO‘Z'AOSO'N(TI = = j)0)
ad; -
Ay

where |a9,|<4iN, 5 being defined in (2. 9).

Denote
(2.11) o(H) = iAE +a(H,). Then
(2.12) N H = (Dy+N,HNHYN, = (Dy+ D) N, .

Now we define the sizes of the supports of 8 and « and T: If
we take these sizes and 7 small, we shall have, denoting the

)

(7, j)-element of D, by d:7,
@13) o@D DI 5 for 0Kt T

Now we want to derive an inequality. At first we state a lemma
on singular integral operators.

Lemma 2.1. Let H be a singular integral operator (in the sense
of Calder6én and Zygmund).
i) If ozing. Real part o(H)(x ;&) >0, then

Real part (HAu, u) >—Z—(Au, u)—C,|lull*,

where C, is a constant.
ii) Let M=su1é>|0(H)(x :€)|, then

[(HAu, u)| < 2M(Au, u)+C, |[u|[*,

C, being a constant.
We don’t give the proof. The reader will easily verify by
consulting our previous paper [5].

Now we assume in (2. 8), 3’=8+218pf, p=0, positive integer,

then, it can be written
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(2. 14) {2~ @+2.-4DA-B{[1"] = Nof,

where f is the right-hand side of (2.8); By(x, t)=N,B(x, t)N5",
and

(2.15) o™ = o, 8(x) Nt .

Hereafter we omit the suffix (n) of v,
Consider now

2.16) () = S lolF— 33 [0, where o()=o(x, ) is the

i-th component of v.

() = :ﬁjzzee(v,., @) 33 2Re(v;, (2)

= Z 2Re(v;, A\ —9& +ds57)Av,)— ]Z 2Re(v;, \§—9& +d9)Av;)

+ Zkzj 2Re(v;, (a°,+d{) Av,)— 2;‘; 2Re(v;, (a5e+d$?) Avy,)

+ Z2Re(v,-, - 12 2Re(v;, f§)— Z 2Re(v;, kZ bikr) — 5—,3 2Re(v;, ; bixtr)
where f; is the i--th component of N,f, and B,=(b;;).

By the previous lemma, the first row of the right-hand side is
greater than

26( 3 (Av;,0:) + 23 (A;,0,)) —Cll]* .

In the same way, the second row is greater than
26 )
—NZW(Z (Av;, v;)+ Z (Av;, v;))—Cllol*.

The last row is greater than
—Cllel* =12l IIN, £1l . Hence
S'(6) > 8{ 33 (A2, 0} —Clloll —21joll [N |
> 6{distance (0, Supp (2)) —C} |[v]*—2]|9|| ||IN, 1] .

3) Throughout this paper we may use the symbol C in order to re- present
positive constants. Sometimes it expresses a positive constant which can be chosen
independently of n.
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Assuming distance (0, Supp ()) >4C, we have for v,
@.17) St 5 67) > -2 el —Clol 11 1]
dat 2
In fact, distance (0, Supp (?*)) > (3/4)#n,

3. Proof of Theorem 1.1.

We prove this theorem by contradiction. We assume therefore
(1. 1) to be well posed in 8.

At first we define a series of solutions #,(x, #) of (1.1). Namely
we define their initial values. Let «/[\r(f) be a function whose sup-
port is located in a small neighborhood of & ; On the support of

‘?’(5), a()=1; we assume SI«?’»(E)Izd{::l. We define then

(3.1) A(E) = W(E—nE). Namely
(3.2) Ya(x) = exp ((n’x)r(x) .
Now we define u,(x, ) by
Yu(x)
3.2) MJu,]=0, wu,x,0) = Nz* ; , n=12 -
0 |

To consider «,u,(x, t) means that we take only a high frequency
part of u,(x, t) (¢ being parameter). Now we want to show that

(3. 3) lla,B(x) Nt (%, 0)|| = c+0<%>, ¢ is a positive constant.

a,B(x) (%, 0) = aB(x)Yra(%) = B(x) fra(x) + (uB(x) — B(x) at,) o) .

Here a,r.(x)=4,(x), for a,(£)=1 on the support of «?r,,(f). Hence
the first term of the right-hand side is B(x)yr.(x)= exp (#E%) x
B(x)yr(x). Since yr(x) is analytic we have

GO B el = (18w’ = >0,

Now we look at the last term. We know that
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(8(x) B ) = | e —3)1B() —Bl)} u(3)dy.

By Taylor expansion : 5( y)—,B(x)zmle(—y:,—x)tB“’)(x)+ 3 Mx

[v[=p+1 V!
B,(x, y), we see that the last integral is equal to

3.6) s CD gowamut 33 D

1<VI<s . |vi=p+1 V'

Sﬂv(x, Nx—y)a(x—y)u(y)dy .

When we put u=+,(x), the first terms corresponding to
I<jvi<e

are all zero, since (x*a,)*{r,(x) —»const a(%&)%(&):o.

Next, the last terms are majorized by c||u||S | (x*a,)(x)|dx.

Now |(x'a,)(x)| 1is majorized by const. Sla;”(f)ld«fzconst.

. B,
(%)' ‘Ssuppw") |a‘”<§—)|d§<00n5t- <%>w| ‘o being the dimension

of the space. On the other hand, for |x|>2

() (%) = V&wwwm<“$x

| %
S | Ak “)(g-)|d,§ const. (’1%>|v|+2k—,.

I lzk

This shows that,. if we take |x|_>1, then
3.6) [I@am@idr =o( L)

Thus we proved (3. 3).

Now we put u=u,(x, t) in (2.8) and & =6+45. By hypothesis,
there exist a positive integer % and a neighborhood (in x, ¢ space)
QO of (x, £)=0 and small 7’ such that

3.7 max |u,(x, )] < O(n*) for 0t T".
(4,1)€ .

By taking the support of 8(x) small, we can assume that the sup-
port of B(x) is contained in Q, therefore we have

3.9) 18(x) wu(x, I L O,  for 02T
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Now we consider the right-hand side of (2.8), we want to show
that it is expressed, modulo bounded functions (in L’-sense) with
respect to 7, as linear combination of

B Bx) u,
(3.9) Vn exp {—( 2>Atl Vi "Mad x { <71;1—_>b’k(x) “,,

whose coefficients being bounded operators in L* (bounded with
respect to # too). Namely

3. 10) Vi SICE(8) exp{ ( %)At}x
vmﬂas.“(v%)“’ﬂ“«x) w(x, £)+0(1)

where HC;:'“;(t)iI_L»(Lz;Lz)gconst. independent of #;1<|y|+ ||
m=2(h+1), |©|<1.

To see this, take the most delicate part of (2.8), (7,Az— AyYn) X
éa—[B(x)un]. Denoting A, merely by A, and using, as previously,
Xk

the Taylor expansion, this can be expressed as

'DA

(3.11) 2( 1) [B(x)un]

+ 3 SAv(x D@7 =) LB, 1dy

vl=m

where
3.12) m = 2(h+1),

where we chose m so as to make the last terms of (3.11) bounded
(with respect to n). Take at first a term of the first part: (x%y,)

i[B(x)u,,]. The convolution operator (x%v,) 9. has its Fourier
axk axk

image const. D}v,(§)&,=const. D exp {—(E+9)|&|t}a,(£)]E. By
Leibniz,

(3.13)  Diexp {—(€+9)[€|1} (@]
— 3 CuDplexp {—(E+3)[EI1} 1D, .

v +v,=
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In general, we have
Diexp {—0'|&[t} = (& t)exp {—&|E[t}, (& = &+9),

where [ ( DI<<CA X GIEND/1E1™,  for [E]>1.

Since (% (t1£])%) exp (—glﬂt) is bounded, we have finally
k=1

(3.14) Dyexp {—(E+3)|El} = pu(&, t)eXp{—(8+%>lflt},

where [, (€, t)|<ﬁlﬁ’ for |&|>1.
Hence, there is no question as regards to the terms |v»,|>1 in
the right-hand side of (3.13). As regards to the terms »,=0,

(hence |v,|>>1), we have aﬁ”z)(’é)fk:n(%>a,‘,"2)(§). Since &,/n is

uniformly bounded (with respect to #) on the support of «,(¢), we
see that (3.10) is true for any of the first terms in (3.11). There-
fore we need only to show that the last terms of (3.11) is 0(1).
These terms are majorized by the form (by Young’s Theorem)

(3.16) e( |5%k<an>(x> ) [180x) )

Now we want to estimate the above integral. Take Fourier trans-
form of the integrand : ¢’€,v$”(£). This is majorized by ¢’|&| |y$()].

v
Taking into account of |a,§”(«§)|<c<%>l I, and of (3.14), we have

(3.17) E] 17 < c(%)'”"‘ .

This implies

(3.18) la%k(x”%)(x)\< const. [, 1611966 6 eonst. (L)
Q-

On ther other hand, for |x|>2, putting



Some remarks on the Cauchy problem 123

—a—(x“fy,.)(x) = 12k,|xlz""—a—(x”fy,,)(x), we see that this is
%y [x| ox
majorized by
I’4 ) 1 \2K ivi-1 1 \2# s 1vi-1-2
cSIA [Eeve (5)]|d§<c(;> jSuppm“)dE< const. <Z>

choosing ¥ =/, we have

819 | Zwwe| <oy () for x>z,
ox, |x|*\n

where ¢ does not depend on .
Finally we have

1 \"4/ 1 1\
8200 316< (1) o( LY@t ol = om(—L.)
“\Vn n" Vn ! -
We can see that the same reasoning on the rest terms of (2.8)
will give (3. 10).
In view of (3.10), we consider next all the functions appearing
there :

exp { —(+ ) At Vi M/ B, 1),
where v and « satisfy the condition mentioned there. Namely, we
make the same process for these functions as for v,8(x)u: we
replace in the above reasoning B(x)—»{g,(zg), exp {—(6+90) At} a,—
exp {—<E+%> At}a,‘,”. In total, we are led to consider all func-
tions of the form:
(3.21) 0™(p, v, )ity = /M exp {—(8+%>At}a.‘,,‘“ﬁ*"(x)u,,,
where p<]|7| + [e|<m, p=0,1, -+, m.

We shall then have the equations analogous to (2. 8) for all these
functions. Namely, we have the equations of the form (2.14), where
i) v"™=6""(p, v, €) Noits,,

ii) the right-hand side N,f is expressed, modulo bounded func-
tions, as a linear combination of the functions (3.21), whose
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coefficients are +/x X(uniformly bounded operators in L?).
Now we return to section 2. For each 6"(p, v, ) Nju,(x, t),
consider S(¢), denoted by S(¢; 6“°(p, v, «) Nju,). Finally define

3.32) Sa(t) = 23 S(; 0(p, v, ) Noua(x, 1)) ;

au(t) = 2 16°(p, v, ©) Nou(x, DI,
where the summation is extended over all functions in (3.21).
Taking into account of the fact that the support of (6°(p, v, «)

Nau,)"(&, t) is contained in that of «,(£), if we apply the in-
equality (2.17), we shall have

(3.33) S(t) >%3non<t>—cwi o.(8)—0(1)

)
—n
4

b

where C is a constant. Since for » large, %sn—cw—>
) ¢ 8
@30 (exp (= 2nt)Sut)) > —01) exp (S t)
¢ .

Now we know that, since at £=0 all functions 6"(p, 7, £) Nju,,
have their components O except the first components, we have
S,(0)>S(0; v,8(x) Nu,,) = lla,B(x)yr.(x)lI>, and this is equal to

cz+0<l>, by (3.3). Hence
n

(3.35) S,(0) >=c*/2 for »n large.
By integration of (3.34), we have

(3.36) S,() >%2 exp <%nt>—0<l> for n large 0< t< T".
n

On the other hand, taking into account of (3.21) and (3. 7),
we see that [||0(p, v, ©) Nju,l[*<const. #'Y'"||B(x) u,(x,t)|°
— O(n"‘“") — 0(11"‘"‘21).

Since S,(#)<lo,(?), it follows

(3.37) S,(t) L O(n*+*) for 0t T.

(3.36) and (3.37) cannot be compatible unless £=0. The proof of
Theorem 1.1 is thus complete.
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4. Proof of Theorem 1. 2.

In principle, this proof is the same as that of Theorem 1.1.
Therefore, we want to explain how to reduce this proof to the
previous one. We treat here the kowalewskians (p=1).

”m— 1

At first, denoting u,=u, Up= U 0 Uy = iy we consider
an equivalent system to (1.3):
4.1) L[u] = %u—(A +)[u]=0, where
‘ 01 U,
01 u,
A= 0 L I= , U=\
< 1 1 :
—Qy T Ay a4 ‘ A 0 - U

Apply B(x) to L[u], then

(4.2) LA I+ 5 C(x 12 )8 @l = 0,
ox

1< vgm

where, denoting C, = 0
\Cl,v Cz,\l”'cm_\l, ’
(4.3) c¢; u(x,t;&) is of order (in §)<<m+1—i—|v|.

Now we apply 7.(f) to (4.2) just in the same way as in the sec-
tion 2, we then have

(4.4) L[v.B@x) ul+(v,L—Ly,)[Bx)ul+v, 2 LAV (x)u] =0.
Taking into account of (4.1), we have here
(4' 5) 'YnL - Lf)’n = VnA—A(Yn .

Now we insert a process which was not done in the case of
the first order system. Denote

A+ .
(3.6) E,(A) = (A+1y™
l 1
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Instead of u itself, we consider E,(A)u. Then it follows from
4.2),

4.7 (E.LEZ)E,v.Sx)ul+(v.A— Av,) EZ[E,B(x)u]
+ 70 2] Cv<x, t;i>E.,;‘[EmB(x)u] =0.
! ox

<vlgm™
Now consider the first term. We can express it by singular inte-
gral operators :
4.9 (2 —s0-8) B8,
where
i) B is a bounded operator in L?;

I 01
01
4.9) i) () — Ol b= b, t3i8)18D)
| 01
' _hm _hm—x _hl

Next, we see that (v,A— Av,)E," has just the same property as
>3 (ry,,Ak—Ak'yn)é% in (2.8). Finally, denoting C.EZ'=C!, we see
k

that the term c¢;, corresponding to ¢; , has the order of

differentiation <{(m+1—i—|v|)—(@m—i)=1—|v|. This shows that

Vu 23 Ci[BY(x)u] has the same property as v, > ABwu in (2. 8).
Finally, we define u,(x, 0) by

[ Yra(x)
(4. 10) N.E, (M) a,(x, 0) = . 0

0o
where N, is defined by o(4) in the same way as in (2.10). (4.10)
can be written

\Pn(x) |
(4. 10y w5, 0) = B, Nit| O

0o I.

Obviously, #,(x, 0)€ D;,NB. Finally we remark that
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(4.11)  ||a.NE,B(x) un(x, O)|| 2 >18(x) N E,un(x, 0)||

— LB (alN E,) — (ulNoE,) B(x) Jun(2,0) |

=||B(x)xpn(x)ll—0<%>, by the same reason as in (3.6).

Thus we can verify easily that, replacing «a{"B8“(x)N,u, in the
previous section by (N,E,(A)) @B *(x)u, the analogous reasoning
can be carried out.

£1]
L2]
£3]
[4]
L5]
[£6]

L7]
L8]
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