On the automorphism group of a generic curve of genus >2

By

Walter L. Baily, Jr.

(Communicated by Prof. S. Mizohata, July 9, 1961)

It is our purpose here to prove the assertion made at the end of [2] to the effect that if $n>2$, then there exists a Riemann surface S of genus n having no non-trivial automorphisms (i.e., the only one-to-one conformal mapping of S onto itself is the identity). We believe this result is classically "well-known", but we should like to present a simple and complete proof based upon our recent results [1,2] and on results of [3] and [4], making use of the fact that the dimension of the variety of moduli of Riemann surfaces of genus n is equal to $3 n-3$. Certain of the results which we obtain from facts established in [2] might be proved in an elementary way, not depending on the theory of Chow forms and so on, but such elementary proofs, having little interest of themselves, do not seem worth presenting here.

In what follows, "open variety" will mean a Zariski open subset of a projective variety, and if A is any subset of projective space, A^{*} will denote its closure in the Zariski topology. Let \mathbf{I}_{n} denote the group of $2 n \times 2 n$ unimodular, integral, symplectic matrices acting on the generalized upper half-plane H_{n} of degree n, and let K_{m} denote the subgroup of I_{n} leaving invariant the quotients of $m^{\text {th }}$ order θ-zero values, as defined in [1] (here $8 p \mid m$ for some odd prime $p>3$). Then K_{m} acts without fixed points in H_{n} and $H_{n} / K_{m}=V^{(m)}$ is (realizable as) an open variety. Moreover, there exists an open variety P_{m} and a regular mapping λ_{m} of P_{m}^{*}

[^0]onto $V^{(m) *}$ with these properties: (1) $P_{m}=\lambda_{m}^{-1}\left(V^{(m)}\right)$; (2) if $v \in V^{(m)}$, then $A_{v}=\lambda_{m}^{-1}(v)$ is a normally polarized Abelian variety, every isomorphism class of normally polarized Abelian varieties is represented by A_{v} for some $v \in V^{(m)}$, and $v, v^{\prime} \in V^{(m)}$ correspond to the same isomorphism class if and only if they belong to the same orbit of $G_{m}=\mathrm{I}_{n}^{\prime} / K_{m}$. Let E_{m} denote the set of $v \in V^{(m)}$ such that A_{v} is the canonically polarized Jacobian variety of some Riemann surface of genus n, and denote by H_{m} and M_{m} respectively the subsets of E_{m} corresponding to the hyperelliptic and non-hyperelliptic Riemann surfaces. We know that E_{m} is an open variety and that H_{m} is an analytic subset of E_{m}. If M_{m} is not empty, let x be a simple point of M_{m}, and if $E_{m}=H_{m}$, let x be a simple point of $H_{m} . E_{m}$ is stable under G_{m}. Denote by G_{x} the subgroup of G_{m} leaving x fixed and let U be a suitable small neighborhood of x on E_{m} stable under G_{x}; we may assume that $G_{y} \subset G_{x}$ for $y \in U$. Let $E^{(2 m)}$ be the $2 n$-dimensional identity matrix and denote by e and $-e$ respectively the cosets of $E^{(2 n)}$ and $-E^{(2 n)}$ modulo K_{m}. We have $e,-e \in G_{y}$ for all $y \in U$. Put $A=\lambda_{i n}^{-1}(U)$ and let λ be the restriction of λ_{m} to A. There is an isomorphism $g \rightarrow \widetilde{g}$ of G_{x} onto a group of automorphisms of A such that $\lambda \tilde{g}=g \lambda$ for all $g \in G_{x}$, and if $y \in U$, then the group of \tilde{g} for $g \in G_{y}$ induces the group of all automorphisms of the normally polarized Abelian variety A_{y}. Moreover, there is an analytic subset C of A such that for $y \in U$, $C_{y}=\lambda^{-1}(y) \cap C$ is a non-singular algebraic curve of degree d (independent of y) and of genus n, A_{y} is the Jacobian variety of C_{y}, and C_{y} is canonically imbedded in A_{y} (for example, we may for each y choose, in a suitable manner, C_{y} to be one of the finite number of canonically imbedded curves C_{y}^{i} in A_{y} such that for a fixed θ-divisor X on A, the Abelian sum of the points of $X \cdot C_{y}^{\prime}$ is zero).

We now prove that C is a complex submanifold of A. Let $y \in U, b \in C_{y}$, and let H be a hyperplane cutting C_{y} properly in b. It may be easily proved that the Chow point of C_{y} is a continuous analytic function of y, because U is a complex manifold. Then for y^{\prime} near y, H cuts $C_{y^{\prime}}$ properly in a point b^{\prime} near b in such a
way that b^{\prime} is a continuous function of y^{\prime}. Let R be an affine space containing b such that b is the origin of R; we may assume H is given by $L=0, L$ being a linear form in the coordinates of R. For any complex number ζ with $|\zeta|$ sufficiently small, denote by H_{ζ} the hyperplane $L=\zeta$. Let b_{ζ}^{\prime} be the point near b in which H_{ζ} cuts $C_{y^{\prime}}$ for y^{\prime} near y. Consider the mapping

$$
f:\left(y^{\prime}, \zeta\right) \rightarrow b_{\zeta}^{\prime}
$$

It follows from the factorization of the Chow form of $C_{y^{\prime}}$ into linear factors that f is single valued and continuous in a neighborhood of $(y, 0)$. It follows from the implicit function theorem that in the same neighborhood, b_{ζ}^{\prime} is an analytic function of ζ for fixed y^{\prime}, and from the analyticity of the mapping λ that b_{ζ}^{\prime} is an analytic function of y^{\prime} for fixed ζ (this is because of a wellknown theorem on the removable singularities of analytic functions). Conversely, it is easily seen that f^{-1} is analytic. Hence a neighborhood of b on C is isomorphic with a neighborhood of $(y, 0)$ in the product of U with the complex plane, and therefore C is a manifold at b, which complete our proof. Henceforth, we denote $\lambda \mid C$ by λ when no confusion can arise.

The kernel of the representation of G_{x} as an automorphism group of U contains e and $-e$; if $y \in U, a \in A_{y}$, then $-e a=-a$. If D is a subset of A, let $D^{*}=\{-d \mid d \in D\}$. Suppose first of all that C_{x} is not hyperelliptic. In this case we may assume C_{y} is not hyperelliptic for $y \in U$. Then if $g \in G_{y}, y \in U$, we have $\widetilde{g} C_{y}=$ $\left(C_{y}\right)_{-a}$ or $\tilde{g} C_{y}=\left(C_{y}^{*}\right)_{-a}$ for a unique $a \in A_{y}$. Let $U(g)=\{y \in U \mid g y=y\}$, let $T=T(g)=\left\{a \mid a \in A_{y}, y \in U(g), \widetilde{g} C_{y}=\left(C_{y}\right)_{-a}\right\}$, and put $T^{\prime}=T^{\prime}(g)=$ $\left\{a \mid a \in A_{y}, \quad y \in U(g), \widetilde{g} C_{y}=\left(C_{y}^{*}\right)_{-a}\right\}$. Clearly T and T^{\prime} are analytic subsets of $A, \lambda(T) \cup \lambda\left(T^{\prime}\right)=U(g)$, and $\lambda(T) \cap \lambda\left(T^{\prime}\right)$ is empty, so that if we assume $U(g)$ to be connected (as a point set), we see that either T or T^{\prime} must be empty. Put $C(g)=C \cap \lambda^{-1}(U(g))$. If T is not empty, define $\rho_{g}^{(y)}: C_{y} \rightarrow C_{y}$ by $\varphi_{g}^{(y)}(c)=\tilde{g} c+a_{y}, a_{y}=$ $\lambda^{-1}(y) \cap T$, if $y \in U(g)$, and define $\mathscr{P}_{g}: C(g) \rightarrow C(g)$ by letting $\rho_{g} \mid C_{y}=\boldsymbol{P}_{g}^{(y)}$. It is seen that T is a submanifold of A (because of the one-to-one analytic map λ of T onto the complex manifold U) and that $C(g)$ is a submanifold of C, since $U(g)$ is a sub-
manifold of U. Therefore \mathcal{P}_{g} is an analytic, fibre-preserving automorphism of $C(g)$. We define ρ_{g} to be $\rho_{-e g}$ if T^{\prime} is non-empty. Finally, if C_{x} is hyperelliptic, then C_{y} is hyper-elliptic for all $y \in U$, $U(-e)=U$, and we may attach to $-e$ in a manner similar to the above an automorphism ρ_{-e} of C. Hence, for all y sufficiently near to x, the automorphism group of C_{y} may be viewed as a subgroup of the automorphism group of C_{x}.

To obtain our desired result, it will therefore be sufficient to show that if $g \in G_{x}$, then the set of $y \in U(g)$ such that ρ_{g} induces a non-trivial automorphism of C_{y} is a proper analytic subset of U. So suppose that for some $g \in G_{x}$ this is not so. Then $\mathscr{\rho}_{g}$ is a fibre-preserving automorphism of $C(g)$, and it is a trivial matter to show that the fixed points of \mathcal{P}_{g} form a finite number b of submanifolds of $C(g)$, each being a cross-section of the fibering $(C(g), \lambda, U)$. Denote these manifolds by B_{1}, \cdots, B_{b}. Let H be the finite group of automorphisms of $C(g)$ generated by \tilde{g} and put $C^{\prime}=C(g) / H$. Clearly we have a fibre space $\left(C^{\prime}, \lambda^{\prime}, U\right)$ induced from $(C(g), \lambda, U)$, and each fibre is a Riemann surface of the same genus n^{\prime}. It is clear, in fact, that \tilde{g} has the same order $m=\operatorname{ord}(H)$ at each of its fixed points, and by the usual formula expressing the genus in terms of the numbers of edges, faces, and vertices of a triangulation of a Riemann surface, it is easily seen that

$$
\begin{equation*}
n-1=m\left(n^{\prime}-1\right)+\frac{1}{2}(m-1) b \tag{1}
\end{equation*}
$$

By constructing a C^{∞} connection in the fibering $\left(C^{\prime}, \lambda^{\prime}, U\right)$ one may easily see that if M is the C^{∞}-manifold underlying each of the fibers C_{y}^{\prime} for $y \in U$, then, for appropriate choice of $U,\left(C^{\prime}, \lambda^{\prime}, U\right)$ is a C^{∞} product fibering, $C^{\prime}=U \times M$. We choose a canonical basis $\alpha_{1}, \cdots, \alpha_{2 n^{\prime}}$ of integral cycles on M. By considering the holomorphic 1-forms on C invariant under H, it is easily seen that we may find holomorphic differential 1 -forms $\omega_{1}, \cdots, \omega_{n^{\prime}}$ on C^{\prime} such that the restrictions $\omega_{i}(y)$ of these to each fibre C_{y}^{\prime} for $y \in U$ is a basis of holomorphic 1-forms on C_{y}^{\prime}, and it follows from [3, pp. 164-165] that the integrals

$$
\int_{\alpha_{j}} \omega_{i}(y)=p_{i j}(y)
$$

are holomorphic functions on U. Since $\alpha_{1}, \cdots, \alpha_{2 n^{\prime}}$ is a canonical basis of 1 -cycles, $\operatorname{det}\left(p_{i j}\right)_{i, j=1, \ldots, n^{\prime}} \neq 0$, and it is therefore clear that we may assume by appropriate normalization of $\omega_{1}, \cdots, \omega_{n^{\prime}}$ that

$$
\left(p_{i j}(y)\right)=\left(E^{\prime} Z^{\prime}(y)\right)
$$

for $y \in U$, where E^{\prime} is the $n^{\prime} \times n^{\prime}$ identity matrix and $Z^{\prime}(y) \in H_{n^{\prime}}$. Thus we have a holomorphic mapping $\psi: U \rightarrow H_{n^{\prime}}$ defined by $\psi(y)=Z^{\prime}(y)$. Since $\psi(U)$ is contained in the Zariski-closure of the subset of $H_{n^{\prime}}$ corresponding to the normalized period matrices of Jacobian varieties of Riemann surfaces of genus n^{\prime}, we have for $a \in \psi(U)$,

$$
\begin{equation*}
\operatorname{dim} \psi^{-1}(a) \geq \operatorname{dim} U-d\left(n^{\prime}\right)=3 n-3-d\left(n^{\prime}\right) \tag{2}
\end{equation*}
$$

where $d(0)=0, d(1)=1$, and $d\left(n^{\prime}\right)=3 n^{\prime}-3$ if $n^{\prime}>1$. We shall now prove :
(I) $\operatorname{dim} \psi^{-1}(a) \leq b$, and if $n^{\prime}=0, m=2$, then $\psi^{-1}(a) \leq b-3$.
(II) if $n>2, b+d\left(n^{\prime}\right)<3 n-3$, but if $n^{\prime}=0$ and $m=2$, we have only $b<3 n$.

Clearly (I) and (II) imply a contradiction of (2) if $n>2$.
To prove (I), it is sufficient to prove the inequality at every regular point of $\psi^{-1}(a)$. Let y_{0} be a regular point of $\psi^{-1}(a)$ and let $U^{\prime \prime}$ be a small neighborhood of y_{0} on $\psi^{-1}(a)$. Let ($C^{\prime \prime}, \lambda^{\prime \prime}, U^{\prime \prime}$) denote the restriction of the fibering $\left(C^{\prime}, \lambda^{\prime}, U\right)$ to $U^{\prime \prime}$. From our previous considerations, we see that $\left(C^{\prime \prime}, \lambda^{\prime \prime}, U^{\prime \prime}\right)$ is a regular fibering. Since, by Torelli's theorem, all the fibers are complex analytically isomorphic, we may assume ($C^{\prime \prime}, \lambda^{\prime \prime}, U^{\prime \prime}$) is complex analytically a product fibering $C^{\prime \prime}=C_{0}^{\prime} \times U^{\prime \prime}$; if $n^{\prime}=0$, this follows from a result of $[4]^{1)}$. We now prove this for $n^{\prime}>0$. Let J_{0} be

[^1]the Jacobian variety of C_{0}^{\prime}, let C_{0}^{\prime} be canonically imbedded in J_{0}, and let $C^{*}=C_{0}^{\prime} \times U^{\prime \prime} \subset J_{0} \times U^{\prime \prime}=J^{*}$. Denote by λ^{*} the projection of J^{*} onto $U^{\prime \prime}$. Let $\omega_{1}, \cdots, \omega_{n^{\prime}}$ have the same meaning as before. Since ($C^{\prime \prime}, \lambda^{\prime \prime}, U^{\prime \prime}$) is a regular fibering, there exists, locally at least, an analytic cross-section of this fibering. Therefore, we may use $\int \omega_{1}, \cdots, \int \omega_{n^{\prime}}$ to define a mapping
$$
\omega: C^{\prime \prime} \rightarrow J^{*}
$$
such that $\lambda^{*} \omega=\lambda^{\prime \prime}$ and such that for $y \in U^{\prime \prime}, \omega\left(C_{y}^{\prime \prime}\right)$ is canonically imbedded in $J_{0} \times y$. We define
$$
T_{1}=\left\{(a, y) \mid y \in U^{\prime \prime}, a \in J_{0}, \omega\left(C_{y}^{\prime \prime}\right)_{a}=C_{0}^{\prime} \times y^{\prime \prime}\right\}
$$
and
$$
T_{2}=\left\{(a, y) \mid y \in U^{\prime \prime}, a \in J_{0}, \omega\left(C_{y}^{\prime \prime}\right)_{a}=C_{0}^{\prime *} \times y^{\prime \prime}\right\}
$$
where $C_{0}^{\prime *}=\left\{-c \mid c \in C_{0}^{\prime}\right\}$. Clearly T_{1} and T_{2} are analytic sets and $\lambda_{1}^{*}: T_{1} \rightarrow U^{\prime \prime}$ is one-to-one into as is also $\lambda_{2}^{*}: T_{2} \rightarrow U^{\prime \prime}$. Since (we may assume) $U^{\prime \prime}$ is connected, it follows that T_{1} or T_{2} is empty. We assume (without loss of generality) that T_{2} is empty. Since $U^{\prime \prime}$ is a manifold, it follows that T_{1} is a submanifold of J^{*}. We define
$$
i: C^{\prime \prime} \rightarrow C_{0}^{\prime} \times U^{\prime \prime}
$$
by $i(c)=\omega(c)+\lambda_{1}^{*-1}(y)$ for $c \in C_{v}^{*}$. Clearly i is an isomorphism of complex manifolds, and $\lambda^{*} i=\lambda^{\prime \prime}$, which completes the proof of our assertion that $C^{\prime \prime}=C_{0}^{\prime} \times U^{\prime \prime}$.

Let B_{1}, \cdots, B_{b} have the same meaning as before. Define $\pi: U^{\prime \prime} \rightarrow C_{0}^{\prime b}$ by $\pi(y)=\left(B_{1} \cap \lambda^{\prime \prime-1}(y), \cdots, B_{b} \cap \lambda^{\prime \prime-1}(y)\right) . \quad \pi$ is an analytic mapping. If $\beta \in C_{0}^{\prime \prime \prime}$, we have, if $\pi^{-1}(\beta)$ is not empty, $\operatorname{dim} \pi^{-1}(\beta) \geq$ $\operatorname{dim} U^{\prime \prime}-b$. We now prove $\operatorname{dim} \pi^{-1}(\beta)=0$. Let y_{0}^{*} be a simple point of $\pi^{-1}(\beta)$ and let U^{*} be a small neighborhood of y_{0}^{*} on $\pi^{-1}(\beta)$. The restriction of $(C(g), \lambda, U)$ to U^{*} is a C^{∞} product fibering $C_{0} \times U^{*}$ and $B_{i}^{*}=B_{i} \cap\left(C_{0} \times U^{*}\right)$ are submanifolds of $C_{0} \times U^{*}$. If $y^{*} \in U^{*}$, let $p_{i}\left(y^{*}\right)=B_{i}^{*} \cap\left(C_{0} \times y^{*}\right)$, and if $\rho: C_{0} \rightarrow C_{0}^{\prime}$ is the quotient mapping (modulo the group H), let $p_{i}\left(y^{*}\right)^{\prime}=\rho\left(p_{i}\left(y^{*}\right)\right)$. If $\gamma_{1}, \cdots, \gamma_{k}$ is a set of generators of the fundamental group $\pi_{1}\left(C_{y_{0}^{*}}-\left\{p_{1}\left(y_{0}^{*}\right), \cdots\right.\right.$, $\left.\left.p_{b}\left(y_{0}^{*}\right)\right\}\right)$, we see that these are also a set of generators of $\pi_{1}\left(C_{y^{*}}-\right.$ $\left\{p_{1}\left(y^{*}\right), \cdots, p_{b}\left(y^{*}\right)\right\}$) for all $y^{*} \in U^{*}$ if U^{*} is small enough. By
hypothesis, we have $p_{i}\left(y_{0}^{*}\right)^{\prime}=p_{i}\left(y^{*}\right)^{\prime}$ for $y^{*} \in U^{*}$. Let $p_{i}\left(y_{0}^{*}\right)^{\prime}=p_{i}^{\prime}$. Then for each $y^{*} \in U^{*}, C_{y^{*}}-\left\{p_{1}\left(y^{*}\right), \cdots, p_{b}\left(y^{*}\right)\right\}$ is an unramified covering of m sheets of $C_{0}^{\prime}-\left\{p_{1}^{\prime}, \cdots, p_{b}^{\prime}\right\}$, the natural mapping ρ is complex analytic, and the associated subgroup of $\pi_{1}\left(C_{0}^{\prime}-\left\{p_{0}^{\prime}, \cdots\right.\right.$, $\left.\left.p_{b}^{\prime}\right\}\right)$ is in each case the same. Therefore, $C_{y^{*}}-\left\{p_{1}\left(y^{*}\right), \cdots, p_{b}\left(y^{*}\right)\right\}$ may be mapped in a one-to-one, complex analytic manner onto $C_{y_{0}^{*}}-\left\{p_{1}\left(y_{0}^{*}\right), \cdots, p_{b}\left(y_{0}^{*}\right)\right\}$, in such a way that this mapping may be extended to a conformal isomorphism of $C_{y^{*}}$ onto $C_{y_{0}^{*}}$. But we know that any subset of E_{m} such that the corresponding Riemann surfaces are all conformally isomorphic to each other is discrete. Hence $\operatorname{dim} \pi^{-1}(\beta)=\operatorname{dim} U^{*}=0$, which completes the proof of (I), except for the case $n^{\prime}=0, m=2$. If $n^{\prime}=0, m=2, C_{y}$ is a two-sheeted covering of the Riemann sphere C_{y}^{\prime}, and this covering has $b=2 n+2$ branch points. Projectively equivalent sets of branch points give conformally isomorphic Riemann surfaces. We allow the complex, 1-dimensional, projective group $P G$ to act on each factor of $C_{0}^{\prime b}$. Since $\operatorname{dim} \pi^{-1}(\beta)=0$, we have $\operatorname{dim} U^{\prime \prime}=\operatorname{dim} \pi\left(U^{\prime \prime}\right)$. Then $\pi\left(U^{\prime \prime}\right)$ can meet any orbit of $P G$ in at most a discrete set of points. Since $\operatorname{dim} P G=3$, it follows from the dimension theorem that $\operatorname{dim} U^{\prime \prime} \leq b-3$, and (I) is proved completely.

To prove (II), we consider the cases $n^{\prime}=0, n^{\prime}=1, n^{\prime}>1$.
Suppose $n^{\prime}=0$. Then $n=\frac{1}{2}(m-1)(b-2)$. If $m=2, b=2 n+2$, so $b<3 n$ if $n>2$. Assume $m \geq 3$. Since $d\left(n^{\prime}\right)=0$, we must prove $3 n-3-b>0$. If $m=3, b=n+2$; since $n>2,3 n-3-b=2 b-9>0$. If $m=4, \quad n=\frac{3}{2}(b-2)$, so b must be even and $b \geq 4$; thus $3 n-3-b=\frac{7}{2} b-12>0$. If $m \geq 5,3 n-3-b \geq 6(b-2)-b=5 b-12$; since $n>0$, we have $b>2$, so $5 b-12>0$.

Suppose $n^{\prime}=1$. Then $3 n-3=\frac{3}{2}(m-1) b$ and $d\left(n^{\prime}\right)=1$. Hence $3 n-3-b-1=\frac{3}{2}(m-1) b-b-1$. Since $n>2$, we have $(m-1) b \geq 4$. If $m=2, b \geq 4$, so $\frac{1}{2} b-1>0$. If $m \geq 3, \frac{3}{2}(m-1) b-b-1 \geq 2 b-1>0$, since $b>0$.

Suppose $n^{\prime}>1$. Then $d\left(n^{\prime}\right)=3 n^{\prime}-3$, and we have $3 n-3-$ $\left(3 n^{\prime}-3\right)-b=m\left(3 n^{\prime}-3\right)+\frac{3}{2}(m-1) b-\left(3 n^{\prime}-3\right)-b=(m-1)\left(3 n^{\prime}-3\right)+$
$\left(\frac{3}{2}(m-1)-1\right) b \geq 3 n^{\prime}-3+\frac{1}{2} b>0$, because $m>1$.
This completes our proof of (II), and therewith the proof of our main assertion.

Theorem. If $n>2$, there exists a compact Riemann surface of genus n having no conformal automorphism other than the identity.

University of Chicago

BIBLIOGRAPHY

[1] W. L. Baily, Some results on the moduli of Riemann surfaces, Proc. Nat. Acad. Sci., U. S. A., vol. 47, pp. 325-327.
[2] - On the theory of θ-functions and the moduli of curves (to appear).
[3] K. Kodaira and I). C. Spencer, Existence of complex structure on a differentiable family of deformations of compact, complex manifolds, Annals of Math., vol. 70 (1959), pp. 145-166. (spec. 164-165).
[4] ———, On deformations of complex structures II, Annals of Math., vol. 67 (1958), pp. 403-466. (spec. sec. 14 (a), p. 403, and Theorem 18.2, p. 447).

Added in Proof: In proving (II), the case $n^{\prime}=0, m=5$ must be treated separately. In this case we actually have $3 n-3-b=5 b-15, n=2(b-2)$, and since $n>2$, we must have $b \geq 4$, and the right conclusion follows. If $m \geq 6$, we have $3 n-3-b \geq \frac{13}{2} b-18>0$, because $b \geq 3$.

[^0]: The author wishes to thank the National Science Foundation and the Alfred P. Sloan Foundation for support received while this research was in progress.

[^1]: 1) In line with the belief one should always give elementary proofs for elementary facts, we observe that $C^{\prime \prime}=C_{0}{ }^{\prime} \times U^{\prime \prime}$ may be proved by taking three nonintersecting cross-sections σ_{0}, σ_{1}, and σ_{∞} of the regular fibering ($C^{\prime \prime}, \lambda^{\prime \prime}, U^{\prime \prime}$) and considering the map of $C^{\prime \prime}$ onto $C_{0}{ }^{\prime}$ which carries each fiber conformally onto $C_{0}{ }^{\prime}$ and these crosssections onto the points 0,1 , and \cdots, respectively.
