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It is our purpose here to prove the assertion made at the
end of [2] to the effect that if n > 2 , then there exists a Riemann
surface S  o f  genus n  having no non-trivial automorphisms (i.e.,
the only one-to-one conformal mapping o f  S  onto itself is the
identity). We believe this result is classically "well-known", but
we should like to present a simple and complete proof based upon
our recent results [1, 2] and on results o f [3 ] a n d  [4 ], making
use of the fact that the dimension of the variety o f moduli of
Riemann surfaces of genus n  is  equa l to  3n -3 . Certain of the
results which we obtain from facts established in  [2 ] might be
proved in  an elementary way, not depending on the theory of
Chow forms and so on, but such elementary proofs, having little
interest o f themselves, do not seem worth presenting here.

In  what follows, "open variety" will mean a Zariski open
subset of a projective variety, and if A  is any subset of projective
space, A *  will denote its closure in the Zariski topology. Let l' n

denote the group of 2n x 2n unimodular, integral, symplectic ma-
trices acting on the generalized upper half-plane kin  o f  degree n,
and let K m  denote the subgroup of 1' n  leaving invariant the quo-
tients of mth order 0-zero values, as defined in  [1 ]  (here 8p1m
for some odd prime p > 3 ) .  Then K m  acts without fixed points in
H n  and H n f K m =V (m ) is (realizable as) an open variety. Moreover,
there exists an open variety P m  and a regular mapping X,„, o f P :
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onto V(m)* with these properties : (1) P ,„=X ;l(V m )); (2) if yE V ( m) ,
then A„—XV(v) is  a  normally polarized Abelian variety, every
isomorphism class of normally polarized Abelian varieties is re-
presented by A„ fo r some vE V ( m ) ,  and v, y' e Vc n o  correspond to
the same isomorphism class if and only if they belong to the same
orbit of G„,----r „ IK rn . Let Ern denote the set o f v E V ( - )  such that
A , is the canonically polarized Jacobian variety of some Riemann
surface of genus n , an d  denote by H,„ an d  M,„ respectively the
subsets of En , corresponding to the hyperelliptic and non-hyperellip-
tic Riem ann surfaces. We know that E„, is an open variety and
that Hm  is  a n  analytic subset of Em . If  Mm  is not empty, le t  x
be a simple point of Mm , and  if E„,=H„„ le t x  be a simple point
of H „ ,. En , is stable under Gm . Denote by G x  t h e  subgroup of
Gm  leaving x  fixed and let U be a  suitable small neighborhood of
x on En , stable under Gx ; we may assume that G ,C G , for y E  U.
Let E( 2 m) b e  th e  2n-dimensional identity matrix and denote by e
an d  —e respectively th e  cosets o f E " " )  a n d  —E"n) modulo K„,.
We have e, —e G y  for all y e U .  Put A = X ;'(U ) and let X be the
restriction of Xm  to  A .  There is an  isomorphism g—>g of Gx  onto
a  group o f automorphisms o f  A  such that XR—gX for all g
and  if y E U, then the group of g for gE  Gy  induces the group of
all automorphisms o f th e  normally polarized Abelian variety Ay .
Moreover, there is an  analytic subset C of A  such that for y E U,
Cy —X- 1 (y)r\C is  a  non-singular algebraic curve of degree d (in-
dependent of y) and of genus n, Ay  is  the Jacobian variety of Cy ,
an d  Cy  is canonically imbedded in  Ay  (fo r  example, we may for
each y  choose, in  a  suitable manner, Cy  to  b e  o n e o f th e  finite
number of canonically imbedded curves C yl  in  Ay  such that for a
fixed 0-divisor X  on A , the Abelian sum of the po in ts o f X-C;
is zero).

We now prove that C  is  a  complex submanifold o f A . L e t
y E U, b E C.)„  and let H  be a hyperp lane cutting Cy  properly in  b.
It may be easily proved that the Chow point of Cy  is a continuous
analytic function o f  y , because U  is a  complex m anifo ld . Then
fo r y ' near y , H  cuts C y , properly in  a point h' near b  in  such a
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way that b ' is  a  continuous function o f  y '.  L e t  R  be an affine
space containing b such that b is the origin of R ; we may assume
H  is given by L = 0 , L  being a linear form in the coordinates of
R .  For any complex number ç̀ with g - 1 sufficiently small, denote
b y  H  the hyperplane Let k- be the point near b in which

cuts Cy ,  for y ' near y. Consider the mapping

f  ( y ',  •

It follows from the factorization o f th e Chow form o f  Cy /  into
linear factors that f  is single valued and continuous in a neigh-
borhood of (y, 0). It follows from the implicit function theorem
that in  the same neighborhood, k , i s  an analytic function of
for fixed y', and from the analyticity o f th e  mapping X that k.
is an analytic function of y' for fixed (th is is because o f a  well-
known theorem on the removable singularities o f  analytic func-
tions). Conversely, it is easily seen that f 1  is analytic. Hence
a neighborhood o f b on C is isomorphic with a  neighborhood of
(y, 0) in the product o f  U  with the complex plane, and therefore
C is a manifold at b, which complete our proof. Henceforth, we
denote X1C by X when no confusion can arise.

The kernel of the representation o f G , as an automorphism
group o f  U  contains e and —e ; if y E  U, a G A ,, then — ea= — a.
I f  D is a subset o f A , le t D*={—clIcIE D } .  Suppose first o f  all
that C , is not hyperellip tic . In  this case we may assume Cy  is
not hyperelliptic for y E  U .  Then if  geG „, y E U, we have gC,—
(C , ) ,  or g- Cy = (C )_ ,  for a unique a E A y .  Let U(g)= {y e Ulgy= y} ,
let T=T(g)-- {a la  e A y ,  y E  U(g), k- Cy =(C„)_al, and put T' =T'(g)—
{alae A y ,  ye U (g ),  R C „ = (C :)}  .  Clearly T  and T '  are analytic
subsets o f  A , X (T )v X (T ')= U (g ),  and A,(T)r\X (T ') is empty, so
that i f  we assume U(g) to be connected (as a point set), we see
that either T  o r T '  must be em pty. Put C(g)=CnX - 1 ( U (g )) .  If
T  is not em pty, define cp(gY' :  Cy —). Cy  b y  p? ) (c)--= Aic +a y , a y  —
X- '(y) r\ T, i f  ye  U (g ), and define cp, : C (g) C  ( g )  by letting

C y =  pV ) . It is seen that T  is a submanifold o f A  (because of
the one-to-one analytic map X o f  T  onto the complex manifold
U )  and that C (g ) is  a  submanifold o f  C , since U (g ) is  a sub-
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m anifold of U. Therefore (pg  i s  an  analytic, fibre-preserving
automorphism of C (g ).  We define (Jog  to be qi_e g  if T ' is non-empty.
Finally, i f  C , is hyperelliptic, then Cy  is hyper-elliptic for all y E U,
U(— e)= U, and we may attach to - e  in a manner similar to the
above an automorphism p_, o f C .  Hence, fo r  all y  sufficiently
near to x , the automorphism group o f  C,, may be viewed as a
subgroup of the automorphism group of C .

To obtain our desired result, it will therefore be sufficient to
show that if g E Gx , then the set of y E  U(g) such that p g  induces
a non-trivial automorphism o f Cy  i s  a  proper analytic subset of
U .  So suppose that for some g E G ,  this is not s o . Then p g  is  a
fibre-preserving automorphism o f C(g), and it  is  a trivial matter
to  show that the fixed points of p g  fo rm  a  finite number b of
submanifolds o f  C (g), each being a  cross-section of the fibering
(C(g), X, U ) .  Denote these manifolds by B1 , • ••, B b .  Let H be the
finite group o f  automorphisms o f  C (g ) generated by g  and put
C '=C (g )/H . Clearly we have a fibre space (C', X', U ) induced from
(C(g), X, U ), and each fibre is  a Riemann surface of the same
genus I t  i s  clear, in fact, that g  has the same order m=ord (H)
at each o f its fixed points, and by  the usual formula expressing
the genus in  terms of the numbers o f edges, faces, and vertices
of a triangulation of a Riemann surface, it is easily seen that

(1) n - 1  =  m ( n '  — 1 )  +   2
1  (ni —1)b .

By constructing a C -  connection in the fibering (C', X', U) one may
easily see that i f  M  is  the manifold underlying each of the
fibers Cy  f o r  y E U , then, for appropriate choice o f  U, (C', X', U)
is a C ' product fibering, C'= Ux M .  We choose a canonical basis
C e „  • • • , “ " /  of integral cycles on M . By considering the holomorphic
1-forms on C  invariant under H , it is easily seen that we may
find holomorphic differential 1-forms coi, •••, co.,  on C' such that the
restrictions coi (y )  o f these to each fibre C.;, for y E U  is a basis of
holomorphic 1-forms on Cy' ,  and it follows from [3 , pp. 164-165]
that the integrals
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coi(Y) PLAY)

are holomorphic functions on U .  Since ce„ ••• is  a canonical
b as is  o f  1-cycles, det (p 1 1 )i ,1 _1

,' = z 0 ,  an d  it is therefore clear
th a t w e  m ay  assume by appropriate normalization of co„ ••., con ,
that

(Pu(y)) = T(Y ))

for yE U, w here E ' i s  the n' x  n' iden tity m atrix  and Z' (y) E H,,'.
T h u s  w e  have a holomorphic m apping lk : U — defined by

Z' (y). Since 'Jr(U) is contained in the Zariski-closure of the
subset o f H„, corresponding to the normalized period matrices of
Jacobian varieties of Riemann surfaces of genus n ',  w e  have for
a E *(U),
(2) dim 11P- 1 (a) >  dim U — d(n1 ) = 3n — 3 — d(n') ,

where d(0)=0, d(1)= 1, and d(n') = 3n' —3 i f  n' > 1. We shall now
prove :

(I) dim qp- i(a)  < b , and if n ' =0 , m =2 , then 11, - 1 (a) < b —  3.
(II) i f  n > 2 , b + d(n') <3n-3, but if n' = 0 and m = 2, we

have only b < 3n.

Clearly (I) and (II) im ply a contradiction of (2) if n >2 .
To prove (I), it is sufficient to prove the inequality at every

regu lar point of lir - i(a). L e t  y ,  be a  regular point of 11,- '(a) and
let U" be a small neighborhood of y o on ifr- 1 (a). Let (C", X", U")
denote the restriction of the fibering (C', X', U) to  U". F rom  our
previous considerations, w e see that (C", X", U " )  i s  a  regular
fibering. S ince , b y  Torelli's theorem , all the fibers are complex
analytically isom orphic, we m ay assume (C", X", U " )  is complex
analytically a  product fibering x  U"; i f  n' = 0, this follows
from a result of [4 ]

1)• W e now  p rove th is for n' > 0 .  Let Jo b e

1 )  In line with the belief one should always give elementary proofs for elemen-
tary facts, we observe that C"—Co' x U " may be proved by taking three nonintersecting
cross-sections (ro , a", and cr .., of the regular fibering (C ", A", U " )  and considering the
map o f  C "  onto Co '  which carries each fiber conformally onto C o' and these cross-
sections onto the points 0, 1, and ,  respectively.
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the Jacobian variety of C ,  let Q , be canonically imbedded in 1„
and let C*—Q, x U "  _fo x U " =  J*. Denote by X* the projection of
J *  onto U " .  Let co„ •••, w„/ have the sam e m eaning as before.
S ince (C", X", U ") i s  a  regu lar fibering, there  ex ists , lo ca lly  a t
least, an analytic cross-section of this fibering. Therefore, we may

u s e  (-0„ • ••, co„ ,  to  define a mapping

w : C" J *

such that X*0)=X" and such that for y E U ", co(C ;') is canonically
imbedded in Jo X y. We define

T, =  f(a, y)1 y E U " , a e  J ,  w ( C ' ) a = y"}
and

T, f(a , y) y E  U " , a E f o ,  co(C;') a  = C e , * X y"}

where C*= 1—c lc G Clearly T , and T , are analytic sets and
: U " is one-to-one into as is also : T,—> U". Since (we

m ay assume) U " is connected, it follows that T , or T , is empty.
W e assume (without loss o f generality) that T , is em pty. S ince
U " is  a manifold, it fo llow s that T , is  a submanifold of J " .  W e
define

: C" x U"

b y  i(c)— (0 (c)+ X l"(y) for cE C : .  Clearly i  i s  an isomorphism of
complex manifolds, and X *i=X ", which completes the proof of our
assertion that C"—C, x U".

L e t B „  • • • , B , have the sam e m ean ing as  before. Define
n:  7r(Y)=-- (BirNX" - 1 (.0, • • Bbr\ X" - 1 (Y )).  7r is an analytic
m app ing. I f  13 E Co ", we have, if 7r - 1 (3 )  is not empty, dim 7- t - 1 ( 3 )>

dim U "— b. W e now prove dim  7r - 1 ( 3 ) = 0 .  Let yir b e  a simple
point of 7r - 1 ($ )  and let U * b e  a  small neighborhood of on

The restriction of (C(g), X, U) to  U* is  a C -  product fiber-
ing C, x U* and B* = B1 r\ (Co x U*) are submanifolds of C, x U * .  If
y*E U*, let p i (y * )=  B ;*  (C, x y*), and if p : i s  the quotient
mapping (modulo the group H ), let p i (y*)/ =p(P,(y*)). I f  71, • • • , 7k

is  a set of generators of the fundamental group 7r i (Cy 6 — {p,( 0 ) ,

p b ( y n ) ,  we see that these are also a set of generators o f 2- ,(Cy , —
{pi (y*), ••., p b ( y * )} )  fo r  a ll y*E U *  i f  U *  is  sm all en o ugh . B y
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hypothesis, we have p,(il)'-=p,(y *)' for y* E . Let p i (y V  =y .
Then fo r each y* E U * ,  C -  {p y*), • • • , p(y*)}  i s  an unramified
covering o f m  sheets of ty , ••., A l, the natural mapping p
is complex analytic, and the associated subgroup o f 7r1(Cô- {X , •••,
A } ) is  in each case the same. Therefore, C -  fp i(y*), • • • , P b ( y * A •

may be mapped in  a  one-to-one, complex analytic manner onto
Cy 6-  {p i (y (T), •••, pb (y )1, in such a way that this mapping may be
extended to a  conformal isomorphism o f Cy .  onto C .  B u t  we
know that any subset o f E  such that the corresponding Riemann
surfaces are a ll conformally isomorphic to each other is discrete.
Hence dim 77- 1 (8 )-d im  U* = 0 , which completes the proof o f  (I),
except for the case n' =0, m = 2 . If n' =0, m=2, C,, is a two-sheeted
covering of the Riemann sphere C, and this covering has b -2n + 2
branch points. Projectively equivalent sets of branch points give
conformally isomorphic Riemann surfaces. We allow the complex,
1-dimensional, projective group PG to act on each factor of C .
Since dim n- - 1 ($)= 0 , w e  have dim U"= dim z ( U " ) .  T hen z(U")
can m eet any orbit o f PG in  at m ost a  discrete set o f points.
Since dim PG =3, it  fo llo w s  fro m  the dimension theorem that
dim U" <b - 3 ,  and (I) is proved completely.

To prove (II), we consider the cases n '= 0 , n' =1, n' > 1 .
1Suppose n' = O. T h e n  n -  
2  

(m - 1) (b -  2 ) .  I f  m = 2 , b = 2n + 2,

so b <3 n  if n > 2 .  Assume m > 3 . Since d(n')= 0, we must prove
3n - 3 - b > 0 .  I f  m = 3, b= n+ 2 ; since n > 2 , 3n - 3 - b = 2b - 9 >0.

3If in n = -  - (b  - 2 ) ,  s o  b  m ust b e  e v e n  an d  b > 4  ;  thus273n - 3 -  b = -  1 2  > 0 . I f  m >  5 , 3 n -3 -  b > 6 (b -2 )-  b =5b - 12 ;
since n„-.0, we have b> 2 , so 5b-12> 0.

Suppose n' = 1. Then 3 n -3 =  
3

-(m - 1)b and d(n')= 1. Hence233 n -3 -  b  -1 = 
2  

(m - 1)b- b - 1. Since n > 2 , w e  have (m - 1)b>4.
1 3If m=2, b>4, so 2 -b  -1 > 0 . If m > 3 , 2  (m - 1)b - b -1> 2b - 1>0,

since b> 0 .
Suppose n' > 1. Then d(n')=3n' - 3 ,  and w e  have 3 n -3  -

(3n ' -3 )- b =m(3n/ - 3) + -1 )b  -  (3n' - 3)- b = (m-1) (3n' - 3)+
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( 2
3   (m -1 ) —1)b>3nt — 3 +--12--b > 0 , because m >1 .

This completes our proof o f (II), and  therewith the proof
o f our main assertion.

Theorem. If n > 2 ,  there exists a compact Riemann surface of
genus n  having no conformal automorphism other than the identity.

University of Chicago
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Added in Proof : In proving (II), the case n'=0, m-5 must be treated separately.
In this case we actually have 3n —3—b —5b— 15, n=2(b - 2), and since n>2, we must

13
have b> 4, and the right conclusion follows. If m > 6, we have 3n -3— b>-b-18>  0 ,

because b> 3.


