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§ 1. Introduction

As is well known, K. Karhunen [5] introduced the canonical
representation o f  stationary processes which plays an important
role in the theory o f  linear prediction. Let X (t), — 00 < t <  + 00,
be a mean continuous, purely non-deterministic weakly stationary
process with EX(t) O. Then it can be expressed in the form

( 1 ) X(t) =  .F (t u )dZ (u )

with an orthogonal random measure d Z  such that E(dZ(u)) 2 = du.
This representation is not unique, but there exists essentially one
and only one representation which satisfies the condition

( 2 ) 'g(X ) = slit t (Z) , for every t,

where In t (X ) and sin(Z) are the closed linear manifolds spanned
by X(T), 1 < t ,  and Z(r)—Z(0 - ), 7-, c < t ,  respectively. Such a  re-
presentation (1) is called the canonical representation of X(t) and F
is called the canonical kernel. Using the canonical representation,
the linear predictor U(s, t) of X(t) based on X(7- ), 7-< s  (< t ) ,  i.e.
the projection of X (t) into Wi t (X) can be expressed in the form

u(s, t) = L F(t— u)dZ (u) .

One of us introduced the multiple Markov property for Gaussian
processes [3]. This concept can be defined for purely non-deter-
ministic stationary processes which are not always Gaussian, by
replacing the independence with the orthogonality. Let X (t) be a
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stationary process which satisfies the condition that

U(t„ t i ), i = 1, 2, ••• , N , are linearly independent for any

ti 's with t0 < t 1 < • • • < t N ,  while
(M) U(t„, t i ), i =1, 2, ••• , N +1 , are linearly dependent for any

ti 's with t0 < t , < • - • < t N , ,  in the Hilbert space L 2 (i2).

Then, exactly in the same way as in the Gaussian case (Rida [3])
we can prove that the canonical kernel F  can be expressed in
the form

( 3 ) F(t— u) = fi(t)g1(u) , u  <t ,

where fi 's constitute a  fundamental system of solutions of an
N-th order ordinary differential equation with constant coefficients
and gi 's a fundamental system of solutions of adjoint differential
equation.

We shall define X (t) to be l in ea r  if

( 4 ) 33 (X )  is independent o f M r' (X ) for every t ,

where TZ 1-, (X )  is  the orthogonal complement of ') J ( X )  in 931(X)
= V  slT1,(X ) ; fo r example an additive process with finite second

order moment is a linear process with orthogonal increments and
vice versa. A  linear process which satisfies the condition (M) is
called an N -p ie  M ark ov  lin ea r  process.

The main purpose o f this paper is to investigate the canonical
representation o f strictly stationary linear processes with multiple
Markov property and the regularity property of the path functions
o f such processes. Let X (t) be an N-ple Markov linear process
and consider its canonical representation (1). Then dZ  proves to
be an additive random measure i.e. a random measure derived from
an additive process. Using Lévy-Itô's decomposition, we have

dZ (u)=-- Z(t)— Z(a) =y  (B 0 (t)— Bo (a))+ P(t)— P(a) ,

where N O  is the standard Brownian motion and P(t) is its Poisson
part. Therefore X (t) can be decomposed as follows :
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( 5 ) X(t) X 1 (t)+X 2 (t)

=  y F(t—u)dB o (u)+ F (t— u )dP (u ) .

Here the integral with respect to dP can be defined as the sum
of stochastic integrals in the sense o f K . Itô [4], since in our case
F  is a degenerated kernel expressed in the form (3). Using the
results o f Beljaev [1], we can see the regularity property of the
path functions o f  X ,(t) ;  fo r example i f  F (0 )=0  and F(0)-1- 0,
almost all path functions o f X i (t) have continuous derivatives, but
never have the second order derivatives, and almost all path func-
tions o f X 2 (t) which is represented in the form

( 6 )
 

X2(t) . g i ( u ) d P ( u ) ,

are continuous and have right derivatives which are no longer
continuous.

Finally in 4, we shall make some important remarks about
the concept of the canonical representation. For Gaussian pro-
cesses, one of us defined it by the condition (2), and it was equi-
valent to the condition

( 7 ) B (X ) =  B ,(Z ),  for ever t ,

where B (X )  (B , (Z ) )  denotes the smallest Borel field with respect
to which all the random variables belonging to U ( X )  (Vitt (Z )) are
measurable. However, fo r  a  process represented in the form (1)
with additive random measure dP, (2 ) is stronger than (7) in
general. Exanple 3 illustrates this circumstance. Noting this
remark, we shall give an example whose nonlinear predictor is
really better than the linear one.

We would like to express our hearty thanks to professor K.
Ito  for his generous help during the preparation o f  this note.
In  particular he gave us valuable remarks concerning the defini-
tion o f linearity.

§ 2 .  Multiple M a r k o y  property o f linear processes

We consider a  real strictly stationary process X(t)----- -- X (t, co),
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— 00 < t <  c , , , w  E S2(P), where s-2 (P ) is  the basic probability
space. We assume that X(t) has finite second order moment and
is mean continuous. We can assume that

EX(t) —_  0

without loss o f  generality. Then X (t) can be considered as an
element of Hilbert space L 2 (0 . Let sn t (X), fft(X) and U ( X )  be
the closed linear manifolds introduced in §1.

DEFINITION 1. X ( t)  is called a linear process if J R (X )  is in-
dependent o f n ii(X ) for any t."

Further we shall assume that X (t) is purely non-deterministic
in the sense that

r\ant(X) = {0} .

Then X (t ) has the canonical representation, that is, it can be
expressed in the form (1) and dZ satisfies the condition (2).
One of the important examples o f linear processes is a Gaussian
process.

Example 1. If X(t) is a purely non-deterministic Gaussian pro-
cess, it is linear. In fact, for a Gaussian system, the orthogonality
o f two subsystems o f 9i1(X) is equivalent to their independence.
Therefore a l (X )  is not only or thogonal to sint

l (X ) but also in-
dependent of it.

PROPOSITION 1. I f  X (t) i s  a  strictly  stationary  linear process
w ith  the canonical representation, then the random measure dZ is
additive and

( 8 ) Za(t)==_ c/Z(u) t >  a ,
a

is  a temporally homogeneous additive process for any  f ixed a.

P ro o f. Since d Z  is  the random measure associated with the
canonical representation, Definition 1  can be replaced with the

1 ) Two systems .112 and 92 of random variables are called independent i f  B(SJ11)
and B (% ) are independent (see Doob [2] chap. I), where B(alt) (B M ) is the small-
est Borel field with respect to which all the random variables belonging to M(9) are
measurable.



Note on linear processes 79

condition that ÇA(Z) is independent o f aft; (Z ) fdr every t. Hence
dZ is additive. B y strict stationarity, we can easily prove that
{Z a (t), t >  a}  and {Z a  h (t + h), t> a}  have the same distribution.
Hence the last part of the proposition is proved.

PROPOSITION 2. Let X(t) be a stationary (not necessarily  linear)
process expressed in the f o rm  (1). I f  X (t) satisf ies the condition
(M), then the canonical kernel F  is expressed in the f orm  (3), where
f i 's are a fundamental system of solutions of the N-th order ordinary
dif ferential equation w ith constant coefficients and g i 's  are also a
fundam ental system  of solutions o f  the adjoint differential equation.

This proposition can be proved in the same way as in the
proofs o f Theorem II. 2 and II. 3 in  H ida [3], so that the proof
is omitted.

DEFINITION 2. I f a  linear process satisfies the condition (M),
it is called an N-ple Markov linear process.

Let X(t) be an N-ple Markov linear process expressed in the
form  (1). Then, by Proposition 2, we can express it in the form

( 9 )
 

X (t) = f i (t) . g i (u)dZ(u) .

By Proposition 1, dZ is additive and hence each integral appearing
in (9) is  an additive process. Therefore X (t) can be considered
as the sum o f  N  different simple Markov processes. In  this
case, there exist N  functions ai (t ; t„  t 2 , •-• , tN ) o f  t  fo r any
ti < t 2 < ••• < tN  ( < t )  such that

(10) ai(t ; t„ t„ ••• ,tN ) U (t ,t 1) =  U (t„ t).

Using the linear independence of g i 's, we have

(11) EivLi ai (t ; t„ t„ ••• , tN )f f (t i )  =  f i (t) , j  =  1, 2, •  ,  N .

It should be noted that these a i 's  are uniquely determined for
any fixed t i 's.

Next we shall give a  sufficient condition for X (t )  to  be a
linear process. Let X (t) be expressed in the form (1) and satisfy
(M ) .  And assume that
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(12) ; t„  ••• , tN ) U(t„ t 1 ), t  >  t
is independent o f 931,1(X) ,

where a i 's are the functions determined appropriately. Then X(t)
is linear. We shall prove this fa c t. By Proposition 2, F(t—u) is
expressed in the form  (3) and ai 's  must be determined so that
(11) holds. W riting U i (t) d t g i (u)dZ(u), (12) can be stated as
follows :

IX(t) — n v=iai(t ; ti, t2, t N) E li=iff(ti) (- i(ti)

X(t)—S t i  F(t — u)dZ(u), t> t N }  is independent

of TI t i (X ), that is,

{X(t)—  U(t„ t), t> is independent of DI t i (X ).

Therefore Ti i (X), which is spanned by IX(t)—  U(t„ t), t>t i } , is
independent of Wi t i (X).

§  3 . Representations of m ultiple M arkov linear processes

In  this section, we shall investigate th e  representations of
stationary multiple Markov linear processes using stochastic inte-
gral and study the regularity prorerty o f its path functions.

Let X(t) be a strictly stationary N-ple Markov linear process
expressed in the form (1). Since Z a ( t )  defined by (8) is a  tem-
porally homogeneous additive process with E(Z 0 (t)) 2 =t — a, it can
be considered as Lévy process by taking an appropriate version.
Appealing to Lévy-Itô theorem (K . Itô  [4 ]) Z a (t ) can be express-
ed as

(13) Z a (t, (0) = v (Bo (t, o ) — Bo (a, co)) + P(t, 0)— P(a, co) t>  a ,"

where M t )  is the standard Brownian motion and the Poisson part
P(t)—P(a) is expressed by the following stochastic integral

(14) P(t, co) — P(a, co) isi,of(s)q(duds, o ) .

2 )  To denote the path function o f  Z a ( t ) ,  we use the notation Z ,(t, w )  writing
explicitly. If otherwise, it is considered as th e  element of L2(f2).
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Here the measure q(E, (0), E Eff3(R 2 )  and the function f  in (14) are
the same as in  Itô [4 ] § 9 . Since Z a (t) has finite variance

f ( s )2d4 < 0 0

must hold. Therefore the representation (1) can be expressed in
the form

(15) X (t) =  U(a, t)+ -\/ ç t F(t — u)d130 (u)+Y  F(t —  u) f(s) q(du ds)
. a a

U(a, f1(t) k  v g 1 (u)d130 (u)

+ Ç  g i (u) f(s) q(du ds)]

le tting a — D O  ,

E P T=1 f i ( t ) [  V g i(" ) d B O(U ) ]

+ f i(t) [S t
 . . s g i (u)f(s)q(du ds)]

Here it should be noted that the terms represented by the stochas-
tic integrals with respect to q  are defined in the L 2 -sense. If we
take appropriate versions, they coincide with the ones defined in
Itô's sense, as is easily seen. The sum o f such integrals will be
called the Poisson part of X (t) and the other sum will be called
the Gaussian part. Applying the same argument to (13), we get
the representation o f path functions o f X (t) as follows

(15') X (t, co) = Efr=i f i (t) [v v  1t g i (u)d/30 (u, w)

g i (u)f(s)q(du ds, co)]

Now we can investigate the regularity property of the path func-
tions o f X ( t) . The path function in the square bracket in (15') is
continuous except possibly for discontinuity of the first kind (see
1tô [4] § 9) for almost all (0, and it follows from this fact that
X (t, co) has the same regularity property. Taking an appropriate
version, we can assume that

U(t, co) = i(u) f(s) q(du ds, co)
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is right continuous in t. Then we have

T H E O R E M . A  strictly  stationary  N -plc Markov linear process
X (t) o f  the f orm  (1) can be decomposed into two processes X i (t) and
X,(t), which are called the Gaussian part and the Poisson part respec-
tively. T h e n  the path function X(t, co) is the sum  of  two functions
X,(t, co) and X,(t, co) with the follow ing regularity  property:
i) If F(0)== 0, then X,(t, co) is continuous but not derivable, while
alm ost ev ery  sam ple path of X ,(t, co) is continuous except fo r  dis-
continuities of the f irst k ind, and the position and the height of the
jum ps arise f rom  those of  Z  and vice versa.
ii) I f  F(0) F' (0)— • • • = F (0) = 0 and F ( k+"(0) =1= 0 , 0<k <N — 2,
then X(t, co) has deriv ativ es up to k +1-th o rd er and X(k±"(t, co)
has the sam e regularity  as that of X(t, co) in i) (note that the k +1-th
derivative should be a right derivative).

Pro o f . The decomposition o f  X ( t )  and X(t, co) has already
been proved. For the Gaussian part, the continuity o f path func-
tions has investigated by Hunt and Beljaev [1 ] . Therefore we
shall prove the theorem only for the Poisson part.

Let us fix an co for which (15') holds. Then the jump points
o f  Z(t, co) are denumerable, say ft,I. For t= t„, Z(t, co) has dis-
continuities of the first kind with jump s,=Z (t,+  0, w)—Z(t,-0, co).

Then gi(u)f(s)q(du ds, co) has also discontinuity o f th e first

kind at t ,  with jump f i (t„)s„. Therefore X.,(t, co) has discontinui-
ties of the first kind at t ,  too, with jump

(16) EPL., f 1 (t 2 ) g 1 ( t )s 2 F ( 0 ) s ,  =I= 0.

This proves that every jump point of Z  is also the jump point of
X , and the converse is true. Thus i) is proved.

Next, let us assume that F(0)=0 and F (0)
 

O. T h e n  (16)
shows that X 2 (t, co), consequently X(t, co), is continuo us. Further-
more, noting that the difference

3 )  Since the Fourier transform o f F  is  a  rational function, we can examine the
order o f  decrease o f th e spectral distribution function at H e n c e  Beljaev's results
are applicable.
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X 2(t„ + h, w) — X2(t„— , = EPL, f i (t,+ h) g,(u)f(s)q(du ds, co)

+ h)— fi ( t ) ) g i (u)f(s)q(du ds, co)

= f1(t,+h)g1(t„)(s,+o(1))

+ EPL, (h f ( t )+ o (h ) )v  g1(u)f(s) q(du ds, 0)

for sufficiently small h>0, we can prove that X 2 (t, co) is not deri-
vable. But replacing t,—  with t ,  in the above equation, we can
see that the first term is negligible and X(t, w) has right derivative

x (t ,  w) = EPr=i f  ( t ) g i (u) f(s) q(du d s , w).

This is not derivable as we proved before, since Ef'_, f ( t ) g i (t)
= F' (0)  I  O. As to X i (t, w), it has continuous derivative, since the
spectral density function F (X ) is  o f  order X - 4  as X--). C X D  (Beljaev
[1 ] ) .  Thus we have proved ii) in  case k=0. Similarly we can
prove ii) for every k, k= 1, 2, ••• , N -2 .

Example 2. Let P 1 (t), 4 ) i = 1, 2, t >0 , be mutually independent
Poisson processes with E P i ( t )= t .  Then we can form an additive
random measure dP from

P (t ) =  [P 1(t)— t , if t >  0
( —P 2( — t)+ t  ,  if t < 0 .

Define X (t) by

X(t, (0) = (e -(t-u) e -2ct-u))dp ( u , co) .

Th e kernel (e - " - u)— e'" - ")) i s  a  canonical kernel. Almost all
sample functions o f X (t ) are continuous and P(t, w) can be formed
by the right derivatives o f X(t, (0). T h is  is the simplest example
of the processes considered in the theorem above.

§ 4. Concluding remark

As we have seen in the course of obtaining (16) in the pre-
vious section, all the jumps o f Z(t, (0) can be obtained from the

4 )  P 2 (t, c o )  should have been modified to be left continuous.
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Poisson part by linear operation fo r  its path function. This is
true even if F (0 )=0  (Theorem 3. ii)). This fact suggests how to
define the concept of the canonical representation o f  stochastic
processes introduced by P. Levy [6] § 3. 8. Denoting by .13,(X )
and 13,(Z) the smallest Borel fields with respect to which all the
X ('r) and Z (r), ,r< t, a re  measurable respectively, we shall call the
representation canonical in the sense of  B orel f ie ld ," if

(17) B ` (X ) =  B P (Z ) for every t ( 1 3 ( • ) 013,±  1 In ( • ) )  •

The representation (15) of X (t), in particular the representation
(14) o f P (t) — P(a) ,  is canonical in this sense. We shall prove this
fact. The measure q(•) is defined by jumps (jump points and
height's), which are determined by the jumps o f  X (t, w ) o r  its
derivative of suitable order. Hence we can form X 2 (t, w ). At the
sam e tim e we can see that M (X 2 ) = BP(q) holds. Subtracting
X 2 (t, w) from X (t, w), we get X i (t, w) which is a sample functions
o f Gaussian part of X ( t) .  Concerning X ,(t), one of the authors
studied its representation [3] and we know that there exists
Wiener's random measure dB o (t) satisfying

=  n t (B0) , consequently 13,(X1 ) = 13,(B 0 )

Thus we can prove
BP(X) D BP(Z)

The opposite inclusion relation is obvious. Thus we have proved
(17).

It should be noted that the assumption that F is the canonical
kernel is unnecessary i f  X (t) contains no Gaussian part as we can
see in the proof of the theorem in the previous section.

Now we can state an  interesting remark about prediction
theory o f stationary processes. Let Y (t) be defined by

(18) Y(t,
st

= .-P(t — u) dP(u, w ),

where dP is the random measure in Example 2 and P is  a non-

5 )  C .f. P. Lévy  [ 6 ]  C hap. III. N . W iener 7j also studied nonlinear prediction
in  th is view  point.
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canonical kernel with -F-1 (0 )+0, satisfying all the conditions that
appeared in Proposition 2.

Then we have

./3 (Y ) =  .M`(P) , for every t ,

by the discussions above ; while

(19) U t(Y ) ant(P) , for every t

holds owing to the non-canonical property of the representation (18).
Hence the conditional expectation E(Y(t)/Bs), s<t> (B s = B s (Y )) of
Y(t, co) under assumption that {Y(r, co); 7< s}  are known is given by

(20) E(Y (t)113,) = E(Y (t)113,(P)) = 1  - -P(t — u)dP(u, w),

which is a  sort o f predictors, indeed a  nonlinear predictor, of
Y(t, co) based on Y(T, co)'s before s. On the other hand, forming
the canonical representation

Y(t) = F(t— u)dZ(u)

o f Y(t) in the usual L 2 -sense (dZ  is merely the orthogonal random
measure), we get th e  linear predictor o f  Y (t) based on  Y(r)'s
before s:

U(s, t) F(t —u)dZ(u) .

Thus we have got two different kinds of predictors. E(Y(t)1.13,)
is better than U(s, t )  in the following sense

(21) E[Y (t) — E(Y  B ) i 2 <  ELY (t) — U (s, t)T

holds. This inequality can be proved, i f  we note that

E(Y (t)I B s ) Projection of Y(t) on 9.11,(P)
= U(s, t)+Projection o f Y(t) on V t (P)esift,(Y)

and that the second term o f th e  last equation has a positive
variance since -.-b" is a  non-canonical kernel.

Such a circumstance seems to characterize the linearity of the
process, noting that Y(t) discussed above is not a  linear process.
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Exam ple 3. Consider a process defined by

(22) Yi(t, w) [3e-"-u)— 4e - " " ) ]d P (u ,  w ).

The kernel in the square bracket is not a canonical one. This is
not a linear process, but in the same way as in the theorem, we
can form P(t, (0) from  Y,(t, (0) and hence (22) is  the canonical
representation in the sense of Borel field.
Another process defined by

(23) y2(t, w ) L u e -ct-u) e -3(t-uidp( u ,  w )

is  a double Markov linear process. B y  simple computations we
can see that Yi (t) and Y2 (t) have the common covariance function,
but they are not the same process. As to  Yi ( t )  the nonlinear
predictor is really better than linear one, while the linear predictor
o f Y2(t) coincide with its nonlinear one.
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