A remark on ellipticity of general systems of partial differential operators with constant coefficients

By

Shigetake MATSUURA

(Received, June 15, 1961)

1. In the previous paper [4], we treated systems of partial differential operators of the form

$$P\left(\frac{1}{i}\frac{\partial}{\partial x}\right) = \begin{pmatrix} P_{11}\left(\frac{1}{i}\frac{\partial}{\partial x}\right)\cdots P_{1n}\left(\frac{1}{i}\frac{\partial}{\partial x}\right)\\ \dots\\ P_{m1}\left(\frac{1}{i}\frac{\partial}{\partial x}\right)\cdots P_{mn}\left(\frac{1}{i}\frac{\partial}{\partial x}\right) \end{pmatrix}$$

where $P_{jk}(X)$ is a polynomial of l variables $X = (X_1, \dots, X_l)$ with complex coefficients¹⁾. Replacing X by $\frac{1}{i} \frac{\partial}{\partial x} = \left(\frac{1}{i} \frac{\partial}{\partial x_1}, \dots, \frac{1}{i} \frac{\partial}{\partial x_l}\right)$, we get the differential operator $P_{jk}\left(\frac{1}{i} \frac{\partial}{\partial x}\right)$. We can suppose here, without loss of generality, $m \ge n$ (see [4] §2.).

In the polynomial ring $C[X_1, \dots, X_l]$, denote by a the ideal generated by all the (n, n)-minors of the matrix $P(X) = (P_{jk}(X))$. And denote by V the affine variety defined by a. Let us recall some concepts defined in [4].

Definition 1. A differential operator $P\left(\frac{1}{i}\frac{\partial}{\partial x}\right)$ is called *elliptic* if the corresponding variety V has no real point at infinity.

Definition 2. A differential operator $P\left(\frac{1}{i}\frac{\partial}{\partial x}\right)$ is called *analytic*-hypoelliptic if every solution U of the equation

¹⁾ For notations, see [4].

Shigetake Matsuura

$$P\left(\frac{1}{i}\frac{\partial}{\partial x}\right)U=F$$

is (real) analytic in the open set of R^{i} where the right hand side F is analytic. Here F is a known and U is an unknown column vector function²⁾ with n and m components respectively.

One of the results obtained in [4] is the following

THEOREM. For the operator $P\left(\frac{1}{i}\frac{\partial}{\partial x}\right)$, ellipticity is a necessary

and sufficient condition for analytic-hypoellipticity³).

To prove the sufficiency in the above theorem, the ellipticity of the differential operator corresponding to Lech's polynomial $L(X) \in \mathfrak{a}$ was used in [4] (see Corollary to Theorem 2 and the proof of Theorem 4 in [4]). For the proof of the previous theorem, however, only the existence of a polynomial $\in \mathfrak{a}$ corresponding to an elliptic differential operator is needed. And the use of Lech's theorem (see [3]) seems too heavy for the purpose. Therefore, in the following, we give a proof of its existence without using Lech's theorem. (We use only *Hilbert's basis theorem* instead.)

2. To this end, it is sufficient to prove the following

PROPOSITION. For any given ideal α in $C[X_1, \dots, X_l]$, there exists a polynomial f in α such that any real point at infinity of the hypersurface H defined by f is also a real point at infinity of the variety V defined by α .

And replace Lech's polynomial L in the proof of Theorem 4 in [4] by the above polynomial f.

Proof of Proposition. Let $P_l(C)$ be the complex projective space of l dimensions with a fixed homogeneous coordinates system which contains canonically the real projective space $P_l(R)$ and the complex affine space C^l .

²⁾ Strictly speaking, each component of these vectors is a distribution of L. Schwartz [5].

³⁾ See Theorem 4 in [4], where F is supposed to be 0 for simplicity but the proof doesn't require any change for general F.

Let $\varphi: C[X_0, X_1, \dots, X_l] \to C[X_1, \dots, X_l]$ be the homomorphism sending each polynomial $h(X_0, X_1, \dots, X_l)$ into $h(1, X_1, \dots, X_l)$, and consider the ideal \mathfrak{a}^* in $C[X_0, X_1, \dots, X_l]$ generated by the homogeneous elements in $\varphi^{-1}(\mathfrak{a})$. Take a system of generators h_1, \dots, h_N of \mathfrak{a}^* . Since \mathfrak{a}^* is a homogeneous ideal (see [2, pp. 30-31]), we can suppose that h_1, \dots, h_N are homogenous polynomials. Let d_s be the degree of h_s and put $g_s = h_s^{d_s}$ with d the least common multiple of d_1, \dots, d_N . And consider the following homogeneous polynomial in \mathfrak{a}^*

$$g=\sum_{s=1}^N g_s\,ar{g}_s$$
 ,

where \bar{g}_s is the polynomial whose coefficients are complex conjugates of those of g_s .

In $P_i(C)$, let V^* be the variety defined by a^* , H^* be the hypersurface defined by g. H^* is well-defined since g is homogeneous. Then, by the construction above, it is evident that

$$\boldsymbol{P}_l(\boldsymbol{R}) \cap V^* = \boldsymbol{P}_l(\boldsymbol{R}) \cap H^*$$
.

And it is clear that the polynomial $f=f(X_1, \dots, X_l)=g(1, X_1, \dots, X_l)$ satisfies the requirements of the proposition.

3. We notice here that the original basis of α , i.e. the set of the (n, n)-minors of P(X) cannot always play the role played by the basis of the homogeneous ideal α^* . For instance, consider the following system of differential equations in two independent variables $x = (x_1, x_2)$ and in one unknown function $u = u(x_1, x_2)$.

$$\left(\begin{array}{c}
P_{1}\left(\frac{1}{i}\frac{\partial}{\partial x}\right)u = \frac{1}{i}\frac{\partial}{\partial x_{1}}u + u = 0,\\
P_{2}\left(\frac{1}{i}\frac{\partial}{\partial x}\right)u = \frac{1}{i}\frac{\partial}{\partial x_{1}}u = 0.
\end{array}\right)$$

Subtracting the second from the first, we see that this system has no solution other than the trivial one u=0. Therefore, accord-

Shigetake Matsuura

ing to the theorem in the first section, this system is elliptic⁴). But the operator

$$P_{1}\left(\frac{1}{i}\frac{\partial}{\partial x}\right)\bar{P}_{1}\left(\frac{1}{i}\frac{\partial}{\partial x}\right)+P_{2}\left(\frac{1}{i}\frac{\partial}{\partial x}\right)\bar{P}_{2}\left(\frac{1}{i}\frac{\partial}{\partial x}\right)$$
$$=-2\frac{\partial^{2}}{\partial x_{1}^{2}}+\frac{2}{i}\frac{\partial}{\partial x_{1}}+1$$

is clearly not an elliptic operator in two variables (x_1, x_2) .

REFERENCES

- [1] Hörmander, L., Differentiability properties of solutions of systems of differential equations, Ark. Mat., 3 (1958), 527-534.
- [2] Lang, S., Introduction to algebraic geometry, New York (1958).
- [3] Lech, C., A metric result about the zeros of a complex polynomial ideal, Ark. Mat., 3 (1958), 543-554.
- [4] Matsuura, S., On general systems of partial differential operators with constant coefficients, J. of Math. Soc. of Japan, 13 (1961).
- [5] Schwartz, L., Théorie des distributions, I, II, Paris (1950-1951).

⁴⁾ For the analytic-hypoellipticity, it is sufficient that every solution of the equation with the right hand side 0 is analytic (see [4] § 6. Definition 4, ii) and Theorem 4).