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Introduction

In this paper, we shall give a compactification (denoted by 4 )
of an open Riemann surface R  OG )  such that HB functions on
R  are extended continuously onto R. Likely as the Royden's
compactification [15], the ideal boundary R:4 —R has the compact
part (denoted by A. ; )  with an important role with respect to HB-
functions. After H. L. R oyden, w e sh a ll ca ll it th e harmonic
boundary o f R, and it will be remarked in § 4 as the hyper Stone
space (cf. [13 ]) . In  § 1, the compactification will be carried out
by means o f some family consisting o f bounded continuous func-
tion on R .  In  § 2, some properties o f A ) ,. will be studied. In  § 3,
we shall study the generalized harmonic measure on R in relation
to subsets o f th e harmonic boundary A ;1-., where the generalized
harmonic measure ci) is characterized as  follows : 1 )  c i)E  HBP,
2 )  0 < o ) < 1  and 3) co A ( 1 - 0 .) = 0  (c f. [ 5 ] ) .  We shall define the
harmonic measure S t ,  with respect to a compact subset a  of
by the same manner as did in [ 7 ]  and we shall show that S-2  is
the generalized harmonic measure and conversely a  generalized
harmonic measure is the harmonic measure with respect to  a
compact set of A,; . And further we shall define th e  outer
harmonic measure with respect to any subset of L . W e shall
see that the outer harmonic measure is the Caratheodory outer
measure with respect to  the subsets of I n  §4, we shall
introduce the integral representation o f an  HB function. With
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respect to HD-functions, the integral representation has been
studied by M. Nakai [14]. We shall treat the integral representa-
tion o f an  HB-function in relation to  the generalized harmonic
measure. With respect to an unbounded HP-function, some results
will be stated. In  § 5, we shall be concerned with the harmonic
boundary of the class OHB,, (cf. [8 ], [3 ], [12 ]). The HB-minimal
function will be characterized by the harmonic measure with respect
to  an  isolated po in t o f A ;1.. T h e  Bader-Parreau, Matsumoto's
Theorem [2 ], [11 ] will be studied concerning to the harmonic
boundary

At the end, I wish to express my hearty thanks to Professors
A . Kobori and Y . Kusunoki fo r their kind guidance during my
researches.

1. Compactification o f  R  (  OG ).

Let K 1< 1  be a conformal image of the universal cover-
ing surface R -  o f  R  and let T (z )  be the mapping from K  onto
R .  We denote by the family of real-valued bounded, continuous
functions on R  each of which has the radial limits in K  for almost
all ei°. .`1. i s  a  normed space with a  n orm  f  =sup ( f  ER).

The completeness o f this space is verified by the following

Proposition  1. 1. Let { f„}  be the Cauchy sequence with respect
to  the above n orm . Then there ex ists the function f (  E M such as

Ilf—f.11 — 0 (n c° ).

Proof. It is evident that { f n }  i s  an  uniformly convergent
sequence in the narrow sense. Let f  be the limit function of the
sequence. We can see easily that f  belongs to (q.e.d.)

From this, we know that is  a  normed ring with uniform
norm 11 f  = s u p ( f  E ). Let a  be the subfamily of defined

I?

as follows : f (  E belongs to a, if and only i f  lim f (T ( r e i° ) )  = 0
r - ) .1

for almost all e10 . It is evident that is  an ideal of We
denote  by  a  the family o f  functions ( E )  whose carriers are
compact respectively. a. is an ideal of and c a3 .  Let TJI be
the family consisting o f all maximal ideal of and we put in '1J1
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the closure topology by the method of Gelfand [4]. Thus we have
the compact Hausdorff space R .  I t  i s  c l e a r  t h a t  M a = if  E  ;
f (a )= 0 , (a E R )}  i s  a maximal id ea l and M a   I  M a ,  fo r different
points a, a ' in R .  Now we have a topologcal mapping T  from R
into R4 such as M a = T (a) . W e can see easily that the image T(R)
of R  is  open and dense in R .  F rom  now  on, T(R) is denoted by
R  a g a in . n-R is called the ideal boundary of an open Riemann
surface R  and is  deno ted  by _F71.. F  c o n s i s t s  of the maximal
ideals containing the id ea l 1 .  The subset o f 1 7 ,  consisting of
the maximal ideals each o f which contains a ) , is denoted by
We call z the harmonic boundary of R  after H . L . Royden.

P ro p o s it io n  1. 2. Let f  belong to T hen f (T  (e " ) )  i s  the
measurable function with respect to 0(0<e<27 -1-) ,  where f  ( T(0°))---
lim f (T (re")) fo r  alm ost all e°.

From this, we have the following

P r o p o s it io n  1. 3. f (  E M h a s  the following decomposition
f= u + p  (u  E HB, q,EB',), and the decom position is unique. With
respect to  the norm,   Hull holds.

Proof. It is c lear that

1 2Tt 1  r 2

u — 27.T. f  ( T ( e i ° ) ) 1+ r 2 —2r cos (0 — p  
d e ,

consequently h o ld s . (q.e.d.)
On the Royden's compactification, w e  can  see  th a t the class

HBD becomes a normed ring w ith the n o rm  u D R (u) sup u
E HBD), provided that the multiplication is defined as follows :

the multiplicative structure is defined by the projection 7-t' such as
f (E  BD) —%t  u ( EHB D ), where u  is  the harmonic component of the
orthogonal decomposition of f ,  (Royden. [15 ]) . From this normed
ring HBD with the above multiplicative structure, we can construct
the compact Hausdorff space b y  the method of Gelfand. The
space is  homeomorph to  A  (Royden's harmonic boundary) [15].
W e shall show later on that the same relations hold "between HB-
space and For this purpose, we note the following
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Theorem (Littlewood [9]). Let

 

w(z) 1— azlog
1.1<1 z — a d ,a(a)

where p, is a positive m ass distribution in z1< 1 ,  such that

,Ç (1 —  a )dia(a) <  c x )

2,c
Then lirn w(re 1 9 ) =0  f o r alm ost all e", and lim w(re 1 0 ) =0 .

)■1 1)

Theorem (Littlewood [10]). Let u(z) be subharmonic in 1z1 <1 ,
such that

0 1u(re) dB = 0(1) , <  r <1  ,

then u(z)=v(z)— w(z), where v(z) is harmonic in  1z 1<1 , such that

1v(r ea '9)1 dO =O(1) ,
o

0<  r < 1

and

w(z)— log
lal<1

1— az d th(a) ,z— a

where IL  is  a positive m ass distribution in  z 1 <1 ,  such that

(1 —  a l ) d ( a ) < .

Hence f o r alm ost all eu lim  u(reie)=u(e") ( co) ex ists. v (z ) is the

least harm onic m ajorant o f  u, such  that i f  11(z) be harm onic in
< p < 1 ,  such that v ,T =u o n  z 1= p , then lim  e(z)— v(z).

P-o-1

From this, we know that the bounded subharmonic functions
belong to (1- . Hence the bounded superharmonic functions belong
to

Proposition 1. 4. L et M p * is  the f am ily  o f  all HBD-functions
su c h  a s  M I,* fu E H B D ; u (P *)=0 , (p* E A 70}. T hen M p * i s  a
maximal ideal o f  th e  normed rin g  HBD, that is, M p , corresponds to
a poin t o f  Conversely, a p o in t M a  o f  c o rre s p o n d s  to  a point
o f  A,; , th at is , M g —Mg , f o r some point q*( E AT).
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Proof. Let u  be any elem ent o f Mp .. Then 4uv— (u+v) 2 —
(u—v) 2 f o r  an y y E HBD and b y  the Royden's decomposition we
have the following

(u+ v) 2 = w i +cp,
(u — v)2 = 1,02+ P2 (w „ w, G HBD, Pi, p, G K) .

Thus we know that 4uv= (w,— w2 ) + (p ,--p 2 ). We note that p , and
p, are subharmonic respectively, hence p l  and  (7,2 belong to
T o be exact, q,, and p 2 belong to a,. From  this we know that
p 1 —p2 vanishes at p*( E A ; ). Therefore tv,— w , van ishes at p*.
This means that Mp .  is an ideal of the normed ring HBD, because

w2 =7r(uv) (7r : Proj.). That M p * is  maximal is evident. Thus
we know that M I ;  corresponds to a point of 5 . N e x t , let fq, be
any point of Suppose that there is no any point of A  su ch
as a common zero point of the functions belonged to Mg .  Then
there exists an HBD-function u in Mg such that u is  positive on
A .  T h is  is easily verified by means of the compactness of
This function u has a positive infimum on R  (cf. § 2, Lemma 2. 1).
Consequently u  i s  positive at each po in t o f A . Th is  i s  absurd.
Thus we know that M a  corresponds to some point q* E z . (q.e.d.)

Now we note that HB space is a normed ring w ith  a  norm
Ilul = suP u  ( u  E H B ), provided that the multiplication is defined
as follows : the multiplicative structure is defined by the projec-

tion n- such  as f (E u(H B), where u  i s  the harmonic com-
ponent of the decomposition of f .  Thus we have the following

Proposition 1. 5. is  homeomorph to A<,) ., where , ■- • i s  a  com-
pact Hausdorff space constructed from the normed ring  H B w ith the
above multiplicative structure.

L e t  T  b e  a  correspondence from onto  A  as  follows :
q* E I M q . E A .  Then we have the following

Proposition 1. 6 .  The correspondence T is one-valued continuous
mapping.

Proof. Let a- b e  an open subset o f A (A is subspace of R*).
In  th e  follow ing, w e shall show that 0- .7 = T - '(0- )  i s  open with
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respect to 6. 4 . Since —OE is closed

S  = M
MEA - a

does not be contained in any maximal ideal belonging to OE., where
M  is a maximal ideal as a point of —OE. Consequently S nHB D
also does not be contained in any maximal ideal belonging to OE.
Next, we consider an ideal S such as

S . =  A  M ,

where .11/4  is a maximal ideal as a point of A 4 —OE4. W e show
that S  H B D  coincides with S r H B D . Indeed, S r HBD is contain-
ed in  any maximal ideal M  of —OE, while M  n HB D coincides
with 1U H B D  b y  the Proposition 1. 4, where .111  is any one in
T - 1 (M ), consequently (S r\ HBD) C S r 'n  H B D . Conversely .5 n HB D
is contained in any maximal ideal 11/4 of A 4  —0-

4 ,  while HBD
coincides with M (= T O N ) .  This shows that S  H B D  (S T r\ HBD).
Thus we know that SnLIB D=S;T.n  H B D . Now  let M 4  be any
maximal ideal as a point in 0- 4 . Then T(/174) (=Me 0 -) does not
contain S  nH B D , consequently M4  does not contain S,; nHB D,
because M4  H B D = T (  S N = E  c r) .  Thus we see that i s  an
open subset of A 4 . (q.e.d.)

2 .  Properties of the harmonic boundary A4 .

Lemma 2 . 1 .  Every HB -function u attains its maximum and
minimum on .6.4 .

P roo f. Let inf u =X, then the infimum of = u —X) is  zero.

For any HB-function y, üv belongs to We decompose -ay such
as Cm= w+ p , where w E H B  and q E 0 . W e note that w is either
constantly zero or non-constant function on R , because in f u =  O.

Indeed,

w (T(rei 9 )) —  1   r (u-v)(T(eie 1— r2

27r 0 )) 1 + r 2 2 r  cos (0 —(p)
d p  ,

consequently M a  w < Ma on R , where M = inf y and M= sup v.
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From  this, we know that T= { tif ; f  varies on is  a principal
ideal of and furthermore 13r■Ro is also an ideal of Therefore
et is contained in  some maximal ideal of that is, a vanishes
a t the point of Thus we know that u  takes its minimum on
• From this we know that c — u vanishes at some point of ,4 ,
where c= sup u .  (q.e.d.)

Proposition 2 .  1 .  L et D  be a non-compact subregion of  R  whose
relativ e boundary a p  consists o f  an  at most countable number of
analytic Jordan curves not accumulating in  R . T h en  D —aD meets
• provided that D  S O H B ,  where D and ap  are respectively the
closure of  D  and ap  with respect to M

Proof. Let c o — / D [ 1 ]  (cf. P I. Now we define the subharmonic
function a such a s  =0) on D  and =0 on R— D .  Then u belongs
to b y  the Littlewood's Theorem. Let ii = v + p  b e  the decom-
position of u , w h ere  vEHB, q3E o . It is easily verified that v
i s  th e  least harmonic majorant of u. Consequently sup v=1 and
from the Lemma 2. 1 we know that there is a point p* E 4  such
as v (p )= 1 .  From this, we know that a(p*)=1 because g)(p*)=0.
This shows that fi* belongs to t )-3 D .

L em m a 2. 2 .  Every bounded subharmonic (superharmonic) func-
tion attains its maximum (minimum) on

Proof. Let u be a subharmonic function. We decompose u such
a s  u =v +p , where v e H B  and q E 0 . I f  v==_--0, then u = p  (<0 ),
because u < v. From this we know that sup u= sup rp= 0 and this

is attained on z 1 .  If v  0 , v  attains its maximum at some point
p* o f .4 .  Then u(p*) i s  the maximum of u , because sup u <
sup v + sup p=  v(p*). (q.e.d.).

L em m a  2. 3. L et u , and u 2 b e  HB  functions o n  R , then f or
J* E

(u, y /40 (e )  = max E u ,(r) , u2(P*)]
(u, A u2 )(p*)-- min Eui (e ) ,  u2(P* )]

where u1 y u 2 is the least harmonic majorant and u, A u, is the greatest
harmonic m inorant o f u , and u2.
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Proof. Let f  (p) ---- min [u i (p), zi,(p)](p G R), then
 f ( P )  is bound-

ed and super-harmonic on R, consequently f  is continuously ex-
tended onto 1 4  because f  O n  th e  o th er hand , f(p )---
min [u i (P), u2(P)] (P G  R ) is continous on R .  Thus we know that
f (p )=f (p )  on R .  L e t  u (p )+ p (p ) b e  the decomposition of f ,
where u G HB and q G Then u(p*)= f ( p * )  on consequently
(u, A u2) (P*)= min [u,(P*), u,(P* ) ]  on b e c a u s e  u(P)— (u, A 1,12) (P)
I n  t h e  sam e m an n er, w e  can  p ro v e  th a t (u,v 112)(p*)—  max
Eiti(P* ), u2(P* ) ]  on z . (q.e.d.)

Lemma 2. 4. L e t e, an d  e, be th e  compact subsets of
disjoint respectively. Then there exists an H B P-f unction u such as
u =1  on e , and =0  on e,.

Proof. W e can construct an  HBP-function u  such as u =0
on e ,  and > 0  on e , (cf. [6 ] ) .  Since e ,  is  compact, the infimum
of u  with respect to e , is  positive. According to the Lemma 2.3,
(u/c) A 1  i s  th e  function that answ ers to  th e  Lemma, where
c=inf u.

3. Generalized harmonic measures.

Theorem. 3 . 1 .  L e t a  be a compact set (-I= cb) o f  A;1, an d  13
its complementaly s e t  (+ (f)) i n  A7s.. Then there exists a function

defined in  14 such that
i) f 2 :  is upper semi-continuous on R:A:'  and f2: G H B P in  R

ii) 1-20,* =1  on a, =0  on
iii) 12 : is  the harmonic measure in  R, that is, s-2,„ A (1-12 ) = 0,

where ,f2c,  is  the restriction of f l  to R. (we call the harmanic
measure with respect to a).

Proof. Let H c,  be a  family of H B P functions such as

H,„ = fu E HBP ; u< 1  a n d  =1 on a} .

Then we know that u, A u ,  belongs to IL , fo r an y  u ,  and u ,  of
I L ,  by means of the Lemma 2. 3. Consequently,

f 2 :  =  inf u(p) (p E
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is  an HBP function (may be constantly zero) (cf. [7]) , and Il *„  is
obtained as the lim it function o f th e  non-increasing sequence
consisting o f th e elements of H .  I n  t h e  following, we shall
show that n o,* is the function that answers to the above Theorem.
From Lemma 2. 4, w e know  that there exists a  function uEH,,
such as, for arbitrarily given p * (e1 9 ), u (p * )= 0 . This shows that
n t =  on 3, that is, n* satisfies the condition ii). Next we show
that sup f =1 provided that S2c, 4 _ 0 .  Suppose that sup S2„ —c(<1).

Then (2„<cu for any u E H . by Lemma 2. 1, consequently S20,‹
This is  absurd, that is, sup S2c, =1 provided that n  J   0. Let e  be

a set of 4  such as e= { p* E a; S-2,,,(p*)= 1} then e  i s  a compact
subset of a .  Suppose th at (2 „  takes a positive value X at some
point q*( E a — e) . Then q* does not be contained in  O u e , con-
sequently there exists an HBP-function U such as U(q*)=1 and
=0 on i& 'je by the Lemma 2. 4. Let C/— UA 1, then ((iv f2,) >S2„
on R .  Indeed, UV (2,„=1 at q* by the Lemma 2. 3, while SL(q*)=
X (< 1 ). Noting that ( Cv ,f )<u n fo r  every n, w e conclude that

<  (UV S L ) <  lim un =

where f u j  is  a non-increasing sequence such as u,, E Ha, for every
n and un n „ .  This is  absurd. Thus we know that 12a ,  vanishes
on a—e, provided that a — e ---P (/). From  th is, w e can  see that
S2,o, A (1— (2,0,) =  0  on R .  (q.e.d.)

Corollary 3. 2. Let a  be a compact subset of y  and 11,, be
its harm onic m easure. Then a —e belongs to the closure of 0 provided
that a—e -14, where 0 is  the complementary se t o f a  w ith  respect
to  L .

Corollary 3. 2'. Let a  be a compact subset of 4 .  Then there
ex ists a simultaneously open and closed set a  in  a  such as n t= n t
on R, prov ided that n o,>0.

Now we define the harmonic measure with respect to an open
set of .4 .  Let a be an open set of 4 .  Then we call 1—n, the
harmonic measure with respect to a, where ,8= 4 —a.

Theorem 3. 2. Let a  be an open subset o f  4  and let be
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its closure. T h e n  ï ï  is either a simultaneously open and closed set
o f A<,),  o r ATF i ts e lf .  Cousequently 1-2„>0, provided that a*(,b.

Proof. Let 3  be a complementary set of o(=1=) with respect
t o  4 . .  In the case n > 0 ,  the "Cr is simultaneously open and closed
set of by Corollary 3.2. Next, we suppose that A;---R+(f).
Then there exists a point q *  in  19 such as q *  a, consequently
there exists an HBP--function u  such as u =0 on  a  and = 1  at q*.
From this we know that n o > u A 1> 0 .  This shows that -a=
provided that n o= 0.

Proposition 3. 1. L et { }  be the family of open subsets of
and le t 7 = 0  a • Then

on R .

Proof. W e assume that n o,n < 1  for every n  and furthermore
converges. In the other cases, this Proposition is trivial.

n =1

From the Corollary 3. 2 and Theorem 3. 2, we know that 12,, , S23,
and 12e a n = 12,. on R  for every n. Suppose that f27(P0) —  ' f 2 „(P.) =
& >0 for some point p, in R .  Then

D  IpE R ; a y( —  f2 (p) >  }

is  non-compact set in R .  L e t  D  b e  a  component o f  D, then
D 0 SO H B  . Consequently (b —a D) n k .  is non-empty by the Proposi-
tion 2. 1. On the other hand, we can see that (D —SD) r is
empty by the following reason. Suppose that q*(E k . )  is contained
in  fi—aD. I f  q* E Çjek,„ then q* E a n fo r  some a n , consequently

sup 1-2, = 1  b y  the Theorem 3. 2. This is incompatible with Sli,(p) —7-, & .'2° 12-„,.(p)>  y  in D .  I f  q *  0 0  -a „,  then q *  0  ,  that is, q *  Fy- o r
E In the first case, I 2 0 , consequen tly  in f 12,, = 0. In

the second case we can see easily that b -aD  contains some point
p* belonged to 7. This point p * belongs to 0° a „ ,  and this is in-

s
comatible with E27 (p)—Ê 1-2 „ (p )> 2  i n  D .  Thus we know that
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(b  -aD )n  A71, is  em p ty . This is  absurd, that is,
(q.e.d.)

Now we define the outer harmonic measure tb.,, w ith  respect
to any subset 7 of 4 .  Let (N  be the fam ily of open subsets of

each o f which contains 7 respectively, and let H y  be the family
Incj,  where a  varies on (N .  W e call the lower evelope o f Hy ,
that is,

ti-y(P) = inf na(P) (P E R)
aE W y

the outer harmonic measure with respect to y .

P ro p o s it io n  3. 2. is th e  harmonic measure, that is,
tc, A (1 --,u,y ) O.

Proof. Let a i  and a, be open sets containing y  respectively.
Then

f2,21
 ( \

12
011,1- 1(62 1 on a, r\ a2

= 0 on

by Theorem 3 .2 . Therefore na l  (- 1 052 n o , A  f
2

032
 b ecau se  a i r\ a2 =

air\ a, From  this w e can see that tby  i s  the limit function of a
non-increasing sequence consisting of the elements o f Hy (cf. [1],
[7 ] ) .  Consequently p,,, is  the HBP-function on R .  Next we prove
that sup 1, provided that ,u,.y   I   0. Let ,a7 =lim f2„,„ , where {i2„,}

is a non-increasing sequence such as f2o, E H , for every n .  Suppose
that 0< sup p,,,= c < 1 .  Since ,u,,<S2,„n for every n, py = 0 on

for every n. From this we know that

tty < cr2 ,6.

fo r every n  by Lemma 2.1 and Theorem 3 .2 . T hus w e have
c . This is absurd, that is, sup py = l .  Let e be the compact

set such as e= {p* E ; F ,7 (p*) =1}  . We note that p i  =0 on
for every n, consequently /11 =0 on 0  (4 — k ),  that is, pi  vanishes

on 0  (4—a n ). Thus we know that cc r\n n . N ext w e show
that e is  a simultaneously open and closed set in  4  .  Suppose
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that yt,, does not vanish at some point q* E a n —e, then there
exists an HBP-function u such as u= 1 at q*, =0 on ev(.6. - C r „ )
by Lemma 2. 4. The function lc, y  U  (where U= u A 1 )  is larger
than icc,, , but is smaller than f2  ev e ry  n, because n a,n = 1 on
a .  and =0 on .6, —ÏY„, while fty v U=0 on - -a n ,  and < 1  on a n  .
From this, we have that

lim Sl o,„ A  U >a y  .

-0,co

This is  absurd . Thus we conclude that A (1 — 1/0= 0. (q.e.d.)

P ro p o s it io n  3. 3. The is  the harmonic measure with respect
to  T\ R„

P roof. It is ev iden t that S2,-,i S2,(5  (” >,(.2,,,. Therefore

12 he as n—> 0 0  t h a t  is,
o ,

Lemma

.  (q.e.d.)

Lem m a 3. 2. Let 7 = 0 7 „ ,  where 7„ is any  subset of for

every n. Then

t ty  E p-yn on R .

Proof. Let G be any compact subregion in R .  Then, for any
fixed 6 (> 0 ) and any 7 „ ,  there exists a certain open subset a n of

such as ry„Cce,, and

,ay„ i l . „ </zyn 4-
 2

6.

in  G .  Thus we know that

/ay < <  f t z .  < n  &

in  G by the Proposition 3. 1. Therefore in  G  and G is
an arbitrarily fixed subregion in R, we know that this inequality
holds on R .  (q.e.d.)

Thus w e know  that the outer harmonic measure / b y  i s  the
Caratheodory outer measure with respect to the subsets of
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4. Integral representation of an  H R -f unction and
quasi-bounded component o f a n  HP-function.

W e a lready  p ro ved  th at p  is  th e  harmonic measure with
respect to a  simultaneously open and closed set e  in Tven ,  pro-
vided that ,u,,  I   0. Now we note that en y  is not empty. Suppose
th a t e ny  is  em p ty . T h en  ervi, is em pty, because e  is simul-
taneously open and closed in According to the Lemma 2. 4,
there exists an HBP-function u such as u = 1 on e and = 0  on T.

Let 0-  b e  an open set in such as 0---d p *  E ; u (p * )<
1

}
2  •

Then 0- D 7. Let fa„1,7=1 be the family of open sets in such as
f2„„ a s  n -> 0 0 . Then w e can see easily that  1a  as
n-->oc, because every cr r■an  contains 7. Therefore p,,, coincides
w ith the harmonic measure with respect to  A ' (0-  na n ). This is
absurd, because c/'-\ (0-  na n )  does not contain the set e. Thus we
know that eny+.1) provided that 0.

Lemma 4. 1. L et y  be any  subset o f  ,AF f s u c h  as
 j , > 0  an d

let e be a simultaneously open and closed se t in  ,A.; such as
T hen e(  and O.

Proof. Suppose that e - ,7 be non-empty. Let q* G e Then
there exists an HBP-function u such as u = 1  a t q* and = 0  on
b y  the Lemma 2. 4. L e t  0-  b e  an open  set of such as

0- = 1p* E ; u (p*)<   2
1 .  From  this, w e see that S2o_ p y  as

-  
n -  ,  that is, /.4 y is the harmonic measure with respect to (0- n  , i )
b y  the Proposition 3. 3. But 1-\° (crr\cen ) does not contain the
q * (E e ) .  This i s  absurd. T hus w e know  that e C T .  Next we
show that 1u 0. Evidently 'y- e  - e ,  consequently ,u,„_e <

(=i. - &), i s , 0 (cf. Prop. 4.2).n an

Proposition  4 . 1 . L et a be an open set o f  L .  Then a  is  ft-
measurable and p„=12,.

Proof. It is ev ident that ,a,, =1 -2,„ . W e shall prove the me-
asurability. L e t 7  b e  an y  su b se t o f  „!1 . It is ev iden t that
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by the Lemma 3.2. I f  any o n e o f th e  right
vanishes, then the left hand coincides with the right s id e . Therefore
w e assume that p -  and  d o  not vanish respectively.
According to th e  Corollary 3. 2, there exists th e  simultaneously
open and closed sets e, e, and e , such as S2e , [ Ly n ,  = Sl e ,  and

It is clear that e, and e, are contained in  e respec-
tively. According to the Lemma 4. 1, the e, is contained in 4 — a ,
because e2 < 7  (A — A.; — a = A — a . With respect to e„ it is
contained in b y  th e  Lemma 4. 1. Noting that e, an d  e ,  are
simultaneously open and closed respectively, we know that e,ne,=(!).
Thus we have the following

= S2, > = 1 .2„, ± = (q.e.d.)

P ro p o s it io n  4.2. L e t  a  be a  closed set of z . T h e n  a  is
measurable and p ay =  .

Proof. Since =a + ( — a )  and is measurable,
izzs. =Jaw + -.) • From this we have HII  m

= 1
o3)

=- 1 1-2
( A v . f  ( 4 )  •

This shows that ,u,=1-2„. (q.e.d.)

P ro p o s it io n  4.3. Let 11,=0, then a< ( —a).

Proo f. Supose that ,e= a— (4— a)d-- (P. Then ie is  an open
subset o f 4 ,  because z.N.,7 = ( — ce)u a =( —a) \  a =  (4— ce) v,(3
and that (4  — a) n ( 1 ) .  Therefore p,,,> 0  by Theorem 3.2. On
the contrary, [6 0 =0 since ,a< a .  This is absurd, that is a C (4— a).

(q.e.d.)

P ro p o s it io n  4.4. L e t  u  be an HB function such as u=0 on
A<,1. except for a  nu ll-set. Then 11=- 0.

Proof. According to Prepotion 4. 3, u vanishes on 4  because
u is continuous on 4 .  Thus we conclude that u- -= - 0 in R .  (q.e.d.)

P r o p o s i t io n  4. 5. Let u and y be HB functions such as u=v
(u> v ) o n  A.;1, except for a  nu ll-set. Then u=- v  (u > v ) on R.

Proof. This is clear by Proposition 4. 4 and Lemma 2. 1.
(q.e.d.)
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L em m a 4. 2. L e t y  be a  measurable se t o f  positive measure.
Then p 7 _ ,- it e _ ,= 0 , that is ,  1 = 1  o n  y  except f or a null-set and
=0  on —7 except f or a null-set provided that ,a,„> 0 .

Proof. It has been proved in Lemma 4. 1 that 0. Now
w e  show th a t  ,a,-1 = 0. S ince e- 7 —  7 , we know that
tte  . And because y  is measurable

lan - 7 )

and ry R n .  Thus we know that ,u, = O. (q.e.d.)

T h eo rem  4 .  1 .  L et u  be an  H B P - fu n c t i o n .  Then

u(P) = u(P*)d P(P * ,

where tz is  the outer harmonic measure.

Proof. Let { e  k } 1 b e  a partition of ,6,7 e a c h  of which is
measurable and let mk =inf u (p * )  for each k. Then

e k

S(P) = (P E

is  an HBP-function on R  by Proposition 3. 2. Let 1' be the family
of s ( p )  corresponding to each partition of A .  T h e n  l '  has the
following property :  there exists an  element s ( p )  of such as
s (p )  max [ s i (p ) , s ,(p ) ]  (p  E R) for any given s ,  and s ,  of 1'. This
is verified by means of Lemma 2. 1 and Lemma 4. 2. Therefore
we know that sup s ( p )=  u (p )  is harmonic on R  (cf. [1 ]  p. 134).

C E P

Thus we know that

( AP) = U(P*)dtb(P*7 p)

is harmonic on R .  It is clear that s (p )  ( E l') <  u (p )  for any s E
by Lemma 4. 2. Consequently U u. And we can see easily that
U is identical with u. (q.e.d.)

T h eo rem  4. 2. L et f  be a  measurable function positive and
bounded on then

U (p )  = f(P*)(11-6(P*,AcN
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is an  H B -fun ction  on R  an d  U= f on except f o r a  null-set.

Proof. In the same manner as did in  Theorem 4. 1, we can
v erify  th a t u ( p )  i s  an  HB- function on R .  we shall prove the
la tte r . L e t {e;4)} 1:11 b e  a partition of A.; .  such as

er  =  { P *
 G  A3; ;  f ( P * ) < i 2

± n1 }
 

(i =0, 1, •••, kn : k„= 2M -1)

where M= sup f ( p * ) .  Then {s`")}„7=1 is  a  non-decreasing sequence
A .Tr.

and converges to  U (p), consequently

U(p) lim s(n )(p ) .9(n)(p*)dy,(p*, p)
A71,

( litr i s , n )(p * ))d p (p * , p ) .
>, —>co

On the other hand, U(p*) s (")(p * )  on z co n seq u en tly  U(p*)>
lim s (n)(p* )— f(p* ) except for a null-set, From this we know that

u (p * )— f(p * ) except for a null-set, because

U(P) — f ( P * ) d A P * , = ( U(P*) — f (P * ))d (P * ,  =  0  •
Ac3,

(q.e.d.)

In the following, we shall treat the unbounded HP -functions.
Let u be an unbounded HP-function. Then u(P)= lim u ( p ) ,  where

n.÷nn

u (p )=  min [ u (p ) ,  n ]  for every n. L et en  b e  a  s e t  o f  .14  such
a s  en = {p  E R ; u n (p )= n }  . Then en  D e n + 1  f o r  each  n ,  therefore
e _= i\e n  is non-empty, because every en  i s  compact. We define

n = i

the function u * (p ) as follows

u* (p ) =  u(p) o n  4 — e_
= + Do on e .

Then u * (p ) is continuous on M I'  in the sense o f lim u(p)=1im u(p)
on R . F ro m  n o w  on, u * (p ) is denoted by u (p )  again.

T h e o re m  4. 3. Let u be an unbounded HP-function on R. Then
u(P*) (p * E ,A ) is integrable on . Consequently 6', r.■A l ,  is IL
measure zero.
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P roof. Let u(p)= m in  [u(p), n]. Then un(P) t u(P) on R and

an (p) = un(p*)d,u,(p*, p) (n=1, 2, ••-)
A

i s  a  non-decreasing sequence. According to Fatou's lemma, we
know that

+ 00 > u(p) lim an (p)( u r n  un (p*))d,a(p*, p) =
Tf

U(P * ) 61/h(P* ,  P )  •

This shows that u(p*) (p* E 4 )  is in tegrab le on ,4  and e_r\ L1
is  p-measure ze ro . (q.e.d.)

From  th is, w e h av e  a  decomposition such a s  u(p)=w(p)+
u(p*)c116(p*, p). In the following, we show that this decomposi-

tion coincides with the Parreau's decomposition.

Theorem 4. 4. w (p )  i s  the singular com ponent o f  u  and the
integral term  is the quasi-bounded component o f u.

P roof. Let a(p)= u(p*)dy,(p*, p) and let un (p)— min [u(p), n]
on R .  Then we have the inequality

u(p) a(p)> u n (p) on R .

L et q* b e  a point of  z such a s  q* Ø ec,s ,  w here e — {p*EA ;
u(p*)= + c o l  . T h en , fo r  a  suitab le num ber N, u(q*) _>_zi(q*)>
u N (q*)=u(q*) by Lemma 2. 3. Therefore u(p*)=ii(p*) on except
for e _ . This shows th at w(p)=u(p) — a(p) is  singular, because e_
is  a  null-set. (q.e.d.)

Theorem 4. 5. Let an HP-function w  be s ingu la r. T hen w
vanishes at each point of

P roof. It is ev iden t that w vanishes on A — e c.o , where. ec o =
{p* E ; w(p*)= + o 0 ).  we shall show that e_=q). Suppose that
e_ is non-em pty. Then a set of G,

G = { p e R ;  w ( p ) > c > 0 }
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is non-empty in  R  and e_ is contained in G —aG. W e note that e
is a simultaneously open and closed set in ,4  because 3 G n 4 =4 ) .
From this we know that ,u,, co is  positive. This is absurd, because

=0  by Theorem 4. 3. (q.e.d.)
Finally we shall give the following

Theorem 4 .  6 .  The harmonic boundary is totally disconnected.

Proo f. Let 0- be connected subset o f .4 .  In  the following,
we shall see that 0- is  a single point. Suppose that 0- has at least
two points, say qP, qT. According to Lemma 2. 4, there exists an
HBP-function u such as u (q )= 1  and u (e )= 0 . Now let G be an

* 1open  set such a s  G = tp  E ; u(p*) - > . Evidently qP 0G,

consequently ŒnG and 0- - 0-  n G are disjoint non-empty sets respec-
tively and furthermore G is a  simultaneously open and closed set
in from Theorem 3. 2. This is absurd, because o-  is connected.
Thus we know that o - m u st be a single point, provided that o-

is connected. This shows that ,4  is totally disconnected. (q.e.d.)

Remark. The results in  Theorem 3. 2 and 4. 2 seem  to us
curious, but on  the other hand, from these results we see the
similarity between .!\.; and the hyper Stone space (cf. [13] pp. 108—
111). In  the following, we shall show that z4 as the subspace
of R  is  the hyper Stone space. Let f, and f; be essentially bound-
ed functions on LS■F, then we define that f ,  is equivalent to f,,
provided that f,=  f, except for a null-set. Under this stipulation,
we denote by M ( z )  a  family of essentially bounded, measurable
function on Then we have the following theorem ; the com-
pact Hausdorff space H constructed from maximal ideals of M (.4 )
is the Stone space and furthermore is the hyper Stone space (cf.
[ 1 3 ]). O n the other hand, Theorem 4. 2 shows that M ( 4 )  is

. identical with C(L), where C( ) denotes a  family of continuous
function on L1., and that the compact Hausdorff space construct-
ed from maximal ideals of C (A )  is identical with A. ;1. because
is the compact space. Thus we know that 4 is the hyper Stone
space.
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5 O H B n a n d  ,!sq

Let 7 be a measurable se t o f 4  with positive measure. Now
we define a partition 0- , a- , of y as follows : 0- , and 0 - 2 are disjoint,
measurable sets with positive measures respectively and have union
y .  We call y an indivisible set if it admits no partition.

Lemma 5 . 1 .  L et 7 be an indiv isible set of  .4 .  Then 7 con-
sists o f  an  isolated point and a null-set.

Proof. According to Proposition 3.2 and Lemma 4.2, we
know that 1.1, y coincides with p,, where e is a simultaneously open
and closed set o f 4  and  ,u,e _,—,a,_ e = 0 .  From this, we know that
e is an indivisible set. In the following, we shall prove that every
HB-function is constant on e. Suppose that for some HB function
u, (c 1 =) sup u >  inf u(= c2 ) w ith  respect to e. Then whether e ,=
Ip* E e ; u (p*)>cl or e2 = {p* E e ; u (P*)<c} is a null-set for any
given c(c2 < e < c ) .  I f  e, is  a  null-set, el would be contained in
6 '2 ) because e is a simultaneously open and closed set in 4 and a
null-set is contained the closure o f  its complementary set with
respect t o  4 .  This shows that sup u e (<6. 1). This is absurd.

Analogously we can see that e2 must be positive measure. Thus
we know that every HB-function is constant on e , that is, e
consists of a single point. At the beginning of §4, we have shown
that yne does not be empty, provided that p,,>0. From these,
we conclude that y  is union of a simultaneously open and closed
set and a null-set. (q.e.d.)

Theorem  5 . 1 .  L et q*(E 4 )  be a Point with positiue measure.
Then th e  ,a( e )  i s  HB m in im al. Conversely, every HB minimal
function whose supremum is  1 is the 4 L measure of an isolated point
o f  .4 .

Proof. It is clear that th( e )  is HB-minimal, because q *  is
identical with the set e. We shall prove the inverse. Let w(p) be
an HB-minial function such as sup (0=1. Let e  be a  s e t  o f  4

It

such as e {p* E ; w (p *)=1 }. N ow , fo r any HBP-function u,
(11 1 A ( t )  is smaller than w. Therefore (u/1 tell) v cw, where
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< c <  1. This shows that u is constant on e. From this, we know
that every HB-function is constant on e, because u= u v 0+u A 0
Thus we conclude that e  consists of a single point with positive
mearure co. Indeed co vanishes on A,—e and this is verified easily
by Lemma 2. 4.

Theorem 5.2.  R E  OHB n
—  0 HBn _ i  i f  an d  only  if  Œ(R )=n, where

0- (R) denotes the number of  the harmonic boundary points.

Proo f. In the same manner as did in  [7 ], this is proved.

Theorem  5. 3. T here ex ist at least n generaliz ed harm onic
measure {0) i }7_,. o n  R  such as co i na)1 =0 (i±   j) , prov ided that 4
contains at least n points. T he inv erse is true also.

Proof. The harmonic boundary 4 does not be an indivisible
set, i f  not s o ,  4  would consist of a single point. Consequenly
there exists a partition A, A , o f  4 .  Next, one or the other of
A i  and A, does not be an indivisible set, if not so, the R  would
be of the class 0 HB, —  0 H .  Thus this decomposition will be con-
tinued up to at least the (n -1) th step, that is,

A ci, JA(2)u .............. vA(n) ,

where every ,A ( i) has positive measuse and disjoint respectively.
From this, we have the generalized harmonic measure fit,(017-1
such as j u) A (i  I  j) , where I. ,o ) A ,ct,c,) — O (i  I  j)  is clear
from Lemma 4. 2.

C o ro lla ry . (Bader-Parreau [2], Matsumoto [12]) R  0 H g n  i f
an d  only  i f  th e re  ex is t n +1  non-compact subregions {G i }  such as
G1 nG 3 = 0  (id= j) and 0S O H B  respectively.

Proof. It is easily verified  by m eans o f  Theorem 5. 2, 5. 3

and Proposition 2. 1.
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Supplement

(added on August 15, 1961)

We shall state briefly the relation the measure ,u, on 4  and
the canonical measure Il on A which was introduced by M . Nakai
[1 4 ].  We defined in  [7 ]  the harmonic measure 12,. with respect
to a  compact se t  0- o f  A. Now we define the harmonic measure
12„ with respect to an open subset of A a s  follows : 12„--- 1—f2A „ .
L e t y  be any subset in  A  and M  be a  family of open subsets in
A  each of which contains the 7. We define th e  function 1-21 on
R such a s  12(z)=inf S2(z), where a  runs over O. Then we have
the following properties : 1) n, is the generalized harmonic measure,
2) n, is  the Caratheodory outer measure, 3) the Borel sets are me-
asurable w ith respect to a y .  Next, le t  y  be any subset in  A  and
le t , m  be th e  s e t  T - 1 (y ) in  4 ,  where T  is  the continuous map-
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ping from 4  onto A (cf. Prop. 1.6). Then we have the following

T h eo rem . L et 7 be a B orel set in A .  Then

tz,4 (z) = = K(z,

and

f (nK(z, = f ° TWc tz(z ,
A

where f(') is any bounded IL-measurable function on A.
Concerning to th e  above subjects, I  shall state in  detail in

another place.


