On automorphisms of \boldsymbol{G}-structures

By
Atsuo Fujimoto

(Received March 21, 1961)

Introduction

The purpose of the present paper is to investigate the properties concerning automorphisms of G-structures. $\S 1$ contains definitions and notations. In $\S 2$, we shall prove some lemmas which will be used in the remaining sections. In $\S 3$, we shall study infinitesimal automorphisms of G-structures. Conditions that a vector field to be an infinitesimal automorphism of G-structure will be given. We consider the set \mathcal{A} of all infinitesimal automorphisms of G-structure. Under certain coudition, \mathcal{A} is a finite dimensional Lie algebra. In $\S 4$, we shall give a condition that an infinitesimal automorphism of G-connexion is also an infinitesimal automorphism of G structure. The last section is devoted to the study of invariant G-structures on reductive homogeneous spaces.

The author wishes to express his sincere gratitude to Professor J. Kanitani for his cotinued encouragement.

§ 1. Preliminaries and notations

1. Throughout this paper, all manifolds, mappings, vector fields and differential forms are understood to be of class C^{∞}.

Let M be a differentiable manifold. We shall denote by $T(M)$ the tangent bundle of M and by $T_{u}(M)$ the tangent space of M at $u \in M$. Suppose $f: M \rightarrow N$ to be a differentiable mapping of M into a differentiable manifold N. Then f induces a mapping $f_{*}: T(M) \rightarrow T(N)$. Let F be a vector space over reals. We denote by $\phi_{F}(M)$ the set of all F-valued differential forms on M. The
dual of f_{*} gives a mapping $f_{*}: \phi_{F}(N) \rightarrow \phi_{F}(M)$.
Let G be a Lie subgroup of the general linear group $G L(n, R)$ in n variables, and \mathcal{G} be its Lie algbra. Let E be an n-dimensional vector space over reals, and E^{*} be the dual space of E. We define the representation (ρ, E) of $G L(n, \mathrm{R})$ on a vector space E as follows:

$$
\rho(g) e_{i}=\sum_{j} g_{i}^{\prime} e_{j} \quad \text { for } \quad g=\left(g_{i}^{f}\right) \in G L(n, \mathrm{R}),
$$

where e_{1}, \cdots, e_{n} is a base of E. If we consider the restriction of ρ to the subgroup G, then we obtain a representation of G which we denote by the same notation (ρ, E). Then we obtain two representation $\left(\rho^{*} \otimes \operatorname{ad}, E^{*} \otimes \mathcal{G}\right)$ and $\left(\left(\rho^{*} \wedge \rho^{*}\right) \otimes \rho,\left(E^{*} \wedge E^{*}\right) \otimes E\right)$ of G, where $\left(\rho^{*}, E^{*}\right)$ is the dual representation of (ρ, E) and (ad, $\left.\mathcal{G}\right)$ is the adjoint representation of G. For brevity, we shall denote these representations by $\left(\alpha_{1}, E^{*} \otimes \mathcal{G}\right)$ and $\left(\alpha_{2},\left(E^{*} \wedge E^{*}\right) \otimes E\right)$ respectively.

Let $\left(\tilde{e}_{\sigma}\right)(\sigma=1, \cdots, \operatorname{dim} . G)$ be a base of \mathcal{G}, and let $\left(e_{1}, \cdots, e_{n}\right)$ be a base of E and (e^{1}, \cdots, e^{n}) its dual base. The representaion (ρ, E) of G induces the representation $(\bar{\rho}, E)$ of the Lie algebra \mathcal{G}. Then $\bar{\rho}\left(\tilde{e}_{\sigma}\right)$ can be represented by a matrix $\left\|a_{\sigma_{j}}^{\tau}\right\|$:

$$
\bar{\rho}\left(\tilde{e}_{\sigma}\right) \cdot e_{j}=\sum_{i} a_{\sigma j}^{i} e_{i} .
$$

In the following we shall write $\bar{\rho}(A) \xi=A \cdot \xi$ for $A \in \mathfrak{g l}(n, \mathrm{R}), \xi \in E$.
We define the linear map $\subset: E^{*} \otimes \mathcal{G} \rightarrow\left(E^{*} \wedge E^{*}\right) \otimes E$ as follows :

$$
\prime\left(\sum_{\sigma, k} \xi_{k}^{\sigma} e^{k} \otimes \tilde{e}_{\sigma}\right)=\sum_{\sigma, i, j, k}\left(a_{\sigma j}^{t} \xi_{k}^{\tau}-a_{\sigma k}^{*} \xi_{j}^{\sigma}\right) e^{j} \wedge e^{k} \otimes e_{i}
$$

for any $g \in G$, we see immediately that $\alpha_{2}(g)$ leaves $I m / /$ invariant, and hence we obtain an automorphism $\alpha_{3}(g)$ of Coker $»$. Thus we obtain the representation (α_{3}, Coker $/ /$) of G.

Definition 1.1. We say that the group G has the property (\mathcal{P}) if the following conditions are satisfied

1. $\operatorname{Ker} / \prime=0$.
2. There exists a linear map $k:$ Coker $/ \neg\left(E^{*} \wedge E^{*}\right) \otimes E$ such that
(i) $q \circ k=1$.
(ii) $k \circ \alpha_{3}(g)=\alpha_{2}(g) \circ k \quad$ for any $g \in G$,
where q denotes the natural projection $\left(E^{*} \wedge E^{*}\right) \otimes E \rightarrow$ Coker \approx.
3. Let M be an n-dimensional differentiable manifold and $\mathscr{F}(M)$ be the frame bundle of M whose projection is π. Let E be an n-dimensional vector space over reals. Recalling that every element x of $\mathscr{F}^{-}(M)$ is considered as a linear isomorphism of E onto $T_{\pi(x)}(M)$, we define a tensorial 1-form θ of type (ρ, E) on $\mathscr{T}(M)^{1)}$, called basic form, as follows [7]

$$
\theta_{x}(Z)=x^{-1} \cdot \pi_{*} Z \quad \text { for any } \quad Z \in T_{x}(\mathscr{F}) .
$$

Suppose that a connexion Γ is given in $\mathscr{F}(M)$ and denote by ω the connexion form of 1 . For any vector field Z on $\mathscr{F}(M)$, we denote by $h Z$ (resp. $v Z$) the horizontal (resp. vertical) component of Z with respect to Γ. We denote by X^{*} the lift of $X \in T(M)$ with respect to Γ. For each point x of $\mathscr{F}(M)$, we denote by \mathfrak{S}_{x} the set of all points which can be joined to x by horizontal curves. These \mathfrak{F} 's are submanifold of $\mathscr{T}(M)$ which we call horizontal manifolds.

The covariant differential of an l-form Ξ on $\mathscr{F}(M)$ is defined by

$$
\begin{equation*}
D \Xi\left(Z_{1}, \cdots, Z_{l+1}\right)=d \Xi\left(h Z_{1}, \cdots, h Z_{l+1}\right) \tag{1.1}
\end{equation*}
$$

for any vector fields Z_{1}, \cdots, Z_{l+1} on $\mathscr{F}(M)$. Moreover, if Ξ is a tensorial form of type ($r, F)$, then $D \Xi$ is given by ([10])

$$
\begin{equation*}
D \Xi=d \Xi+\bar{r}(\omega) \cdot \Xi, \tag{1.2}
\end{equation*}
$$

where (\bar{r}, F) denotes the induced representation of the Lie algebra $\mathfrak{g l}(n, R)$.

We shall denote by Ω and Θ the curvature form and torsion form of a given connexion Γ respectively, that is, $\Omega=D \omega$ and $\Theta=D \theta$. Concernig the curvature form and the torsion form, we have the following structure equations ([7]) :

$$
\begin{align*}
& d \omega=-\frac{1}{2}[\omega, \omega]+\Omega . \tag{1.3}\\
& d \theta=-\bar{\rho}(\omega) \cdot \theta+\Theta . \tag{1.4}
\end{align*}
$$

[^0]Let X be a vector field on M. For a differential form Ξ, the Lie derivative $\mathcal{L}_{X} \Xi$ of Ξ with respect to X is defined by

$$
\begin{equation*}
\mathcal{L}_{X} \Xi=\lim _{t \rightarrow 0} \frac{1}{t}\left\{\mathcal{P}_{t}^{*} \Xi-\Xi\right\}, \tag{1.5}
\end{equation*}
$$

where \mathcal{P}_{t} denote the local transformations generated by X ([8]).
For X and $Y \in T(M)$, we have ([8])

$$
\begin{array}{ll}
(1.6) & X \cdot \Xi(Y)=\left(\mathcal{L}_{X} \Xi\right)(Y)+\Xi([X, Y]) . \\
(1.7) & 2 d \Xi(X, Y)=X \cdot \Xi(Y)-Y \cdot \Xi(X)-\Xi([X, Y]) . \tag{1.7}\\
(1.8) & 2 d \Xi(X, Y)=\left(\mathcal{L}_{X} \Xi\right)(Y)-\left(\mathcal{L}_{Y} \Xi\right)(X)+\Xi([X, Y]) .
\end{array}
$$

A vector field X on M induces a vector field \tilde{X} on $\mathscr{F}(M)$ in the following manner ([7]). For each $x \in \mathscr{F}^{-}(M)$ and $u=\pi(x), X$ generates a local 1-parameter group of local transformations $\mathscr{\rho}_{t}$ in a neighboriood U of u. Each \mathcal{P}_{t} induces a local 1-parameter group of transformations $\widetilde{\mathscr{P}}_{t}$ in $\pi^{-1}(U)$ and $\widetilde{\mathscr{P}}_{t}$ induce a vector field \tilde{X} on $\pi^{-1}(U)$. Since $\tilde{\mathcal{P}}_{t}$ commute with right translation $R_{g}(g \in G L(n, R))$, the induced vector field \tilde{X} is invariant under right translations;

$$
\begin{equation*}
R_{g *} \tilde{X}=\tilde{X} \tag{1.9}
\end{equation*}
$$

It can be shown by straightfoward calculation that $\widetilde{\mathscr{P}}_{t}$ leave the basic form θ invariant. Hence we have from (1.5)

$$
\begin{equation*}
\mathcal{L}_{\tilde{X}} \theta=0 . \tag{1.10}
\end{equation*}
$$

§ 2. Several lemmas

3. Keeping the notation of the preceding section, we shall prove several lemmas which will be used in the following.

Lemma 2.1. Let f be a tensor on $\mathscr{F}(M)$ of type (r, F), then for any $A \in \mathfrak{g l}(n, R)$ and $x \in \mathscr{F}(M)$, we have

$$
\sigma(A)_{x} f=-\bar{r}(A) f(x)
$$

where $\sigma(A)$ is the fundamental vector field ${ }^{2)}$ corresponding to A and

[^1](\bar{r}, F) is the induced representation of (r, F).
Proof.
\[

$$
\begin{aligned}
\sigma(A)_{x} f & =\lim _{t \rightarrow 0} \frac{1}{t}\left\{f\left(R_{\exp t A} \cdot x\right)-f(x)\right\} \\
& =\lim _{t \rightarrow 0} \frac{1}{t}\left\{r\left((\exp t A)^{-1}\right) f(x)-f(x)\right\}=-\bar{r}(A) f(x) . \quad \text { q.e.d. }
\end{aligned}
$$
\]

For any vector field X on M, we define the differentiable functions β_{X} and γ_{X} on $\mathscr{F}(M)$ as follows

$$
\beta_{X}(x)=\omega_{x}(\tilde{X}) \quad \text { for } \quad x \in \tilde{J}(M),
$$

and

$$
\gamma_{X}(x)=\theta_{x}(\tilde{X}) \quad \text { for } \quad x \in \mathscr{F}(M)
$$

From (1.9) we see that
(2.1) $\quad \beta_{X}$ is a tensor of type $(a d, \mathfrak{g l}(n, R))$ on $\mathscr{F}(M)$.
(2.2) $\quad \gamma_{X}$ is a tensor of type (ρ, E) on $\mathscr{F}(M)$.

Let Z be any vector field on $\mathscr{F}(M)$ and A be the element of $\mathfrak{g l}(n, \mathrm{R})$ such that $\sigma(A)_{x}=v Z_{x}$. From (2.2) and Lemma 2.1, it follows that

$$
\sigma(A)_{x} \cdot \theta(\tilde{X})=-\bar{\rho}(A) \theta(\tilde{X})=-A \cdot \theta(\tilde{X}),
$$

and hence

$$
\begin{equation*}
v Z \cdot \theta(\tilde{X})=-\omega(Z) \cdot \theta(\tilde{X}) \tag{2.3}
\end{equation*}
$$

Since $\overline{a d}(A) B=[A, B]$ for $A, B \in \mathfrak{g l}(n, R)$, we have similarly

$$
\begin{equation*}
v Z \cdot \omega(\widetilde{X})=-[\omega(Z), \omega(\tilde{X})] . \tag{2.4}
\end{equation*}
$$

Lemma 2.2. For any vector fields X and Y on M,
$\theta([\tilde{X}, \tilde{Y}])=2 d \theta(\tilde{X}, \tilde{Y})=\omega(\tilde{Y}) \cdot \theta(\tilde{X})-\omega(\tilde{X}) \cdot \theta(\tilde{Y})+2 \Theta(\tilde{X}, \tilde{Y})$.
Proof. From (1.10) it follows that $\mathcal{L}_{\tilde{X}} \theta=0$ and $\mathcal{L}_{\tilde{Y}} \theta=0$. Therefore, making use of (1.6) and (1.7), we have

$$
2 d \theta(\tilde{X}, \tilde{Y})=\theta([\tilde{X}, \tilde{Y}])
$$

The right hand side is nothing but the structure equation (1.4).

Lemma 2.3. For any vector fields X and Y on M,
$\omega([\tilde{X}, \tilde{Y}])=h \tilde{X} \cdot \omega(\tilde{Y})-h \tilde{Y} \cdot \omega(\tilde{X})-[\omega(\tilde{X}), \omega(\tilde{Y})]-2 \Omega(\tilde{X}, \tilde{Y})$.
Proof. From (1.3), (1.7) and (2.4), we have

$$
\begin{aligned}
& 2 \Omega(\tilde{X}, \tilde{Y})= 2 d \omega(\tilde{X}, \tilde{Y})+[\omega(\tilde{X}), \omega(\tilde{Y})] \\
&=\tilde{X} \cdot \omega(\tilde{Y})-\tilde{Y} \cdot \omega(\tilde{X})-\omega([\tilde{X}, \tilde{Y}])+[\omega(\tilde{X}), \omega(\tilde{Y})] \\
&= h \tilde{X} \cdot \omega(\tilde{Y})-h \tilde{Y} \cdot \omega(\tilde{X})-\omega([\tilde{X}, \tilde{Y}])+v \tilde{X} \cdot \omega(\tilde{Y})-v \tilde{Y} \cdot \omega(\tilde{X}) \\
& \quad+[\omega(\tilde{X}), \omega(\tilde{Y})] \\
&= h \tilde{X} \cdot \omega(\tilde{Y})-h \tilde{Y} \cdot \omega(\tilde{X})-([\tilde{X}, \tilde{Y}])-[\omega(\tilde{X}), \omega(\tilde{Y})] .
\end{aligned}
$$

Lemma 2.4. Let X be a vector field on M and Z be a vector field on $\mathscr{F}(M)$, then we have

$$
h Z \cdot \theta(\tilde{X})=\omega(\tilde{X}) \cdot \theta(Z)-2 \Theta(\tilde{X}, Z) .
$$

Proof. Making use of (1.10), (1.6), (1.7), (1.4) and (2.3), we obtain

$$
\begin{aligned}
0=\left(\mathcal{L}_{\tilde{X}} \theta\right)(Z) & =\tilde{X} \cdot \theta(Z)-\theta([\tilde{X}, Z]) \\
& =2 d \theta(\tilde{X}, Z)+Z \cdot \theta(\tilde{X}) \\
& =\omega(Z) \cdot \theta(\tilde{X})-\omega(\tilde{X}) \cdot \theta(Z)+2 \Theta(\tilde{X}, Z)+h Z \cdot \theta(\tilde{X}) \\
& =-\omega(\tilde{X}) \cdot \theta(Z)+2 \theta(\tilde{X}, Z)+h Z \cdot \theta(\tilde{X}), \quad \text { q.e,d. }
\end{aligned}
$$

We say that a vector field X on M is an infinitesimal automorphism of a given connexion ω, if the local transformations \mathcal{P}_{t} generated by X are all local automorphisms of the given connexion ω ([7]). Concerning infinitesimal automorphisms of a connexion, we shall prove the following two lemmas.

Lemma 2.5. If X is an infinitesimal automorphism of a connexion ω, then it holds that, for any vector field Z on $\dot{\gamma}^{-}(M)$,

$$
h Z \cdot \omega(\tilde{X})=2 \Omega(Z, \tilde{X}),
$$

where Ω denotes the curvature from of ω.
Proof. Since the local transformations $\tilde{\mathscr{P}}_{t}$ induced by \tilde{X} leave the connexion form ω invariant, we see from (1.5) that $\mathcal{L}_{\tilde{X}} \omega=0$. Hence, by virtue of (1.6), (1.7). (1.3) and (2.4), we obtain

$$
\begin{aligned}
0=\left(\mathcal{L}_{\tilde{X}} \omega\right)(Z) & =\tilde{X} \cdot \omega(Z)-\omega([\tilde{X}, Z]) \\
& =2 d \omega(\tilde{X}, Z)+Z \cdot \omega(\tilde{X}) \\
& =-[\omega(\tilde{X}), \omega(Z)]+2 \Omega(\tilde{X}, Z)+h Z \cdot \omega(\tilde{X})+v Z \cdot \omega(\tilde{X}) \\
& =2 \Omega(\tilde{X}, Z)+h Z \cdot \omega(\tilde{X}) .
\end{aligned}
$$

Lemma 2.6. If X and Y are infinitesimal automorphisms of a connexion ω, then it holds that

$$
\omega([\tilde{X}, \tilde{Y}])=2 \Omega(\tilde{X}, \tilde{Y})-[\omega(\tilde{X}), \omega(\tilde{Y})]
$$

Proof. From the fact that $\left(\mathcal{L}_{\tilde{X}} \omega\right)(\tilde{Y})=0$ and from (1.6), it follows that

$$
\omega([\tilde{X}, \tilde{Y}])=\tilde{X} \cdot \omega(\tilde{Y})
$$

Using (2.4) and Lemma 2.5, we have

$$
\tilde{X} \cdot \omega(\tilde{Y})=h \tilde{X} \cdot \omega(\tilde{Y})+v \tilde{X} \cdot \omega(\tilde{Y})=2 \Omega(\tilde{X}, \tilde{Y})-[\omega(\tilde{X}), \omega(\tilde{Y})]
$$

This proves our lemma.
Now we shall study the tensor β_{X}.
Lemma 2.7. There is a one-to-one correspondence between the set of tensors к of type $(a d, \mathfrak{g l}(n, R))$ on $\bar{\sim}^{-}(M)$ and the set of $(1,1)$ tensor fields ${ }^{3)} K$ on M. The correspondence is given by

$$
\kappa(x) \cdot \theta\left(X^{*}\right)=x^{-1} \cdot K_{\pi(x)}(X),
$$

where X is a tangent vector at $u=\pi(x)$ and X^{*} is the lift of X. Moreover it holds that

$$
\left(\nabla_{X} K\right)_{\pi(x)}(Y)=x \cdot\left(X^{*} \kappa\right) \cdot x^{-1} Y, \quad X, Y \in T_{\pi(x)}(M)
$$

where $\nabla_{X} K$ denotes the covariant derivative of K with respect to X.
Proof. The first half of lemma is obvious. We shall prove the second part. Using the formula for the definition of $\nabla_{X} Y$ ([7]) :

$$
\left(\nabla_{X} Y\right)_{u}=x \cdot\left(X^{*} \cdot \theta\left(Y^{*}\right)\right), \quad \pi(x)=u
$$

we obtain

$$
x^{-1} \cdot\left[\nabla_{X}(K(Y))\right]=X_{x}^{*} \cdot\left\{\kappa \cdot \theta\left(Y^{*}\right)\right\}=\left(X_{x}^{*}\right) \theta\left(Y^{*}\right)+\kappa(x) \cdot X_{x}^{*} \theta\left(Y^{*}\right) .
$$

[^2]On the other hand, it is known ${ }^{4)}$ that

$$
\left(\nabla_{X} K\right)(Y)=\nabla_{X}(K(Y))-K\left(\nabla_{X} Y\right) .
$$

Hence we have

$$
\begin{aligned}
\left(\nabla_{X} K\right)(Y) & =x \cdot\left(X_{x}^{*} \kappa\right) \cdot x^{-1} Y+x \cdot \kappa(x) \cdot x^{-1}\left(\nabla_{X} Y\right)-K\left(\nabla_{X} Y\right) \\
& =x \cdot\left(X_{x}^{*} \kappa\right) \cdot x^{-1} Y,
\end{aligned}
$$

because $x \cdot \kappa(x) \cdot x^{-1}\left(\nabla_{X} Y\right)=K\left(\nabla_{X} Y\right)$. Thus we have proved the lemma.

Now, for any vector field X on M, we define the (1,1)-tensor fields B_{X} and T_{X} on M as follows:

$$
B_{X}(Y)=-\nabla_{Y} X,
$$

and

$$
T_{X}(Y)=T(X, Y)
$$

where T denotes the torsion tensor field. We define the $(1,1)$-tensor field $A_{X}{ }^{5}$ on M by

$$
A_{X}=T_{X}-B_{X}
$$

Then A_{X} corresponds to the tensor β_{X} of type (ad, $\mathfrak{g l}(n, R)$) in the sense of Lemma 2.7. In fact, according to Lemma 2.4, we see that $\omega(\tilde{X}) \cdot \theta\left(Y^{*}\right)=Y^{*} \cdot \theta\left(X^{*}\right)+2 \Theta\left(X^{*}, Y^{*}\right)$, for any vector fields X and Y on M. From the definition of torsion tensor field T, it follows that $2 x \cdot \Theta_{x}\left(X^{*}, Y^{*}\right)=T_{\pi(x)}(X, Y)$. On the other hand, we have

$$
x \cdot\left(Y^{*} \cdot \theta\left(X^{*}\right)\right)=\nabla_{Y} X=-B_{X}(Y)
$$

Thus we conclude that

$$
x \cdot \omega_{x}(\tilde{X}) \cdot x^{-1} Y=A_{X \cdot \pi(x)}(Y) .
$$

Suppose X to be an infinitesimal automorphism of a connexion. By Lemma 2.7, the formula in Lemma 2.5 is written in the following form

$$
\nabla_{Y} A_{X}=R(Y, X)
$$

4) Cf. [7].
5) A_{X} is defined by Kostant [4] in Riemannian case.
where R is the curvature tensor fiield, that is, $R_{\pi(x)}\left(X_{1}, X_{2}\right)$ $X_{3}=2 x \cdot \Omega_{x}\left(X_{1}^{*}, X_{2}^{*}\right) x^{-1} X_{3}^{*}, X_{1}, X_{2}, X_{3} \in T_{\pi(x)}(M)$. Thus we have the well-known formulae

$$
\left\{\begin{array}{l}
\nabla_{Y} X=A_{X}(Y)-T(X, Y) . \tag{2.5}\\
\nabla_{Y} A_{X}=R(Y, X) .
\end{array}\right.
$$

§ 3. Infinitesimal automorphisms of \boldsymbol{G}-structures

4. We say that an n--dimensional differentiable manifold M possesses a G-structure when the structure group of the frame bundle $\mathscr{F}(M)$ of M is reducible to a Lie subgroup G of $G L(n, \mathrm{R})$.

Suppose that M possesses a G-structure and denote by $H(G)$ the reduced bundle. From the definition of the reduced bundle, there is the injection $\iota: H(G) \rightarrow \mathscr{F}(M)$. We call a connexion Γ^{\prime} in $H(G)$ a reduced G connexion. Given a reduced G-connexion Γ^{\prime} in $H(G)$, the injection ι maps $\mathrm{I}^{\prime \prime}$ into a connexion I^{\prime} in $\overline{\mathcal{F}}(M)$ (see [7]). The linear connexion thus obtained is called a G-connexion in $\mathscr{F}(M)$.

The following proposition follows immediately from the definition of G-connexion.

Proposition 3.1. A G-connexion 1' has the following properties: (I) The holonomy group Ψ_{b} with reference point $b \in H(G)$ of Γ is contained in G.
(II) Each Γ-horizontal manifold through $b \in H(G)$ is a submanifold of the reduced bundle $H(G)$.
(III) If ω is the connexion from of I ', then the connexion form of reduced G-connexion L^{\prime} is $\iota^{*} \omega$.
(IV) If Ξ is a differential form on $\bar{\gamma}(M)$, then

$$
\iota^{*}(D \Xi)=D^{\prime}\left(\iota^{*} \Xi\right),
$$

where $D\left(\right.$ resp. $\left.D^{\prime}\right)$ denotes the covariant differentiation operator with respect to Γ (resp. I^{\prime}). In particular, if Ω is the curvature form of Γ, then the curvature form of $\mathrm{1}^{\prime \prime}$ is $\iota^{*} \Omega$.

Thus the curvature form Ω of a G-connexion restricted to $H(G)$ has its values in \mathcal{G}, the Lie algebra of G.

Let \mathcal{P} be a differentiable transformation of M onto itself. Then \mathscr{P} induces naturally a differentiable transformation $\widetilde{\mathcal{P}}$ of $\mathscr{F}(M)$ in the following manner. Any frame $x=\left(t_{1}, \cdots, t_{n}\right)$ at $u=\pi(x)$ is mapped into the frame $\widetilde{\mathcal{P}}(x)=\left(\mathcal{P}_{*} t_{1}, \cdots, \mathscr{P}_{*} t_{n}\right)$. The induced transformation $\widetilde{\mathcal{P}}$ is an automorphism of $\mathscr{F}(M)$, that is, $\widetilde{\mathcal{P}}$ satisfies the conditions : $\pi \circ \widetilde{\mathcal{P}}=\mathscr{\rho} \circ \pi$ and $\widetilde{\mathscr{P}} \circ R_{g}=R_{g} \circ \widetilde{\mathcal{P}}$ for every $g \in G L(n, \mathrm{R})$.

Given a G-structure on a differentiable manifold M, a differentiable transformation \mathscr{P} of M is called an automorphism of the G-structure if the induced transformation \widetilde{P} maps each element of $H(G)$ into an element of $H(G)$.

Definition 3.1. We say that a vector field X on M is an infinitesimal automorphism of a given G-structure, if the local transfomations ρ_{t} generated by X are all local automorphisms of the given G-structure.

Proposition 3.2. A vector field X on M is an infinitesimal automorphism of a G-structure if and only if the vertical component of \tilde{X} with respect to any G-connxion is tangent to $H(G)$ at every point of $H(G)$.

Proof. X is an infinitesimal automorphism of the G-structure if and only if $\tilde{X}_{b} \in T_{b}(H(G))$ for every $b \in H(G)$. On the other hand, according to Propositon 3.1, (II), the horizontal component $h \tilde{X}$ of \tilde{X} with respect to any G-connexion is tangent to $H(G)$ at $b \in H(G)$. Hence we have proved the proposition.

From Proposition 3.2, it follows immediately
Proposition 3.3. A vector field X on M is an infinitesimal automorphism of $a G$-structure if and only if

$$
\omega_{b}(\widetilde{X}) \in \mathcal{G}
$$

for every point b of $H(G)$, where ω is the connexion form of a G connexion.

Proposition 3.4. The set of all infinitesimal automorphisms of G-structure forms a Lie algebra under the usual bracket operation for vector fields.

Proof. Let X and Y be infinitesimal automorphisms of G^{-} structure and let \tilde{X} and \tilde{Y} be the induced vector fields on $\tilde{\sim}(M)$. Let ω be the connexion from of a G-connexion and Ω its curvature form. We first remark that $[\widetilde{X, Y}]=[\tilde{X}, \tilde{Y}]$. It follows from Proposition 3.3 that $\omega_{b}(\tilde{X}) \in \mathcal{G}$ and $\omega_{b}(\widetilde{Y}) \in \mathcal{G}$ for every $b \in H(G)$, and hence

$$
\begin{equation*}
\left[\omega_{b}(\tilde{X}) \omega_{b}(\tilde{Y})\right] \in \mathcal{G} \quad \text { for every } \quad b \in H(G) \tag{i}
\end{equation*}
$$

Since the horizontal component $h \tilde{X}$ of \tilde{X} is tangent to $H(G)$ at $b \in H(G)$, we see that

$$
\begin{equation*}
h \tilde{X}_{b} \cdot \omega(\tilde{Y}) \in \mathcal{G} \quad \text { for every } \quad b \in H(G) \tag{ii}
\end{equation*}
$$

Finally, from Proposition 3.1, (IV), we have

$$
\begin{equation*}
\Omega_{b}(\widetilde{X}, \tilde{Y}) \in \mathcal{G} \quad \text { for every } \quad b \in H(G) \tag{iii}
\end{equation*}
$$

Thus from (i), (ii), (iii) and Lemma 2.3, we conclude that
which proves our Proposition 3.4.
5. In the rest of this section, we shall confine ourselves to the case where G has property (\mathscr{P}) and we shall consider the canonical G-connexion whose existence has been proved in [1]. We shall prove the following

Lemma 3.1. If an automorphism ρ of G-structure is an automorphism of reduced G-connexion, then \mathcal{P} is an automorphism of G-connexion.

Proof. Let Q_{x} be the horizontal subspace at $x \in \mathscr{\sim}(M)$ with respect to the G-connexion. Every element x of $\bar{F}(M)$ can be written as $x=R_{g} \cdot b$ with $g \in G L(n, R), b \in H(G)$. Taking account of the fact that $\tilde{\mathcal{P}} \circ R_{g}=R_{g} \circ \widetilde{\mathcal{P}}$, we have

$$
\begin{aligned}
\widetilde{\mathcal{P}}_{*} Q_{x} & =\widetilde{\mathcal{P}}_{*} Q_{b g}=\widetilde{\mathcal{P}}_{*} R_{g} Q_{b}=R_{g *} \widetilde{\mathcal{P}}_{*} Q_{b}=R_{g *} Q_{\tilde{\varphi}(b)}=Q_{\tilde{\varphi}(b) g} \\
& =Q_{\tilde{\varphi}(x)}, \quad \text { q.e.d. }
\end{aligned}
$$

In the previous paper [1] we have proved that when G has property (\mathscr{P}) an automorphism of G-structure is an automorphism
of the canonical reduced G-connexion. Hence, from the above Lemma 3.1, we have

Proposition 3.5. Assume that G has the property (\mathcal{P}). Then an automorphism of the G-structure is an automorphism of the canonical G-connexion.

For a moment, we shall use the symbol \mathscr{S}_{u} to denote the tangent space of M at $u \in M$. Let b be an element of $H(G)$ such that $\pi(b)=u$. Taking account of the fact that b gives a linear isomorphism of E onto $\overline{V_{u}}$, we see that $b \cdot \bar{\rho}(G) \cdot b^{-1}$ is a Lie algebra of endomorphisms of \mathscr{T}_{u}^{-}. We put $\mathcal{G}\left(\mathscr{S}_{u}^{-}\right)=b \cdot \bar{\rho}(\mathcal{G}) \cdot b^{-1}$, which is independent of the choice of $b \in H(G)$ such that $\pi(b)=u$.

We introduce into $\mathcal{G}\left(\mathscr{S}_{u}\right)+\mathscr{S}_{u}$ a bracket operation by setting

$$
\begin{aligned}
& {\left[A_{1}, A_{2}\right]=A_{1} \cdot A_{2}-A_{2} \cdot A_{1}, \quad[A, t]=-[t, A]=A(t),} \\
& {\left[t_{1}, t_{2}\right]=2 b \cdot \Omega_{b}\left(t_{2}^{*}, t_{1}^{*}\right) \cdot b^{-1}+2 b \cdot \Theta_{b}\left(t_{2}^{*}, t_{1}^{*}\right),}
\end{aligned}
$$

for $A, A_{1}, A_{2} \in \mathcal{G}\left(\mathscr{Y}_{u}\right)$ and $t, t_{1}, t_{2} \in \mathscr{S}_{u}^{-}$, where Ω and Θ denote the curvature form and torsion form of the canonical G-connexion and t_{1}^{*}, t_{2}^{*} denote the horizontal vector at b such that $\pi_{*} t_{1}^{*}=t_{1}, \pi_{*} t_{2}^{*}=t_{2}$.

We note that $\mathcal{G}\left(\mathscr{T}_{u}\right)+\mathscr{J}_{u}$ is not in general a Lie algebra under this bracket.

Let \mathcal{A} be the Lie algebra of infinitesimal automorphisms of G-structure and let \mathscr{B} be the set of all infinitesiml automorphisms of the canonical G-connexion. \mathscr{B} is a Lie algebra under the usual bracket operation for vector fields [7]. According to Proposition 3.5 , if G has property (\mathscr{P}), then \mathcal{A} is a subalgebra of \mathscr{B}.

Proposition 3.6. Let M be a connected differentiable manifold with a G-structure. Assume that G has the property (\mathcal{P}). Let $\Delta: \mathcal{A} \rightarrow \mathcal{G}\left(\mathscr{S}_{u}\right)+\mathscr{I}_{u}^{-}$be the mapping defined by

$$
\Delta(X)=-b \cdot \omega_{b}(\tilde{X}) \cdot b^{-1}-b \cdot \theta_{b}(\tilde{X}) \quad \text { for } \quad X \in \mathcal{A}
$$

where ω denotes the connexion form of the canonical G-connexion and θ denotes the basic form. Then Δ is an isomorphism of \mathcal{A} onto $\Delta(\mathcal{A})$.

Proof. We first remark that, under our assumption, an in-
finitesimal automorphism of the G-structure is an infinitesimal automorphism of the canonical G connexion. Let $\tau(t)$ be a differentiable curve in M and $Y(t)$ be the tangent vector to the curve at $\tau(t)$. According to (2.5), an infinitesimal automorphism X of the G-structure satisfies the following system of differential equations along the curve $\tau(t)$:

$$
\left\{\begin{aligned}
\nabla_{Y(t)} X(t) & =A(t) Y(t)-T(X(t), Y(t)) \\
\nabla_{Y(t)} A(t) & =R(Y(t), X(t)),
\end{aligned}\right.
$$

where $X(t)=X_{\tau(t)}, A(t)=A_{X_{\tau(t)}}$ and ∇ denotes the covariant differential with respect to the canonical G-connexion. Therefore, an infinitesimal automorphism X of the G-structure is uniquely determined by the values of X and A_{X} at any single point of M. This implies that Δ is one-to-one.

We shall show that Δ is a homomorphism. Let $X, Y \in \mathcal{A}$. Since $[\tilde{X}, \tilde{Y}]=[\widetilde{X, Y}]$, we have

$$
\Delta\left([X, Y]=-b \cdot \omega_{b}([\tilde{X}, \tilde{Y}]) \cdot b^{-1}-b \cdot \theta([\tilde{X}, \tilde{Y}]) .\right.
$$

But since X and Y are infinitesimal automorphisms of the canonical G-connexion, we have by Lemma 2.6 that

$$
\omega([\tilde{X}, \tilde{Y}])=2 \Omega(\tilde{X}, \tilde{Y})-[\omega(\tilde{X}), \omega(\tilde{Y})]
$$

Moreover, by Lemma 2.2 we have

$$
\theta([\tilde{X}, \tilde{Y}])=\omega(\tilde{Y}) \cdot \theta(\tilde{X})-\omega(\tilde{X}) \cdot \theta(\tilde{Y})+2 \Theta(\tilde{X}, \tilde{Y})
$$

Thus we have

$$
\begin{aligned}
\Delta([Y, Y])= & -2 b \cdot \Omega(\tilde{X}, \tilde{Y}) \cdot b^{-1}+b \cdot\{[\omega(\tilde{X}), \omega(\tilde{Y})]\} \cdot b^{-1} \\
& -b \cdot \omega(\tilde{Y}) \cdot \theta(\tilde{X})+b \cdot \omega(\tilde{X}) \theta(\tilde{Y})-2 b \cdot \Theta(\tilde{X}, \tilde{Y}) .
\end{aligned}
$$

On the other hand, from the definition of the bracket operation in $\mathcal{G}\left(\mathscr{S}_{u}^{-}\right)+\mathscr{S}_{u}^{-}$, it follows that

$$
\begin{aligned}
{[\Delta(X), \Delta(\tilde{Y})]=} & {\left[-b \cdot \omega(\tilde{X}) \cdot b^{-1}-b \cdot \theta(\tilde{X}),-b \cdot \omega(\tilde{Y}) \cdot b^{-1}-b \cdot \theta(\tilde{Y})\right] } \\
= & b \cdot\left\{[\omega(\tilde{X}), \omega(\tilde{Y})] \cdot b^{-1}+b \cdot \omega(\tilde{X}) \cdot \theta(\tilde{Y})-b \cdot \omega(\tilde{Y}) \cdot \theta(\tilde{X})\right. \\
& -2 b \cdot \Omega\left(X^{*}, Y^{*}\right) \cdot b^{-1}-2 b \cdot \Theta\left(X^{*}, Y^{*}\right) .
\end{aligned}
$$

Since $h \tilde{X}=X^{*}$ and $h Y=Y^{*}$, we see that $\Omega\left(X^{*}, Y^{*}\right)=\Omega(\tilde{X}, \tilde{Y})$ and $\Theta\left(X^{*}, Y^{*}\right)=\Theta(\tilde{X}, \tilde{Y})$. Hence we conclude that

$$
\Delta([X, Y])=[\Delta(X), \Delta(Y)] .
$$

Corollary 1 ${ }^{6}$. Under the same assumption as in Proposition 3.6, it holds that

$$
\operatorname{dim} \mathcal{A} \leqq \operatorname{dim} G+\operatorname{dim} M
$$

Making use of Palais's theorem [8, Theorem VII, Chap. IV], we have from the finite dimensionality of \mathcal{A}

Corollary $2^{6)}$. Under the same assumption as in Proposition 3.6, the group of all automorphisms of a G structure is a Lie group.

§4. Holonomy and infinitesimal automorphisms

6. We consider the holonomy group Ψ_{x} with reference point x of a connexion. The holonomy theorem [7] states: The holonomy algebra σ_{x}, the Lie algebra of Ψ_{x}, is the subalgebra of $\mathfrak{g l}(n, R)$ which is generated by all elements of the form $\Omega_{y}\left(X^{*}, Y^{*}\right), y \in \mathscr{S}_{x}$, where Ω denotes the curvature form and X^{*} and Y^{*} are arbitrary horizontal vectors at y.

We shall prove the following
Lemma 4.1. Let M be a simply-connected differentiable manifold of dimension n. If the holonomy algebra σ_{x} with reference point $x \in \mathscr{F}(M)$ of a connexion ω in $\vec{F}(M)$ is weakly reductive in $\mathfrak{g l}(n, R)$, then, for any infinitesimal automorphism X of the connexion, we have

$$
\omega_{y}(\tilde{X}) \in N\left(\sigma_{x}\right) \quad \text { for } \quad y \in \mathfrak{S}_{x},
$$

where $N\left(\sigma_{x}\right)$ denotes the normalizer of σ_{x} in $\mathfrak{g l}(n, R)$ and \mathfrak{S}_{x} denotes the holonomy manifold through x.

Proof. Since σ_{x} is weakly reductive in $\mathfrak{g l}(n, R)$, there exists a subspace \mathfrak{n} of $\mathfrak{g l}(n, R)$ such that $\mathfrak{g l}(n, R)=\sigma_{x}+\mathfrak{n}$ (direct sum) and $\left[\sigma_{x}, \mathfrak{n}\right] \subset \mathfrak{n}$. For any element A of $\mathfrak{g l}(n, R)$, we denote by $A_{\mathfrak{n}}$ (resp.
6) Cf. [5].
$A_{\sigma_{x}}$) the \mathfrak{n}-component (resp. σ_{x}-component) of A. It is well known that the structural group of the prinicipal bundle \mathfrak{S}_{x} is the holonomy group Ψ_{x} with reference point x. The simplyconnectedness of M implies that Ψ_{x} is connected. Therefore from the weak reductivity of σ_{x}, it follows that $\omega(\tilde{X})_{n}$ is a tensor of type $(a d, \mathfrak{n})$ on \mathfrak{S}_{x}. From the holonomy theorem, we know that $\Omega_{y}\left(X^{*}, Y^{*}\right) \in \sigma_{x}$, where $y \in \mathscr{S}_{x}$ and $X, Y \in T(M)$. Since $Y^{*} \cdot \omega(\tilde{X})_{\mathfrak{n}} \in \mathfrak{n}$ and $Y^{*} \cdot \omega(\tilde{X})_{\sigma_{x}} \in \sigma_{x}$, it follows from Lemma 2.5 that $Y^{*} \cdot \omega(\tilde{X})_{\mathfrak{n}}=0$, that is, $\omega(\tilde{X})_{\mathrm{n}}$ is constant on \mathfrak{S}_{x}. Consequently we have for any $a \in \Psi_{x}$

$$
\omega_{y}(\tilde{X})_{\mathfrak{n}}=\omega_{y a}(\tilde{X})_{\mathfrak{n}}=a d\left(a^{-1}\right) \omega_{y}(\tilde{X})_{\mathfrak{n}},
$$

and hence, for any $A \in \sigma_{x},\left[A, \omega_{y}(\tilde{X})_{n}\right]=0$. Thus we have

$$
\left[\omega_{y}(\tilde{X}), A\right]=\left[\omega_{y}(\tilde{X})_{\sigma_{x}}, A\right] \in \sigma_{x} \quad \text { for } \quad A \in \sigma_{x}
$$

which proves our assertion.
We shall seek for the condition that an infinitesimal automorphism of a G-connexion is an infinitesimal automorphism of a G-structure.

We recall that $\mathfrak{S}_{\mathcal{E}_{b}} \subset H(G)$ and $\sigma_{b} \subset \mathcal{G}$ for $b \in H(G)$. Every point z of $H(G)$ can be written in the form $z=y \cdot g$, where $g \in G$ and $y \in \mathfrak{S}_{b}$. Then from Lemma 4.1 we see that $\omega_{y g}(\tilde{X})=a d\left(g^{-1}\right) \omega_{y}(\tilde{X}) \in$ $a d\left(g^{-1}\right) N\left(\sigma_{b}\right)$. Thus if $\sigma_{b}=N\left(\sigma_{b}\right)$ for a single point $b \in H(G)$, then $\omega_{z}(\tilde{X}) \in \mathcal{G}$ for every $z \in H(G)$.

On the other hand, S. Kobayashi [3] has proved the following
(4.1) Suppose that the subalgebra σ_{b} of $\mathfrak{g l}(n, R)$ satisfies the following conditions: (i) $\overline{a d}\left(\sigma_{b}\right)$ is irreducible, (ii) σ_{b} is reductive in $\mathfrak{g l}(n, R)$ in the sense of Koszul, (iii) σ_{b} does not contain any non-trivial ideal of $\mathfrak{g l}(n, R)$. Then $N\left(\sigma_{b}\right)=\sigma_{b}$.

If σ_{b} is reductive in $\mathfrak{g l}(n, \mathrm{R})$ in the sense of Koszul, then σ_{b} is weakly reductive in $\mathfrak{g l}(n, R)$. Consequently, we have, combining these facts with Proposition 3.3

Proposition 4.1. Let M be a simply-connected differentiable manifold with a G-structure. Suppose that the holonomy group Ψ_{b}
with reference point $b \in H(G)$ of a G connexion satisfies the following conditions: (i) $\overline{a d}\left(\sigma_{b}\right)$ is irreducible, (ii) the holonomy algebra σ_{b} is reductive in $\mathfrak{g l}(n, R)$ in the sense of Koszul, (iii) σ_{b} does not contain any non-trival ideal. Then an infinitesimal automorphism of the G connexion is also an infinitesimal automorphism of the G-structure.

§ 5. Homogeneous G-structures

7. Let K be a connected Lie group, L be a closed subgroup of K. Denote by Ω and \mathbb{R} the Lie algebra of K and L respectively. Let K / L be a reductive homogeneous space of dimension n. Namely there exists a subspece \mathfrak{m} of $\mathscr{\Omega}$ such that $\Omega=\mathfrak{n}+\mathbb{Z}$ and $a d(L) \mathrm{m} \subset \mathrm{m}$. Let p be the natural projection $K \rightarrow K / L$ and $p(e)=u_{0}$. Each element k of K defines a differentiable transformation $\tau(k)$ of K / L. Since $\tau(l) u_{0}=u_{0}$ for $l \in L, \tau(l)$ induces a linear transformation $\tau(l)_{*}$ of the tangent space at u_{0} onto itself, which is the same as $a d(l)$ on m. Thus we obtain the so-called linear isotopy representation α of $L, \alpha: L \rightarrow G L(n, R)$. We shall denote by \tilde{L} the linear isotropy group, that is $\tilde{L}=\alpha(L)$. Each differentiable transformation $\tau(k)$ induces an automorphism $\widetilde{\tau(k)}$ of the frame bundle $\mathscr{F}(K / L)$ of K / L. Thus it holds that

$$
\begin{align*}
& R_{a} \circ \widetilde{\tau(k)}=\widetilde{\tau(k)} \circ R_{a}, \quad a \in G L(n, R) . \tag{5.1}\\
& \tau(k) \circ \pi=\pi \circ \tau(k), \tag{5.2}
\end{align*}
$$

where π is the projection of the frame bundle $\mathscr{F}(K / L)$.
Definition 5.1. A G-structure on a reductive homogeneous space K / L is called an invariant G structure if every $\tau(k), k \in K$, is an automorphism of G-structure.

Let x_{0} be the frame at $u_{0}=p(e)$ such that $x_{0} \cdot \xi=p_{*} \xi$ for $\xi \in \mathrm{m}$. If we fix a base ξ_{1}, \cdots, ξ_{n} of m, then x_{0} may be identified with $\left(u_{0}, p_{*} \xi_{1}, \cdots, p_{*} \xi_{n}\right)$. It is easily verified that $\tau(l) x_{0}=R_{\alpha(l)} x_{0}$ for $l \in L$. Now we define the map $\chi: K \rightarrow \mathscr{T}(K / L)$ as follows

$$
\begin{equation*}
\chi(k)=\widetilde{\tau(k)} x_{0} \quad \text { for any } \quad k \in K \tag{5.3}
\end{equation*}
$$

Then we see that

$$
\begin{equation*}
\chi(k l)=R_{\alpha(l)} \chi(k) \quad \text { for } \quad k \in K \quad \text { and } \quad l \in L, \tag{5.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\chi \circ \Phi_{k}=\widetilde{\tau(k)} \circ \chi \quad \text { for } \quad k \in K \tag{5.5}
\end{equation*}
$$

where Φ_{k} denotes the left translation of K corresponding to $k \in K$. Therefore χ is a homomorphism of the principal bundle $K(K / L, L)$ into the frame bundle $\mathscr{F}(K / L)$. It can be readily verified that $\chi(K)$ is a reduced bundle of $\mathscr{F}(K / L)$ and has the structural group \widetilde{L}. Moreover, from (5.5), we see that each $\widetilde{\tau(k)}$ leaves $\chi(K)$ invariant. Thus we obtain
$(5.6)^{7)}$ A reductive homogenous space K / L possesses an invariant \tilde{L}-structure.

Now we shall prove the following
Proposition 5.1. In order that a reductive homogeneous space K / L admits an invariant G-structure it is necessary and sufficient that there exists an element a of $G L(n, R)$ such that $a G a^{-1}>\widetilde{L}$.

Proof. Suppose that K / L admits an invariant $G^{- \text {-structure }}$ and denote by $H(G)$ its reduced bundle. Take a frame b_{0} of $H(G)$ at u_{0}. Then there exists an element a of $G L(n, R)$ such that $b_{0}=R_{a} x_{0}$. Denote by \widetilde{L}_{u} (resp. G_{u}) the fibre over u of $\chi(K)$ (resp. $H(G))$. Then $R_{a} \widetilde{L}_{u_{0}}<G_{u_{0}}$. In fact, any element x of $\widetilde{L}_{u_{0}}$ can be written as $x=R_{\alpha(l)} x_{0}=\widetilde{\tau(l)} x_{0}$. Hence

$$
R_{a} x=R_{a} \widetilde{\tau(l)} x_{0}=\widetilde{\tau(l)} R_{a} x_{0}=\widetilde{\tau(l)} b_{0} \in H(G)
$$

Since $\tilde{L}_{\tau(k) u_{0}}=\widetilde{\tau(k)} \widetilde{L}_{u_{0}}$ and $G_{\tau(k) u_{0}}=\widetilde{\tau(k)} G_{u_{0}}$, we see that

$$
R_{a} \widetilde{L}_{\tau(k) u_{0}}=R_{a} \widetilde{\tau(k)} \tilde{L}_{u_{0}}=\widetilde{\tau(k)} R_{a} \tilde{L}_{u_{0}}\left(\widetilde{\tau(k)} G_{u_{0}}=G_{\tau(k) u_{0}}\right.
$$

Therefore $R_{a} \chi(K) \subset H(G)$. This implies that $G \supset a^{-1} \widetilde{L} a$.
Conversely, let G be a Lie subgroup of $G L(n, R)$ such that $a G a^{-1} \supset \widetilde{L}, a \in G L(n, R) . \quad R_{a} \chi(K)$ is a principal bundle over K / L

[^3]with structural group $a^{-1} \widetilde{L} a$. Moreover, from (5.2) and (5.5) it follows that $R_{a} \chi(K)$ is invariant by $\tau(k), k \in K$. Let $H(G)$ be the principal bundle over K / L which is obtained from $R_{a} \chi(K)$ by enlarging the structural group from $a^{-1} \tilde{L} a$ to G. Clearly $H(G)$ is invariant by all $\tau(k), k \in K$. Hence K / L admits an invariant G^{-} structure. Thus we have proved the proposition.

We consider next invariant connexion on K / L. Since K / L is reductive, there exists an invariant connexion Γ_{m} in the principal bundle $K(K / L, L)$ (see [7]). Namely Γ_{m}-horizontal subspace at $k \in K$ is $\Phi_{k *} \mathrm{~m}$. The homomorphism χ of $K(K / L, L)$ into $\mathscr{F}(K / L)$ maps the above invariant connexion Γ_{m} in $K(K / L, L)$ into Γ_{0} in $\mathscr{F}(K / L)$. Thus the horizontal subspace at $R_{a} \chi(k)$ with respect to I_{0} is $R_{a *} \chi_{*} \Phi_{k *} \mathrm{~m}$. This connexion I_{0} is nothing but the canonical connexion of the second kind in the sense of Nomizu [6]. From the construction of Γ_{0}, we easily see that Γ_{0} is reducible to a connexion in $R_{a} \chi(K)$ which is invariant connexion. Consequently we have the following two propositions.

Proposition 5.2. The canonical connexion of the second kind on a reductive homogeneous space is an invariant \tilde{L}-connexion.

Proposition 5.3. Suppose that a reductive homogeneous space admits an invariant G-structure. Then the canonical connexion of the second kind is an invariant G-connexion.

It is well known [6] that the canonical connexion of the second kind on a symmetric homogeneous space is without torsion. On the other hand, if there exists a G-connexion without torsion, then the structure tensor of G-structure vanishes (see. [1]). Hence we have

Corollary 1. If a symmetric homogeneous space admits an invariant G-structure, then the structure tensor of the G-structure vanishes.

Finally we shall prove the following
Proposition 5.4. Let K / L be a reductive homogeneous space with a fixed decomposition of the Lie algebra $\mathfrak{R}=\mathfrak{m}+\mathfrak{R}, a d(L) \mathfrak{m} \subset \mathfrak{m}$.

Suppose that K / L admits an invariant G structure. Then there exists a one-to-one correspondence between the set of all invariant G-connexions and the set of all linear maps Λ of m into G such that

$$
\Lambda \circ a d(l)=a d(l) \circ \Lambda \circ a d\left(l^{-1}\right) \quad \text { for } \quad l \in L .
$$

Proof. Let I_{0}^{\prime} be the canonical connexion of the second kind and let ω_{0} be the restriction of the connexion form of Γ_{0} to the reduced buudle $H(G)$. Take any invariant G-connexion Γ. We denote by ω the restriction of the connexion form of Γ to $H(G)$. Put $\lambda=\omega-\omega_{0}$. Since ω_{0} and ω are both invariant \mathcal{G}-valued forms on $H(G)$, we see that λ is an invariant tensorial 1-form of type (ad, G) on $H(G)$. Conversely, given an invariant tensorial 1-form λ of type $(a d, G)$ on $H(G)$, then $\omega_{0}+\lambda$ gives rise to an invariant reduced G-connexion. Thus we see that there exists a one-to-one correspondence between the set of all invariant G-connexions and the set of all invariant tensorial 1 -forms of type ($a d, \mathcal{G}$) on $H(G)$.

For an invariant 1 -form λ of type $(a d, \mathcal{G})$ on $H(G)$, we define

$$
\Lambda_{u}(X) Y=b \cdot \lambda_{b}\left(X^{*}\right) \cdot b^{-1} Y
$$

where $\pi(b)=u$, and $X, Y \in T_{u}(K / L)$ and X^{*} denotes the lift of X with respect to Γ_{0}. Clearly this definition is independent of the choice of $b \in H(G)$ such that $\pi(b)=u$. Then Λ is an invariant (1,2)tensor field on K / L :

$$
\left[\Lambda_{\tau(k) u}\left(\tau(k)_{*} X\right)\right]\left(\tau(k)_{*} Y\right)=\tau(k)_{*}\left[\Lambda_{u}(X) \cdot Y\right] .
$$

In fact, since $\widetilde{\tau(k)} *$ maps each Γ_{0}-horizontal subspace onto a $\Gamma_{0}-$ horizontal subspace and $\tau(k) \circ \pi=\pi \circ \tau \widetilde{\tau(k)}$, we obtain $\left(\tau(k)_{*} X\right) * \widetilde{\tau(k) b}$ $=\widetilde{\tau(k)}{ }_{*} X_{b}^{*}$ by the uniqueness of a lift. Therefore we obtain

$$
\lambda_{\tau(k) b}\left(\left(\tau(k)_{*} X\right)^{*}\right)=\lambda_{\tau(k) b}\left(\widetilde{\tau(k)_{*}} X^{*}\right)=\lambda_{b}\left(X^{*}\right)
$$

because λ is an invariant tensorial 1 -form. On the other hand, for any $\xi \in \mathfrak{m}$, we have $[\widetilde{\tau(k)} b] \cdot \xi=\tau(k)_{*}(b \cdot \xi), b \in H(G), k \in K$, and hence $[\widetilde{\tau(k)} b]^{-1} \tau(k)_{*} Y=b^{-1} Y$. Thus we have

$$
\begin{gathered}
\left.\left.\left[\Lambda_{\tau(k) u}\left(\tau(k)_{*} X\right)\right]\left(\tau(k)_{*} Y\right)=\widetilde{[\tau(k)} b\right] \cdot \lambda_{\tau(k) b}\left(\left(\tau(k)_{*} X\right) *\right) \widetilde{[\tau(k) b}\right]^{-1} \tau(k)_{*} Y \\
=\tau(k)_{*}\left[b \cdot \lambda_{b}\left(X^{*}\right) \cdot b^{-1} Y\right]=\tau(k)_{*}\left[\Lambda_{u}(X) Y\right] .
\end{gathered}
$$

In particular, the invariance of Λ at $p(e)$ by $\tau(l)$ implies

$$
\begin{equation*}
\Lambda_{u_{0}}\left(\tau(l)_{*} X\right) Y=\tau(l)_{*} \Lambda_{u_{0}}(X) \tau\left(l^{-1}\right)_{*} Y \tag{5.7}
\end{equation*}
$$

Conversely, given a (1,2)-tensor $\Lambda_{u_{0}}$ on $T_{u_{0}}(K / L)$ which satisfies the relation (5.7) and such that $\Lambda_{u_{0}}(X) \in b_{0} \mathcal{G} b_{0}^{-1}, \pi\left(b_{0}\right)$ $=p(e)$, then by the transitivity of K we can define the invariant (1,2)-tensor field Λ on K / L such that $\Lambda_{u}(X) \in b \mathcal{G} b^{-1}, \pi(b)=u$. Hence we obtain the tensorial 1-form of type $(a d, G)$ on $H(G)$. Remarking that $b \cdot \mathcal{G} \cdot b^{-1}$ is isomorphic to \mathcal{G} and $T_{u_{0}}(K / L)$ is isomorphic to m , we have proved the proposition.

BIBLIOGRAPHY

[1] A. Fujimoto ; On the structure tensor of G-strucure, Mem. Coll. Sci. Univ. Kyôto, 32 (1960), pp. 157-169.
[2] R. Hermann; Sur les automorphismes infinitésimaux d'une G-structure, C.R. Sci. Paris, 239 (1954), pp. 1178-1180.
[3] S. Kobayashi; Des groupes linéaires irréductibles et la géométrie differentielle, Proc. Japan Acad., 30 (1954), pp. 933-935.
[4] B. Kostant; Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold, Trans. Amer. Math. Soc., 80 (1955), pp. 528-542.
[5] P. Libermann; Pseudogroupes infinitésimaux. Application aux G-structures, C.R. Sci. Paris, 246 (1958), pp. 1365-1368.
[6] K. Nomizu; Invariant affine connections on homogeneous spaces, Amer. Journ. Math., 76 (1954), pp. 33-65.
[7] K. Nomizu; Lie groups and differential geometry, Publ. of the Math. Soc. of Japan, No. 2. (1956).
[8] R.S. Palais; A definition of the exterior derivative in terms of Lie derivatives, Proc. Amer. Math. Soc., 5 (1954), pp. 902-908.
[9] R.S. Palais; A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., 22 (1956).
[10] S. Takizawa; On Cartan connexions and their torsions, Mem. Coll. Sci. Univ. Kyôto, 29 (1955), pp. 199-217.

[^0]: 1) As to the definition of tensorial forms, see [10].
[^1]: 2) Cf. [7].
[^2]: 3) As to the definition of tensor fields, see [7].
[^3]: 7) Added in Proof. A similar result was obtained independently by D. Bernard. (See D. Bernard : Sur la géométrie différentielle des G-structures, Thèse, (1960)).
