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In  our previous paper ([21) 1 ) ,  we have proved the following :
Let A  be an abelian variety of dimension 2  and 17 a curve on A
which generates A, and let t  be the injection of r  into A .  Then
the adjoint map t*  is  a  monomorphism. In this short note we
shall give a  generalization o f th e above result to the case of
3-dimensional abelian variety and a non-singular curve r on it
which generates entire abelian variety. The method employed
here is quite different from the former one and geometric in its
nature. As a consequence we get an interesting result that if an
abelian variety A  of dimension < 3  is generated by a non-singular
curve r ,  then r  generates A  separably". At the end we shall
present related problems which are of some interest.

§  1 .  G e n e r a l i t ie s  on local d e r iv a t io n s  and tangent v e c to rs

1 . 1 .  We shall fix once for all a universal domain K  in our algebraic
geometry. Let X  be a  variety and let x  be a point on X .  We
shall denote as usual by 0 ,  the local ring of x  in K (X )  ( =the
function field of X ) .  A  local derivation at x  is a derivation of 0 ,
into K  and a semi-local derivation at x is a derivation D of 0 , — .0 x •
We shall denote by 7 r „  the natural map 0 ,— .0 ,1 M ,- - - -K ,(=K ) ,

1) Number in the bracket refers to the bibliography at the end of the paper.
2) In the case of dimension 2 it was not necessary to assume that 1 ' is  a  non-

singular curve (C f. [2 ]).
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where j17,, is the maximal ideal of O .  A  tangent vector at x is
defined as the class of local derivations o f Ox  in to K  which are
written in the form 7rx •D , where D  is  a semi-local derivation at
x »  We shall denote by S2, the module of K-differentials in O .
T h en  the module of sem i-local derivations is isomorphic to
H o m  (n g , Ox ) and that o f lo ca l derivations is isomorphic to
H o m  (S2x , K ) .  I f  x  is a simple point of X, 1I1  is  a free module
o f rank n (dim =X )  over O .  H ence any local derivation D  is
decomposed as  v x -D ,  with a  suitable semi-local derivation D .
When we speak of a local derivation we shall always associate a
semi-local derivation Ds  in  mind and we shall understand D some-
times as a semi-local derivation itself i f  it does not make serious
confusion.

1. 2. Let k  be a  fie ld  o f definition fo r  X .  We shall denote by
Oxk—Ox r■ k(X), then a local derivation D  a t a  poin t x  is called
rational over k i f  D  induces a derivation of en O .

Let a be a simple point on X  and let h be a field o f definition
for X  over which a  is rational. Let t„••• ,t a  b e  a regular system
of parameters in O .  Then there exists a local derivation Di such
that D i (t ;) = 8i ;  (i, j= 1 , 2, ••• , n) which are clearly rational over k.
Moreover a local derivation D at a  is rational over k if and only

if  there exist elements a„ ,a„ in 0 1,‘, such that D = a i D i .,-1
1. 3. Let a  and k  be as above and let x  be a point of X  such
that a  is a specialization of x over k. Let Vo be  an affine k-open
subset o f X  containing the point a, and let A  be the affine ring
o f  V , over h. Let 31Z, r\ A = g ) „, 31Za  n A = _Ç-Pa .  Then gp

a  i s  a
maximal ideal o f A  containing g) x  and 0,k=A g , = (R ,M )  and Oak =
A g ” = (R ' ,  M ') .  R  contains R ' as a subring and is a quotient ring
of R ' with respect to Mr\R'=.1=',.

Let D , be a local derivation at x  rational over k(x) and let
Da  b e  a local derivation at a point a  rational over k. We shall

3) We shall often identify tangent vectors and local derivations when we can
avoid useless confusion by doing so.

4) For the definition see [1].
5 )  ç f .  Theorem 3 in [fl.
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say that Da  is a specialization of D , over k  if  D , and Da  coincides
as a  derivation of R '  R '. Specialization of tangent vectors are
defined in a standard way.

1. 4. Let G be a  group variety defined over a field k. We shall
denote by e  the neutral point of G .  A s is known e  is rational
over k. Let a be an arbitrary point of G and let T a  b e  a  biregular
translation of G defined by

Ta ( x )  = a 'x

Let Da  b e  a local derivation at a, then the tangential linear map
c/Ta  sends Da  to a local derivation at e. Let t„•••  ,t n  b e  a  regular
system of parameters of Oek and let Di b e  the local derivation at
e  defined by Di (t i ) - 8 i ;  ( i ,  j = 1 , • • •  , n ) .  W e shall denote by X i

(i=1, • • • , n) left invariant derivation such that X1 =  D1 (i=1 , • • • , n).
(X i 's  are derivations of K (G) which is invariant by T o  fo r  any a).
Then as is easily seen if  Da  is rational over k(a), a (D a ) is also
rational over k (a) and we can express uniquely in the form

dq-  JD a ) aiX i e

with ai  E k (a) (i= 1, 2, ••• , n ). (Cf. 1.2). Thus we can define a  map
q, sending k(a)-rational tangent vectors at a to a k(a)-rational point
in a projective (n -1 ) -sp ac e  whose homogeneous coordinates are
given by (a„ ••• ,a n ).

The following Proposition can be seen immediately.

PROPOSITION 1. Let x , a be points on X  such that a is rational
over k  and x— >a i s  a  specialization over k. Let vx ,  va  b e  tangent
vectors at x  and a, rational over k (x ) and k  respectively . I f  v a  i s
a specialization of vx , then q,(v a ) i s  the uniquely determined speciali-
zation of cp(v,) over the f ield k.

1. 5. Let 1' be a curve on G n  and let k  be an algebraically closed
common field of definition for 1' and G .  Let M  be a  generic point
of r  o v e r k  and let M ' be an arbitrary point on 1'. Let R m , R m

,

b e the local rings of M , M ' in  k ( r)  respectively. Since R m  i s  a
quotient field of R m

, , an arbitrary derivation D' of R i le—>RA I
, can be
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extended uniquely to a derivation of Rm  (= k (1 )), i.e., any tangent
vector at M ' is  a  specialization of the tangent vector a t M.
Conversely i f  M ' is a simple point of 1', the tangent vector at M
is specialized to a uniquely determined tangent vector at M '.  We
can define a  m ap q of into a projective (n -1 )-space P as is
defined in 1. 4. Proposition 1 asserts that T. is actually a rational
map o f r  into P.

1.6 .  Let s-2 be a vector space over K  consisting o f left invariant
differentials on G .  Let us denote by T the tangent space at e identi-
fied with the vector space of left invariant derivations on G . We can
define a pairing between n , and T which will be denoted by bracket
<  > .  Let T o(1T20)  be a subspace of T( s2) , then the set of orthogonal
elements to T0(S2,) will be denoted by t o(6 0), and will be called
orthogonal compliment. Let T  be a subspace of the tangent space
71, at x . Then  iden tify ing T  by the transformation dTx  w ith
a  subspace o f  T  we can speak of orthogonal compliment of T .
Since <co, d,r,(D,)>=<T,.*(co), .13,>=<co,Dx > , orthogonal compliment of
T ;  is just the set of co in S2 such that <co, D >= 0 fo r  all D ,E n
We shall remind here the following : Let x be an arbitrary point
o f G  and let w be an element of O .  Then there exists a  left
invariant differential form co such that 1 Oco(x)= 1 w in OxO1E.012x
(Theorem 1 in  [2 ] ) .  co is determined uniquely by this condition
and is called the invariant dif f erential associated w ith 10w.

§ 2. Adjoint map associated with injection

2.1. Let G be a  group variety and let X  be a subvariety of G.
We shall denote by t x  the injection X—, G and by tt the adjoint
map associated with tx . Let co be a differential form on a variety
V  and y be a point on yr. We shall denote by R  the local ring
of y on V and by M  the maximal ideal o f R .  We shall say that a

point v is a zero of  co i f  co can be expressed in the form co=Êa i dt i

with ai E M  and t i e R .  It should be noted that the set of zeros of
/ (o) cannot contain a dense subset, unless tt(c0)= O.

TITEOREM 1, L et Gn  b e  a  group v arie ty  an d  le t  X r  be a sub-
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v arie ty  o f  G  and let x  be a simple point o f  X .  Let T ,  be an
r-dim ensional subspace o f  T , and let 1-2Z- r  b e  its  orthogonal com-
plim ent. T hen i f  T , consists of  tangent v ectors to X  a t  x ,  the
point x  is  a zero of e (co) for any Co in no . Conversely if the point
x  is  the common zero of 4(o)) fo r all (0 E n o , then T 0 is the tangent
space to X  at x.

PROOF. By our assumption we can choose a  regular system
of parameters t„ ••• ,t„ such that the ideal g)x  of X  in Ox  is spanned
by (t r +„ ••• ,t n ). Let Di be local derivations at x  defined by Di (t ;)
=au ; : 7 = 1 ,  n  (cf. 1. 2). Then the tangent space to X  at x  is
spanned by D „  , Dr . Now assume that T o is  the tangent space

to X  at x , and let co be an element o f t, an d  le t w = j a i dt i  be its

local expression. Then we have

0 <o,, D i > = t x (a i ) ( i  =  1 ,  • • •  , r )

where 7-1-, is the natural homomorphism 0,-0,/Jr[ x . S i n c e  ( )
where d i is  the residue class of a i  modulo gpx , we see

that di is contained in .71t,/g'x , i.e., x is a zero of tt(co). Conversely
i f  x  is  a zero of tt(co), then di m u st be contained in 31Z,/g),,
hence a 1r-- 0(717.,) fo r  i = 1 , • • •  , r .  Hence we must have <co , D i > =

,r (a i ) = 0  fo r  i=1 ,• • •  ,r,  i.e. D i  ( i=1 ,• • •  ,r)  is  orthogonal to  no .
Hence the dual space T o of n o must be a tangent space to X  at x.

COROLLARY. Let G be a group variety and let X  be a subvariety
o f  G, and let co be a  le f t  invariant dif ferential form  on G . T hen
tt(c0)=0 if and only  if  a) is orthogonal to  the tangent space T x  for
all xe X  outside a bunch of  subvarieties.

PROOF. Assume that C o  is orthogonal to  Tx  fo r  all x outside
a bunch of subvarieties S .  Without restriction we can assume S
contains the singular locus of X .  Then fo r  any xE X —  S , co  is
orthogonal to the tangent space T x ,  hence by Theorem 1, x must
be a zero of e(c0). This is impossible unless 4(0)=0. Conversely
i f  we have 4 ( 0 ) = 0 ,  then for any simple point x  o f X, x  is a zero
of t ( c o )  hence co is orthogonal to the tangent space T x  to  X  at X.
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2. 2. PROPOSITION 2 .  L et G", X r  and  x  be as  in  THEOREM 1  and
le t S2 be a  subspace of  lef t inv ariant dif ferentials on G consisting
o f  elements co such that x  is  a z ero of  11 (0 ). Then dim n o = n— r.

PROOF. By our assumption we can choose a regular system
of parameters t„••• ,t„ in 0 , such that the ideal g)  o f X  in Ox  is
(t x + „ ••• , t a ). L e t  b e  the le f t  invariant differentials on  G
associated with 1® dt r + ;  (j= 1 ,•••  ,n — r). Then as is easily seen
wr+; is contained in n o •  Conversely let 0) be an arbitrary element
o f n ,„ and let

Then i (w )  =  ai d t i , where d i ,  T.; d en o te  the trace on X  of the

functions a1 , t. respectively. S ince (1, ••• ,f r )  form a regular system
o f  param eters in  Ox /gp, E  n o im p lie s  th a t  di e jr -Lx /9 ), hence

a1 =.0 (M x ). Hence we have 1 OW a y  { dtr + J . I f  we denote
j=1

b y  cx ,i  the elements in  K  such  that ax + i = x r ,.;  (mod 3T-( x )  we see

th a t  (0= ' . cx , ; (0x ,i  b y  T h eo rem  1  in  [ 2 ] .  Th is completes the
proof. q.e.d.

PROPOSITION 3 .  Let G" be a group variety  and  le t X r be a  non-
singular subvariety of  G  such that tangent space to X  at any  point
o f  X  is parallel to  the one and the same tangent subspace T,. Then
i f  C O  is not contained in  t c , t (a)) has no zero a t  all.

PROOF. If t ( a ) )  has zero at a point x  of X , then the subspace
no consisting o f le ft invariant differentials 0) such that x  is a zero
o f tt(c0) contains to and CO and i t s  dimension is  a t least n— r +1.
This contradicts to Prop. 2.

THEOREM 2 .  In Prop. 3 if  G is an abelian variety and dim X=1,
then X is a translation of  an abelian subvariety, i.e., a curve of genus 1.

PROOF. Let 0) be an element not contained in  t o , then 4 ( c))
h as no zero. Th is i s  possible only in the case where genus of
curve is 1.

As an  application of Theorem 2  w e can prove the following
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Theorem which is slightly restrictive than the results proved in [2].
(Cf. Theorem 8 and Cor. 1 in [2]).

THEOREM 3 .  L et A  be an abelian v ariety  of  dim ension 2 and
let F b e  a  non-singular curv e of  genus >2. T hen f or any invariant
dif ferential from co on A , 4(6))+0.

PROOF. By Theorem 2 and the assumption, the tangent vectors
D's to I`  span the entire tangent space to A .  Hence i f  cl:(0))= 0,
co must be orthogonal to  the whole tangent space, hence co must
be zero. q.e.d.

2 .3 . THEOREM 4. L e t A  be a 3-dim ensional abelian v ariety  and
le t r be a  non-singular curve on A ' w hich generates A .  Then tt. is
a monomorphism.

PROOF. Let U =  ED 1̀ , i.e., the locus of the point z  which is
of the form z =x +y , with x, yE F. W e shall show that under the
assumption of t ( w ) = O, w e  have also ( w ) =  O. Then by Theo-
rem 5 (1), in [2 ]  we can conclude that 0)=0, since U  generates
the abelian variety A .  To prove t(w )=O , it will be sufficient to
show that except a  bunch o f subvarieties Y  o n  U , the tangent
space T u  to  U  a t u E U— Y  is spanned by the tangent vectors to

by Corollary of Theorem 1. Let X be a rational map r x U,
defined by X(x xy)— x +y, and let Z „••• ,Z , be all the components
o f X.- 1 ( S )  where S  i s  the singular locus of U .  Let x, y  be two
points of 1' such that x xy is not contained in any of Z i  ( i=1 , •••  ,k ).

Then it is clear that the tangent vectors yx  and vy  to  F  a t x  and
y  respectively are contained in  T x ± y (U ) (=th e  tangent space to U
at x +y = u ) .  Hence i f  yx  and uy  a re  not parallel y x  and yy  span
the entire space T x ,y (U ) .  W e shall show th at the point z  o f U
which is written in the form x +y where D ,  and Dy  a re  parallel
is contained in  a  bunch o f subvarieties on U .  Let .99 be a map
of F  into a projective space P 2 constructed in 1. 5. By theorem 2
p (F )  cannot be reduced to a point, otherwise genus of F  is  1 and
1' cannot generate A .  Let us put C  =  q ) (1 1 .  We shall consider
the surjective rational map 15: Fx r— >Cx C defined by (T)(xxy)=
q(x) x p ( y ) .  Then the point (x, y ) such that Dx  and Dy  are parallel
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is contained in  p - 1 (6.,). T h is  i s  a  proper bunch of subvarieties
and also x,(0—(6 ) ) is a bunch of subvarieties on U .  Let 5  be the
bunch of subvarieties consisting of singular locus S  and X,(T) - 1 (A c )),
then  at any point u  outside of 5 , the tangent space Tu  is spanned
b y  the tangent vecto rs to  F . This is w hat w e w anted  to  prove.

q.e.d.

§  3 . Related problems

W e sh a ll see  h ere  w h y w e d id  n o t succeed  to  gen era lize
Theorem 4 for abelian varieties of higher dimensions. The under-
lying fundamental stones for Theorem 4  is Theorem 2, i.e . i f  all
tangent vectors to F are parallel, then 1' is necessarily a curve of
genus 1. Hence to discuss the generalization to a higher dimen-
sional case it is necessary to prove the following.

(I) Let F  b e  a  non-singular curve on an abelian variety A
of dimension n .  Let r  be a positive integer < n ,  and assume that
the tangent vectors to F span the r-dim ensional subspace of the
tangent space to A  a t the neutral point e. Then 1' generates an
abelian subvariety of dimension r.

Relating to (I ) w e conjecture that the following may hold.

(II) Let An  be an abelian variety and X T be a subvariety of A.
Let F s be a non-singular subvariety of dimension such that any
tangent vector to F is contained in a tangent space to X  at some
simple point of X . T h en  i f  X  and F contains the neutral point of
A, the Pontrjagin sum X e r  coincides with X, where X ED r  is the
set o f  the points on A which is written in the fo rm  x +y  with
xE X, yE r.

It should be remarked that i f  A  is replaced by a commutative
group variety the assertion II does not hold in positive characteristic
case as is shown in the following example.

EXAMPLE. Let G  S 2 be tw o  d im ensional affine space with
structure of vector group, and let X, F  be curves on G defined by
the equations X-2,'+ X2 = 0 and X2 =0 respectively. Then any tangent
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vectors to X  and to  1-  a r e  para lle l to  the X 1-axis, but X  and r
generate entire group.

If the conjecture (II) were true we should have the following

(III) A  non-singular subvariety X '. o f a n  abelian variety  is a
translation of an abelian subvariety  if and only  i f  every tangent
space to X  is parallel to one and the same r-dim ensional subspace
of the tangent space at e.

W e presented these problems here to remark that injectivity
of rt, is  a  natural consequence of more profound theory of abelian
varieties.
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ADDED IN  P R O O F . Recently Professor Serre kindly informed me that
there can exist infinitely many abelian subvarieties having the
same Lie subalgebra. Hence (II) does not hold even in the
case of abelian varie ty  if  th e  characteristic of the universal
domain is >0.


