J. Math. Kyoto Univ.

3-2 (1964) 217-250.

Homotopy Groups of $S U(3), S U(4)$ and $S p(2)$

By
Mamoru Mimura and Hirosi Toda

(Received Jan. 16, 1964)

§ 1. Introduction

Let $\pi_{i}(G)$ be the i-th homotopy group of a topological group G. For $i \leqq 23$ and for $G=S U(3), S U(4), S p(2)$, the groups $\pi_{i}(G)$ are computed and the results are given by the following table:

$i=$	3	4	5	6	7	8	9	10	11	12
$\pi_{i}(S U(3)) \cong$	Z	0	Z	Z_{6}	0	Z_{12}	Z_{3}	Z_{30}	Z_{4}	Z_{60}
$\pi_{i}(S U(4)) \cong$	Z	0	Z	0	Z	Z_{24}	Z_{2}	$Z_{120}+Z_{2}$	Z_{4}	Z_{60}
$\pi_{i}(S p(2)) \cong$	Z	Z_{2}	Z_{2}	0	Z	0	0	Z_{120}	Z_{2}	$Z_{2}+Z_{2}$

$i=$	13	14	15	16	17	18
$\pi_{i}(S U(3)) \cong$	Z_{6}	$Z_{84}+Z_{2}$	Z_{36}	$Z_{252}+Z_{6}$	$Z_{30}+Z_{2}$	$Z_{30}+Z_{6}$
$\pi_{i}(S U(4)) \cong$	Z_{4}	$Z_{1680}+Z_{2}$	$Z_{72}+Z_{2}$	$Z_{504}+Z_{2}+Z_{2}+Z_{2}$ $+Z_{2}$	$Z_{10}+Z_{2}+Z_{2}$ $+Z_{2}$	$Z_{2520}+Z_{12}+Z_{2}$ $\pi_{i}(S p(2)) \cong$
$Z_{4}+Z_{2}$	Z_{1680}	Z_{2}	$Z_{2}+Z_{2}$	Z_{40}	$Z_{2520}+Z_{2}$	

$i=$	19	20	21	22	23
$\pi_{i}(S U(3)) \cong$	$Z_{12}+Z_{6}$	$Z_{60}+Z_{6}$	Z_{6}	$Z_{66}+Z_{2}$	$Z_{12}+Z_{2}$
$\pi_{i}(S U(4)) \cong$	$Z_{12}+Z_{2}$	$Z_{60}+Z_{2}$	$Z_{16}+Z_{2}$	$Z_{2640}+Z_{4}+Z_{2}+Z_{2}$	$Z_{24}+Z_{2}+Z_{2}+Z_{2}+Z_{2}$
$\pi_{i}(S p(2)) \cong$	$Z_{2}+Z_{2}$	$Z_{2}+Z_{2}+Z_{2}$	$Z_{32}+Z_{2}$	$Z_{5280}+Z_{2}+Z_{2}$	$Z_{2}+Z_{2}+Z_{2}$

These results are stated in Theorems 4.1, 5.1, 6.1, in which generators of the 2 -primary components are given, The computations will be done by use of the homotopy exact sequences associated with the bundles $S U(3) / S U(2)=S^{3}, S p(2) / S p(1)=S^{7}$ and $S U(4) / S U(2)=S^{5} \times S^{7}$ and the results [7], [3] on the homotopy
groups of spheres S^{n}. In $\S 2$, we shall discuss on properties of the composition and the secondary composition operators with respect to the homotopy exact sequences for fibre spaces, in particular, for S^{3}-bundles over S^{n}. The homotopy groups of $S U(3), S p(2)$ and $S U(4)$ will be computed in $\S 4, \S 5$ and $\S 6$, respectively, after auxiliary computations on boundary homomorphisms in $\S 3$.

§ 2. Homotopy exact sequences for fibre spaces

Let (X, p, B) be a fibre space. Then we have the following homotopy exact sequence (2.1) associated with the fibre space:

$$
\begin{equation*}
\cdots \rightarrow \pi_{i}(F) \xrightarrow{i_{*}} \pi_{i}(X) \xrightarrow{p_{*}} \pi_{i}(B) \xrightarrow{\Delta} \pi_{i-1}(F) \rightarrow \cdots, \tag{2.1}
\end{equation*}
$$

where F is the fibre $p^{-1}\left(x_{0}\right)$ on a base point x_{0} of $B, i: F \rightarrow X$ the inclusion map and Δ is the boundary homomorphism defined by the commutativity of the diagram

$$
\begin{aligned}
& \pi_{i}(X, F) \\
& \cong \mid p_{*} \backslash \partial \\
& \pi_{i}(B) \xrightarrow{\partial} \pi_{i-1}(F) .
\end{aligned}
$$

Let E^{i+1} be the unit $(i+1)$-cube and $S^{i}=\partial E^{i+1}$ the unit i-sphere. The composition $\alpha \circ \beta=\beta^{*}(\alpha), \beta \in \pi_{j}\left(S^{i}\right)$, defines a correspondence $\beta^{*}: \pi_{i}(Y) \rightarrow \pi_{j}(Y), Y=F, X, B$, such that it commutes with the homomorphisms i_{*} and p_{*} of (2.1), that is,

$$
\begin{equation*}
i_{*}(\alpha \circ \beta)=\left(i_{*} \alpha\right) \circ \beta \quad \text { and } p_{*}(\alpha \circ \beta)=\left(p_{*} \alpha\right) \circ \beta \tag{2.1}
\end{equation*}
$$

For the boundary homomorphism Δ, we have the formula

$$
\begin{equation*}
\Delta(\alpha \circ E \beta)=(\Delta(\alpha)) \circ \beta, \quad \alpha \in \pi_{i}(B), \tag{2.2}
\end{equation*}
$$

where $E: \pi_{j}\left(S^{i}\right) \rightarrow \pi_{j+1}\left(S^{i+1}\right)$ is a suspension homomorphism given by the commutativity of the diagram
(p^{\prime} pinches S^{i} and preserves the orientations).

Theorem 2.1. Assume that $\alpha \in \pi_{i+1}(B), \beta \in \pi_{j}\left(S^{i}\right)$ and $\gamma \in \pi_{k}\left(S^{j}\right)$ satisfy the conditions $(\Delta \alpha) \circ \beta=0$ and $\beta \circ \gamma=0$. For an arbitrary element δ of $\{\Delta \alpha, \beta, \gamma\} \subset \pi_{k+1}(F)$, there exists an element $\varepsilon \in \pi_{j+1}(X)$ such that

$$
p_{*} \varepsilon=\alpha \circ E \beta \quad \text { and } \quad i_{*} \delta=\varepsilon \circ E \gamma .
$$

Proof. Let E_{+}^{k+1} (resp. E_{-}^{k+1}) be the upper-(resp. lower-)hemisphere of S^{k+1}. As the definition of the secondary composition $\{\Delta \alpha, \beta, \gamma\}, \delta$ is represented by a mapping $H: S^{k+1} \rightarrow F$ such that $H\left|E_{+}^{k+1}=A \circ \bar{c}, A\right| S^{j}=a \circ b, \bar{c}\left|S^{k}=c, H\right| E_{-}^{k+1}=a \circ B, B \mid S^{k}=b \circ c$ for mappings $A: E_{+}^{j+1} \rightarrow F, B: E_{-}^{k+1} \rightarrow S^{i}, \bar{c}:\left(E_{-}^{k+1}, S^{k}\right) \rightarrow\left(E_{+}^{j+1}, S^{j}\right)$ and representatives a (resp. b, c) of $\Delta \alpha$ (resp. β, γ). We orient $\left(E_{-}^{j+1}, S^{j}\right)$ and $\left(E^{j+1}, S^{j}\right)$ coherently. By the definition of Δ, there exists an extension $\bar{a}:\left(E_{-}^{i+1}, S^{i}\right) \rightarrow(X, F)$ of $a=\bar{a} \mid S^{i}$ such that $p \circ \bar{a}$ represents α. Let $\bar{b}:\left(E_{-}^{j+1}, S^{j}\right) \rightarrow\left(E_{-}^{i+1}, S^{i}\right)$ be an extension of b. Then $p \circ \bar{a} \circ \bar{b}$ represents $\alpha \circ E \beta$. Define a mapping $G: S^{j+1} \rightarrow X$ by setting $G \mid E_{-}^{j+1}$ $=\bar{a} \circ \bar{b}$ and $G \mid E_{+}^{j+1}=A$. Then G represents an element ε of $\pi_{j+1}(X)$ such that $p_{*} \varepsilon=\alpha \circ E \beta$. Let $E_{-} c:\left(E_{-}^{k+1}, S^{k}\right) \rightarrow\left(E_{-}^{j+1}, S^{j}\right)$ be an extension of c, then $E \gamma$ is respresented by a mapping $E c$ given by $E c \mid E_{+}^{k+1}=\bar{c}$ and $E c \mid E_{-}^{k+1}=E_{-} c$. The mapping B gives a nullhomotopy of $b_{\circ} c$. By use of the homotopy, we see that $\bar{b} \circ \bar{c}$ is homotopic to B rel. S^{k}. It follows that H is homotopic to $G \circ E c$. Therefore we have $i_{*} \delta=\varepsilon_{\circ} E \gamma$.
q.e.d.

The following lemmas will be used in later.
Lemma 2.2. Let G be a compact Lie group, $\alpha \in \pi_{i}(G)$ and $\beta_{1}, \beta_{2} \in \pi_{j}\left(S^{i}\right)$. If $E \beta_{1}=E \beta_{2}$, then

$$
\alpha \circ \beta_{1}=\alpha \circ \beta_{2} .
$$

Proof. Let $\left(E_{G}, p, B_{G}\right)$ be a universal G-bundle. Then Δ_{G} : $\pi_{i \| 1}\left(B_{G}\right) \rightarrow \pi_{i}(G)$ is an isomorphism. Let $f: S^{i+1} \rightarrow B_{G}$ be a representative of $\Delta_{G}^{-1}(\alpha)$ and let $\left(X, p, S^{i+1}=X / G\right)$ be a principal G-bundle induced by f. Then $\Delta\left(\iota_{i 11}\right)=\alpha$ for $\Delta: \pi_{i+1}\left(S^{i+1}\right) \rightarrow \pi_{i}(G)$ and for the class ι_{i+1} of the identity of S^{i+1}. Then we have $\alpha \circ \beta_{1}=\Delta\left(\iota_{i+1}\right) \circ \beta_{1}$ $=\Delta\left(\iota_{i+1} \circ E \beta_{1}\right)=\Delta\left(E \beta_{1}\right)$. Similarly, $\alpha \circ \beta_{2}=\Delta\left(E \beta_{2}\right)$. Thus $\alpha \circ \beta_{1}=\alpha \circ \beta_{2}$ if $E \beta_{1}=E \beta_{2}$.
q.e.d.

For a principal G-bundle $\left(X, p, S^{i+1}=X / G\right)$ over S^{i+1}, the class

$$
\Delta\left(\iota_{i+1}\right)=\chi(X)
$$

will be refered as the characteristic class of the bundle. $\chi(X)$ determines the bundle up to equivalence [6].

Lemma 2. 3. Let $i \geqq 2$ and let \mathcal{C}_{p} be the class of finite abelian groups without p-torsion ($p:$ a prime). Assume that $q \chi(X)=q^{\prime} \chi\left(X^{\prime}\right)$ for integers q, q^{\prime} prime to p. Then $\pi_{j}(X)$ and $\pi_{j}\left(X^{\prime}\right)$ are $\mathcal{C}_{p}-$ isomorphic to each other for all j. In particular, if the order of $\chi(X)$ is finite and prime to p, then $\pi_{j}(X)$ is \mathcal{C}_{p}-isomorphic to $\pi_{j}\left(S^{i+1}\right) \oplus \pi_{j}(G)$.

Proof. It is sufficient to prove the case $q^{\prime}=1$. Let $\alpha=\chi(X)$, then the bundle (X, p, S^{i+1}) is induced by a mapping f as in the previous proof. Let $g: S^{i^{+1}} \rightarrow S^{i+1}$ be a mapping of degree q. Then the composition $f \circ g$ induces a bundle ($X^{\prime \prime}, p, S^{i+1}$) with $\chi\left(X^{\prime \prime}\right)=\Delta\left(q \iota_{i+1}\right)=q \chi(X)=\chi\left(X^{\prime}\right)$. Thus $X^{\prime \prime}$ is equivalent to X^{\prime} and $\pi_{j}\left(X^{\prime \prime}\right) \cong \pi_{j}\left(X^{\prime}\right)$ for all j. Consider the homomorphism between the exact sequence (2.1) and that of ($X^{\prime \prime}, p, S^{i+1}$), induced by g. The homomorphism is identical on $\pi_{j}(F)=\pi_{j}(G)$ and \mathcal{C}_{p}-isomorphic on $\pi_{j}\left(S^{i+1}\right)=\pi_{j}(B)$ by Serre's \mathcal{C}-theory [5]. Then it is \mathcal{C}_{p}-isomorphic between $\pi_{j}(X)$ and $\pi_{j}\left(X^{\prime \prime}\right) \sim \pi_{j}\left(X^{\prime}\right)$ by the five lemma.

If q is the order of $\chi(X)$ and it is prime to p. Then $\chi\left(X^{\prime}\right)=0$ and hence X^{\prime} is equivalent to the trivial bundle $S^{i+1} \times G$. The last assertion follows.
q. e. d.

Now we consider the case $G=S^{3}(=S p(1)=S U(2))$. We may consider that the classifying space $B_{S^{3}}$ is an infinite dimensional quaternion projective space $S^{4} \cup e^{8} \cup e^{12} \cup \cdots$. Let $i: S^{4} \rightarrow B_{S^{3}}$ be the inclusion map. In the diagram

$$
\begin{gathered}
\pi_{n}\left(B_{S^{3}}\right) \xrightarrow{\Delta_{S^{3}}} \pi_{n}\left(S^{3}\right) \\
i_{*} \\
\pi_{n+1}\left(S^{4}\right), \\
\swarrow \\
K
\end{gathered}
$$

the relation

$$
\Delta_{S^{3}}\left(i_{*}(E \alpha)\right)=\alpha, \quad \alpha \in \pi_{n}\left(S^{3}\right),
$$

holds for the case $\alpha=\iota_{3}$. Then it follows from (2.2) that the relation holds for arbitrary element α of $\pi_{n}\left(S^{3}\right)$. Define a homomorphism

$$
E^{*}: \pi_{n+1}\left(S^{4}\right) \longrightarrow \pi_{n}\left(S^{3}\right)
$$

by setting

$$
E^{*}=\Delta_{s^{30} i_{*}} .
$$

Let $h: S^{7} \rightarrow S^{4}$ be Hopf's fibre map. h is the attaching map of e^{8}. Thus $h_{*} \pi_{n+1}\left(S^{7}\right)$ is contained in the kernel of E^{*}. By concerning the isomorphism (2.3) $\quad E^{*} \circ E=$ the identity and h_{*}-image $=$ the kernel of E^{*}.

Denote by

$$
\pi_{j}(X: p)
$$

the p-primary component of $\pi_{j}(X)$.
The elements $\nu_{4} \in \pi_{7}\left(S^{4}\right)$ and $\nu^{\prime} \in \pi_{6}\left(S^{3}: 2\right)$ of [7] are characterized by the properties:

$$
H\left(\nu_{4}\right)=\iota_{7}, \quad H\left(\nu^{\prime}\right)=\eta_{5}=1-0 \text { and } 2 E \nu_{4}=2 \nu_{5}=E^{2} \nu^{\prime} .
$$

It is known that $H(\{h\})=\iota_{7}$ (for suitable choice of the orientation of S^{7}). Then $\{h\}=\nu_{4}+a E \nu^{\prime}+b E \alpha$ for some integers a, b and an element α of order 3. Here, we replace ν_{4} by $\nu_{4}+a E \nu^{\prime}$ and ν^{\prime} by $(2 a+1) \nu^{\prime}$. Then the above properties hold and hence the results in [7] still hold for the new choice of ν_{4} and ν^{\prime}.

Lemma 2.4. For the above choice of ν_{4} and ν^{\prime}, we have that h represents $\nu_{4}+E \alpha\left(\alpha\right.$ generates $\left.\pi_{6}\left(S^{3}: 3\right) \simeq Z_{3}\right)$ and

$$
\nu_{4} \circ \pi_{n+1}\left(S^{7}: 2\right)=\operatorname{Ker} E^{*} \cap \pi_{n+1}\left(S^{4}: 2\right) .
$$

Proof. Obviously $\{h\}=\nu_{4}+E(b \alpha) . \quad b \equiv 0(\bmod 3)$ since $\bmod 3$ reduced power operation \mathcal{P}^{1} is not trivial in quaternion projective plane $S^{4} \cup e^{8}$ [1]. Then, replacing $b \alpha$ by α, we have the first assertion and $3 \nu_{4}=\nu_{4} \circ 3 \iota_{7}=\{h\} \circ 3 \iota_{7}$. Since S^{7} is an H-space, $3 \iota_{7} \circ \beta=3 \beta$ for all $\beta \in \pi_{n+1}\left(S^{7}\right)$. It follows that $3 \iota_{7} \circ \pi_{n+1}\left(S^{7}: 2\right)=\pi_{n+1}\left(S^{7}: 2\right)$. Thus we have

$$
\begin{aligned}
\nu_{4} \circ \pi_{n+1}\left(S^{7}: 2\right) & =\nu_{4} \circ 3 t_{7} \circ \pi_{n+1}\left(S^{7}: 2\right)=h_{*} \pi_{n+1}\left(S^{7}: 2\right) \\
& =h_{*} \pi_{n+1}\left(S^{7}\right) \cap \pi_{n+1}\left(S^{4}: 2\right) \\
& =\operatorname{Ker} E^{*} \cap_{n+1}\left(S^{4}: 2\right) . \quad \text { q.e. d. }
\end{aligned}
$$

Consider a principal S^{3}-bundle ($X, p, S^{n}=X / S^{3}$) over S^{n} and its boundary homomorphism

$$
\Delta: \pi_{j+1}\left(S^{n}\right) \longrightarrow \pi_{j}\left(S^{3}\right) .
$$

Theorem 2.5. For $\alpha \in \pi_{i+1}\left(S^{n}\right)$ and $\beta \in \pi_{j+1}\left(S^{i+1}\right)$, we have

$$
\begin{aligned}
\Delta(\alpha \circ \beta) & =E^{*}(E(\Delta \alpha) \circ \beta) . \\
\Delta(\alpha) & =E^{*}\left(E\left(\Delta \iota_{n}\right) \circ \alpha\right) .
\end{aligned}
$$

In particular,
Proof. Let $f: S^{n} \rightarrow B_{S^{3}}=S^{4} \cup e^{8} \cup \cdots$ be a mapping which induces the bundle $\left(X, p, S^{n}\right)$. Since $i_{*}: \pi_{n}\left(S^{4}\right) \rightarrow \pi_{n}\left(B_{S^{3}}\right)$ is equivalent to E^{*} and it is an epimorphism, there exists a mapping $f^{\prime}: S^{n} \rightarrow S^{4}$ homotopic to f in $B_{S^{3}}$. From the commutativity of the diagram

$$
\underset{\pi_{j 11}\left(S^{4}\right) \xrightarrow{f_{i}^{\prime} \swarrow_{i_{*}}^{\prime}} \pi_{j+1}\left(B_{s^{3}}\right),}{\boldsymbol{\pi}_{j+1}\left(S^{n}\right) \xrightarrow{\Delta} \pi\left(S_{j}^{3}\right)}
$$

it follows $\Delta(\alpha \circ \beta)=\Delta_{s^{3}} f_{*}(\alpha \circ \beta)=\Delta_{s^{3}}\left(f_{*}(\alpha) \circ \beta\right)=\Delta_{s^{3}}\left(i_{*} f_{*}^{\prime}(\alpha) \circ \beta\right)$. In particular, $\Delta_{s}{ }^{3} i_{*} f_{*}^{\prime}(\alpha)=\Delta \alpha=E^{*} E(\Delta \alpha)=\Delta_{s^{3}} i_{*} E(\Delta \alpha)$ by (2.3). Thus $i_{*} f_{*}^{\prime}(\alpha)=i_{*} E(\Delta \alpha)$ and $\Delta(\alpha \circ \beta)=\Delta_{s^{3}}\left(i_{*} E(\Delta \alpha) \circ \beta\right)=E^{*}(E(\Delta \alpha) \circ \beta)$.
q. e. d.

Theorem 2.6. Assume that $\alpha \in \pi_{i}\left(S^{n}\right), \beta \in \pi_{j}\left(S^{i}\right)$ and $\gamma \in \pi_{k}\left(S^{j}\right)$ satisfy the conditions

$$
E(\Delta \alpha)=E\left(\Delta \iota_{n}\right) \circ \alpha, E(\Delta \alpha) \circ \beta=0 \quad \text { and } \quad \beta \circ \gamma=0 .
$$

For an arbitrary element δ of $\{E(\Delta \alpha), \beta, \gamma\}$, there exists an element ε of $\pi_{j}(X)$ such that

$$
p_{*}(\varepsilon)=\alpha \circ \beta \quad \text { and } \quad i_{*}\left(E^{*} \delta\right)=\varepsilon \circ \gamma,
$$

where $p_{*}: \pi_{j}(X) \rightarrow \pi_{j}\left(S^{n}\right)$ and $i_{*}: \pi_{k}\left(S^{3}\right) \rightarrow \pi_{k}(X)$ are the homomorphisms in (2.1).

In order to prove the above theorem, we consider, in general, a principal G-bundle ($X, p, B=X / G$) which is induced by a mapping $f: B \rightarrow B_{G}$ from a universal G-bundle $\left(E_{G}, p, B_{G}\right)$. Let $Z_{f}=$ $B_{G} \cup_{f} B \times I$ be a mapping cylinder of f. Let $F: X \rightarrow E_{G}$ be the induced bundle map and $Z_{F}=E_{G} \bigcup_{F} X \times I$ a mapping cylinder of F. Then the projections of the bundles define a mapping $\bar{p}:\left(Z_{F}, X\right)$
$\rightarrow\left(Z_{f}, B\right) . \quad E_{G}$ and thus Z_{F} are contractible. It follows that

$$
\partial: \pi_{i+1}\left(Z_{F}, X\right) \longrightarrow \pi_{i}(X)
$$

are isomorphisms for all i. Define a homomorphism

$$
P: \pi_{i}(X) \longrightarrow \pi_{i+1}\left(Z_{f}, B\right)
$$

by the formula $P=\bar{p}_{*} \circ \partial^{-1}$. Then it is verified directly that the following diagram is commutative:

Since Δ_{G} are isomorphisms for all i, so are P, by the five lemma. That is,
(2.5) the two sequences in (2.4) are equivalent.

Proof of Theorem 2.6. Consider a mapping $f^{\prime}: S^{n} \rightarrow S^{4}$ in the proof of Theorem 2.5 which represents $E\left(\Delta \iota_{n}\right)$, and let $Z_{f^{\prime}}=$ $S^{4} \bigvee_{f^{\prime}} S^{n} \times I$ be a mapping cylinder of f^{\prime}. Natural maps induce the following homomorphism of two exact sequences:

In the upper sequence, we apply a similar discussion as in the proof of Theorem 2.1. Then we have that for an arbitrary element δ of $\left\{f_{*}^{\prime}(\alpha), \beta, \gamma\right\}=\{E(\Delta \alpha), \beta, \gamma\} \subset \pi_{k i 1}\left(S^{4}\right)$, there exists an element ε^{\prime} of $\pi_{j+1}\left(Z_{f^{\prime}}, S^{n}\right)$ such that

$$
\partial \varepsilon^{\prime}=\alpha \circ \beta \quad \text { and } \quad j_{*} \delta=\varepsilon^{\prime} \circ \tilde{\gamma},
$$

where $\tilde{\gamma}$ is the inverse image of γ under $\partial: \pi_{k+1}\left(E^{j+1}, S^{j}\right) \approx \pi_{k}\left(S^{j}\right)$. Define ε by the formula $\varepsilon=P^{-1}\left(i_{2^{*}} \varepsilon^{\prime}\right)$. Then we have

$$
\begin{aligned}
& p_{*} \varepsilon=p_{*} P^{-1}\left(i_{2^{*}} \varepsilon^{\prime}\right)=\partial \varepsilon^{\prime}=\alpha \circ \beta \\
& \text { and } \quad \begin{aligned}
& i_{*}(E * \delta)=i_{*}\left(\Delta_{S^{3}} i_{1^{*}} \delta\right)=P^{-1} j_{*}\left(i_{1^{*}} \delta\right)=P^{-1} i_{2^{*}}\left(j_{*} \delta\right)=P^{-1} i_{2^{*}}\left(\varepsilon^{\prime} \circ \tilde{\gamma}\right) \\
&=\left(P^{-1}\left(i_{2^{*}} \varepsilon^{\prime}\right)\right) \circ \gamma=\varepsilon_{\circ}, \gamma,
\end{aligned} \\
&
\end{aligned}
$$

by the commutativity of (2.4) and the above diagram, (2.3) and by the property $P^{-1}(\alpha \circ \tilde{\gamma})=\left(P^{-1} \alpha\right) \circ \gamma$ of P.
q.e.d.
§ 3. The boundary homomorphisms for the fiberings

$$
S U(3) / S U(2) \text { and } S p(2) / S p(1)
$$

We shall apply the theory of the previous section to the bundles $\left(S U(3), p, S^{5}=S U(3) / S U(2)\right)$ and ($\left.S p(2), p, S^{7}=S p(2) / S p(1)\right)$, where $S U(2) \cong S p(1) \cong S^{3}$.

The boundary homomorphisms

$$
\Delta: \pi_{5}\left(S^{5}\right) \longrightarrow \pi_{4}\left(S^{3}\right) \quad \text { and } \quad \Delta: \pi_{7}\left(S^{7}\right) \longrightarrow \pi_{6}\left(S^{3}\right)
$$

are epimorphisms, since $\pi_{4}(S U(3))=0[6]$ and $\pi_{6}(S p(2))=0[1]$ (see also [2]). Therefore, the characteristic classes of the above two bundles are generators of $\pi_{4}\left(S^{3}\right) \cong Z_{2}$ and $\pi_{6}\left(S^{3}\right) \cong Z_{12}$ respectively. The elements η_{3} and ν^{\prime} of [7] are generators of $\pi_{4}\left(S^{3}: 2\right)=\pi_{4}\left(S^{3}\right)$ and $\pi_{6}\left(S^{3}: 2\right) \cong Z_{4}$ respectively. Then we have

Lemma 3.1. i). For the homomorphisms $\Delta: \pi_{i}\left(S^{5}\right) \rightarrow \pi_{i-1}\left(S^{3}\right)$, we have and

$$
\begin{aligned}
\Delta\left(E \alpha^{\prime}\right) & =\eta_{3} \circ \alpha^{\prime} & & \text { for }
\end{aligned} \quad \alpha^{\prime} \in \pi_{i-1}\left(S^{4}\right)
$$

$\eta_{4} \circ \alpha \in E_{\pi_{i-1}}\left(S^{3}\right)$ if and only if $\eta_{7}^{2} \circ H(\alpha)=0$ and whence $E(\Delta \alpha)$ $=\eta_{4} \circ \alpha$.
ii). For the homomorphisms $\Delta: \pi_{i}\left(S^{7}\right) \rightarrow \pi_{i-1}\left(S^{3}\right)$, we have

$$
\Delta\left(E \alpha^{\prime}\right)= \pm \nu^{\prime} \circ \alpha^{\prime} \quad \text { for } \quad \alpha^{\prime} \in \pi_{i-1}\left(S^{6}: 2\right)
$$

and $\quad \Delta \alpha=E^{*}\left(\pm E \nu^{\prime} \circ \alpha\right), \quad E(\Delta \alpha)= \pm E \nu^{\prime} \circ \alpha \quad$ for $\quad \alpha \in \pi_{i}\left(S^{7}: 2\right)$.
Proof. The first two assertions of i) follow immediately from (2.2) and Theorem 2.5, where $\Delta t_{5}=\eta_{3}$. By the exactness of the sequence

$$
\pi_{i-1}\left(S^{3}\right) \xrightarrow{E} \pi_{i}\left(S^{4}\right) \xrightarrow{H} \pi_{i}\left(S^{7}\right),
$$

$\eta_{4} \circ \alpha \in E \pi_{i-1}\left(S^{3}\right)$ if and only if $H\left(\eta_{4} \circ \alpha\right)=0 . \quad H\left(\eta_{4} \circ \alpha\right)=H\left(E \eta_{3} \circ \alpha\right)=$ $E\left(\eta_{3} \mathbb{X} \eta_{3}\right) \circ H(\alpha)=\eta_{7}^{2} \circ H(\alpha)$ by Proposition 2.2 of [7]. If $\eta_{4} \circ \alpha=E \beta$, then $E(\Delta \alpha)=E\left(E^{*} E \beta\right)=E \beta=\eta_{4} \circ \alpha$ by (2.3).

In ii), replacing $\pm \nu^{\prime}$ by $\Delta \iota_{7}$, the similar assertions are true. Then it is sufficient to prove the relations

$$
E\left(\Delta \iota_{7}\right) \circ \alpha= \pm E \nu^{\prime} \circ \alpha \quad \text { and } \quad H\left(E \nu^{\prime} \circ \alpha\right)=0 \quad \text { for } \quad \alpha \in \pi_{i}\left(S^{7}: 2\right) .
$$

Since $E^{2} \nu^{\prime}=2 \nu_{5}$ and $2 \nu_{5}^{2}=0$, we have $H\left(E \nu^{\prime} \circ \alpha\right)=E\left(\nu^{\prime} \mathbb{X} \nu^{\prime}\right) \circ H(\alpha)$ $=4 \nu_{7}^{2} \circ H(\alpha)=0$. There exists an odd integer t such that $3 t \alpha=\alpha$, since the order of α is a power of 2. $3 t \alpha=\left(3 t t_{7}\right) \circ \alpha$ since S^{7} is an H-space. Then we have $E\left(\Delta \iota_{7}\right) \circ \alpha=E\left(\Delta \iota_{7}\right) \circ\left(3 t t_{7}\right) \circ \alpha=3 t E\left(\Delta \iota_{7}\right) \circ \alpha$ $=\left(\pm E \nu^{\prime}\right) \circ \alpha= \pm\left(E \nu^{\prime} \circ \alpha\right)$. This completes the proof of the lemma.

We introduce necessary results on the homotopy groups of spheres. According to [7], we denote, for odd n,

$$
\pi_{i}^{n}= \begin{cases}\pi_{n}\left(S^{n}\right) & \text { if } \quad i=n \\ \pi_{i}\left(S^{n}: 2\right) & \text { if } \quad i \neq n\end{cases}
$$

Then the results on π_{i}^{n} for $n=3,5,7$ are listed in the following table :

$i=$	1,2	3	4	5	6	7	8	9	10	11	12
$\pi_{i+1}^{7} \cong$	0	0	0	0	Z	Z_{2}	Z_{2}	Z_{8}	0	0	Z_{2}
generators					ι_{7}	η_{7}	η_{7}^{2}	ν_{7}			ν_{7}^{2}
$\pi_{\mathrm{i}+1} \simeq$	0	0	Z	Z_{2}	Z_{2}	Z_{8}	Z_{2}	Z_{2}	Z_{2}	Z_{2}	Z_{2}
generators			t_{5}	η_{5}	η_{5}^{2}	ν_{5}	$\nu_{5} \eta_{8}$	$\nu_{5} \nabla_{8}^{2}$	ν_{5}^{2}	$\sigma^{\prime \prime \prime}$	ε_{5}
$\pi_{i}^{3} \cong$	0	Z	Z_{2}	Z_{2}	Z_{4}	Z_{2}	Z_{2}	0	0	Z_{2}	$Z_{2}+Z_{2}$
generators		${ }^{1}$	η_{3}	η_{3}^{2}	ν^{\prime}	$\nu^{\prime} \eta_{6}$	$\nu^{\prime} \eta_{6}^{2}$			ε_{3}	, $\eta_{3} \varepsilon_{4}$

$i=$	13	14	15	16
$\pi_{i+1}^{7} \cong$	Z_{8}	$Z_{2}+Z_{2}+Z_{2}$	$Z_{2}+Z_{2}+Z_{2}+Z_{2}$	$Z_{8}+Z_{2}$
generators	σ^{\prime}	$\sigma^{\prime} \eta_{14}, \bar{\nu}_{7}, \varepsilon_{7}$	$\sigma^{\prime} \eta_{14}^{2}, \nu_{7}^{3}, \mu_{7}, \eta_{7} \varepsilon_{8}$	$\nu_{7} \sigma_{10}, \eta_{7} \mu_{8}$
$\pi_{i+1}^{5} \cong$	$Z_{2}+Z_{2}+Z_{2}$	$Z_{8}+Z_{2}$	$Z_{8}+Z_{2}+Z_{2}$	$Z_{2}+Z_{2}+Z_{2}$
generators	$\nu_{5}^{3}, \mu_{5}, \eta_{5} \varepsilon_{6}$	$\nu_{5} \sigma_{8}, \eta_{5} \mu_{6}$	$\zeta_{5}, \nu_{5} \bar{\nu}_{8}, \nu_{5} \varepsilon_{8}$	$\nu_{5}^{4}, \nu_{5} \mu_{8}, \nu_{5} \eta_{8} \varepsilon_{9}$
$\pi_{i}^{3} \cong$	$Z_{4}+Z_{2}$	$Z_{4}+Z_{2}+Z_{2}$	$Z_{2}+Z_{2}$	Z_{2}
generators	$\varepsilon^{\prime}, \eta_{3} \mu_{4}$	$\mu^{\prime}, \varepsilon_{3} \nu_{11}, \nu^{\prime} \varepsilon_{6}$	$\nu^{\prime} \mu_{6}, \nu^{\prime} \eta_{6} \varepsilon_{7}$	$\nu^{\prime} \eta_{6} \mu_{7}$

i	17	18	19	20
$\pi_{i+1}^{7} \cong$	$Z_{8}+Z_{2}$	0	Z_{2}	$Z_{8}+Z_{4}$
generators	$\zeta_{7}, \nu_{7} \nu_{15}$		$\nu_{7} \sigma_{10} \nu_{17}$	$\sigma^{\prime} \sigma_{14}, \kappa_{7}$
$\pi_{i+1}^{5} \cong$	$Z_{2}+Z_{2}$	$Z_{2}+Z_{2}$	$Z_{2}+Z_{2}$	$Z_{2}+Z_{2}$
gencrators	$\nu_{5} \sigma_{2} \nu_{15}, \nu_{\Sigma} \eta_{0} \mu_{5}$	$\nu_{5} \sigma_{\varepsilon}, \nu_{5} \nu_{2} \nu_{i 6}$	$o^{\mathrm{IV}}, \bar{\varepsilon}_{5}$	$\mu_{5} \sigma_{14}, \eta_{5} \varepsilon_{6}$
$\pi_{i}^{3} \cong$	Z_{2}	Z_{2}	$Z_{2}+Z_{2}$	$Z_{4}+Z_{2}+Z_{2}$
generators	$\varepsilon_{3} \nu_{11}^{2}$	$\bar{\varepsilon}_{3}$	$\mu_{3} \sigma_{12}, \eta_{3} \bar{\varepsilon}_{4}$	$\bar{\varepsilon}^{\prime}, \bar{\mu}_{3}, \eta_{3} \mu_{4} \sigma_{13}$

$i=$	21	22	23
$\pi_{i+1}^{7} \cong$	$Z_{8}+Z_{2}+Z_{2}+Z_{2}$	$Z_{2}+Z_{2}+Z_{2}+Z_{2}$	$Z_{2}+Z_{2}+Z_{2}+Z_{2}$
generators	$\rho^{\prime \prime}, \sigma^{\prime} \bar{\nu}_{14}, \sigma^{\prime} \varepsilon_{14}, \bar{\varepsilon}_{7}$	$\sigma^{\prime} \mu_{14}, E \zeta^{\prime}, \mu_{7} \sigma_{10}, \eta_{7} \bar{\varepsilon}_{8}$	$\sigma^{\prime} \eta_{14} \mu_{15}, \nu_{7} \kappa_{10}, \bar{\mu}_{7}, \eta_{7} \mu_{8} \sigma_{17}$
$\pi_{i+1}^{5} \cong$	$Z_{4}+Z_{2}+Z_{2}$	$Z_{8}+Z_{2}+Z_{2}$	$Z_{8}+Z_{2}$
generators	$\nu_{5} \kappa_{8}, \bar{\mu}_{5}, \eta_{5} \mu_{6} \sigma_{15}$	$\zeta_{5} \sigma_{16}, \nu_{5} \bar{\varepsilon}_{8}, \eta_{5} \bar{\mu}_{6}$	$\zeta_{5}, \nu_{5} \mu_{8} \sigma_{17}$
$\pi_{i}^{3} \cong$	$Z_{4}+Z_{2}+Z_{2}$	$Z_{4}+Z_{2}$	$Z_{2}+Z_{2}$
generators	$\mu^{\prime} \sigma_{14}, \nu^{\prime} \bar{\epsilon}_{6}, \eta_{3} \bar{\mu}_{4}$	$\bar{\mu}^{\prime}, \nu^{\prime} \mu_{6} \sigma_{15}$	$\nu^{\prime} \eta_{6} \mu_{7} \sigma_{16}, \nu^{\prime} \bar{\mu}_{6}$

Here, we use the notations of [7]. For the simplicity, we omit the symbol " \circ " of the composition operator. The results are given in [7] except the group π_{23}^{3} which is given in [3].

Proposition 3.2. i). For the homomorphism $\Delta: \pi_{i+1}^{5} \rightarrow \pi_{i}^{3}$, we have the following table:

$\alpha=$	η_{5}	η_{5}^{2}	ν_{5}	$\nu_{5} \eta_{8}$	$\nu_{5} \eta_{8}^{2}$	ν_{5}^{2}	$\sigma^{\prime \prime \prime}$	ε_{5}	ν_{5}^{3}	μ_{5}	$\eta_{5} \varepsilon_{6}$
$\Delta \alpha=$	η_{3}^{2}	$2 \nu^{\prime}$	$\nu^{\prime} \eta_{6}$	$\nu^{\prime} \eta_{6}^{2}$	0	0	0	$\eta_{3} \varepsilon_{4}$	0	$\eta_{3} \mu_{4}$	$2 \varepsilon^{\prime}$

$\alpha=$	$\nu_{5} \sigma_{8}$	$\eta_{5} \mu_{6}$	ζ_{5}	$\nu_{5} \bar{\nu}_{8}$	$\nu_{5} \varepsilon_{8}$	ν_{5}^{4}	$\nu_{5} \mu_{8}$
$\Delta \alpha=$	$\varepsilon_{3} \nu_{11}+\nu^{\prime} \varepsilon_{6}$	$2 \mu^{\prime}$	$\nu^{\prime} \mu_{6} \bmod \nu^{\prime} \eta_{6} \varepsilon_{7}$	0	$\nu^{\prime} \eta_{6} \varepsilon_{7}$	0	$\nu^{\prime} \eta_{6} \mu_{7}$

$\alpha=$	$\nu_{5} \eta_{8} \varepsilon_{9}$	$\nu_{5} \sigma_{8} \nu_{15}$	$\nu_{5} \eta_{8} \mu_{9}$	$\nu_{5} \zeta_{8}$	$\nu_{5} \bar{\nu}_{8} \nu_{16}$	ρ^{IV}	$\bar{\varepsilon}_{5}$	$\mu_{5} \sigma_{14}$
$\Delta \alpha=$	0	$\varepsilon_{3} \nu_{11}^{2}$	0	0	0	0	$\eta_{3} \bar{\varepsilon}_{4}$	$\eta_{3} \mu_{4} \sigma_{13}$

| $\alpha \alpha=$ | $\eta_{5} \bar{\varepsilon}_{6}$ | $\nu_{5} \kappa_{8}$ | $\bar{\mu}_{5}$ | $\eta_{5} \mu_{6} \sigma_{15}$ | $\zeta_{5} \sigma_{16}$ | $\nu_{5} \bar{\varepsilon}_{8}$ | $\eta_{5} \bar{\mu}_{6}$ | $\bar{\zeta}_{5}$ | $\nu_{5} \mu_{8} \sigma_{17}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\Delta \alpha=$ | $2 \bar{\varepsilon}^{\prime}$ | $\nu^{\prime} \bar{\varepsilon}_{6}$ | $\eta_{3} \bar{\mu}_{4}$ | $2 \mu^{\prime} \sigma_{14}$ | $\nu^{\prime} \mu_{6} \sigma_{15}$ | 0 | $2 \bar{\mu}^{\prime}$ | $\nu^{\prime} \bar{\mu}_{6} \bmod \beta$ | $\beta=\nu^{\prime} \eta_{6} \mu_{7} \sigma_{16}$ |

ii). For the homomorphisms $\Delta: \pi_{i+1}^{7} \rightarrow \pi_{i}^{3}, i \neq 6$, we have the following table:

$\alpha=$	η_{7}	η_{7}^{2}	ν_{7}	ν_{7}^{2}	σ^{\prime}	$\sigma^{\prime} \eta_{14}$	$\bar{\nu}_{7}$	ε_{7}	$\sigma^{\prime} \eta_{14}^{2}$	ν_{7}^{3}
$\Delta a=$	$\nu^{\prime} \eta_{6}$	$\nu^{\prime} \eta_{\overline{6}}^{2}$	0	0	$2 \varepsilon^{\prime}$	0	$\varepsilon_{3} \nu_{11}$	$\nu^{\prime} \varepsilon_{6}$	0	0

$a=$	μ_{7}	$\eta_{7} \varepsilon_{6}$	$\nu_{\tau} \sigma_{10}$	$\eta_{7} \mu_{\text {k }}$	ζ_{7}	$\bar{\nu}_{i} \nu_{\text {de }}$	$\nu_{V} \sigma_{10} \nu_{1 i}$	$\sigma^{\prime} \sigma_{\text {it }}$	$\kappa_{\text {\% }}$	$\rho^{\prime \prime}$	$\sigma^{\prime} \bar{\nu}_{\text {i }}$
$\Delta a=$	$\nu^{\prime} \mu_{6}$	$\nu^{\prime} \eta_{6} \varepsilon_{7}$	0	$\nu^{\prime} \eta_{6} \mu_{7}$	0	$\varepsilon_{3} \nu_{11}^{2}$	0	0	+ ε^{\prime}	0	0

$a=$	$\sigma^{\prime} \varepsilon_{14}$	$\bar{\varepsilon}_{7}$	$\sigma^{\prime} \mu_{14}$	$E \zeta^{\prime}$	$\mu_{7} \sigma_{16}$	$\eta_{7} \bar{\varepsilon}_{8}$	$\sigma^{\prime} \eta_{14} \mu_{15}$	$\nu_{7} \kappa_{10}$	$\bar{\mu}_{7}$	$\eta_{7} \mu_{8} \sigma_{17}$
$\Delta a=$	0	$\nu^{\prime} \bar{\varepsilon}_{6}$	0	0	$\nu^{\prime} \mu_{6} \sigma_{15}$	0	0	0	$\nu^{\prime} \bar{\mu}_{6}$	$\nu^{\prime} \eta_{6} \mu_{7} \sigma_{16}$

Proof.

i). It follows directly from the formula $\Delta\left(E \alpha^{\prime}\right)=\eta_{3} \circ \alpha^{\prime}$ of Lemma 3.1, i), that the table is true for $\alpha=\eta_{5}, \varepsilon_{5}, \mu_{5}, \bar{\varepsilon}_{5}, \mu_{5} \sigma_{14}, \bar{\mu}_{5}$.

The relation $\eta_{3} \nu_{4}=\nu^{\prime} \eta_{6}$ in (5.9) of [7] implies the formula

$$
\Delta\left(\nu_{5} \circ E \beta\right)=\nu^{\prime} \eta_{\theta} \beta \quad \text { for } \quad \beta \in \pi_{i}^{7} .
$$

Then the cases $\alpha=\nu_{5}, \nu_{5} \eta_{8}, \nu_{5} \varepsilon_{8}, \nu_{5} \mu_{8}, \nu_{5} \mu_{8} \sigma_{17}$ follow immediately. The cases $\alpha=\nu_{5} \eta_{8}^{2}, \nu_{5}^{2}$ are obvious, since $\pi_{9}^{3}=\pi_{10}^{3}=0$, hence the cases $\alpha=\nu_{5}^{3}, \nu_{5}^{4}$ follow.

We have also

$$
\begin{aligned}
\Delta\left(\nu_{5} \bar{\nabla}_{8}\right) & =\nu^{\prime} \eta_{6} \bar{\nu}_{7}=\nu^{\prime} \nu_{6}^{2} \in \pi_{9}^{3} \circ \nu_{9}^{2}=0 & & \text { by (5.9) of [7], } \\
\Delta\left(\nu_{5} \nu_{8} \nu_{16}\right) & =\Delta\left(\nu_{5} \bar{\nu}_{8}\right) \circ \nu_{15}=0 & & \text { by (2.2), } \\
\Delta\left(\nu_{5} \zeta_{8}\right) & =\nu^{\prime} \eta_{6} \zeta_{7} \in \nu^{\prime} E^{2} \pi_{16}^{4}=\nu^{\prime} \nu_{6} \circ \pi_{18}^{9} & & \text { by Theorem } 7.9 \text { of [7] } \\
& \subset \pi_{9}^{3} \circ \pi_{18}^{9}=0, & & \\
\Delta\left(\nu_{5} \kappa_{8}\right) & =\nu^{\prime} \eta_{6} \kappa_{7}=\nu^{\prime} \varepsilon_{6} & & \text { by (10.23) of [7], } \\
\Delta\left(\nu_{5} \varepsilon_{8}\right) & =\nu^{\prime} \eta_{6} \varepsilon_{7}=\nu^{\prime} \nu_{6} \sigma_{9} \nu_{16}^{2} & & \text { by Lemma 12.10 of [7] } \\
& \in \pi_{9}^{3} \circ \sigma_{9} \nu_{16}^{2}=0 . & &
\end{aligned}
$$

The relations $\eta_{3}^{3}=2 \nu^{\prime}, \eta_{3}^{2} \varepsilon_{5}=2 \varepsilon^{\prime}, \quad \eta_{3}^{2} \mu_{5}=2 \mu^{\prime}, \quad \eta_{3}^{2} \varepsilon_{5}=2 \varepsilon^{\prime}$ and $\eta_{3}^{2} \bar{\mu}_{5}$ $=2 \pi^{\prime}{ }^{\prime}$ are obtained in (5.3), Lemma 6.6, (7.7), Lemma 12.3 and Lemma 12.4 of [7] respectively. Then the cases $\alpha=\eta_{5}^{2}, \eta_{5} \varepsilon_{6}, \eta_{5} \mu_{6}$, $\eta_{5} \mu_{6} \sigma_{15}, \eta_{5} \varepsilon_{6}$ and $\eta_{5} \bar{\mu}_{6}$ follow.

We have also

$$
\begin{aligned}
& \Delta\left(\nu_{5} \eta_{8} \varepsilon_{9}\right)=\nu^{\prime} \eta_{6}^{2} \varepsilon_{8}=\nu^{\prime}\left(2 E^{3} \varepsilon^{\prime}\right) \in 2 \pi_{16}^{3}=0 \\
& \Delta\left(\nu_{5} \eta_{8} \mu_{9}\right)=\nu^{\prime} \eta_{6}^{2} \mu_{8}=\nu^{\prime}\left(2 E^{3} \mu^{\prime}\right) \in 2 \pi_{17}^{3}=0,
\end{aligned}
$$

and
by Theorems 7.7 and 10.3 of [7].
The remaining cases: $\alpha=\sigma^{\prime \prime \prime}, \nu_{5} \sigma_{8}, \zeta_{5}, \nu_{5} \sigma_{8} \nu_{15}, \rho^{\mathrm{IV}}, \zeta_{5} \sigma_{16}, \bar{\zeta}_{5}, \Delta(\alpha)$ are verified directly from i) of the following Lemma 3.3, in virtue of Lemma 3.1, i) and (2.3).
ii). It follows directly from the formula $\Delta\left(E \alpha^{\prime}\right)= \pm \nu^{\prime} \circ \alpha^{\prime}$ of Lemma 3.1, ii) that the table is true for $\alpha=\eta_{7}, \eta_{7}^{2}, \varepsilon_{7}, \mu_{7}, \eta_{7} \varepsilon_{8}$, $\eta_{7} \mu_{8}, \bar{\varepsilon}_{7}, \mu_{7} \sigma_{16}, \bar{\mu}_{7}$ and $\eta_{7} \mu_{8} \sigma_{17}$.

Obviously $\nu^{\prime} \nu_{6} \in \pi_{9}^{3}=0$. Thus we have

$$
\Delta\left(\nu_{7} \circ E \beta\right)= \pm \nu^{\prime} \nu_{6} \circ \beta=0 \quad \text { for } \quad \beta \in \pi_{i}^{9} .
$$

Then the cases $\alpha=\nu_{7}, \nu_{7}^{2}, \nu_{7}^{3}, \nu_{7} \sigma_{10}, \nu_{7} \sigma_{10} \nu_{17}$ and $\nu_{7} \kappa_{10}$ follow.
The relations $\nu^{\prime} \bar{\nu}_{6}=\varepsilon_{3} \nu_{11}$ and $\eta_{6} \bar{\varepsilon}_{7}=\nu_{6} \sigma_{9} \nu_{16}^{2}$ are obtained in (7. 12) and Lemma 12.10 of [7]. Then the cases $\alpha=\bar{\nu}_{7}, \bar{\nu}_{7} \nu_{15}$, and $\eta_{7} \bar{\varepsilon}_{8}$ follow.

Next we prove

$$
\begin{equation*}
E \nu^{\prime} \circ \sigma^{\prime}=2 E \varepsilon^{\prime}=\eta_{4}^{2} \varepsilon_{6} . \tag{3.2}
\end{equation*}
$$

By Lemma 5.4, Lemma 5.14 and (7.10) of [7], we have

$$
E^{2}\left(E \nu^{\prime} \circ \sigma^{\prime}\right)=4 \nu_{6} \sigma_{9}=E^{2}\left(\eta_{4}^{2} \varepsilon_{6}\right)=E^{2}\left(2 E \varepsilon^{\prime}\right) .
$$

By Lemma 3.1, ii), $E \nu^{\prime} \circ \sigma^{\prime}=E \Delta\left(\sigma^{\prime}\right) \in E \pi_{13}^{3}$. It is seen in Theorem 7.3 of [7] that $E^{2} \mid E \pi_{13}^{3}: E \pi_{13}^{3} \rightarrow \pi_{16}^{6}$ is a monomorphism. It follows the relation (3.2).

Applying the homomorphism E^{*} to (3.2), we have

$$
\Delta\left(\sigma^{\prime}\right)=E^{*} E\left(\Delta \sigma^{\prime}\right)=E^{*}\left(E \nu^{\prime} \circ \sigma^{\prime}\right)=E^{*} E\left(2 \varepsilon^{\prime}\right)=2 \varepsilon^{\prime}=\eta_{3}^{2} \varepsilon_{5} .
$$

If $2 \beta=0$, then $\Delta\left(\sigma^{\prime} \circ E^{2} \beta\right)=\varepsilon^{\prime} \circ 2 E \beta=0$, and the cases $\alpha=\sigma^{\prime} \eta_{14}$, $\sigma^{\prime} \eta_{14}^{2}, \sigma^{\prime} \bar{\nu}_{14}, \sigma^{\prime} \mu_{14}, \sigma^{\prime} \varepsilon_{14}, \sigma^{\prime} \eta_{14} \mu_{15}$ follow immediately.

We have $E \zeta^{\prime}=\sigma^{\prime} \eta_{14} \varepsilon_{15}$ in (12.4) of [7]. Then the case $\alpha=E \zeta^{\prime}$ follows. We have $\varepsilon_{5} \sigma_{13}=0$ in Lemma 10.7 of [7]. Then

$$
\Delta\left(\sigma^{\prime} \sigma_{14}\right)=\Delta\left(\sigma^{\prime}\right) \sigma_{13}=\eta_{3}^{3} \varepsilon_{5} \sigma_{13}=0 .
$$

The remaining cases: $\alpha=\zeta_{7}, \kappa_{7}, \rho^{\prime \prime}$ follow from ii) of the following Lemma 3.3 in virtue of Lemma 3.1, ii) and (2.3).

Lemma 3. 3. i).

$$
\begin{array}{rlrl}
\eta_{4} \sigma^{\prime \prime \prime} & =0, & \eta_{4} \nu_{5} \sigma_{8} & =E\left(\varepsilon_{3} \nu_{11}+\nu^{\prime} \varepsilon_{6}\right), \\
\eta_{4} \nu_{5} \sigma_{8} \nu_{15} & =E\left(\varepsilon_{3} \nu_{11}^{2}\right), & \eta_{4} \zeta_{5} \equiv E\left(\nu^{\prime} \mu_{6}\right) \bmod \quad E\left(\nu^{\prime} \eta_{6} \varepsilon_{7}\right), \\
\eta_{4} \rho^{I V} & =0, & \eta_{4} \zeta_{5} \sigma_{16}=E\left(\nu^{\prime} \mu_{6} \sigma_{15}\right), \\
\eta_{4} \xi_{5} & \equiv E\left(\nu^{\prime} \bar{\mu}_{6}\right) & \bmod \quad E\left(\nu^{\prime} \eta_{6} \mu_{7} \sigma_{16}\right) .
\end{array}
$$

ii). $\quad \nu^{\prime} \zeta_{6}=0, \quad\left(E \nu^{\prime}\right) \kappa_{7}=E \bar{\varepsilon}^{\prime} \quad$ and $\quad E \nu^{\prime} \rho^{\prime \prime}=0$.

Proof. i). The relation $\eta_{4} \sigma^{\prime \prime \prime}=0$ is already obtained in (7.4) of [7].

We have $\quad \eta_{4} \nu_{5} \sigma_{8}=E \nu^{\prime} \eta_{7} \sigma_{8}$

$$
=E \nu^{\prime}\left(\sigma^{\prime} \eta_{14}+\bar{\nu}_{7}+\varepsilon_{7}\right) \quad \text { by (7.9) of [7] }
$$

$$
\left.=E \Delta\left(\sigma^{\prime} \eta_{14}+\bar{\nu}_{7}+\varepsilon_{7}\right) \quad \text { for } \Delta \text { of ii }\right)
$$

$$
=E\left(\varepsilon_{3} \nu_{11}+\nu^{\prime} \varepsilon_{6}\right),
$$

and

$$
\eta_{4} \nu_{5} \sigma_{8} \nu_{15}=E\left(\varepsilon_{3} \nu_{11}^{2}+\nu^{\prime} \varepsilon_{6} \nu_{14}\right)=E\left(\varepsilon_{3} \nu_{11}^{2}\right)
$$

since $\varepsilon_{6} \nu_{14}=0$ by (7.14) of [7].
Next, we have

$$
\begin{aligned}
\eta_{4} \zeta_{5} & \in \eta_{4} \circ\left\{\nu_{5}, 8 \iota_{8}, E \sigma^{\prime}\right\}_{1} & & \text { by the definition of } \zeta_{5} \\
& \subset\left\{\eta_{4} \nu_{5}, 8 \iota_{8}, E \sigma^{\prime}\right\}_{1} & & \text { by Proposition 1.2 of [7] } \\
& =\left\{E \nu^{\prime} \eta_{7}, 8 \iota_{8}, E \sigma^{\prime}\right\}_{1} & &
\end{aligned}
$$

and $E \nu^{\prime} \mu_{7} \in E \nu^{\prime} \circ\left\{\eta_{7}, 2 \iota_{8}, E^{3} \sigma^{\prime \prime \prime}\right\}_{1} \quad$ by Lemma 6.5 of [7]
C $\left\{E \nu^{\prime} \eta_{7}, 2 \iota_{8}, 4 E \sigma^{\prime}\right\}_{1} \quad$ by Lemma 5.14 of [7]
く $\left\{E \nu^{\prime} \eta_{7}, 8 \iota_{8}, E \sigma^{\prime}\right\}_{1} \quad$ by Proposition 1.2 of [7].
It follows

$$
\eta_{4} \zeta_{5} \equiv E \nu^{\prime} \mu_{7} \quad \bmod E \nu^{\prime} \eta_{7} \circ E \pi_{15}^{7}+\pi_{9}^{4} \circ E^{2} \sigma^{\prime}
$$

$\eta_{6} \circ \pi_{15}^{7}$ is generated by $\eta_{6} \sigma^{\prime} \eta_{14}, \eta_{6} \bar{\nu}_{7}$ and $\eta_{6} \varepsilon_{7}$. $\eta_{6} \sigma^{\prime} \eta_{14}=\left(4 \bar{\nu}_{6}\right) \eta_{14}=0$ by (7.4) of [7]. $\quad \nu^{\prime} \eta_{6} \bar{\nu}_{7}=\nu^{\prime} \nu_{6}^{3}=\Delta\left(\nu_{7}^{3}\right)=0$ by (7.3) of [7]. $\pi_{9}^{4} \circ E^{2} \sigma^{\prime}=$ $\pi_{9}^{4} \circ\left(2 \sigma_{9}\right)=2 \pi_{9}^{4} \circ \sigma_{9}=0$ by Lemma 5.14 of [7]. Thus we have that $E \nu^{\prime} \eta_{7} \circ E \pi_{15}^{7}+\pi_{9}^{4} \circ E^{2} \sigma^{\prime}$ is generated by $E\left(\nu^{\prime} \eta_{6} \varepsilon_{7}\right)$, and

$$
\eta_{4} \zeta_{5} \equiv E\left(\nu^{\prime} \mu_{6}\right) \quad \bmod E\left(\nu^{\prime} \eta_{6} \varepsilon_{7}\right)
$$

It follows from the relation $\varepsilon_{7} \sigma_{15}=0$ in Lemma 10.7 of [7]

$$
\eta_{1} \zeta_{5} \sigma_{16}=E\left(\nu^{\prime} \mu_{6} \sigma_{15}\right) .
$$

By (10.12) of [7], $\eta_{7}^{2} \circ H\left(\rho^{\mathrm{IV}}\right)=\eta_{7}^{2} \circ 4 \zeta_{9}=0$. It follows from Lemma 3.1, i) $\eta_{4} \circ \rho^{\mathrm{IV}} \in E \pi_{19}^{3} . \quad E^{2}\left(\eta_{4} \circ \rho^{\mathrm{IV}}\right)=\eta_{6}\left(2 E \rho^{\prime \prime \prime}\right)=2 \eta_{6} \circ E \rho^{\prime \prime \prime}=0$ by (10.15) of [7]. It is seen in Theorem 12.6 of [7] that $E^{2} \mid E \pi_{19}^{3}$ is a monomorphism. Thus we have

$$
\eta_{4} \circ \rho^{\text {IV }}=0 .
$$

For ξ_{5}, we have, similarly to ζ_{5},

$$
\begin{aligned}
& \eta_{4} \xi_{5} \in \eta_{4} \circ\left\{\zeta_{5}, 8 \iota_{16}, 2 \sigma_{16}\right\}_{1} \\
& \quad \subset\left\{\eta_{4} \zeta_{5}, 8 \iota_{16}, 2 \sigma_{16}\right\}_{1}=\left\{E \nu^{\prime} \mu_{7}+x E \nu^{\prime} \eta_{7} \varepsilon_{8}, 8 \iota_{16}, 2 \sigma_{16}\right\}_{1} \\
& \quad \subset\left\{E \nu^{\prime} \mu_{7}, 8 \iota_{16}, 2 \sigma_{16}\right\}_{1}+x\left\{E \nu^{\prime} \eta_{7} \varepsilon_{8}, 8 \iota_{16}, 2 \sigma_{16}\right\}_{1}, \quad x=0 \text { or } 1, \\
& E \nu^{\prime} \omega_{7} \in E \nu^{\prime} \circ E^{4}\left\{\mu_{3}, 2 \iota_{12}, 8 \sigma_{12}\right\}_{1} \subset E \nu^{\prime} \circ\left\{\mu_{7}, 2 \iota_{16}, 8 \sigma_{16}\right\}_{1} \\
& \quad \subset\left\{E \nu^{\prime} \mu_{7}, 8 \iota_{16}, 2 \sigma_{16}\right\}_{1}, \\
& E \nu^{\prime} \varepsilon_{7} \mu_{15} \in E E \nu^{\prime} \varepsilon_{7} \circ\left\{\eta_{15}, 2 \iota_{16}, 8 \sigma_{16}\right\}_{1} \\
& \quad \subset\left\{E \nu^{\prime} \varepsilon_{7} \eta_{15}, 2 \iota_{16}, 8 \sigma_{16}\right\}_{1}=\left\{E \nu^{\prime} \eta_{7} \varepsilon_{8}, 2 \iota_{16}, 8 \sigma_{16}\right\}_{1} .
\end{aligned}
$$

Thus

$$
\eta_{4} \bar{\zeta}_{5} \equiv E \nu^{\prime} \bar{\mu}_{7}+x E \nu^{\prime} \varepsilon_{7} \mu_{15} \quad \bmod G
$$

where $G=E \nu^{\prime} \mu_{7} \circ E \pi_{23}^{15}+E \nu^{\prime} \eta_{7} \varepsilon_{8} \circ E \sim \sim_{23}^{15}+\pi_{17}^{4} \circ 2 \sigma_{17}$ is generated by the following elements : $E \nu^{\prime} \mu_{7} \bar{\nu}_{16}, E \nu^{\prime} \mu_{7} \varepsilon_{16}, E \nu^{\prime} \eta_{7} \varepsilon_{8} \bar{\nu}_{16}, E \nu^{\prime} \eta_{7} \varepsilon_{8} \varepsilon_{16}, \pi_{17}^{4} \circ 2 \sigma_{17}$ < $2 \pi_{24}^{4}=0$ (cf. Theorem 7.1 of [7] and [3]). $\mu_{5} \nu_{14} \in E^{2} \pi_{15}^{3}=0$ by Theorem 7.6 of [7]. Then

$$
\begin{aligned}
\mu_{7} \bar{\nu}_{16} & =E^{2} \mu_{5} \circ E^{2}\left\{\nu_{14}, \eta_{17}, \nu_{18}\right\} & & \text { by Lemma 6.2 of [7] } \\
& =E^{2}\left\{\mu_{5}, \nu_{14}, \eta_{17}\right\} \circ \nu_{21} & & \text { by Proposition 1.4 of [7] } \\
& \subset E^{2} \pi_{19}^{5} \circ \nu_{21} \subset 4 \pi_{21}^{7} \circ \nu_{21} & & \text { by Theorem 10.3 of [7] } \\
& <4 \pi_{24}^{7}=0 & & \text { by Theorem 12.7 of [7]. }
\end{aligned}
$$

By use of the anti-commutativity of the composition operator and the relation $\bar{\nu}_{16}+\varepsilon_{16}=\eta_{16} \sigma_{17}$ in Lemma 6.4 of [7],

$$
\varepsilon_{7} \mu_{15}=\mu_{7} \varepsilon_{16}=\mu_{7} \eta_{16} \sigma_{17}+\mu_{7} \bar{\nu}_{16}=\eta_{7} \mu_{8} \sigma_{17} .
$$

We have also $\eta_{7} \varepsilon_{8} \varepsilon_{16}=\eta_{7} \varepsilon_{8} \bar{\nu}_{16}=\eta_{7} \nu_{8} \sigma_{11} \nu_{18}^{2}=0$ by Lemma 12.10 and (5.9) of [7]. Consequently, we have obtained the relation

$$
\eta_{1} \xi_{5} \equiv E\left(\nu^{\prime} \mu_{\mu_{6}}\right) \quad \bmod E\left(\nu^{\prime} \eta_{6} \mu_{7} \sigma_{16}\right)
$$

ii). We have

$$
\begin{array}{rlrl}
\nu^{\prime} \zeta_{6} & \in \nu^{\prime} \circ\left\{\nu_{6}, 8 \iota_{9}, E^{2} \sigma^{\prime}\right\} & & \text { by the definition of } \zeta_{6} \\
& =-\left\{\nu^{\prime}, \nu_{6}, 8 \iota_{9}\right\} \circ E^{3} \sigma^{\prime} & & \text { by Proposition 1.4 of [7] } \\
& \subset \pi_{10}^{3} \circ E^{3} \sigma^{\prime}=0 . &
\end{array}
$$

It follows $\nu^{\prime} \zeta_{6}=0$.
The relation $E \bar{\varepsilon}^{\prime}=E \nu^{\prime} \circ \kappa_{7}$ is given in Lemma 12.3 of [7].
Next we have

$$
\begin{array}{rlrl}
E \nu^{\prime} \circ \rho^{\prime \prime} & \in E \nu^{\prime} \circ\left\{\sigma^{\prime}, 8 \iota_{14}, 2 \sigma_{14}\right\}_{1} & \text { by the definition of } \rho^{\prime \prime} \\
& \subset\left\{E \nu^{\prime} \circ \sigma^{\prime}, 8 \iota_{14}, 2 \sigma_{14}\right\}_{1} & \\
& =\left\{\eta_{4}^{2} \varepsilon_{6}, 8 \iota_{14}, 2 \sigma_{14}\right\}_{1} & \text { by }(3.2) \\
& \subset\left\{\eta_{4}^{2}, 8 \varepsilon_{6}, 2 \sigma_{14}\right\}_{1}=\left\{\eta_{4}^{2}, 0,2 \sigma_{14}\right\}_{1} \equiv 0 .
\end{array}
$$

Thus $E \nu^{\prime} \circ \rho^{\prime \prime} \in \eta_{4}^{2} \circ E \pi_{21}^{5}+\pi_{15}^{4} \circ 2 \sigma_{15}$. From table (3.1) and Proposition 3.2, i), we have that $\eta_{4}^{2} \circ E \pi_{21}^{5}$ is generated by $\eta_{4}^{2} \mu_{6} \sigma_{15}$ and $\eta_{4}^{2} \eta_{6} \bar{\varepsilon}_{7}=$ $2 \eta_{4} E \bar{\varepsilon}^{\prime}=0$. We see in Theorem 7.3 of [7] that $2 \pi_{15}^{4}$ is generated by $2 E \mu^{\prime}=\eta_{4}^{2} \mu_{6}$. It follows that

$$
E \nu^{\prime} \circ \rho^{\prime \prime}=x\left(\eta_{4}^{2} \mu_{6} \sigma_{15}\right) \quad \text { for } \quad x=0 \text { or } 1 .
$$

Now, consider the composition $\eta_{8} \circ \rho^{\prime} \in \pi_{24}^{8}$. We have $H\left(\eta_{8} \circ \rho^{\prime}\right)$ $=\eta_{15}^{2} \circ 8 \sigma_{17}=0$. It follows that $\eta_{8} \circ \rho^{\prime} \in E \pi_{23}^{7}$. By Lemma 10.9 of [7], $E^{5}\left(\eta_{8} \circ \rho^{\prime}\right)=\eta_{13} \circ E\left(2 \rho_{13}\right)=2 \eta_{13} \circ \rho_{14}=0$. The kernel of $E^{6}: \pi_{23}^{7} \rightarrow \pi_{29}^{13}$ is generated by $\sigma^{\prime} \mu_{14}, E \zeta^{\prime}$ and $\eta_{7} \bar{\varepsilon}_{8}$, since Theorem 12.6 and Theorem 12.10 of [7]. It follows that $\eta_{6}^{3} \circ \rho^{\prime}=\eta_{6}^{2}\left(\eta_{8} \circ \rho^{\prime}\right)$ is a linear combination of the following three elements:

$$
\begin{array}{ll}
\eta_{6}^{2} E \sigma^{\prime} \mu_{15}=\eta_{6}\left(4 \bar{\nu}_{7}\right) \mu_{15}=0 & \text { by (7.4) of [7] } \\
\eta_{6}^{2} E^{2} \zeta^{\prime}=\eta_{6}^{2} E \sigma^{\prime} \eta_{15} \varepsilon_{17}=0 & \text { by }(12.4) \text { of }[7] \\
\eta_{6}^{2} \eta_{8} \bar{\varepsilon}_{9}=4 \nu \bar{\varepsilon}_{9}=0 & \text { by }(5.7) \text { of }[7]
\end{array}
$$

Therefore, we have obtained

$$
\eta_{6}^{3} \circ \rho^{\prime}=0 .
$$

We have $E^{3}\left(E \nu^{\prime} \circ \rho^{\prime \prime}\right)=E^{4} \nu^{\prime} \circ E\left(2 \rho^{\prime}\right)=E^{4}\left(2 \nu^{\prime}\right) \circ E \rho^{\prime}=E\left(\eta_{6}^{3} \circ \rho^{\prime}\right)=0$ by (5.5) and the page 107 of [7]. It follows that

$$
\begin{aligned}
4 x\left(\zeta_{7} \sigma_{18}\right) & =E^{3}\left(x \eta_{4}^{2} \mu_{6} \sigma_{15}\right) & \text { by }(7.14) \text { of }[77 \\
& =E^{3}\left(E \nu^{\prime}\left(. \rho^{\prime \prime}\right)=0 .\right. &
\end{aligned}
$$

This implies $x=0$ and

$$
E \nu^{\prime} \circ \rho^{\prime \prime}=0,
$$

since the element $\zeta_{7} \sigma_{18}$ is of order 8 by Theorem 12.8 of [7].
Consequently the proof of Lemma 3.3 and hence Proposition 3.2 is established.

§4. The homotopy groups $\boldsymbol{\pi}_{i}(S U(3))$ for $i \leqq 23$

In this section, we shall prove the following
Theorem 4.1. The homotopy groups $\pi_{i}(S U(3))$ for $i \leqq 23$ and generators of their 2-primary components are listed in the following table:

$i=$	1,2	3	4	5	6	7	8	9
$\pi_{i}(S U(3)) \cong$	0	Z	0	Z	$Z_{2}+Z_{3}$	0	$Z_{4}+Z_{3}$	Z_{3}
gen. of 2 -comp.		$i_{*} \iota_{3}$		$\left[2 \iota_{5}\right]$	$i_{*} \nu^{\prime}$		$\left[2 \iota_{5}\right] \circ \nu_{5}$	

$i=$	10	11	12	13	14
$\pi_{i}(S U(3)) \cong$	$Z_{2}+Z_{15}$	Z_{4}	$Z_{4}+Z_{15}$	$Z_{2}+Z_{3}$	$Z_{4}+Z_{2}+Z_{21}$
gen. of 2 -comp.	$\left[\nu_{5} \eta_{8}^{2}\right]$	$\left[\nu_{5}^{2}\right]$	$\left[\sigma^{\prime \prime \prime}\right]$	$i_{*} \epsilon^{\prime}$	$\left[\nu_{5}^{2}\right] \circ \nu_{11}, i_{*} \mu^{\prime}$

$i=$	15	16	17
$\pi_{i}(S U(3)) \cong$	$Z_{4}+Z_{9}$	$Z_{4}+Z_{2}+Z_{63}+Z_{3}$	$Z_{2}+Z_{2}+Z_{15}$
gen. of $2-\operatorname{comp} p$	$\left[2 \iota_{5}\right] \circ \nu_{5} \sigma_{8}$	$\left[2 \iota_{5}\right] \circ \zeta_{5},\left[\nu_{5} \bar{\nu}_{8}\right]$	$\left[\nu_{5}^{2}\right] \circ \nu_{11}^{2},\left[\nu_{5} \eta_{8} \varepsilon_{9}\right]$

$i=$	18	19	20
$\pi_{i}(S U(3)) \cong$	$Z_{2}+Z_{2}+Z_{15}+Z_{3}$	$Z_{4}+Z_{2}+Z_{3}+Z_{3}$	$Z_{4}+Z_{2}+Z_{15}+Z_{3}$
gen. of 2 -comp.	$i_{*} \bar{\varepsilon}_{3},\left[\nu_{5} \eta_{8} \mu_{9}\right]$	$\left[\sigma^{\prime \prime \prime}\right] \circ \sigma_{12},\left\lceil\nu_{5} \bar{\nu}_{8}\right] \circ \nu_{16}$	$\left[\rho^{\mathrm{IV}], i_{*} \bar{\varepsilon}^{\prime}}\right.$

$i=$	21	22	23
$\pi_{i}(S U(3)) \cong$	$Z_{2} Z_{3}$	$Z_{2}+Z_{2}+Z_{33}$	$Z_{4}+Z_{2}+Z_{3}$
gen. of 2 -comp.	$i_{*} \mu^{\prime} \sigma_{14}$	$i_{*} \bar{\mu}^{\prime},\left[2 c_{5}\right] \circ \nu_{5} \kappa_{8}$	$\left[2 \iota_{5}\right] \circ \zeta_{5} \sigma_{16},\left[\nu_{5} \bar{\varepsilon}_{8}\right]$

Here, we denote by $[\alpha]$ an element of $\pi_{i}(S U(3))$ such that $p_{*}[\alpha]=$ $\alpha \in \pi_{i}\left(S^{5}\right)$ and $[\alpha] \in \pi_{i}(S U(3): 2)$ for $i>5$. The following relations hold:

$$
\begin{align*}
& 2\left[\nu_{5}^{2}\right]=i_{*} \varepsilon_{3}, 2\left[\sigma^{\prime \prime \prime}\right]=i_{*} \mu_{3}, 2\left(\left[\nu_{5}^{2}\right] \circ \nu_{11}\right)=i_{*} \varepsilon_{3} \nu_{11}, \tag{4.1}\\
& 2\left(\left[\sigma^{\prime \prime \prime}\right] \circ \sigma_{12}\right)=i_{*} \mu_{3} \sigma_{12}, 2\left[\rho^{\mathrm{IV}}\right] \equiv i_{*} \bar{\mu}_{3} \quad \bmod i_{*} \bar{\varepsilon}^{\prime} .
\end{align*}
$$

Since $\chi(S U(3))=\Delta t_{5}=\eta_{3}$ is an element of order 2, we have, by Lemma 2.3, isomorphisms

$$
\pi_{i}(S U(3): p) \cong \pi_{i}\left(S^{5} \times S^{3}: p\right) \cong \pi_{i}\left(S^{3}: p\right) \oplus \pi_{i}\left(S^{5}: p\right)
$$

for odd prime p and all i. Then the above results on the odd components follow immediately from the following table:

$i=$	$1,2,3,4,5$	6	7	8	9	10	11	12	13	14
odd comp. of $\pi_{i}\left(S^{3}\right) \cong$	0	Z_{3}	0	0	Z_{3}	Z_{15}	0	0	Z_{3}	Z_{21}
odd comp. of $\pi_{i}\left(S^{5}\right) \cong$	0	0	0	Z_{3}	0	0	0	Z_{15}	0	0

$i=$	15	16	17	18	19	20	21	22	23
odd comp. of $\pi_{i}\left(S^{3}\right) \cong$	0	Z_{3}	Z_{15}	Z_{15}	Z_{3}	Z_{3}	Z_{3}	Z_{33}	0
odd comp. of $\pi_{i}\left(S^{5}\right) \cong$	Z_{9}	Z_{63}	0	Z_{3}	Z_{3}	Z_{15}	0	0	Z_{3}

The table is given by Chapter XIII of [7] and [3].
Consider the exact sequence (2.1) for the bundle $\left(S U(3), p, S^{5}\right.$ $\left.=S U(3) / S^{3}\right)$. Then it induces an exact sequence
$0 \rightarrow \operatorname{Coker}\left(\Delta: \pi_{i+1}^{5} \rightarrow \pi_{i}^{3}\right) \xrightarrow{i_{*}} \pi_{i}(S U(3): 2) \xrightarrow{p_{*}} \operatorname{Ker}\left(\Delta: \pi_{i}^{5} \rightarrow \pi_{i+1}^{3}\right) \rightarrow 0$, for $i>5$. We see also the exactness of (4.3) holds for $i \leqq 5$ if we replace $\pi_{i}(S U(3): 2)$ by $\pi_{i}(S U(3))$. Then we easily have the results in Theorem 4.1 for $i \leqq 3$.

By concerning the table (3.1) and Proposition 3.2, the following lemma is directly verified.

Lemma 4.2. i). The homomorphisms $\Delta: \pi_{i+1}^{5} \rightarrow \pi_{i}^{3}$ are epimorphisms for $i=4,5,7,8,9,10,15,16,17,23$. For the other values of $i, 3<i<24$, we have the following table of the cokernel of Δ :

$i=$	6	11	12	13	14	18	19	20	21	22
$i=$ Coker $\Delta \cong$	Z_{2}	Z_{2}	Z_{2}	Z_{2}	$Z_{2}+Z_{2}$	Z_{2}	Z_{2}	$Z_{2}+Z_{2}$	Z_{2}	Z_{2}
repr. of gene.	ν^{\prime}	ε_{3}	μ_{3}	ε^{\prime}	$\mu^{\prime}, \varepsilon_{3} \nu_{11}$	$\bar{\varepsilon}_{3}$	$\mu_{3} \sigma_{12}$	$\bar{\varepsilon}^{\prime}, \bar{\mu}_{3}$	$\mu^{\prime} \sigma_{14}$	$\bar{\mu}^{\prime}$

ii). The homomorphisms $\Delta: \pi_{i}^{5} \rightarrow \pi_{i-1}^{3}$ are monomorphisms for $i=4,6,7,9,13,21$. For the other values of $i, 3<i<24$, we have the following table of the kernel of Δ :

$i=$	5	8	10	11	12	14	15	16	17
Ker. $\Delta \cong$	Z	Z_{4}	Z_{2}	Z_{2}	Z_{2}	Z_{2}	Z_{4}	$Z_{4}+Z_{2}$	$Z_{2}+Z_{2}$
generators	$2 \iota_{5}$	$2 \nu_{5}$	$\nu_{5} \eta_{8}^{2}$	ν_{5}^{2}	$\sigma^{\prime \prime \prime}$	ν_{5}^{3}	$2 \nu_{5} \sigma_{8}$	$2 \zeta_{5}, \nu_{5} \bar{\nu}_{8}$	$\nu_{5}^{4}, \nu_{5} \eta_{8} \varepsilon_{9}$

$i=$	18	19	20	22	23
Ker. $\Delta \cong$	Z_{2}	$Z_{2}+Z_{2}$	Z_{2}	Z_{2}	$Z_{4}+Z_{2}$
generators	$\nu_{5} \eta_{8} \mu_{9}$	$\nu_{5} \zeta_{8}, \nu_{5} \bar{\nu}_{8} \nu_{16}$	ρ^{IV}	$2 \nu_{5} \kappa_{8}$	$2 \zeta_{5} \sigma_{16}, \nu_{5} \bar{\varepsilon}_{8}$

Now we compute $\pi_{i}(S U(3): 2)$ by dividing into three cases of i.

Case 1: $i=4,6,7,9,13,21$. For these values of i, it follows from the exactness of (4.3) and ii) of Lemma 4.2 that $\pi_{i}(S U(3): 2)$ is isomorphic to the cokernel of $\Delta: \pi_{i+1}^{5} \rightarrow \pi_{i}^{3}$ under the injection homomorphism i_{*}. Thus Theorem 4.1 is established for these values of i, by i) of Lemma 4.2.

Case 2: $i=5,8,10,15,16,17,23$. For these values of i, it follows from the exactness of (4.3) and i) of Lemma 4.2 that $\pi_{i}(S U(3): 2)\left(\pi_{5}(S U(3))\right.$ if $\left.i=5\right)$ is isomorphic to the the kernel of $\Delta: \pi_{i}^{5} \rightarrow \pi_{i-1}^{3}$ under the projection homomorphism p_{*}. Thus Theorem 4.1 is established for these values of i, by ii) of Lemma 4.2, the naturality $(2.1)^{\prime}$ and by the following relations:

$$
\begin{align*}
& 2 \iota_{5} \circ \nu_{5}=2 \nu_{5}, \quad 2 \iota_{5} \circ \nu_{5} \sigma_{8}=2 \nu_{5} \sigma_{8}, \quad 2 \iota_{5} \circ \zeta_{5}=2 \zeta_{5} \tag{4.4}\\
& \text { and } 2 \iota_{5} \circ \zeta_{5} \sigma_{16}=2 \zeta_{5} \sigma_{16} \text {. }
\end{align*}
$$

In general, $E\left(2 \iota_{\mathrm{s}} \circ \alpha\right)=2 E \alpha=E(\alpha)$ for $\alpha \in \pi_{i}\left(S^{5}\right)$. For $i=8$ and $i=15$, the homomorphisms $E: \pi_{i}\left(S^{5}\right) \rightarrow \pi_{i+1}\left(S^{6}\right)$ are monomorphisms [7]. It follows the first two relations of (4.4). For $i=16$, the kernel of E is generated by $\nu_{5} \bar{\nu}_{8}+\nu_{5} \varepsilon_{8}$ (by (7.7) of [7]). Thus $2 \iota_{5} \circ \zeta_{5}=2 \zeta_{5}+x\left(\nu_{5} \bar{\nu}_{8}+\nu_{5} \varepsilon_{8}\right)$ for $x=0$ or 1. By the exactness of (2.1) and by i) of Proposition 3.2,

$$
\begin{aligned}
0 & =\Delta\left(p_{*}\left(\left[2 \iota_{5}\right] \odot \zeta_{5}\right)\right)=\Delta\left(2 \iota_{5^{\prime}} \zeta_{5}\right) \\
& -\Delta\left(2 \zeta_{5}+x\left(\nu_{5} \bar{\nu}_{6}+\nu_{5} \varepsilon_{8}\right)\right)=x \nu^{\prime} \eta_{5} \varepsilon_{4} .
\end{aligned}
$$

It follows that $x=0$ and hence $2 \zeta_{5}=2 \iota_{5} \circ \zeta_{5}$. We have also $2 \iota_{5} \circ \zeta_{5} \sigma_{16}$ $=\left(2 \zeta_{5}\right) \sigma_{16}=2 \zeta_{5} \sigma_{16}$.

Case 3: $i=11,12,14,18,19,20,22$. In this case, we have to determine the extension (4.3).

First consider the case $i=11$. By Lemma 4.2, we have an exact sequence :

$$
0 \rightarrow Z_{2} \xrightarrow{i_{*}} \pi_{11}(S U(3): 2) \xrightarrow{p_{*}} Z_{2} \rightarrow 0 .
$$

The first Z_{2} is generated by ε_{3} and the second by ν_{5}^{2}. By (6.1) of [7],

$$
E\left\{\eta_{4}, \nu_{5}^{2}, 2 \iota_{11}\right\} \subset\left\{\eta_{5}, \nu_{6}^{2}, 2 \iota_{12}\right\}_{1}=\varepsilon_{5}+\eta_{5} \circ E \pi_{12}^{5}+2 \pi_{13}\left(S^{5}\right) .
$$

$2 \pi_{13}\left(S^{5}\right)=0$ since $\pi_{13}\left(S^{5}\right) \cong Z_{2} . \quad \eta_{5} \circ E \pi_{12}^{5}$ is generated by $E\left(\eta_{4} \circ \sigma^{\prime \prime \prime}\right)$. $\eta_{4} \circ \sigma^{\prime \prime \prime}=0$ by (7.4) of [7]. Thus $\left\{\eta_{5}, \nu_{6}^{2}, 2 t_{12}\right\}_{1}$ consists of a single element $\varepsilon_{5}=E \varepsilon_{4}$. Then $\varepsilon_{4} \in\left\{\eta_{4}, \nu_{5}^{2}, 2 \iota_{11}\right\}$ since $E: \pi_{22}\left(S^{4}\right) \rightarrow \pi_{13}\left(S^{5}\right)$ is a monomorphism. By Theorem 2.6, there exists an element $\alpha \in \pi_{11}(S U(3))$ such that $p_{*}(\alpha)=\nu_{5}^{2}$ and $i_{*} \varepsilon_{3}=i_{*} E^{*} \varepsilon_{4}=\alpha \circ 2 \iota_{11}=2 \alpha$. $\alpha=\left[\nu_{5}^{2}\right]$ or $\alpha=\left[\nu_{5}^{2}\right]+i_{*} \varepsilon_{3}=3\left[\nu_{5}^{2}\right]$. Therefore we have proved

$$
\pi_{11}(S U(3): 2)=\left\{\left[\nu_{5}^{2}\right]\right\} \cong Z_{4} \quad \text { and } \quad 2\left[\nu_{5}^{2}\right]=i_{*} \varepsilon_{3} .
$$

Consider the case $i=12$. Similarly as above, it is sufficient to prove

$$
i_{*} \mu_{3}=i_{*} E^{*}\left\{\eta_{4}, \sigma^{\prime \prime \prime}, 2 \iota_{12}\right\} .
$$

We have $E^{2}\left\{\eta_{4}, \sigma^{\prime \prime \prime}, 2 \iota_{12}\right\} \subset\left\{\eta_{6}, E^{2} \sigma^{\prime \prime \prime}, 2 t_{14}\right\}_{1}$

$$
\begin{aligned}
& =\left\{\eta_{6}, 2 E \sigma^{\prime \prime}, 2 \iota_{14}\right\}_{1} \text { by Lemma } 5.15 \text { of [7] } \\
& =\left\{\eta_{6}, 2 \iota_{6} \circ E \sigma^{\prime \prime}, 2 \iota_{14}\right\}_{1} .
\end{aligned}
$$

By use of relation $\eta_{5} \bar{\nu}_{6}=\nu_{5}^{3}$ of [7; (7.3)] and Lemma 6.5 of [7], we have

$$
\begin{aligned}
\mu_{6} \in\left\{\eta_{6}, 2 \iota_{7}, E^{2} \sigma^{\prime \prime \prime}\right\}_{1} & =\left\{\eta_{6}, 2 \iota_{7}, E \sigma^{\prime \prime} \circ 2 \iota_{14}\right\}_{1} \\
& \subset\left\{\eta_{6}, 2 \iota_{7} \circ E \sigma^{\prime \prime}, 2 \iota_{14}\right\}_{1} .
\end{aligned}
$$

The secondary composition $\left\{\eta_{6}, 2 \iota_{7} \circ E \sigma^{\prime \prime}, 2 \iota_{14}\right\}_{1}$ is a coset of $\eta_{6} \circ E \pi_{14}^{6}$ $+2 \pi_{15}\left(S^{6}\right)=\eta_{6} \circ E \pi_{14}^{6}$ which is generated by $\eta_{6} \bar{\nu}_{7}=\nu_{6}^{3}=E^{2} \nu_{4}^{3}$ and $\eta_{6} \varepsilon_{7}=$ $E^{2}\left(\eta_{4} \varepsilon_{5}\right)$. Since $E^{2}: \pi_{13}\left(S^{4}\right) \rightarrow \pi_{15}\left(S^{6}\right)$ is a monomorphism, we have $E^{*}\left\{\eta_{1}, \sigma^{\prime \prime \prime}, 2 \iota_{12}\right\}=\mu_{3}+\left\{\eta_{3} \varepsilon_{4}\right\}$ by (2.3) and Lemma 2.4. $i_{*}\left(\eta_{3} \varepsilon_{4}\right)=$ $i^{*}\left(\Delta \varepsilon_{3}\right)=0$. Thus $i_{*} E^{*}\left\{\eta_{4}, \sigma^{\prime \prime \prime}, 2{t_{12}}\right\}=i_{*} \mu_{3}$, and we have proved
$\pi_{12}(S U(3): 2)=\left\{\left[\sigma^{\prime \prime \prime}\right]\right) \cong Z_{4}$ and $2\left[\sigma^{\prime \prime \prime}\right]=i_{*} \mu_{3}$.
For the case $i=14$, we have an exact sequence :

$$
0 \rightarrow Z_{2} \oplus Z_{2} \longrightarrow \pi_{14}(S U(3): 2) \xrightarrow{p_{*}} Z_{2} \rightarrow 0,
$$

where $Z_{2} \oplus Z_{2}$ is generated by $i_{*} \mu^{\prime}$ and $i_{*}\left(\varepsilon_{3} \nu_{11}\right)$ and Z_{2} by ν_{5}^{3}. The first relation of (4.1) implies the third one: $2\left(\left[\nu_{5}^{2}\right] \circ \nu_{11}\right)=\left(2\left[\nu_{5}^{2}\right]\right) \circ \nu_{11}$ $=i_{*}\left(\varepsilon_{3}\right) \circ \nu_{11}=i_{*}\left(\varepsilon_{3} \nu_{11}\right)$. Then we have the result $\pi_{14}(S U(3): 2)=\left\{\left[\nu_{5}^{2}\right]\right.$ $\left.{ }^{\circ} \nu_{11}, i_{*} \mu^{\prime}\right\} \cong Z_{4} \oplus Z_{2}$.

Consider the case $i=18$. We have to prove that the sequence

$$
0 \rightarrow\left\{i_{*} \bar{\varepsilon}_{3}\right\} \longrightarrow \pi_{18}(S U(3): 2) \xrightarrow{p_{*}}\left\{\nu_{5} \eta_{8} \mu_{9}\right\} \rightarrow 0
$$

splits. By Lemma 6.5 and of [7],

$$
\begin{aligned}
\nu_{5} \eta_{8} \mu_{0} & \in \nu_{5} \eta_{8} \circ\left\{\eta_{9}, 2 \iota_{10}, 8 \sigma_{10}\right\}_{5} \\
& C\left\{\nu_{5} \eta_{8}^{2}, 2 \iota_{10}, 8 \sigma_{10}\right\}_{5} .
\end{aligned}
$$

The last secondary composition is a coset of $\nu_{5} \eta_{8}^{2} \circ E^{5} \pi_{13}^{5}+\pi_{11}^{5} \circ 8 \sigma_{11}$ $=\left\{\nu_{5} \eta_{8}^{2} \varepsilon_{10}, 8\left(\nu_{5}^{2} \sigma_{11}\right)\right\}=\left\{4 \nu_{5}^{2} \sigma_{11}\right\}=0$. Thus $\left\{\nu_{5} \eta_{8}^{2}, 2 \iota_{10}, 8 \sigma_{10}\right\}_{5}$ consists of $\nu_{5} \eta_{8} \mu_{9}$, Since $2\left[\nu_{5} \eta_{8}^{2}\right]=0$, the secondary composition $\left\{\left[\nu_{5} \eta_{8}^{2}\right], 2 \iota_{10}\right.$, $\left.8 \sigma_{10}\right\}_{5}$ is defined and

$$
p_{*}\left\{\left[\nu_{5} \eta_{8}^{2}\right], 2 \iota_{10}, 8 \sigma_{10}\right\}_{5} \subset\left\{p_{*}\left[\nu_{5} \eta_{8}^{2}\right], 2 \iota_{10}, 8 \sigma_{10}\right\}_{5}=\nu_{5} \eta_{8} \mu_{9} .
$$

Then we may choose $\left[\nu_{5} \eta_{8} \mu_{9}\right]$ as an element of $\left\{\left[\nu_{5} \eta_{8}^{2}\right], 2 \iota_{10}, 8 \sigma_{10}\right\}_{5}$. We have

$$
\begin{aligned}
2\left[\nu_{5} \eta_{8} \mu_{9}\right] & \in\left\{\left[\nu_{5} \eta_{8}^{2}\right], 2 \iota_{10}, 8 \sigma_{10}\right\}_{5} \circ 2 \iota_{18} \\
& \subset\left[\nu_{5} \eta_{8}^{2}\right] \circ E\left\{2 \iota_{9}, 8 \sigma_{9}, 2 \iota_{16}\right\} \\
& C\left[\nu_{5} \eta_{8}^{2}\right] \circ\left\{2 \iota_{10}, 8 \sigma_{10}, 2 \iota_{17}\right\}_{1}
\end{aligned}
$$

and $0=8 \sigma_{10} \circ \eta_{17} \in\left\{2 \iota_{10}, 8 \sigma_{10}, 2 \iota_{17}\right\}_{1}$ by Corollary 3.7 of [7]. It follows that $2\left[\nu_{5} \eta_{8} \mu_{9}\right] \equiv 0 \bmod \left[\nu_{5} \eta_{8}^{2}\right] \circ \pi_{18}\left(S^{10}\right) \circ 2 \iota_{18}$.

Since $\pi_{18}\left(S^{10}\right) \circ 2 \iota_{18}=2 \pi_{18}\left(S^{10}\right)=0$, it follows that $2\left[\nu_{5} \eta_{8} \mu_{9}\right]=0$ and therefore the above sequence splits.

For the case $i=19$, we have an exact sequence :

$$
0 \rightarrow Z_{2} \longrightarrow \pi_{19}(S U(3): 2) \xrightarrow{p_{*}} Z_{2} \oplus Z_{2} \rightarrow 0,
$$

where Z_{2} is generated by $i_{*}\left(\mu_{3} \sigma_{12}\right)$ and $Z_{2} \oplus Z_{2}$ is generated by $\nu_{5} \zeta_{8}$ and $\nu_{5} \bar{\nu}_{8} \nu_{16}$. The relation $\nu_{6} \zeta_{9}=2 \sigma^{\prime \prime} \sigma_{13}=E\left(\sigma^{\prime \prime \prime} \sigma_{12}\right)$ in (10.7) of [7] implies that $\nu_{5} \zeta_{8} \equiv \sigma^{\prime \prime \prime} \sigma_{12} \bmod \nu_{5} \bar{\nu}_{8} \nu_{16}$, since the kernel of $E: \pi_{1,}^{5}$,
$\rightarrow \pi{ }_{20}^{6}$ is generated by $\nu_{5} \bar{\nu}_{8} \nu_{16}$. So, we may replace $\nu_{55} \zeta_{8}$ by $\sigma^{\prime \prime \prime} \sigma_{12}$. Then it is sufficient to prove the relations:

$$
\begin{aligned}
& p_{*}\left(\left[\sigma^{\prime \prime \prime}\right] \sigma_{12}\right)=\sigma^{\prime \prime \prime} \sigma_{12}, \quad 2\left(\left[\sigma^{\prime \prime \prime}\right] \sigma_{12}\right)=i_{*}\left(\mu_{3} \sigma_{12}\right), \\
& p_{*}\left(\left[\nu_{5} \bar{\nu}_{8}\right] \nu_{16}\right)=\nu_{5} \bar{\nu}_{8} \nu_{16} \quad \text { and } \quad 2\left(\left[\nu_{5} \bar{\nu}_{8}\right] \circ \nu_{16}\right)=0 .
\end{aligned}
$$

But these relations follow from (2.1)', $2\left[\sigma^{\prime \prime \prime}\right]=i_{*} \mu_{3}$ and $2\left[\nu_{5} \bar{\nu}_{8}\right]=0$.
Consider the case $i=20$. By Lemma 4.2, we have an exact sequence :

$$
0 \rightarrow Z_{2} \oplus Z_{2} \rightarrow \pi_{20}(S U(3): 2) \rightarrow Z_{2} \rightarrow 0 .
$$

For the results $\pi_{20}(S U(3): 2)=\left\{\left[\rho^{\mathrm{IV}}\right], i_{*} \bar{\varepsilon}^{\prime}\right\}$, it is sufficient to prove the last relation $2\left[\rho^{\mathrm{IV}}\right] \equiv i_{*} \bar{\mu}_{3} \bmod i_{*} \bar{\varepsilon}^{\prime}$ of (4.1).

By the definition of $\bar{\mu}_{3}$,

$$
\bar{\mu}=E^{\infty} \bar{\mu}_{3} \in E^{\infty}\left\{\mu_{3}, 2 \iota_{12}, 8 \sigma_{12}\right\} \subset\langle\mu, 2 \iota, 8 \sigma\rangle .
$$

By (3.9) of [7],

$$
\begin{aligned}
& \langle\mu, 2 \iota, 8 \sigma\rangle+\langle 8 \sigma, \mu, 2 \iota\rangle+\langle 2 \iota, 8 \sigma, \mu\rangle \\
\equiv & \langle\mu, 2 \iota, 8 \sigma\rangle+4 \sigma \circ\langle 2 \iota, \mu, 2 \iota\rangle+\langle\mu, 8 \sigma, 2 \iota\rangle \equiv 0
\end{aligned}
$$

$\bmod \mu \circ G_{8}+8 \sigma \circ G_{10}+2 G_{17} . \quad 2 G_{17}=0$ since $G_{17} \cong Z_{2} \oplus Z_{2} \oplus Z_{2} \oplus Z_{2} . \quad 8 \sigma \circ G_{10}$ $+4 \sigma \circ\langle 2 \iota, \mu, 2 \iota\rangle<2\left(G_{10}: 2\right)=0$ since $G_{10} \cong Z_{6} . \mu \circ G_{8}$ is generated by $\mu \varepsilon=\eta^{2} \rho=\eta \mu \sigma$, by Theorem 14.1 of [7]. Thus we have

$$
\bar{\mu} \equiv\langle\mu, 2 \iota, 8 \sigma\rangle=\langle\mu, 8 \sigma, 2 \iota\rangle \bmod \eta \mu \sigma .
$$

Similarly, we have

$$
\mu \in\langle\eta, 2 \iota, 8 \sigma\rangle=\langle\eta, 8 \sigma, 2 \iota\rangle .
$$

By (3.7) of [7],

$$
\bar{\mu} \in\langle\eta,\langle 8 \sigma, 2 \iota, 8 \sigma\rangle, 2 \iota\rangle+\langle\eta, 8 \sigma,\langle 2 \iota, 8 \sigma, 2 \iota\rangle\rangle .
$$

By (3.10) of [7],

$$
\langle 2 \iota, 8 \sigma, 2 \iota\rangle\left\langle 8 \sigma \circ G_{1}+2 G_{8}=0 .\right.
$$

By the definition of ρ^{IV},

$$
E^{\infty} \rho^{\mathrm{IV}} \in E^{\infty}\left\{\sigma^{\prime \prime \prime}, 2 \iota_{12}, 8 \sigma_{12}\right\} \subset\langle 8 \sigma, 2 \iota, 8 \sigma\rangle .
$$

Thus we have that $\left\langle\eta, E^{\infty} \rho^{\mathrm{IV}}, 2 \iota\right\rangle$ consists of $\bar{\mu}$ and $\bar{\mu}+\eta \mu r$. It follows from the relation $E^{\infty}\left\{\eta_{4}, \rho^{\mathrm{IV}}, 2 \iota_{12}\right\} \leftharpoonup-\left\langle\eta, E^{\infty} \rho^{\mathrm{IV}}, 2 \iota\right\rangle$

$$
\pi_{21}^{4} \cap\left\{\eta_{4}, \rho^{\mathrm{IV}}, 2 \iota_{12}\right\} \equiv \bar{\mu}_{4} \quad \bmod \quad\left\{\eta_{4} \mu_{5} \sigma_{14}\right\}+\operatorname{Ker}\left(E^{\infty}: \pi_{21}^{4} \rightarrow G_{17}\right) .
$$

In Theorem 12.7 and Theorem 12.17 of [7] we see that $\operatorname{Ker}\left(E^{\infty}: \pi_{21}^{1}\right.$ $\left.\rightarrow G_{17}\right)$ is generated by $\nu_{4} \sigma^{\prime} \sigma_{14}$ and $E \bar{\varepsilon}^{\prime}$. It follows that

$$
\pi_{20}^{3} \cap E^{*}\left\{\eta_{4}, \rho^{\mathrm{IV}}, 2{t_{12}}\right\} \equiv \bar{\mu}_{3} \quad \bmod \left\{\eta_{3} \mu_{4} \sigma_{13}, \bar{\varepsilon}^{\prime}\right\}
$$

and $\quad E^{*}\left\{\eta_{4}, \rho^{\text {Iv }}, 2 \iota_{12}\right\} \equiv \bar{\mu}_{3} \quad \bmod \left\{\eta_{3} \mu_{4} \sigma_{13}, \bar{\varepsilon}^{\prime}\right\}+2 \pi_{20}\left(S^{3}\right)$.
Apply Theorem 2.6, then we have that there exists an element $\rho^{\text {IV }}$ such that

$$
2\left[\rho^{\mathrm{IV}}\right] \equiv i_{*} \bar{\mu}_{3} \quad \bmod i_{*} \bar{\varepsilon}^{\prime}
$$

where $i_{*} \eta_{3} \mu_{1} \sigma_{13}=0$.
For the case $i=22$, we have an exact sequence:

$$
0 \rightarrow Z_{2} \rightarrow \pi_{22}(S U(4): 2) \rightarrow Z_{2} \rightarrow 0 .
$$

By Lemma 2.2,

$$
2\left(\left[2 \iota_{5}\right] \circ \nu_{5} \kappa_{8}\right)=\left[2 \iota_{5}\right] \circ 2\left(\nu_{5} \kappa_{8}\right)=\left[2 \iota_{5}\right] \circ 0=0,
$$

since $E\left(2 \nu_{5} \kappa_{8}\right)=2 \nu_{6} \kappa_{9}=0$ by Theorem 12.7 of [7]. Thus the above sequence splits.
§5. The homotopy groups $\boldsymbol{\pi}_{\boldsymbol{i}}(\operatorname{Sp}(2))$ for $\boldsymbol{i} \leq \mathbf{2 3}$
In this section we compute the groups $\pi_{i}(S p(2))$ and the results are stated in the following

Theorem 5.1. The homotopy groups $\pi_{i}(S p(2))$ for $i \leq 23$ and generators of their 2-primary components are listed in the following table:

$i=$	1,2	3	4	5	6	7	8,9	10	11
$\pi_{i}(S p(2)) \cong$	0	Z	Z_{2}	Z_{2}	0	Z	0	$Z_{8}+Z_{15}$	Z_{2}
gen. of 2 -comp.		$i_{*} \iota_{3}$	$i_{*} \eta_{3}$	$i_{*} \eta_{3}^{2}$		$\left[12 \iota_{7}\right]$		$\left[\nu_{7}\right]$	$i_{*} \varepsilon_{3}$

$i=$	12	13	14	15	16
$\pi_{i}(S p(2)) \cong$	$Z_{2}+Z_{2}$	$Z_{4}+Z_{2}$	$Z_{16}+Z_{105}$	Z_{2}	$Z_{2}+Z_{2}$
gen. of 2 -comp.	$i_{*} \mu_{3}, i_{*} \eta_{3} \varepsilon_{4}$	$\left[\nu_{7}\right] \circ \nu_{10}, i_{*} \eta_{3} \mu_{4}$	$\left[2 \sigma^{\prime}\right]$	$\left[\sigma^{\prime} \eta_{14}\right]$	$\left[\sigma^{\prime} \eta_{14}\right] \circ \eta_{15},\left[\nu_{7}\right] \circ \nu_{10}^{2}$

$i=$	17	18	19
$\pi_{i}(S p(2)) \cong$	$Z_{8}+Z_{5}$	$Z_{8}+Z_{2}+Z_{315}$	$Z_{2}+Z_{2}$
gen. of 2 -comp.	$\left[\nu_{7}\right] \circ \sigma_{10}$	$\left[\zeta_{7}\right], i_{*} \bar{\varepsilon}_{3}$	$i_{*} \mu_{3} \sigma_{12}, i_{*} \eta_{3} \bar{\varepsilon}_{4}$

$i=$	20	21
$\pi_{i}(S p(2)$) $\underline{\underline{=}}$	$Z_{2}+Z_{2}+Z_{2}$	$Z_{32}+Z_{2}$
gen. of 2-comp.	$\left[\nu_{7}\right] \sigma_{10} \nu_{17}, i_{*} 7_{3} \mu_{4} \sigma_{13}$	[$\left.\sigma^{\prime} \sigma_{14}\right], i_{*} \eta_{3} \bar{\mu}_{4}$
$i=$	22	23
$\pi_{i}(S t(2)) \cong$	$Z_{32}+Z_{z}+Z_{2}+Z_{165}$	$Z_{8}+Z_{2}+Z_{2}$
gen. of 2 -comp.	[$\left.\rho^{\prime \prime \prime}\right\rfloor,\left[\sigma^{\prime} \sigma_{14}\right],\left[\sigma^{\prime} \sigma_{14}\right]$	$\left[\sigma^{\prime} \mu_{14}\right],\left[E \zeta^{\prime}\right],\left[\eta_{7} \bar{\epsilon}_{\varepsilon}\right]$

We denote by $[\alpha]$ an element of $\pi_{i}(\operatorname{Sp}(2))$ such that $p_{*}[\alpha]=$ $\alpha \in \pi_{i}\left(S^{7}\right)$ and, for $i \neq 7,[\alpha] \in \pi_{i}(S p(2): 2)$.

The following relations hold:
(5.1) $2\left[\nu_{7}\right] \cdot \nu_{10}=i_{*} \varepsilon^{\prime}, 4\left[2 \sigma^{\prime}\right]= \pm i_{*} \mu^{\prime}, 8\left[\sigma^{\prime} \sigma_{14}\right]= \pm i_{*} \mu^{\prime} \sigma_{14}$
and $8\left[\rho^{\prime \prime}\right]= \pm i_{*} \overline{\mu^{\prime}}$.
Since $\chi(S p(2))=\Delta t_{7}$ is an element of order 12 , we have from Lemma 2.3 isomorphisms

$$
\pi_{i}(S p(2): p) \cong \pi_{i}\left(S^{7} \times S^{3}: p\right) \cong \pi_{i}\left(S^{7}: p\right) \oplus \pi_{i}\left(S^{3}: p\right)
$$

for odd prime $p \geq 5$ and all i.
For 3-primary components, we quote from [8] the following isomorphisms:

$$
\pi_{i}(S p(2): 3) \cong \pi_{i}(B(3): 3) \quad \text { for all } i
$$

Then the results in Theorem 5.1 on the odd components follow immediately from the following table:

$i=$	$1,2,3,4,5,6,7,8,9$	10	$11,12,13$	14	15,16	17	18
Σp-comp. of $\pi_{i}\left(S^{3}\right), p \geq 5$	0	Z_{5}	0	Z_{7}	0	Z_{5}	Z_{5}
$\sum p$-comp. of $\pi_{i}\left(S^{7}\right), p \geq 5$	0	0	0	Z_{5}	0	0	Z_{7}
3 -comp. of $\pi_{i}(B(3))$	0	Z_{3}	0	Z_{3}	0	0	Z_{9}

$19,20,21$	22	23
0	Z_{11}	0
0	Z_{5}	0
0	Z_{3}	0

The table is given by Chapter XIII of [7], [3] and Theorem 3 of [8].

The exact sequence (2.1) associated with the bundle ($S p(2), p$, $S^{7}=S p(2) / S^{3}$) induces the following exact sequence :
(5.3) $\quad 0 \rightarrow \operatorname{Coker}\left(\Delta: \pi_{i+1}^{7} \rightarrow \pi_{i}^{3}\right) \xrightarrow{i_{*}} \pi_{i}(S p(2): 2) \rightarrow \operatorname{Ker}\left(\Delta: \pi_{i}^{7}\right.$ $\left.\rightarrow \pi_{i-1}^{3}\right) \rightarrow 0, \quad$ for $i>7$.

By concerning the table (3.1) and ii) of Proposition 3.2, we have

Lemma 5. 2. i). The homomorphisms $\Delta: \pi_{i+1}^{7} \rightarrow \pi_{i}^{3}$ are epimorphisms for $i=7,8,9,10,15,16,17$ and 23 . For the other values of $i, 6<i<23$, we have the following table:

$i=$	11	12	13	14	18	19
Coker. Δ	Z_{2}	$Z_{2}+Z_{2}$	$Z_{2}+Z_{2}$	Z_{4}	Z_{2}	$Z_{2}+Z_{2}$
rep. of gene.	ε_{3}	$\mu_{3}, \eta_{3} \varepsilon_{4}$	$\varepsilon^{\prime}, \eta_{3} \mu_{4}$	μ^{\prime}	$\bar{\varepsilon}_{3}$	$\mu_{3} \sigma_{12}, \eta_{3} \bar{\varepsilon}_{4}$

$i=$	20	21	22
Coker. Δ	$Z_{2}+Z_{2}$	$Z_{4}+Z_{2}$	Z_{4}
rep. of gene.	$\bar{\mu}_{3}, \eta_{3} \mu_{4} \sigma_{13}$	$\mu^{\prime} \sigma_{14}, \eta_{3} \bar{\mu}_{4}$	$\bar{\mu}^{\prime}$

ii). The homomorphisms $\Delta: \pi_{i}^{7} \rightarrow \pi_{i-1}^{3}$ are monomorphisms for $i=8,9,11,12$ and 19. For the other values of $i, 7<i \leq 23$, we have the following table:

$i=$	10	13	14	15	16	17	18
Ker. Δ	Z_{2}	Z_{2}	Z_{4}	Z_{2}	$Z_{2}+Z_{2}$	Z_{8}	Z_{8}
generators	ν_{7}	ν_{7}^{2}	$2 \sigma^{\prime}$	$\sigma^{\prime} \eta_{14}$	$\sigma^{\prime} \eta_{14}^{2}, \nu_{7}^{3}$	$\nu_{7} \sigma_{10}$	ζ_{7}

$i=$	20	21	22	23
Ker. Δ	Z_{2}	Z_{8}	$Z_{8}+Z_{2}+Z_{2}$	$Z_{2}+Z_{2}+Z_{2}$
generators	$\nu_{7} \sigma_{10} \nu_{17}$	$\sigma^{\prime} \sigma_{14}$	$\rho^{\prime \prime}, \sigma^{\prime} \bar{\nu}_{14}, \sigma^{\prime} \varepsilon_{14}$	$\sigma^{\prime} \mu_{4}, E \zeta^{\prime}, \eta_{7} \bar{\varepsilon}_{8}$

We consider $\pi_{i}(S p(2): 2)$ by dividing into three cases.
Case 1: $i=8,9,11,12$ and 19. For these values of i, it follows
from the exactness of (5.3) and ii) of Lemma 5.2 that $\pi_{i}(S p(2): 2)$ is isomorphic to the cokernel of $\Delta: \pi_{i+1}^{7} \rightarrow \pi_{i}^{3}$ under the injection homomorphisms i_{*}. Then Theorem 5.1 is obtained by i) of Lemma 5. 2.

Case 2: $i=10,15,16,17$ and 23. For these values of i, it follows from the exactness of (5.3) and i) of Lemma 5.2 that $\pi_{i}(S p(2): 2)$ is isomorphic to the kernel of $\Delta: \pi_{i}^{7} \rightarrow \pi_{i-1}^{3}$ under the projection homomorphisms p_{*}. So, Theorem 5.1 is established for these values of i, by ii) of Lemma 5.2 and (2.1)'.

Case 3: $i=13,14,18,20,21$ and 22 . We have to determine the extension (5.3). We remark that, by Lemma 2.3, we may consider that the sequence (5.3) is induced from the homotopy exact sequence associated with an S^{3}-bundle over S^{7} having the characteristic class $\Delta t_{7}=\nu^{\prime}$.

First consider the case $i=13$. By Lemma 5.2, we have an exact sequence

$$
0 \rightarrow Z_{2} \oplus Z_{2} \rightarrow \pi_{13}(S p(2): 2) \rightarrow Z_{2} \rightarrow 0
$$

For the result $\pi_{13}(S p(2): 2)=\left\{\left[\nu_{7}\right] \circ \nu_{10}, i_{*} \eta_{3} \mu_{4}\right\}$, it is sufficient to prove the first relation of (5.1): $2\left[\nu_{7}\right] \circ \nu_{10}=i_{*} \varepsilon^{\prime}$. $\varepsilon^{\prime} \in\left\{\nu^{\prime}, 2 \nu_{6}, \nu_{9}\right\}$ by the definition of ε^{\prime}. Then it follows from Theorem 2.1

$$
2\left[\nu_{7}\right] \circ \nu_{10}=\left[2 \nu_{7}\right] \circ \nu_{10}=i_{*} \varepsilon^{\prime} .
$$

For the case $i=14$. We have an exact sequence

$$
0 \rightarrow Z_{4} \longrightarrow \pi_{14}(S p(2): 2) \xrightarrow{p_{*}} Z_{4} \rightarrow 0,
$$

where the first Z_{4} is generated by $i_{*} \mu^{\prime}$ and the second by $2 \sigma^{\prime}$. We have $p_{*}\left(2\left[2 \sigma^{\prime}\right]\right)=4 \sigma^{\prime}=12 \sigma^{\prime}=p^{*}\left(\left[12 \iota_{7}\right] \circ \sigma^{\prime}\right)$. It follows $2\left[2 \sigma^{\prime}\right] \equiv\left[12 \iota_{7}\right] \circ \sigma^{\prime} \bmod i_{*} \mu^{\prime} \quad$ and $4\left[2 \sigma^{\prime}\right] \equiv\left[12 \iota_{7}\right] \circ E \sigma^{\prime \prime} \bmod 2 i_{*} \mu^{\prime}$. By the definition of ζ_{5} and by (7.14) of [7],

$$
\pm E^{2} \mu^{\prime}=2 \zeta_{5} \in 2\left\{\nu_{5}, 8 \iota_{8}, E \sigma^{\prime}\right\}_{1}
$$

We have also

$$
E^{2}\left\{\nu^{\prime}, 4 \iota_{6}, \sigma^{\prime \prime}\right\} \subset\left\{2 \nu_{5}, 4 \iota_{8}, 2 E \sigma^{\prime}\right\}_{1} \subset 2\left\{\nu_{5}, 8 \iota_{8}, E \sigma^{\prime}\right\}_{1}
$$

It follows $\pm E^{2} \mu^{\prime} \equiv E^{2}\left\{\nu^{\prime}, 4 \iota_{6}, \sigma^{\prime \prime}\right\} \bmod \left\{\nu_{5} \varepsilon_{8}, \nu_{5} \bar{\nu}_{8}\right\}$. Since $\left\{\nu_{5} \varepsilon_{8}, \nu_{5} \bar{\Sigma}_{8}\right\}$ is complementary to the image of $E^{2}: \pi_{14}\left(S^{3}\right) \rightarrow \pi_{16}\left(S^{5}\right)$ and since the kernel of E^{2} is generated by $\varepsilon_{3} \nu_{11}$ and $\nu^{\prime} \varepsilon_{6}$, we have

$$
\pm \mu^{\prime} \equiv\left\{\nu^{\prime}, 4 \iota_{6}, \sigma^{\prime \prime}\right\} \quad \bmod \left\{\varepsilon_{3} \nu_{11}, \nu^{\prime} \varepsilon_{6}\right\}
$$

Applying Theorem 2.1, we have

$$
4\left[2 \sigma^{\prime}\right] \equiv\left[12 \iota_{7}\right] \circ E \sigma^{\prime \prime} \equiv i_{*} \mu^{\prime} \quad \bmod 2 i_{*} \mu^{\prime}
$$

This proves $\pi_{14}(S p(2): 2)=\left\{\left[2 \sigma^{\prime}\right]\right\} \cong Z_{16}$ and $4\left[2 \sigma^{\prime}\right]= \pm i_{*} \mu^{\prime}$.
For the case $i=18$, we have an exact sequence :

$$
0 \rightarrow Z_{2} \rightarrow \pi_{18}(S p(2): 2) \rightarrow Z_{8} \rightarrow 0 .
$$

where Z_{2} is generated by $i_{*} \bar{\varepsilon}_{3}$ and Z_{8} by ζ_{7}. By Theorem 2.1, we have

$$
8\left[\zeta_{7}\right]=\left[\zeta_{7}\right] \circ 8 \iota_{18} \in i_{*}\left\{\nu^{\prime}, \zeta_{6}, 8 \iota_{17}\right\}_{1}
$$

We have, by (7.4) and (5.5) of [7],

$$
\begin{aligned}
\left\{\eta_{5}, \zeta_{6}, 8 \iota_{17}\right\}_{1} & =\left\{\eta_{5}, 4 \zeta_{6}, 2 \iota_{17}\right\}_{1}=\left\{\eta_{5}, \eta_{6}^{2} \mu_{8}, 2 \iota_{17}\right\}_{1} \\
& =\left\{\eta_{5}^{3}, \mu_{8}, 2 \iota_{17}\right\}_{1}=\left\{4 \nu_{5}, \mu_{8}, 2 \iota_{11}\right\}_{1} \\
& =\left\{2 \nu_{5}, 2 \mu_{8}, 2 \iota_{17}\right\}_{1}=\left\{2 \nu_{5}, 0,2 \iota_{17}\right\}_{1} \\
& \ni 0 .
\end{aligned}
$$

Note that the equality holds, since these secondary compositions have the same indeterminacy $2 \pi_{18}\left(S^{5}\right) \cong Z_{3}$. Then it follows that $8\left[\zeta_{7}\right]=0$, and the above sequence splits.

Consider the case $i=20$. We have an exact sequence :

$$
0 \rightarrow Z_{2} \oplus Z_{2} \longrightarrow \pi_{20}(S p(2): 2) \xrightarrow{p_{*}} Z_{2} \rightarrow 0
$$

where $Z_{2} \oplus Z_{2}$ is generated by $i_{*} \bar{\mu}_{3}$ and $i_{*} \eta_{3} \mu_{4} \sigma_{13}$ and Z_{2} by $\nu_{7} \sigma_{10} \nu_{17}$. Obviously, $p_{*}\left(\left[\nu_{7} \sigma_{10}\right] \cdot \nu_{17}\right)=\nu_{7} \sigma_{10} \nu_{17} . \quad E\left(2 \sigma_{10} \nu_{17}\right)=2 \sigma_{11} \nu_{18}=0$ by (7.20) of [7]. Then it follows from Lemma 2.2

$$
2\left(\left[\nu_{7} \sigma_{10}\right] \circ \nu_{17}\right)=\left[\nu_{7}\right] \circ\left(2 \sigma_{10} \nu_{17}\right)=\left[\nu_{7}\right] \circ 0=0
$$

This shows that the above sequence splits.
Consider the case $i=21$. We have an exact sequence :

$$
0 \rightarrow Z_{4} \oplus Z_{2} \longrightarrow \pi_{21}(S p(2): 2) \xrightarrow{p_{*}} Z_{8} \rightarrow 0,
$$

where $Z_{4} \oplus Z_{2}$ is generated by $i_{*} \mu^{\prime} \sigma_{14}$ and $i_{*} \eta_{3} \bar{\mu}_{4}$ and Z_{8} is generated by $\sigma^{\prime} \sigma_{14}$. In the proof of the case $i=14$ we have an element [$\left.2 \sigma^{\prime}\right]$ such that $p_{*}\left[2 \sigma^{\prime}\right]=2 \sigma^{\prime}$ and $i_{*} \mu^{\prime}= \pm 4\left[2 \sigma^{\prime}\right]$. Thus

$$
p_{*}\left(\left[2 \sigma^{\prime}\right] \circ \sigma_{14}\right)=2 \sigma^{\prime} \sigma_{14}=p_{*}\left(2\left[\sigma^{\prime} \sigma_{14}\right]\right)
$$

and $\pm i_{*} \mu^{\prime} \sigma_{14}=4\left[2 \sigma^{\prime}\right] \circ \sigma_{14}$.
It follows that

$$
8\left[\sigma^{\prime} \sigma_{14}\right] \equiv \pm i_{*} \mu^{\prime} \sigma_{14} \quad \bmod 4 i_{*} \pi_{21}^{3}, \quad 4 i_{*} \pi_{21}^{3}=0
$$

Therefore we have $8\left[\sigma^{\prime} \sigma_{14}\right]= \pm i_{*} \mu^{\prime} \sigma_{14}$, and

$$
\pi_{21}(S p(2): 2)=\left\{\left[\sigma^{\prime} \sigma_{14}\right], i_{*} \eta_{3} \bar{\mu}_{4}\right\} \cong Z_{32} \oplus Z_{2} .
$$

Consider the case $i=22$. We have an exact sequence, by Lemma 5. 2,

$$
0 \rightarrow Z_{4} \longrightarrow \pi_{22}(S p(2): 2) \xrightarrow{p_{*}} Z_{8} \oplus Z_{2} \oplus Z_{2} \rightarrow 0
$$

where Z_{4} is generated by $i_{*} \bar{\mu}^{\prime}$ and $Z_{8} \oplus Z_{2} \oplus Z_{2}$ by $\rho^{\prime \prime}, \sigma^{\prime} \bar{\nu}_{14}$ and $\sigma^{\prime} \varepsilon_{14}$.
First we prove that the relation

$$
2\left[\sigma^{\prime} \overline{\mathcal{\nu}}_{14}\right]=2\left[\sigma^{\prime} \varepsilon_{14}\right]=0
$$

holds for suitable choice of $\left[\sigma^{\prime} \bar{\nu}_{14}\right]$ and $\left[\sigma^{\prime} \varepsilon_{14}\right] . \quad p_{*}\left(\left[\sigma^{\prime} \eta_{14}\right] \circ \sigma_{15}\right)=$ $\sigma^{\prime} \eta_{14} \sigma_{15}=\sigma^{\prime} \bar{\nu}_{14}+\sigma^{\prime} \varepsilon_{14}$ by Lemma 6.4 of [7]. Thus we may choose [$\left.\sigma^{\prime} \bar{\nu}_{14}\right]$ such that if $\left[\sigma^{\prime} \varepsilon_{14}\right]$ is given then

$$
\left[\sigma^{\prime} \dot{\nu}_{14}\right]=\left[\sigma^{\prime} \varepsilon_{14}\right]+\left[\sigma^{\prime} \eta_{14}\right] \circ \sigma_{15} .
$$

Since $2\left[\sigma^{\prime} \eta_{14}\right]=0$, we have $2\left[\sigma^{\prime} \bar{\nu}_{14}\right]=2\left[\sigma^{\prime} \varepsilon_{14}\right]$. Let α be an element of the secondary composition $\left\{\left[\sigma^{\prime} \eta_{14}\right], 2 \iota_{15}, \nu_{15}^{2}\right\}_{1}$. We have

$$
\begin{aligned}
\sigma^{\prime} \varepsilon_{14} & \in \sigma^{\prime} \circ\left\{\eta_{14}, 2 \iota_{15}, \nu_{15}^{2}\right\}_{1} \\
& <\left\{\sigma^{\prime} \eta_{14}, 2 \iota_{15}, \nu_{15}^{2}\right\}_{1} \supset p^{*}\left\{\left[\sigma^{\prime} \eta_{14}\right], 2 \iota_{15}, \nu_{15}^{2}\right\}_{1}
\end{aligned}
$$

$\left\{\sigma^{\prime} \eta_{14}, 2 \iota_{15}, \nu_{15}^{2}\right\}_{1}$ is a coset of $\sigma^{\prime} \eta_{14} \circ E \pi_{21}^{14}+\pi_{16}^{7} \circ \nu_{16}^{2}$ which is generated by $\sigma^{\prime} \eta_{14} \sigma_{15}=\sigma^{\prime} \bar{\nu}_{14}+\sigma^{\prime} \varepsilon_{14}, \quad \sigma^{\prime} \eta_{14}^{2} \nu_{16}^{2}=0, \quad \mu_{7} \nu_{16}^{2} \in \pi_{19}^{7} \circ \nu_{19}=0, \quad \nu_{7}^{3} \nu_{16}^{2}=\bar{\nu}_{7} \zeta_{15} \nu_{16}^{2}$ $=0$ and $\eta_{7} \varepsilon_{8} \nu_{16}^{2}=\varepsilon_{7} \eta_{15} \nu_{16}^{2}=0$. Thus

$$
p_{*} \alpha=\sigma^{\prime} \varepsilon_{14}+x\left(\sigma^{\prime} \bar{\nu}_{14}+\sigma^{\prime} \varepsilon_{14}\right), \quad x=0 \text { or } 1
$$

Set $\left[\sigma^{\prime} \varepsilon_{14}\right]=\alpha+x\left(\left[\sigma^{\prime} \eta_{14}\right] \circ \sigma_{15}\right)$, then $p_{*}\left[\sigma^{\prime} \varepsilon_{14}\right]=\sigma^{\prime} \varepsilon_{14}$. We have

$$
\begin{aligned}
2\left[\sigma^{\prime} \varepsilon_{14}\right] & \in\left\{\left[\sigma^{\prime} \eta_{14}\right], 2 \iota_{15}, \nu_{15}^{2}\right\}_{1} \circ 2 \iota_{22} \\
& =-\left[\sigma^{\prime} \eta_{14}\right] \circ E\left\{2 \iota_{14}, \nu_{14}^{2}, 2 \iota_{20}\right\} \\
0=-\left[\sigma^{\prime} \eta_{14}\right] \circ \eta_{14} \nu_{15}^{2} & \text { by Proposition } 1.4 \text { of [7] } \\
& \in-\left[\sigma^{\prime} \eta_{14}\right] \circ E\left\{2 \iota_{14}, \nu_{14}^{2}, 2 \iota_{20}\right\}
\end{aligned} \quad \text { by Corollary 3.7 of [7]. } . ~ \$
$$

Thus $2\left[\sigma^{\prime} \varepsilon_{14}\right] \equiv 0 \bmod G$, where $G=\left[\sigma^{\prime} \eta_{14}\right] \circ E \pi_{21}\left(S^{14}\right) \circ 2 \iota_{22}=2\left[\sigma^{\prime} \eta_{14}\right]$ $\circ E \pi_{21}\left(S^{14}\right)=0$. We have proved the required relation:

$$
2\left[\sigma^{\prime} \bar{\nu}_{14}\right]=2\left[\sigma^{\prime} \varepsilon_{14}\right]=0
$$

Next, by the definition of $\rho^{\prime \prime}$,

$$
\begin{aligned}
p_{*}\left\{\left[2 \sigma^{\prime}\right]\right. & \left.16 \iota_{1_{4}}, \sigma_{14}\right\}_{1} \subset\left\{p_{*}\left[2 \sigma^{\prime}\right], 16 \iota_{14}, \sigma_{14}\right\}_{1} \\
& =\left\{2 \sigma^{\prime}, 16 \iota_{14}, \sigma_{14}\right\}_{1} \\
& <2\left\{\sigma^{\prime}, 8 \iota_{14}, 2 \sigma_{14}\right\}_{1} \ni 2 \rho^{\prime \prime}=2 p_{*}\left[\rho^{\prime \prime}\right] .
\end{aligned}
$$

Thus $\left\{\left[2 \sigma^{\prime}\right], 16 \iota_{14}, \sigma_{14}\right\}_{1} \equiv 2\left[\rho^{\prime \prime}\right] \bmod G$, where G is generated by $i_{*} \bar{\mu}^{\prime},\left[2 \sigma^{\prime}\right] \circ \bar{\nu}_{14},\left[2 \sigma^{\prime}\right] \circ \varepsilon_{14}$ and $\left[\sigma^{\prime} \eta_{14}\right] \circ \sigma_{15}$. It is easy to see that $4 G=0$. Then we have

$$
8\left[\rho^{\prime \prime}\right]=4\left\{\left[2 \sigma^{\prime}\right], 16 \iota_{14}, \sigma_{14}\right\}_{1}
$$

By the definition of $\bar{\mu}^{\prime}$,

$$
\begin{aligned}
i_{*} \bar{\iota}^{\prime} & \in i_{*}\left\{\mu^{\prime}, 4 \iota_{14}, 4 \sigma_{14}\right\}_{1} \\
& \subset\left\{i_{*} \mu^{\prime}, 4 \iota_{14}, 4 \sigma_{14}\right\}_{1} \\
& = \pm\left\{4\left[2 \sigma^{\prime}\right], 4 \iota_{14}, 4 \sigma_{14}\right\}_{1} \\
& \subset \pm\left\{\left[2 \sigma^{\prime}\right], 16 \iota_{14}, 4 \sigma_{14}\right\}_{1} \\
& > \pm\left\{\left[2 \sigma^{\prime}\right], 16 \iota_{14}, \sigma_{14}\right\}_{1} \circ 4 \iota_{22} \\
& =8\left[\rho^{\prime \prime}\right] .
\end{aligned}
$$

Thus $8\left[\rho^{\prime \prime}\right] \equiv \pm i_{*} \bar{\mu}^{\prime} \bmod \left[2 \sigma^{\prime}\right] \circ \pi_{22}^{14}+\pi_{15}(S p(2)) \circ 4 \sigma_{15} . \quad \pi_{15}(S p(2)) \circ 4 \sigma_{15}$ $=4 \pi_{15}(S p(2): 2) \circ \sigma_{15}=0$. [2 $\quad\left[\sigma^{\prime}\right] \circ \pi_{22}^{14}$ is generated by $\left[2 \sigma^{\prime}\right] \circ \bar{\nu}_{14}$ and $\left[2 \sigma^{\prime}\right] \circ \varepsilon_{14}$, which are in $i_{*} \pi_{22}^{3}$ and of order at most 2 . Then we have

$$
8\left[\rho^{\prime \prime}\right] \equiv i_{*} \overline{\mu^{\prime}} \quad \bmod \quad 2 i_{*} \pi_{22}^{3}, \quad \text { i.e., } 8\left[\rho^{\prime \prime}\right]= \pm i_{*} \overline{\mu^{\prime}}
$$

By these relations and the exactness of the last sequence, we have

$$
\pi_{22}(S p(2): 2)=\left\{\left[\rho^{\prime \prime}\right],\left[\sigma^{\prime} \bar{\nu}_{14}\right],\left[\sigma^{\prime} \varepsilon_{14}\right]\right\} \cong Z_{32} \oplus Z_{2} \oplus Z_{2}
$$

$\S 6$. The homotopy groups $\boldsymbol{\pi}_{\boldsymbol{i}}(\mathbf{S U}(4))$ for $\boldsymbol{i} \leq \mathbf{2 3}$
We shall prove the following theorem mainly by use of the known results given in the previous sections.

From the fibering $S U(4) / S U(2)=S U(4) / S^{3}=S^{5} \times S^{7}$, we have the following exact sequence :

$$
\begin{equation*}
\cdots \rightarrow \pi_{i}\left(S^{3}\right) \xrightarrow{i_{*}} \pi_{i}(S U(4)) \xrightarrow{p_{*}} \pi_{i}\left(S^{5}\right) \oplus \pi_{i}\left(S^{7}\right) \rightarrow \pi_{i-1}\left(S_{\varepsilon}\right) \rightarrow \cdots . \tag{6.1}
\end{equation*}
$$

We denote by $[\alpha \oplus \beta]$ an element of $\pi_{i}(S U(4))$ such that $p_{*}[\alpha \oplus \beta]=\alpha \oplus \beta \in \pi_{i}\left(S^{5}\right) \oplus \pi_{i}\left(S^{7}\right)$ and if $i>7$ and $\alpha \oplus \beta \in \pi_{i}^{5} \oplus \pi_{i}^{7}$ then $[\alpha \oplus \beta] \in \pi_{i}(S U(4): 2)$.

Theorem 6.1. The homotopy groups $\pi_{i}(S U(4))$ for $i \leq 23$ and generators of thiir 2-primary components are listed in the following table.

$i=$	1,2	3	4	5	6	7	8	9
$\pi_{i}(S U(4)) \cong$	0	Z	0	Z	0	Z	$Z_{8}+Z_{3}$	Z_{2}
gen. of 2 -comp.		$i_{*} \epsilon_{3}$		$\left[2 \iota_{5}\right]$		$\left[\eta_{5}^{2} \oplus 6 \iota_{7}\right]$	$\left[\nu_{5} \oplus \eta_{7}\right]$	$\left[\nu_{5} \oplus \eta_{7}\right] \circ \eta_{8}$

$i=$	10	11	12	13	14
$\pi_{i}(S U(4)) \cong$	$Z_{8}+Z_{2}+Z_{15}$	Z_{4}	$Z_{4}+Z_{15}$	Z_{4}	$Z_{16}+Z_{2}+Z_{105}$
gen. of 2 -comp.	$\left[\nu_{7}\right],\left[\nu_{5} \eta_{8}^{2}\right]$	$\left[\nu_{5}^{2}\right]$	$\left[\sigma^{\prime \prime}\right]$	$\left[\nu_{7}\right] \cdot \nu_{10}$	$\left[\eta_{5} \varepsilon_{6} \oplus \sigma^{\prime}\right],\left[\nu_{5}^{2}\right] \cdot \nu_{11}$

$i=$	15	16
$\pi_{i}(S U(4)) \cong$	$Z_{8}+Z_{2}+Z_{9}$	$Z_{8}+Z_{2}+Z_{2}+Z_{2}+Z_{2}+Z_{63}$
gen. of 2 2-comp.	$\left[\nu_{5} \oplus \eta_{7}\right] \circ \sigma_{8},\left[\sigma^{\prime} \eta_{14}\right]$	$\left[\zeta_{5} \oplus \mu_{7}\right],\left[\nu_{5} \nu_{8}\right],\left[\sigma^{\prime} \eta_{14}\right] \circ \eta_{15},\left[\nu_{7}\right] \circ \nu_{10}^{2},\left[\nu_{5} \oplus \eta_{7}\right] \cdot \varepsilon_{8}$

$i=$	17	18
$\pi_{i}(S U(4)) \cong$	$Z_{8}+Z_{2}+Z_{2}+Z_{2}+Z_{5}$	$Z_{8}+Z_{4}+Z_{2}+Z_{315}+Z_{3}$
gen. of 2 -comp.	$\left[\nu_{7}\right] \circ \sigma_{10},\left[\nu_{5}^{2}\right] \circ \nu_{11}^{2},\left[\nu_{5} \eta_{8} \varepsilon_{9}\right],\left[\nu_{5} \oplus \eta_{7}\right] \circ \mu_{8}$	$\left[\zeta_{7}\right],\left[\nu_{5} \oplus \eta_{7}\right] \circ \sigma_{8} \nu_{15},\left[\nu_{5} \eta_{8} \mu_{9}\right]$

$i=$	19	20	21
$\pi_{i}(S U(4)) \cong$	$Z_{4}+Z_{2}+Z_{3}$	$Z_{4}+Z_{2}+Z_{15}$	$Z_{16}+Z_{2}$
gen. of 2 -comp.	$\left[\sigma^{\prime \prime \prime}\right] \circ \sigma_{12},\left[\nu_{5} \bar{\nu}_{8}\right] \circ \nu_{16}$	$\left[\rho^{\mathrm{IV}}\right],\left[\nu_{7}\right] \circ \sigma_{10} \nu_{17}$	$\left[\sigma^{\prime} \sigma_{14}\right],\left[\eta_{5} \bar{\varepsilon}_{6} \oplus 2 \kappa_{7}\right]$

$i=$	22	23
$\pi_{i}(S U(4)) \cong$	$Z_{16}+Z_{4}+Z_{2}+Z_{2}+Z_{165}$	$Z_{8}+Z_{2}+Z_{2}+Z_{2}+Z_{2}+Z_{3}$
gen. of 2 -comp.	$\left[\rho^{\prime \prime}\right],\left[\nu_{5} \kappa_{8} \oplus \bar{\varepsilon}_{7}\right],\left[\sigma^{\prime} \nu_{14}\right],\left[\sigma^{\prime} \varepsilon_{14}\right]$	$\left[\zeta_{5} \oplus \mu_{7}\right] \circ \sigma_{16},\left[\nu_{5} \bar{\varepsilon}_{8}\right],\left[\sigma^{\prime} \mu_{14}\right],\left[E \zeta^{\prime}\right]$, $\left[\eta_{7} \bar{\varepsilon}_{8}\right]$

We have the following relations:

$$
\begin{align*}
& 2\left[\nu_{5}^{2}\right]=i_{*} \varepsilon_{3}, \quad 2\left[\sigma^{\prime \prime \prime}\right]=i_{*} \mu_{3}, \quad 2\left[\nu_{7}\right] \circ \nu_{10}=i_{*} \varepsilon^{\prime}, \tag{6.2}\\
& 8\left[\eta_{5} \varepsilon_{6} \oplus \sigma^{\prime}\right]=i_{*} \mu^{\prime}, \quad 2\left[\nu_{5} \oplus \eta_{7}\right] \circ \sigma_{8} \nu_{15}=i_{*} \varepsilon_{3}, \\
& 2\left[\sigma^{\prime \prime \prime}\right] \circ \sigma_{12}=2\left[\nu_{5} \zeta_{8}\right]=i_{*} \mu_{3} \sigma_{12}, \quad 2\left[\rho^{\mathrm{IV}}\right]=i_{*} \bar{\mu}_{3}, \\
& 8\left[\sigma^{\prime} \sigma_{14}\right]=i_{*} \mu^{\prime} \sigma_{14} \quad \text { and } \quad 8\left[\rho^{\prime \prime}\right]=i_{*} \bar{\mu}^{\prime} .
\end{align*}
$$

Consider the bundle $S U(4) / S p(2)=S^{5}$. Since the order of its characteristic class $\Delta \iota_{5}=i_{*} \eta_{3}$ is 2 , we have, by Lemma 2.3, isomorphisms

$$
\pi_{i}(S U(4): p) \cong \pi_{i}\left(S^{5} \times S p(2): p\right) \cong \pi_{i}\left(S^{5}: p\right) \oplus \pi_{i}(S p(2): p)
$$

for odd prime p. Then the results for odd components follow immediately from the tables (4.2) and (5.2).

From (6.1) we have the exactness, for $i>7$, of the following sequence :

$$
\begin{align*}
0 \rightarrow & \operatorname{Coker}\left(\Delta: \pi_{i+1}^{5} \oplus \pi_{i+1}^{7} \rightarrow \pi_{i}^{3}\right) \tag{6.3}\\
& \xrightarrow{i_{*}} \pi_{i}(S U(4): 2) \xrightarrow{p^{*}} \operatorname{Ker}\left(\Delta: \pi_{i}^{5} \oplus \pi_{i}^{7} \rightarrow \pi_{i-1}^{3}\right) \rightarrow 0 .
\end{align*}
$$

Obviously, the above Δ is the sum of the Δ 's of (4.3) and (5.3). Then the following lemma follows from Proposition 3.2.

Lemma 6. 2. i). For the case $i=8,9,10,15,16,17$ and 23, the homomorphisms $\Delta: \pi_{i+1}^{5} \oplus \pi_{i+1}^{7} \rightarrow \pi_{i}^{3}$ are epimorphisms. For the other values of $i, 7<i<23$, we have the following table of the cokernel and representatives of their generators.

$i=$	11	12	13	14	18	19	20	21	22
Coker. $\Delta \cong$	Z_{2}								
rep. of gene.	ε_{3}	μ_{3}	ε^{\prime}	μ^{\prime}	$\bar{\varepsilon}_{3}$	$\mu_{3} \sigma_{12}$	$\bar{\mu}_{3}$	$\mu^{\prime} \sigma_{14}$	$\bar{\mu}^{\prime}$

ii). The kernels of the homomorphisms $\Delta: \pi_{i}^{5} \oplus \pi_{i}^{7} \rightarrow \pi_{i-1}^{3}$, $7<i \leq 23$, and their generators are listed in the following table:

$i=$	8	9	10	11	12	13	14
Ker. $\Delta \cong$	Z_{8}	Z_{2}	$Z_{2}+Z_{8}$	Z_{2}	Z_{2}	Z_{2}	$Z_{8}+Z_{2}$
generators	$\nu_{5} \oplus \eta_{7}$	$\left(\nu_{5} \oplus \eta_{7}\right) \circ \eta_{8}$	$\nu_{5} \eta_{8}^{2}, \nu_{7}$	ν_{5}^{2}	$\sigma^{\prime \prime \prime}$	ν_{7}^{2}	$\eta_{5} \varepsilon_{6} \oplus \sigma^{\prime}, \nu_{5}^{3}$

$i=$	15	16
Ker. $\Delta \cong$	$Z_{8}+Z_{2}$	$Z_{8}+Z_{2}+Z_{2}+Z_{2}+Z_{2}$
generators	$\left(\nu_{5} \oplus \eta_{7}\right) \circ \sigma_{8}, \sigma^{\prime} \eta_{14}$	$\zeta_{5} \oplus \mu_{7}, \nu_{5} \bar{\nu}_{8}, \sigma^{\prime} \eta_{14}^{2}, \nu_{7}^{3},\left(\nu_{5} \oplus \eta_{7}\right) \circ \varepsilon_{8}$

$i=$	17	18
Ker. $\Delta \cong$	$Z_{8}+Z_{2}+Z_{2}+Z_{2}$	$Z_{8}+Z_{2}+Z_{2}$
generators	$\nu_{7} \sigma_{10}, \nu_{5}^{4}, \nu_{5} \eta_{8} \varepsilon_{9},\left(\nu_{5} \oplus \eta_{7}\right) \circ \mu_{8}$	$\zeta_{7}, \nu_{5} \eta_{8} \mu_{9},\left(\nu_{5} \sigma_{8} \oplus \bar{\nu}_{7}\right) \circ \nu_{15}$

$i=$	19	20	21
Ker. $\Delta \cong$	$Z_{2}+Z_{2}$	$Z_{2}+Z_{2}$	$Z_{8}+Z_{2}$
generators	$\nu_{5} \zeta_{8}, \nu_{5} \bar{\nu}_{8} \nu_{16}$	$\rho^{\mathrm{IV}, \nu_{7} \sigma_{10} \nu_{17}}$	$\sigma^{\prime} \sigma_{14}, \eta_{5} \bar{\varepsilon}_{6} \oplus 2 \kappa_{7}$

$i=$	22	23
Ker. $\Delta \cong$	$Z_{8}+Z_{4}+Z_{2}+Z_{2}$	$Z_{8}+Z_{2}+Z_{2}+Z_{2}+Z_{2}$
generators	$\rho^{\prime \prime}, \nu_{5} \kappa_{8} \oplus \bar{\varepsilon}_{7}, \sigma^{\prime} \nu_{14}, \sigma^{\prime} \varepsilon_{14}$	$\left(\eta_{5} \oplus \mu_{7}\right) \circ \sigma_{16}, \nu_{5} \bar{\varepsilon}_{8}, \sigma^{\prime} \mu_{14}, E \zeta^{\prime}, \eta_{7} \bar{\varepsilon}_{8}$

The results for $i \leq 7$ in Theorem 6.1 are verified without difficulties from the exactness of (6.1), so we omit the proof.

We shall compute the 2-primary components. We see that the above lemma, the exactness of (6.3) and the relations (6.2) imply the results for the 2-primary components in Theorem 6.1. So, it is sufficient to prove the relation (6.2).

The first, second, sixth and seventh relations in (6.1) follow immediately from the corresponding relations in (4.1). The third, eighth and ninth relations in (6.1) follow from (5.1). From the second relation of (5.1), we have

$$
4\left[2 \sigma^{\prime}\right]=i_{*} \mu^{\prime} \quad\left(\text { in } \quad \pi_{14}(S U(4))\right)
$$

Since $p_{*}\left[2 \sigma^{\prime}\right]=p_{*}\left(2\left[\eta_{5} \varepsilon_{6} \oplus \sigma^{\prime}\right]\right)$, we have $2\left[\eta_{5} \varepsilon_{6} \oplus \sigma^{\prime}\right] \equiv\left[2 \sigma^{\prime}\right] \bmod i_{*} \mu^{\prime}$. It follows the fourth relation $8\left[\eta_{5} \varepsilon_{6} \oplus \sigma^{\prime}\right]=i_{*} \mu^{\prime}$.

It remains to prove fifth relation

$$
2\left[\nu_{5} \oplus \eta_{7}\right] \circ \sigma_{6} \nu_{15}=i_{*} \bar{\varepsilon}_{3} .
$$

We have
and

$$
\begin{aligned}
2\left[\nu_{5} \oplus \eta_{7}\right] \circ \sigma_{8} \nu_{15} & =\left[\nu_{5} \oplus \eta_{7}\right] \circ 2 \sigma_{8} \nu_{15}=\left[\nu_{5} \oplus \eta_{7}\right] \circ \nu_{8} \sigma_{11} \\
{\left[\nu_{5} \oplus \eta_{7}\right] \circ \nu_{8} } & \equiv\left[\nu_{5}^{2}\right] \bmod 2\left[\nu_{5}^{2}\right],
\end{aligned}
$$

since $\quad p_{*}\left(\left[\nu_{5} \oplus \eta_{7}\right] \circ \nu_{8}\right)=\nu_{5}^{2} \oplus \eta_{7} \nu_{8}=\nu_{5}^{2}$. It follows

$$
2\left[\nu_{5} \oplus \eta_{7}\right] \circ \sigma_{8} \nu_{15}=\left[\nu_{5}^{2}\right] \circ \sigma_{11} .
$$

By Theorem 2.6, we have

$$
\left[\nu_{5}^{2}\right] \circ \sigma_{11} \in i_{*} E *\left\{\eta_{4}, \nu_{5}^{2}, \sigma_{11}\right\} .
$$

By Proposition 1.2 ard (7.19) of [7], we have

$$
\begin{array}{r}
\quad E\left\{\eta_{4}, \nu_{5}^{2}, \sigma_{11}\right\} \subset\left\{\eta_{5}, \nu_{6}^{2}, \sigma_{12}\right\}_{1}>\left\{\eta_{5}, \nu_{6}, \nu_{9} \sigma_{12}\right\}_{1}=\left\{\eta_{5}, \nu_{6}, 2 \sigma_{9} \nu_{16}\right\}_{1} \\
\text { and } \quad\left\{\eta_{5}, \nu_{6}, 2 \sigma_{9} \nu_{16}\right\}_{2} \subset\left\{\eta_{5}, 2 \nu_{6}, \sigma_{9} \nu_{16}\right\}_{1}>\left\{\eta_{5}, 2 \iota_{6}, \nu_{6} \sigma_{9} \nu_{16}\right\}_{1} .
\end{array}
$$

The indeterminacy is $\eta_{5} \circ E \pi_{19}^{5}+\pi_{13}^{5} \circ \sigma_{13}+\pi_{9}^{5} \circ \sigma_{9} \nu_{16} . \quad \eta_{5} \circ E \pi_{19}^{5}=\eta_{5} \circ 2 \pi_{20}^{6}$ $=\eta_{5} \circ 2 \iota_{6} \circ \pi_{20}^{6}=2 \eta_{5} \circ \pi_{20}^{6}=0$, by Theorem 10.3 of [7]. $\pi_{13}^{5} \circ \sigma_{13}=\left\{\varepsilon_{5} \sigma_{13}\right\}$ $=0$ by Theorem 7.1 and Lemma 10.7 of [7]. $\pi_{9}^{5} \circ \sigma_{9} \nu_{16}=\left\{\nu_{5} \eta_{8} \sigma_{9} \nu_{16}\right\}$ $=\left\{\nu_{5}\left(E \sigma^{\prime} \eta_{15}+\bar{\nu}_{8}+\varepsilon_{8}\right) \mu_{16}\right\}=0$ by (7.4), (5.9), (7.17) and (7.18) of [7]. It follows that

$$
E\left\{\eta_{4}, \nu_{5}^{2}, \sigma_{12}\right\}=\left\{\eta_{5}, 2 \iota_{6}, \nu_{6} \sigma_{9} \nu_{16}\right\}_{1}
$$

and this consists of a single element. We have

$$
\nu_{5} \sigma_{8} \nu_{15} \equiv\left\{\nu_{5}^{2}, 2 \iota_{11}, \nu_{11}^{2}\right\}_{1} \quad \bmod \quad \nu_{5} \eta_{8} \mu_{9},
$$

since $H\left(\nu_{5} \sigma_{8} \nu_{15}\right)=H\left\{\nu_{5}^{2}, 2 \iota_{11}, \nu_{11}^{2}\right\}_{1}=\nu_{9}^{3}$ and the kernel of E is generated by $\nu_{5} \eta_{\varepsilon} \mu_{9}$ (cf. Theorem 7.7 of [7]). Then

$$
\nu_{6} \sigma_{9} \nu_{16} \in\left\{\nu_{6}^{2}, 2 \iota_{12}, \nu_{12}^{2}\right\}
$$

since $E\left(\nu_{s} \eta_{8} \mu_{9}\right)=0$. By Proposition 1.5 of [7],

$$
\begin{aligned}
& \left\{\eta_{5}, 2 \iota_{6}, \nu_{6} \sigma_{9} \nu_{16}\right\}_{1}\left(\in\left\{\eta_{5}, 2 \iota_{6},\left\{\nu_{6}^{2}, 2 \iota_{12}, \nu_{12}^{2}\right\}\right\}\right) \\
& \quad \in\left\{\left\{\eta_{5}, 2 \iota_{6}, \nu_{6}^{2}\right\}, 2 \iota_{13}, \nu_{13}^{2}\right\}+\left\{\eta_{5},\left\{2 \iota_{6}, \nu_{6}^{2}, 2 \iota_{12}\right\}, \nu_{13}^{2}\right\} .
\end{aligned}
$$

Here we have that $\left\{\eta_{5}, 2 v_{6}, \nu_{6}^{2}\right\}$ consists of the element ε_{5} by (6.1) and Theorem 7.1 of [7]. By Corollary 3.7 of [7], we have $0=\eta_{6} \nu_{7}^{2} \in\left\{2 \iota_{6}, \nu_{6}^{2}, 2 t_{12}\right\}$ and hence $\left\{2 \iota_{6}, \nu_{6}^{2}, 2 t_{12}\right\}=2 \pi_{12}\left(S^{6}\right)$. So, we have

$$
\left\{\eta_{5}, 2 \iota_{6}, \nu_{6} \sigma_{9} \nu_{16}\right\}_{1} \in\left\{\varepsilon_{5}, 2 \iota_{13}, \nu_{13}^{2}\right\}+\left\{\eta_{5}, 2 \alpha, \nu_{13}^{2}\right\} .
$$

By the definition of $\bar{\varepsilon}_{5}, \bar{\varepsilon}_{5} \in\left\{\varepsilon_{5}, 2 \iota_{13}, \nu_{13}^{2}\right\}$. We have also $0 \in\left\{\eta_{5}, \alpha, 0\right\}$ $<\left\{\eta_{5}, 2 \alpha, \nu_{13}^{2}\right\}$. It follows

$$
\bar{\varepsilon}_{5} \equiv\left\{\eta_{5}, 2{\iota_{6}}, \nu_{6} \sigma_{9} \nu_{16}\right\} \quad \bmod \quad G
$$

where $G=\eta_{5} \circ \pi_{20}\left(S^{6}\right)+\pi_{14}^{5} \circ \nu_{14}^{2}=\eta_{5} \circ \pi_{20}^{6}=0$. By concerning the behavior of E in Theorem 10.5 of [7], we have

$$
\bar{\varepsilon}_{3}=E^{*}\left\{\eta_{4}, 2 \iota_{5}, \nu_{5} \sigma_{8} \nu_{15}\right\} .
$$

Therefore we have proved that

$$
\left[\nu_{5}^{2}\right] \circ \sigma_{11}=i_{*} E^{*}\left\{\eta_{4}, 2 \iota_{5}, \nu_{5} \sigma_{8} \nu_{15}\right\}=i_{*} \bar{\varepsilon}_{3} .
$$

This completes the proof of Theorem 6.1.

§ 7. Problems

In the previous computations it seems that the following two problems are true.

Problem 7.1. Is the following diagram commutative?

This is surely true for the suspension elements in $\pi_{i}\left(S^{5}\right)$.
Problem 7.2. Let an element α of $\pi_{i}\left(S^{5}\right)$ satisfy the relations

$$
2 \alpha=0 \quad \text { and } \quad \Delta \alpha=0
$$

where Δ is the boundary homomorphism for the bundle $S U(3) / S^{3}$ $=S^{5}$. Does there exist an element $[\alpha]$ of $\pi_{i}(S U(3))$ and an element β of $\pi_{i}\left(S^{3}\right)$ such that

$$
p_{*}[\alpha]=\alpha, \quad i_{*} \beta=2[\alpha] \quad \text { and } \quad H(\beta)=\alpha ?
$$

BIBLIOGRAPHY

[1] A. Borel and J.-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math., 75 (1953), 409-448.
[2] R. Bott, The stable homotopy of the classical groups, Ann. of Math., 70 (1959), 313-337.
[3] M. Mimura and H. Toda, The $(n+20)$-th homotopy groups of n-spheres, J. Math., Kyoto Univ., 3 (1963), 37-58.
[4] K. Oguchi, A generalization of secondary composition and its applications, J. of Fac. of Sci. Univ. of Tokyo, 10 (1963), 29-79.
[5] J.-P. Serre, Groupes d'homotopie et classes des groupes abéliens, Ann. of Math., 58 (1953), 258-294.
[6] N. E. Steenrod, The topology of fibre bundles, Princeton, 1951.
[7] H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies 46 (1962).
[8] H. Toda, On homotopy groups of S^{3}-bundles over spheres, J. Math. Kyoto Univ., 2 (1963), 193-207.

