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Introduction

Koebe was the first who proved strictly the existence of con-
formal mappings of an arbitrary planar Riemann surface onto slit
regions. Concerning an open Riemann surface R of positive genus
g, Kusunoki [9] and Nehari [13] showed that for any g+1 points
P,, PP, on R there exists a conformal mapping of R with
possible poles at P, P,,---,P, onto a covering surface of the extended
plane which is at most (g+1)-sheeted and bounded by parallel
slits, only if the boundary of R consists of a finite number of
closed Jordan courves. Under the same condition on the boundary,
Mori [12] showed the existence of conformal mappings of R onto
covering surfaces of the extended plane which are (g-+1)-sheeted
and bounded by slits along parallel segments. As for circular and
radial slit mappings, Kusunoki [10] and Nehari [13] established
an analogous theorem under the same condition on the boundary.
But the condition on the boundary is very restrictive, and our
intention in this paper is to remove the restriction.

In §1 we shall consider some definitions and properties which
are necessary for our conclusions. Here we also show that a
Riemann surface of genus g >1 can be considered as an at most
g-sheeted covering surface of the extended plane.

In §2 we shall treat parallel slit mappings. If f is a function
on R which maps this onto a covering surface of the extended
plane with g-sheets and parallel slits as a boundary, a subset E
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of the extended plane, formed by points w such that there exist
at most ¢—1 points on R at which f(P)=w (counted with their
multiplicities), consists of parallel segments. Therefore we shall
call a conformal mapping f of R onto a covering surface of the
extended plane a parallel slit mapping if every component of the
set E is either a point or a segment parallel to a fixed line. In
other words, let {R,} be a canonical exhaustion of R and {G}} the
sequence of the projections of f(R—R,), where every R, denotes
the closure of R,, then the set E coincides with the intersection

f\(?:.. In this connection, we mean in the following by projection
of the boundary of f(R) the intersection fj\ G.. We shall show, for

an arbitrary open Riemann surface of finite genus g, that there
exist parallel slit mappings onto at most (g-+1)-sheeted covering
surfaces of the extended plane, and the total area of the projection
of the boundary of an image under each of these mapping is zero.

Furthermore, we shall prove, if a number of the boundary
components of R is at most countable, that the class of all parallel
slit mappings of R coincides with the class of single-valued integrals
of canonical differntials, except for rotations around the origin on
the plane.

With an analogous definition for circular and radial slit map-
pings, we shall show, in §3, the existence of mappings of this kind
and the fact that the logarithmic area of the projection of the
boundary of an image under anyone of these mapping is zero.

§1. Preliminaries

1. The canonical semiexact differentials. At first we recall
the definition and some properties of the canonicl semiexact differ-
entials on an arbitrary open Riemann surface R, which were
introduced by Kusunoki [9].

Let B be a canonical regular region on R (Ahlfors and Sario
[2] p. 26, p. 80 and p. 117), whose complement consists of #
disjoiut non-compact domains G,, G,,::-,G, with relative boundaries
r,, 1,,-,1,, respectively, then a harmonic function # on R is
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called a canonical potential associated with B, if on each domain
G; (j=1,2,---,n) it is a normalized potential, except a possible real
constant, which is a single-valued harmonic function on G; satisfy-
ing the normalization condition

(1) wP) = [ wQofQ P), PEG;  (j=1,20m),

j
where ; stands for the harmonic measure of an arc @ on I;
with a fixed @;, with respect to G; (j=1.2,---,n) (Nevanlinna [14]
pp. 320-333). It may have a finite number of additive periods and
singularities in B.

Let T=T,+ T, be the real vector space of canonical potentials
associated with canonical regular regions, where the subspace T,
consists of those single-valued and regular on R. 7T, is a subspace
of the Hilbert space consisting of single-valued harmonic functions
# with finite norms ||#||=v/D(x). Here, two elements of 7T, are
identified if the difference is a constant. Let T, be the completion
of T, by this metric and let 7= T,+T,. We call any element of
T a canonical potential on R. The Abelian differentials ¢ such

that ReSqJ are, except constants, canonical potentials are called

canonical differentials provided that the sums of the residues vanish.

A differential on R is said to be semiexact if it has no periods
along every dividing cycle on R.

Let us denote by & the class of canonical semiexact differ-
entials (or integrals) on R, and by &, the class of single-valued
integrals (functions) of class 8.

Many properties with respect to the differentials of class &
and the functions of class &, were found by Kusunoki [9], among
which the following are important for the present research.

For any canonical potential u associated with a canonical regular
regions B bounded by U, 1',,---,1',, and differential dv-+idv* which

is square integrable over R—B and de*=0 (7=1,2,---,n), we have
rj
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(2) Dye-slt, v) = — [ udv*
0B
where 0B denotes the boundary of B described in the positive sense
with respect to B.
Let ue T and let v be a harmonic function such that dv is

square integrable outside of a compact set K and such that S dv¥=0
T

for every dividing curve ' C R—K, then for any exhaustion {R,} of
R we have

(3) limSudv*zo.
9R,

A differential of class &, whose integral has single-valued real
part and regular on R, is identically zero on R (Uniquness tneorem).

For a canonical homology basis {A., B,} modulo dividing
cycles on R, there exist differentials ¢,,, g, (k=1,2,---) of class
& of the first kind such that Re @ ,,, Re pg, have only non-vanishing
periods +1 and —1 along B, and A, respectively. Let P, and Q, be
given points on R, then there exist differentials 3, 3 of class
& of the second kind whose integrals have single-valued real parts,
and singularities 1/2" and i[|z" (r =1) at P, respectively. Also there
exist differentials ¢p o, d;POQO of class R of the third kind whose
integrals have single-valued real parts except an arc 150_(\)0, and
logaritmic singularities at P, and Q, with residues —1, —i (at P,)
and +1, +i (at Q,) respectively.

Moreover it is known that these differentials ¢ ,,, Pg, 7. and
\Pﬁ,’; are vepresented as the limit differentials in terms of norm
conver gence,

Vo =V,

(4) P = Pam g e
where P, V.. elc. are the corresponding differentials on ca-
nonical regular regions R, (n=1, 2,---) which constitute an exhaustion
of R.

We call an exhaustion of R consisting of canonical regular
regions a canonical exhaustion of R (Ahlfors and Sario [2] p. 80).

(n— o),
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2. A representation of (g+1)-valent functions of class R,.
Now we restrict R to be of finite genus g_>0, unless otherwise
stated. For an arbitrary divisor 8 of finite degree d|&] on R, the
following Riemann-Roch’s theorem was established by Kusunoki [9]:

(5) A[87]—B[8] = 2(d[6]—g+1),

where A[6-'] denotes the number of linearly independent (in the
real sense) functions of class §, which are multiples of 7%, and
B[8] the number of linearly independent differentials of class &
which are multiples of 8.

In case of a divisor consisting of a single point P**', we see
that there exist functions of class £, with single poles of order at
most g+1 at P. The set of points such that B[ P]1=0 is dense in
R and there exists a function of class &, with a single pole of
order just g+1 at any point of the subset (Mori [12]).

Take a point P, such that B[ P§]=0. Such a point is a point
at which the function on a parametric disk

V(z) =
Reh(2) Imh(2) Rekhi(z) Imh(2) - RehfF(z) ImhE>(2)

(6) Re hy(z) Imhy(z) Rehy(z) Imhj(2) ---Re h¥=(2) Im hf~"(2)

...............................................................

Re h,,(2) Im h,y(2) Re hjg(2) Im hiyg(2)-+Re h$g™V(2) Im hsz>(2)

does not vanish, where z is a local parameter at P, and /(2)dz
=p4, and kg, (2)dz=pg, (k=1,2,-+,g) (Mori [12] and Springer
[20] p. 272).

Let {R,} be a canonical exhaustion of R and let V,(z) be the cor-
responding function on a parametric disk about P, on each R,, then
we have V,(2)— V(z2) as n— oo because of (4). Hence we have V,(2)==0
for sufficiently large #. Therefore there exists a function f, of
class &, on R, which has a single pole of order g+1 at P, for
such large n. From now on we consider R, only for such large #.

The function f of class & on R which has a single pole of
order g+1 at P, has an expression
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AR AR

by the uniqueness theorem, where (d,, d,,"-*,d 1, d, a’z,-n,JgH) is
a solution of the following system of equations

g+

(7) a, | "’+2d8\17;:;=0, (b=1,2-g).

r=1
Ap Ap
By By

By dint of the relation (5), we can see that the system (7) has
two linearly independent solutions. While £, has an expression

g+l E+1 A ~,
= Sar (v Zaw (v,

where (d{", d§”,--,d{, d¢°, d§,--,d$?) is a solution of the
following system of equations

8)  Haw (v Har (=0, ¢=12-9.
- Ay ! Ap
By, By
Therefore we see easily, by (4), that
(9) d®—d,, d®—>d, (n—>o) (r=12--g+1).

Let @, be any point on R which is different from P,, and put

(10) f(P) = f(P)—f(Q) = utiu*

and

(11) Fu(P) = Fu(P)—FuQ0) = u,+inf .

Then we have by (4) and (9)

(12) FuP) = fP), (n— o).

The convergence is uniform on every compact set contained in
R-—P,.

Thus we have shown the following result.

Lemma 1. Let R be an arbitrary open Riemann surface of
finite genus g>0, P, a point on R such that B[ P%]=0, and let f
be a function of class R, on R with a single pole of order g+1 at
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P,. Then, for a canonical exhausion {R,} of R, there exists a
Sfunction f, of class &, on each R, with a single pole of order g+1
at P,, for sufficiently large n, such that the sequence {f,} converges
to the function f.

3. A boundary component and its weakness. For an arbitrary
open Riemann surface R, we consider an infinite suquence {G,} of
subregions of R such that:

1) the relative boundary of each G, is compact,

2) G,>G,,, n=1,2,-+), and

3) fi\(},,=ri>, where G, denotes the closure of G,.

The sequence {G,} is said to be a defining sequence of a boundary
component 4 of R (Stoilow [21] p. 85).

If 7 is a conformal mapping of R onto R’, the sequence
{f(G)} of the images of G, under f is a defining sequence of a
boundary component o’ of R’. We shall say that o corresponds
to v under f in this sence.

For a canonical exhaustion {R,} of R, each set R—R, is said
to be a boundary nzighborhood, and a component of R—R, whose
boundary contains 4 is said to be a neighborhood of v. We define
a property to be a y-property, after Jurchescu [7], if a Riemann
surface R carrying v has the property, then every Riemann surface
R’ which admits a conformal mapping of a neighborhood of a
boundary component " of R’ onto a neighborhood of v has the same
property.

Let P, be a fixed point on R, and let K:|z|<1 be a fixed
parametric disk on R such that z=0 corresponds to P,. Consider
a canonical exhaustion {R,} of R with P € R,, and let us denote
by B, the boundary of each R, and by ¢, the component of B,
which separates v from P,.

Consider the class {¢}, of single-valued functions on R which
satisfy the following conditions :

1) each ¢ is harmonic on R—P, and

t = log|z| +h(2)

in K, where A(2) is a harmonic function with 4(0)=0,
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2) (drr =20 and | arr=0, (-12)
Tu Buj Yn
where v, and 8,; are described in the positive sense with respect
to R,.
Further we consider the corresponding class {¢},, on R,, then
there exists a function #, in this class which is uniquely determined
by the conditions :

t,=k,onvy, and ¢,=k,; on B,;:l=v,,
where k, and k,; are certain real constants.

Then, there is a principal function t, furnishing the condition

minStdt* - gtydt;k,
B B

where Stdt* means the limit of integrals taken along B,. For any
B

te {t},, the deviation of Stdt* from the minimum is
B

Stdt*—g t,dt% = Dyt —t,).
B B
Moreover

k,<k,.. and Stydti‘,‘ = 2 lim k, = 27k, .
) -
The function #, is called the capacity function of R for «, and
the quantity c¢,=e %y is called the capacity of v with respect to K
(Sario [18] and Savage [19]).
The condition ¢,=0 is independent of a local parameter at
P, and of P,. A boundary component ¢ is said to be weak if
cy=0. The weakness of v is a y-property (Jurchescu [7]), and a
boundary component of a planar Riemann surface is weak if and
only if its image under any univalent conformal mapping of the
surface is a point (Savage [19]). The boundary of a Riemann
surface whose boundary components are all weak is called absolutely
disconnected (Sario [18] and Savage [19]).



Canonical conformal mappings of open Riemann surfaces 177

4. A property of the weak boundary components. Let S be a
subregion of any Riemann surface and let p be a conformal metric
on S. We define p-length of any cycle ¢ on S by the following
lower Darboux integral

e o) = [ p@1dzl.

'

If p is a measurable conformal metric on S, we define p-area
of S by the following Lebesgue integral

ApsS) = [ pardo.,
S
where o, is the Lebesgue measure on a parametric disk K, on S.
A measurable conformal metric p defined on S is said to be A-
bounded on S if A(p;S)< eo (Jurchescu [7]).
We use the following result obtained by Jurchescu [7].

A boundary component vy of a Riemann surface is weak if and
only if, for any neighborhood S of < and for any A-bounded con-
formal metric p on S, there exists a dividing cycle separating v from
the relative boundary of S with an arbitrarily small p-length.

Then it is readily seen:

Lemma 2. Suppose that R is an arbitrary open Riemann surface
of finite genus and f is a conformal mapping of R onto a covering
surface of the extended plane which has at most a finite number
of sheets. Then, f(P) has a limit as P tends to any weak boundary
component of R.

It is known that if f(P) is a bounded analytic function on an
end of a Riemann surface of class Og, it has a limit as P approaches
an ideal boundary component (Heins [6]).

Proof. A projection of a boundary component 4 of f(R)

means the intersection /\ G/, where G/ are the projections of
n=1

subregions G, of f(R) which constitute a defining sequence of .
Then f(P) has a limit when P tends to v, if and only if the
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projection of ¥ which is the image of v under f is a single point.
We shall prove that if the projection 7’ of 4 is a continuum, then
v is not weak.

Let us denote by K, the disk |w—w,|<1 with w,€v’. There
exists a disk K< K,nS’, where S’ is the projection of a neigh-
borhood of 4. In K, we consider a rectangle H=aba’b’ such that
its side « is completely in the interior of K and its neighboring
sides b, b’ have common points with ¢’. Let K be a set on f(R)
which lies over K, and H a set on f(R) which lies over H, and
take a neighborhood S of # so that Sc f(R)—K.

We define a conformal metric p on S by putting p(w—w,)=1
on HNS, except for branch points of f(R) with respect to the
extended plane, and p=0 otherwise. For any point P, on HnS
which lies over w, and is not a branch point of f(R), w—w, is a
dw —w,)
d(w—w,)
=1, and for any other local parameter z at P, we have p(2)

=p<w—wl>\d<“17;w& .

local parameter at P, and we have p(w—w,)=pw—w,)

Clearly p is A-bounded and satisfies /(p ;¢)

=1,>0, where /, is the length of ¢ in K and ¢ is any dividing
cycle separating ¥ from the relative boundary of S. Hence ¥ is
not weak by the result quoted above, and v is not weak, because
the weakness is a f-property.

5. A canonical continuation of a Riemann surface. We say
that a Riemann surface R* is a continuation of a Riemann surface
R if R* has an open subset B which is conformally equivalent to
R, and if R* is compact it is called a compact continuation (Bochner
[4] and Radé [15]). If R is an open Riemann surface of finite
genus, there exist always compact continuations of the same
genus (Bochner [4] and Mori [11]). Moreover, if R is dense in
R*, it is called a dense continuation (Heins [5]), and if R*—R
contains interior points, the continuation is said to be essential
(Sario [17]).

We form a special continuation R* of R of genus g as follows.
We get a planar surface by cutting R along g closed analytic
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Jordan curves I'; (j=1,2,---,g), which do not intersect each other
and the union of which does not divide R. We map R’ conformally
onto a domain D on the plane, which is bounded by 2g closed
analytic Jordan curves C;, Cj (j=1,2,---,g) and a bounded closed
set &, so that C; and C) correspond to [; (j=1,2,-,g) and &
corresponds to the ideal boundary of R respectively. Let us denote
by D)’ the domain on the extended plane bounded by &, then D’
can be mapped conformally onto a horizontal slit region D’ bounded
by A* (Ahlfors and Sario [2] p. 177). Let C¥ and Cj* be the
images of C; and Cj, and D* be the image of D under that map-
ping respectively. Since there exists analytic correspondence
between C¥ and C}*, D*\uB* can be regarded as a closed Riemann
surface R* of genus g by identifying the corresponding points on
C¥ and Cj* (j=1,2,-,g). R is conformally equivalent to
R=R*—B*,

On this continuation R* of R, we gain a realization 8* of the
ideal boundary 8 of R. A weak boundary component corresponds
to a point on R*, while a boundary component which is not weak
corresponds to a point or a slit, which is seen by the fact that
the weakness of a boundary component is a ¢-property and a
weak boundary component of a plane region corresponds to a point

under any univalent conformal mapping of the region. We shall
call this kind of continuation R* of R a canonical continuation of

R, that is a continuation which satisfies the following conditions :
1) R* is a compact continuation,
2) it is of the same genus as R,
3) R is dense in R*, and
4) every component of the realization of the ideal boundary
of R on R* is either a point or an analytic curve.
Thus we have shown

Lemma 3. If Ris an arbitrary open Riemann surface of finite
genus, then there exist canonical continuations of R.

Next we are going to prove:

Lemma 4. Let R be an arbitrary open Riemann surface of
finite genus whose boundary is not absolutely disconnected, and let
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v be a boundary component of R which is not weak, then there exists
a canomnical continuation R* of R on which the realization v* of v
is an analytic curve.

Proof. Let R¥ be a canonical continuation of R, and suppose
that the realization  of vy on R} is a point. Then there must be
a neighborhood U%¥ of &¥ and a conformal mapping of U¥ onto a
domain D of the plane, such that the boundary component v of D
which corresponds to v under that mapping is a continuum. Let
I'¥ be a closed analytic Jordan curve which separates the relative
boundary of U¥ from ¥, and S§ be the subregion on R¥ which
is bounded by I'f and does not contain y¥. We map a comple-
mentary domain of ¢’ with respect to the extended plane onto a
horizontal slit region, and let I'* be the resulting image of I'f on
the plane and V* be the subregion on the plane which is bounded
by I'* and contains the image of 9’. Then, there is an analytic
correspondence between I'f and I'*, and by identifying the cor-
responding points on I'} and 1'* we get a canonical continuation
R*=8#¥uV* of R on which the realization of v is an analytic curve.

By use of a canonical continuation, we can easily get:

Theorem 1. Let R be an arbitrary open Riemann surface of
finite genus g >1, then R is conformally equivalent to an at most
g-sheeted covering surface of the extended plane which is bounded
by a set comsisting of analytic curves and totally disconnected set.

Proof. We form a canonical continuation R* of R. On the
compact Riemann surface R* of genus g >1, there are n Weier-
strass points where n=2g+2 if R* is hyperelliptic and 2(g+1)< n
<(g—1)g(g+1) if R* is not hyperelliptic (Behnke und Sommer
[3] pp. 573-577). Then there exists a conformal mapping of R*,
with a single pole at a Weierstrass point, onto an at most
g-sheeted covering surface of the extended plane. Under that
mapping, the realization of the ideal boundary of R on R* cor-
responds to a set consisning of analytic curves ond totally dis-

connected set.
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§ 2. Parallel slit mappings

In this section we treat the functions of class &,, and show
that they are parallel slit mappings of R onto covering surfaces
of the extended plane, that is, every component of the projection
of the boundary of an image f(R) under any function f of this
class is either a point or a segment which is parallel to the
imaginary axis.

If {R,} is a canonical exhaustion of R, with the definition
of functions of class £, and by the way of the construction of
differentials of class & (Kusunoki [9] pp. 243-248), a function f(P)
of class &, is the limit function of a sequence of functions {f,(P)},
each of which is not necessarily of single-valued. But the real
part «,(P) of each f,(P) is single-valued and has the expression

13) (P = | @@k} do,@ P+h,, PeG,
B

nj

on each component G,; of the complement of R,, where 8,; is the
relative boundary of G,;, ®,;(Q, P) is the harmonic measure of an
arc Q/,,-:Q on B,; with fixed @,;, with respect to G,;, and k,;is a
real constant (j=1,2,---,v,). Therefore the property of the har-
monic measure o,;(Q, P) plays an important role.

At first we shall see a property of a harmonic measure of
an ideal boundary.

6. A harmomnic measure of an ideal boundary. Let R be an
arbitrary open Riemann surface, {R,} a canonical exhaustion of R,
and let R, be a regular region with the boundary «. The limit
function

(14) (P, @) = limo,(P, )
of harmonic measures ©,(P, @) of « with respect to R,—R,, is

a harmonic function on R—FR, with 0<o(P, )<<1. We form the
difference

(15) o(’, B) = 1—w(P, a)
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and define it as a harmonic measure of the ideal boundary B with
respect to R—R, (Nevanlinna [14] p. 317).

Lemma 5. Let R be an open Riemann surface of finite genus
whose boundary is not absolutely disconnected, and let v be an ideal
boundary component of R such that the realization v* of v on a
canonical continuation R* of R is an analytic curve. Then we have

o(P, 8% =1 for Peqg*,
where B% denotes the realization of the ideal boundary of R on R*.

Proof. By (15), it is sufficient to prove that
o(P,a)=0  for Pey*.

Let z be a local parameter at P by which +* is made to cor-
respond to the real axis and a part of ¥* which corresponds to the
positive part of the real axis is not empty. Choose a real number
A so small that z=X is on v*, and let us denote the disk |z|<<\
by K,. Take a parameter f=log 2z and consider the harmonic
measure o*(¢) of the image of the circle |z|=2A, 0<Larg 2<2x,
with respect to the half plane Re?=_logA. The function o*(log z)
is harmonic for 0<|z|< X and single-valued if we take the branch
0< arg z<2#. Clearly we have

w*(log 2) < 2 Tan- n(log J—”v>_l,
7 | 2|
where Tan™' denotes the principal value of arctangent.

We take » so large that (KR,—R,)nK,==¢, and compare the
harmonic measure o,(P(z), @) with o*(log z). We obtain the
estimate

®,(P(2), @) < _»*(log 2),

which is easily seen by using the maximum principle on each
component of (R,—K,)nK,. Then we have

lim »,(P(2), @) < ©*(log 2)

= 3Tan" n(log R )_1.
|z

T
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This inequality shows that ®(P(z), @)—0 as z—0.

Moreover, this fact is independent of a canonical continua-
tion of R on which v is realized, beacuse there is a conformal
mapping between R, and R, which are the subregions of any two
continuations of R and conformally equivalent to R. Thus we
have obtained by Lemma 4 and 5:

Theorem 2. If R is an open Rieman surface of finite genus
whose boundary is not absolutely disconnected, the harmonic measure
o(P, B) of the ideal boundary B of R tends to 1 as P approaches
v, where v is any component of B which is not weak.

The Green’s function g(P, P,) of R with a logarithmic sin-
gularity at P, is expressed as the limit function

g(P’ Po) = !'i_g}gn(P’Po)r

where g,(P, P,) denotes the Green’s function of each R, (Nevanlinna
[14] p. 316). We can find a number m so large that a region
G which consists of such points P that satisfy g(P, P,) >m is a
regular region. Hence by making use of the function me*(log z),
we can prove quite analogously as we did to establish Theorem 2:

Corollary. [f R is an open Riemann surface of finite genus
whose boundary is not absolutely disconnected, then the Greenw's
Sunction g(P, P,) tends to 0 as P approaches any boundary com-
ponent which is not weak.

7. Area of the projection of the boundary of f(R). We shall
Now prove

Lemma 6. Let R be an arbitrary open Riemann surface of
finite genus g >0, f a function of class &, with q poles (counted
with their multiplicities), and let E be a subset of the plane con-
sisted of all points w such that there exist at most q—1 points on
R at which f(P)=w (counted with their multiplicities). Then E is
a closed set of the area zero.

" Proof. For any point w e CE, where CE denotes the comple-
ment of E with respect to the extended plane, there exist exactly
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¢ points P,, P,,---,P, on R at which f(P,)=w (counted with their
multiplicities). We take neighborhoods U;(P;) of P; (j=1,2,:-,q),
then the intersection of the projections of the images f(U;(P;))
of g neighborhoods is a neighborhood of w contained in CE.
Therefore the set E is closed.

In order to see that the area of E is zero, we take a canonical
exhaustion {R,} of R. Let us denote the image of the boundary
B, of R, under f on the g-sheeted covering surface of the ex-
tended plane by B8, and its projection on the plane by 8,. Let E{¥
(0<Lk<<g—1) be a set consisting of all points w such that there
exist at most £ points on R, at which f(P)=w (counted with their
multiplicies). Then we have E CESY (0<k<¢g—2), and

(16) E@Y>EUY, EWV>E  for all n.

Now we consider about /E® (0<k<g—1) for any #xn. Clearly
OE is piecewise analytic and all dE{ (0<<k<qg—1) amount to
B.. If a point P moves along B, in the positive direction with
respect to R,, the image f(P) moves along B, in the positive
direction with respect to f(R,), and the projection w moves along
B, in the positive direction with respect to CES’. For, suppose
that there exists a piece a’® CE{¥ along which w moves in the
opposite direction, that is in the positive direction with respect to
E®. We choose a point w,€ @® and a neighborhood U of w,
so that it is divided by a* into two disjoint sets and it does not
contain any branch point of f~'. Let&"* be a piece of B, which lies
over «® and let U be a connected set over U on the same sheet
on which &*® passes through, then &® divides f(R,)NU and
f(CR,)N U, where CR, denotes the complement of R, with respect
to B. f(R,)NU must be over EX’ U because of the assumption
that w moves along «a® in the positive direction with respect to
E¢% . On the other hand, each point of E U has at most £k
inverse images on R, by f and each point of CE{®» U has at
least £+1 inverse images on R, by f, which is absurd, unless the
projection of f(P°) passes along a'* in the positive direction with
respect to CEY at least two times, and it has the same effect as
to pass along a*® in this direction.
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Therefore

- Sua’u* - S wdu* = SYMEP) = MES),  (n=1,2,-)
=0 =0
B OE®

where f=u-+iu* and M(E{®) denotes the area of E{. Then we
have by (3) and (16)

lim M(E@~2) =0,

and we attain to our conclusion M(E)=0.

6. A parallel slit mapping with a single pole. Let P, be a
point on R such that B[ P{]=0, then there exist two linearly
independent functions of class ®, with single poles of order g+1
at P,. Let f be one of these functions, then f is a conformal
mapping of R onto a (g+1)-sheeted covering surface of the
extended plane.

Let ¥ be a boundary component of f(R) whose projection is
not a point, then the boundary component vy of R which cor-
responds to ¥ under f is not weak by Lemma 2, and there is a
canonical continuation R* of R on which v is realized as an analytic
curve by Lemma 4. We identify R and R which is the subregion
on R* conformally equivalent to R, and we retain the notation v
for the realization of v on R¥*.

Let {R,} be a canonical exhaustion of R with P,€ R,, then
the sequence {G{"} of the components of R—R, (n=1,2,---), whose
relative boundaries v, separate v from P, is a defining sequence
of 4. The function f(P)=u(P)+iu*(P) is the limit function of a
sequence of functions {f,(P)}, where each f,(P) has the same
singularity as f(P) and the real part u,P) of f,(P) is single—
valued and has the expression (13) on each component of CR,.
We consider the behavior of «,(P) on G,. We have

u(P) = | (@ — P} do(@, P) 1k, PeG,
yﬂ
and we can show that ©’(Q, P)=0 for P€ v and «,(P) is a constant
kY’ along v in a quite analogous way as we did in Lemma 5.
We obtain a sequence of real numbers {k{”}, and we know
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that lim k&’ exists and is finite, and it is equal to the value of

npoo

u(P) along v as follows. We can select a subsequence {£’} for

ny

which lim &7 exists. The corresponding subsequence {f,,(P)} of

v>oo

{f.(P)} also converges to the function f(P), and we see that wu(P)
is a constant £ =Ilim £’ along v. The sequence {k;”’} must also

converge to k™. Since k" is the value of #(P) on % and the
point at infinity belongs to CE, it must be finite.

Thus, the real part «(P) of f(P) is a constant along v, and
we have obtained together with Lemma 6, the following

Theorem 3. Let R be an arbitrary open Riemann surface of
finite genus g >0, then there exists a parallel slit mapping of R
onto a (g+1)-sheeted covering surface of the extended plane. More-
over, the total area of the projection of the boundary of the image
of R under this mapping is zero.

We can choose a point P as a pole of this mapping arbitrarily
near the prescribed point, because the set of points P such that
B[ P¥]=0 is dense in R, and when we take a point P at which
B[ P¥]=0 as a pole, there are two linearly independent such map-
pings, as we can see it by (5).

9. Parallel slit mappings with poles of order 1. For any g+1
points P,, P,,--,P, on an open Riemann surface of finite genus
g >0, there are functions of class &, with poles of order 1 at some
of P,, P,,,P,, which is easily seen by Riemann-Roch’s theorem
(5) (see Kusunoki [9] Theorem 12). Then, quite analogously as we
did in the previous theorem, we can prove

Theorem 4. Given an open Riemann surface R of finite genus
g>0 and g+1 points P,, P,,---,P, on R, then there exist parallel
slit mappings of R, with poles of order 1 at some of P,, P,,---,P,,
onto at most (g+1)-sheeted covering surfaces of the extended plane.
Moreover, the total area of the projection of the boundary of the
image under anyone of this mapping is zero.

10. Awnother characterization of functions of class &,. For
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any function f of class & with ¢ poles (counted with their multi-
plicities), 'we can show by the same reasoning as we did in the
previous theorems, that f is a paralle] slit mapping of R onto a
g-sheeted covering surface of the extended plane.

Conversely, if a number of the boundary components of R is
at most countable, and if F is a parallel slit mapping of R such
that the projection of the boundary of the image F(R) does not
contain the point at infinity, we can show that F can be expressed
as ¢’f, where fe€®,. Let us note that, with the definition we
have chosen, a number of sheets of a covering surface of the
extended plane, onto which R is mapped under a parallel slit
mapping is at most finite.

Theorem 5. Suppose that R is an open Riemann survface of
finite genus and a number of boundary components of R is at
most countable. Then a conformal mapping F of R onto a covering
surface of the extended plane, such that the projection of the
boundary of the image F(R) does not contain the point at infinity, is
a parallel slit mapping if and only if it can be expressed as e*°f,
where f€K,.

Proof. It suffices to prove only the necessary part of the
theorem. Let F be a parallel slit mapping of R onto a g-sheeted
covering surface of the extended plane, then we can find 6 such
that the projection of the boundary of the image under e *°F
becomes segments parallel to the imaginary axis and totally dis-
connected set.

Let

m.

a'r - .
(17) e F = v+iv* = ; z]' + gbikz" at P; (j=1,2,--,m),

where 2 m;=gq. The real part v is a constant along each boundary
ji=1

component of K. Moreover, the Dirichlet integral of v taken over
R—K, where K is a compact set which contains all P; (=1, 2,:+-,#),
is finite. In fact, let {R,} be a canonical exhaustion of R, and 8,
the boundary of each R,. The projection E of the boundary of
¢ *®F(R) can be covered by an open set U with the arbitrarily
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small area, because the area of E is zero by assumption on F and
on R, and the projection of the image of B, under ¢ ¥F is con-
tained in U for sufficiently large ». Then by an analogous consider-
ation as we did in the proof of Lemma 6, it can be readily seen that

lim S vdv* =0,
e B
and it follows that
(18) Dy k(@) = lim S v dv* — Svdv* S Svdv*.
e Ba K K

On the other hand, the projection of the boundary of ¢ #F(R) and
the projecton of the image of 9K under ¢ F are contained in a
bounded region D on the plane, and we know that

(19) Dy x(v) < gM(D) < oo .

Take the differentials ¥, V%) (7=1,2,+,n;7=1,2,--,m;) of
class & of the second kind on R, and form a function

”

(20)  f = u+in* = Z% {(Re a;,) S Vi +Im aj,) S‘T’;’r; '

j=1r=1

Then, u is single-valued and du* is semiexact, and we get

(21) Dy (u—0) = | (w—v)(du*—dv®)
B
= — S udv* — S udu* ,
ﬂ'l ﬂ)l
because

Sudu* — Dy () <0

By

by (2), and

Svdv* = Dy () <0.
Bll

Since # and v are single-valued and constant along any boundary
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component of KR and du*’ is semiexact, Svdu*zo along each v,
Y
and because a number of boundary components of R is at most

countable,

I

22) | Svdu*l | { vaur— gvdu*l
B B Ba

= Dy-r,(®, %) < V/Dg-p,,(v) Dp_ g, (%) .
Consequently, we find by (3) and (19) that
Dy, (u—v) =0, (n — ).

Thus, F=e?f except for an additive constant on R, and f is a
function of class &,, for it has the form (20) and it should be
single-valued.

If the restriction on the boundary of R is removed, in order
to derive the result F=e¢®®f, where f€&f,, we must require that
the projection of the boundary of F(R) lies on an at most countable
number of parallel lines. But it must be noticed that this is not
a necessary condition, because the real part # of a function of
class & well takes more than a countable number of values on
the boundary of R.

Theorem 6. Let R be an arbitrary open Riemann surface of
finite genus. If F is a parallel slit mapping of R such that the
projection of the boundary of F(R) lies on an at most countable
number of parallel lines and does not contains the point at infinity,
then F=ef where f is a function of class &,.

Proof. Suppose that e ®F=v4iv*, where v is a constant along
each boundary component of R, has the expansion (17) at the poles
P; (7=1,2,---,n) and construct a function f as (20). By the
assumption on F, the area of the projection of the boundary of
F(R) is zero, and we have (18), (19) and (21) under the same con-
sideration as above.

In order to obtain the estimate (22), we form a partition of
the ideal boundary of R (Ahlfors and Sario [2] p. 87) so that each
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part of the partition consists of the boundary components on which
v is a same constant. Then we have

Svdu*=0,

where the integral is taken along each part of the partition,
because du* is semiexact. According to the restriction of F, a
number of parts of the partition is at most countable, and we get

Sva’u*zO.
B

Then, the proof of the theorem can be carried out as before.

§3. Circular and radial slit mappings

11. Circular and radial slit mappings. After Kusunoki [9],
A
let us denote by & the class of single-valued meromorphic functions

on R which can be written as exquJ, where p e . We denote

by ¢pe the differential of class & of the third kind whose integral
has single-valued real part except an arc 1/35, and the singularities
—log z at P and log z at Q.

Then, for any given points P, and P, on R, 2g points
P,,,P,, Q,, Q,,-,Q, can be chosen so that the function

£(P) = exp f(P)e &

where
P g (P
£P) = [ bae,+ 3| o, e ®

becomes single-valued, whose poles are at Q,, P,,---,P, and zero
points are at P,, @,,--,Q, (Kusunoki [10]).

The function f(P) has a limit as P approaches any boundary
component which is weak, which is seen by Lemma 2. Moreover,
if the projection of a boundary component 4 of f(P) is a con-
tinuum, the real part of the function f(P) is a constant along v,
which corresponds to  under f(P) (see the proof of Theorem 3).
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We shall call a conformal mapping f of R onto a covering
surface of the extended plane a circular (radial) slit mapping, if
every component of the projection of the boundary of f(R) is
either a point or a circular arc (radial segment) with the center
at the origin.

Theorem 7. Let R be an arbitrary open Riemann surface of
finite genus g, then there exists a circular (radial) slit mapping of
R onto an at most (g+1)-sheeted covering surface of the extended
plane. We can presccribe the location of one pole and one zero of
the mapping function. Moreover, the logarithmic area of the pro-
jection of the boundary of the image under that mapping is zero.

Let {R,} be a canonical exhaustion of R, and E{® be a set on
the plane which consists of points w such that there exist at most
k points on R, at which f(P)=w for 0<k<q, where ¢ is a number
of poles of f counted with multiplicities. For any measurable set
D on the w-plane, we denote by M.(D) the logarithmic area of
D, then we have

Mg (E®) = S log|w|d arg w ,
OE®

because E{ is bounded by piecewise analytic curves. Therefore
we can prove, quite analogously as Lemma 6, that the logarithmic
area of the projection of the boundary of an image under a
circular slit mapping is zero.

We get a radial slit mapping by exp (if), and the fact that the
logarithmic area of the projection of the boundary of an image
under a radial slit mapping is also zero is readily seen by the

way of the proof of Lemma 6, because we have

S udu* = — S u*du .

EP 9EP

Further, by a suitable choice of @;, R can be mapped con-
formally onto an exactly (g+1)-sheeted covering surface of the
extended plane.

Kyoto University
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