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Introduction

Koebe was the first who proved strictly the existence of con-
formal mappings of an arbitrary planar Riemann surface onto slit
regions. Concerning an open Riemann surface R  of positive genus
g , Kusunoki [9] and Nehari [13] showed that for any g + 1  points
P o , P„•••,P g  o n  R  there exists a  conformal mapping of R  with
possible poles at P o ,P„•••,P g  onto a covering surface of the extended
plane w hich is at m ost (g+1)-sheeted and bounded by parallel
slits, only if  th e  boundary o f R  consists o f  a  finite number of
closed Jordan courves. Under the same condition on the boundary,
Mori [12] showed the existence of conformal mappings of R  onto
covering surf aces of the extended plane which are (g+1)-sheeted
and bounded by slits along parallel segm ents. As for circular and
radial slit mappings, Kusunoki [10] and Nehari [13] established
an analogous theorem under the same condition on the boundary.
But the condition on the boundary is very restrictive, and our
intention in this paper is to remove the restriction.

In §1  we shall consider some definitions and properties which
are necessary fo r o u r conclusions. H ere w e a lso  show th a t a
Riemann surf ace of genus g > 1  can be considered as an  at most
g-sheeted covering surface of the extended plane.

In § 2 we shall treat parallel slit mappings. If f  is  a  function
on R  which maps this onto a  covering surface of the extended
plane with q-sheets and parallel slits a s  a  boundary, a  subset E
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of the extended plane, formed by points w such that there exist
at m ost q - 1  points on R  at which f (P)— w  (counted with their
multiplicities), consists o f parallel segments. Therefore we shall
call a conformal mapping f  of R  onto a  covering surface of the
extended plane a parallel slit m apping i f  every component of the
set E is either a point or a segment parallel to a  fixed line. I n
other words, let be a canonical exhaustion of R  and {G } the
sequence of the projections of f(R— R„), where every P„ denotes
the closure o f R „, then the set E  coincides with the intersection

r\G„'G . I n  this connection, we mean in the following by projection
77 = 1

of  the boundary of f(R ) the intersection r\ We shall show, for
n=

an arbitrary open Riemann surface o f finite genus g , that there
exist parallel slit mappings onto at most (g+1)-sheeted covering
surfaces of the extended plane, and the total area of the projection
of the boundary of an image under each of these mapping is zero.

Furthermore, we shall prove, if a number o f th e  boundary
components of R  is at most countable, that the class o f all parallel
slit mappings of R coincides with the class of single-valued integrals
of canonical differntials, except for rotations around the origin on
the plane.

With an analogous definition for circular and radial slit map-
pings, we shall show, in §3, the existence of mappings of this kind
and the fact th at the logarithmic area of the projection of the
boundary of an image under anyone o f these mapping is zero.

§  1 .  Preliminaries

1. T he canonical sem iex a ct dif f erentials. A t  first we recall
the definition and some properties of the canonicl semiexact differ-
entials on  an  arb itrary open Riemann surf ace R ,  which were
introduced by Kusunoki [9].

Let B  be a canonical regular region on R  (Ahlfors and Sario
[2] p. 26, p. 80 and p. 117), whose complement consists o f  n
disjoiut non-compact domains G„ G 2 ,•••, G„ with relative boundaries
r 1 ,  r 2 , • • • , r „ ,  respectively, then a  harmonic function u  on R  is
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called a  canonical potential associated w ith B , if  o n  each domain
G . (j=1,  2 ,•••,n) it is a normalized potential, except a possible real
constant, which is a  single-valued harmonic function on G;  satisfy-
ing the normalization condition

( 1 ) u (P )  =  u (Q )c ic o i (Q , P ), P  EG ;  ( j  =  1 ,  2,.»,n) ,

where co ;  stands fo r the harmonic measure of an arc () ; Q  on r ;

with a fixed Qi , with respect to G. ( j=  1. n) (N evanlinna [14]
pp. 3 2 0 -3 3 3 ) . It m ay have a finite number of additive periods and
singularities in  B.

Let T = T 0 + T, be the real vector space of canonical potentials
associated with canonical regular regions, where the subspace T,
consists of those single-valued and regular on R .  T o i s  a  subspace
of the Hilbert space consisting of single-valued harmonic functions
u  with finite norms I ul =  N/D(u). Here, two elements o f To are
identified if the difference is a constant. Let I  be the completion
of T , by this metric and let T  To + T 1 . We call any element of
I  a  canonical potential on R .  The Abelian differentials p  such

that Re1 p  are , except constants, canonical potentials a re  called

canonical differentials provided that the sums of the residues vanish.
A  differential on R  is said to be semiexact if  it has no periods

along every dividing cycle on R.
L et u s denote by ST the class o f canonical sem iexact differ-

entials (or integrals) on R , and by n o th e  class of single-valued
integrals (functions) of class R.

Many properties with respect to  the differentials o f class SI
and the functions of class H o were found by K u su n o k i [9 ], among
which the following are important for the present research.

For any canonical potential u associated with a canonical regular
regions B  bounded by F ,, r 2 , • • • , r „ ,  and dif ferential dv+idv* which

is  square integrable over R—B and dv* =0 (j = 1, 2,• • •, n), we have
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( 2 ) D R ,(u , v ) = —  udv *

where aB denotes the boundary o f B  described in the positive sense
w ith respect to  B.

Let uE T  and let v  be a  harm onic function such that d v  is

square integrable outside of a compact set K  and such that S dv*=

fo r  every dividing curve r C R — K , then for any exhaustion {R„}  of
R  we have

( 3 ) lim  udv* = 0 .
ax„

A  dif ferential o f class A , whose integral has single-valued real
part and regular on R , is identically zero on R  (Uniquness tneorem).

F o r  a  canonical hom ology  basis {A k ,  B k }  modulo dividing
cycles on R , there ex ist dif f erentials cn Ak, PBk (k=1, 2,...) o f class
A  of the f irst k ind such that Re p A k ,  Re q, k  have only non-vanishing
periods +1  and — 1 along B,. and A k  respectiv ely . Let P, and Qo  be
given points on R , then there ex ist dif ferentials  i 7  o f  class
St of the second k ind w hose integrals have single-valued real parts,
and singularities 1 /  z r  and ilz r (r 1) at P o respectively . A lso there
ex ist dif ferentials  p 0 Q 0 , (T)p0 (20 o f  class S t of  the third kind whose
integrals have single-v alued real parts ex cept an  a rc P o Q0 ,  and
logaritm ic singularities at P o and Qo  w ith residues — 1, — i (at P o )
and + 1 ,  + i  (at Q0 )  respectively.

Moreover it is known that these dif ferentials y A k , qi„ rtk`,Vo and
,Tr(A)) a re  represented as the lim it dif f erentials in  term s o f  norm
convergence,

( 4 ) A kn TPAin
Bk,,B k

co) ,

where (nAfrn ,  ' no)  n e tc . are the corresponding dif ferentials on  ca-
nonical regular regions R n  (n= 1, 2,--) which constitute an exhaustion
o f R.

W e ca ll an exhaustion o f R  consisting o f canonical regular
regions a canonical exhaustion of R  (Ahlfors and Sario [2] p. 80).
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2. A  representation of  (g +1)-v alent f unctions of  class g o .
Now we restrict R  to  be o f finite genus g > 0 , unless otherwise
sta ted . For an arbitrary divisor o f fin ite  degree  d [8 ] on R , the
following Riemann-Roch's theorem was established by Kusunoki [9] :

( 5  ) A [ 8 - 1 ]  —  B[8] = 2(d [8] —g+1),

where A[8 - 1 ]  denotes the number of linearly independent (in the

real sense) functions of class n o w hich are multiples of 8- 1 ,  and
B [ ]  the number o f linearly independent differentials o f class a
which are multiples of 8.

In case of a divisor consisting of a single point Pg 1 ,  we see
that there exist functions of class a, w ith single poles of order at
most g + 1  at P .  The set of points such that B [P g ]=0  is  dense in
R  and there ex ists a f unction of  c lass n o w ith  a single pole of
order just g +1  at any  point o f  the subset (Mori [12]).

Take a point P, such that B [P t ] =0. S u c h  a point is  a point
at which the function on a parametric disk

V(z)
Re h i (z) Im h 1(z) Re haz) Im haz) • • • Re kg - "(z) 1m  kg - 1 ) (z)
Re k (z ) Im h 2 (z) Re I4(z) Im h(z) • • • Re kg - 1 )(z) Im  kg - 1 )(z)

( 6 )

Re k g (z ) Im  h, g (z ) Re k g (z ) Im  h g (z) - • • Re h 1 (z ) Im  14 - 1 ) (z)

does not vanish, where z  i s  a local parameter at P o and hk (z)dz
=  A k  and hg , k (z )d z =p , k  (k  =1, 2,•••, g )  (M ori [ 1 2 ]  and Springer
[2 0 ]  p. 272).

Let {Rn }  be a canonical exhaustion of R  and let V (z ) be the cor-
responding function on a parametric disk about P o on each R „, then
we have V„(z)—> V(z) as n—.00 because of (4 ) . Hence we have V(z)=1=0
fo r sufficiently large n. Therefore there exists a  function f n  o f
class a , on Rn w hich has a single pole of order g + 1  a t  P ,  for
such large n. From now on we consider R „ only for such large n.

The function f  o f class a ° on  R  which has a single pole of
order g + 1  at P , has an expression
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f =  g cirr qr(;)0 + g
r _ 1.>0)

r=1

by the uniqueness theorem, where (d„ d„•••,4,_ , , • • •2 j g - F 1 )  is
a solution of the following system of equations

( 7  ) d,, + 1TP (1;(
)
) =  0,( k  =  1, 2,•••,g).

A k A k
Bk Bk

B y d in t of the relation (5 ), we can see that the system (7 ) has
two linearly independent solutions. While j r

n  has an  expression

g , i r g,i
) * ()Vo n+

where (d 1  , d ") • • , d • • • , (4+ 1) i s  a solution of the
following system of equations

g
( 8 ) d;.") 't/r(r) cl;.")11

"
Tp̀r)  =  0 ,

r= i P ° " r=1 P°
(k = ,g) .

Ah Ah
Bk Bk

Therefore we see easily, by (4 ), that

( 9 ) d dr , (n 00) (r =1 ,2 ,•••,g+1 ).

Let Qo be any point on R  which is different from P o , and put

(10) f (P ) =  f (P )— f (Q o ) = u Fiu*

and

(11) fn (P )=  .f . (P ) - 1 0 0 = .

Then we have by (4 ) and (9)

(12) fn (P )—  f(P ), (n  -->  c ())

The convergence is uniform on every compact set contained in
R — P,.

Thus we have shown the following result.

Lemma 1. Let R  be an arbitrary open Riemann surface of
finite genus g > 0 ,  P o a point on R  sack that B [P f ]= 0 ,  and let f
be a function of class g o on  R  with a single pole of order g + 1  at
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P o . Then, for a canonical exhausion {Rn }  o f  R , there exists a
function f n  o f  class n o on  each Rn with a single pole of order g+1
at P o , fo r  sufficiently large n, such that the sequence {f ,}  converges
to the function f.

3. A  boundary component and its weakness. For an arbitrary
open Riemann surface R, we consider an infinite suquence { } of
subregions of R such that :

1) the relative boundary of each Gn  i s  compact,
2) G,. G „,, (n=1 , 2,•••), and
3 )  7\Gn —(1), where Gn  denotes the closure of Gn .n=i

The sequence {G,,} is said to be a defining sequence of a  boundary
component 7  of R (Stoilow [21] p. 85).

If f  i s  a  conformal mapping o f  R  onto R ',  th e  sequence
{f(G„)} of the images of Gn  under f  i s  a  defining sequence of a
boundary component 7 ' of R '.  W e shall say that 7 ' corresponds
to 7  under f  in  this sence.

For a canonical exhaustion {R „} of R, each set R—P n is  sa id
to be a  boundary neighborhood, and a component of R—R, whose
boundary contains 7 is said to be a  neighborhood o f 7. We define
a  property to be a  7-property, after Jurchescu [7], if a Riemann
surface R carrying 7  has the property, then every Riemann surface
R ' which admits a  conformal mapping o f  a  neighborhood o f a
boundary component 7 ' of R ' onto a neighborhood of 7 has the same
property.

Let P ,  b e  a  fixed point on R , and let K :  IzI < 1  be a  fixed
parametric disk on R such that z= 0 corresponds to P o . Consider
a  canonical exhaustion {R n }  of R with P o e R „ and let us denote
by On  th e  boundary of each Rn  a n d  b y  7 „  the component of On

which separates y  from P o .
Consider the c lass { t } ,  of single-valued functions on R which

satisfy the following conditions :
1 )  each t  is harmonic on R—P, and

t =  log zI+ h(z)

in  K, where h(z) is  a  harmonic function with h(0)= 0,
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2) dt* = 27r and dt* = O,( n 1, 2,...)

where 7„ and On ;  a re  described in the positive sense with respect
to R .

Further we consider the corresponding class {t } , .  on R „, then
there exists a function t ,  in this class which is uniquely determined
by the conditions :

t„ — le„ on ry„ a n d  t„ = k n i  on  On ;  =1--=

where k„ and k„;  are certain real constants.

Then, there is a principal function t ,  furnishing the condition

m in  t dt* = j ,
13

w here t dt* means the lim it of integrals taken along Rn . For any

t E { t} ,, the deviation o f Ç td t*  from  the minimum is

dt* = D R (t — t7)
13

Moreover

k,, < k 1 a n d  t,dt1' = 27r lim = 27z • .

The function t ,  is called the capacity function of R  for ry, and
the quantity c,=e - kr is called the capacity of 7  with respect to K
(Sario [18] and Savage [19]).

The condition c1 = 0  is independent o f a  lo ca l parameter at
P 0 an d  o f P o . A  boundary component 7  is  sa id  to  b e  weak if
ci = 0 .  The weakness o f  7  is  a 7-property (Jurchescu [7]), and a
boundary component of a  planar Riemann surface is weak if and
only i f  its  image under any univalent conformal mapping of the
surface is a point (Savage [1 9 ]).  The boundary of a Riemann
surface whose boundary components are all weak is called absolutely
disconnected (Sario [18] and Savage [19] ).
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4. A property  of  the weak boundary components. Let S  be a
subregion o f any Riemann surface and let p be a conformal metric
on S .  W e define p - le n g th  o f any cycle r  on S  b y  the following
lower D arboux integral

l(p  c) =  p (z)Idz1 .

I f  p is  a measurable conformal metric on S, we define p-area
of S by the following L ebesgue integral

A(p ; S ) =  p 2 (z)dcrz  ,

where 0- z  i s  the L ebesgue measure on a parametric disk K z  on  S.
A  measurable conformal metric p defined on S  is  s a id  to  b e  A -
bounded on S i f  A (p ;S )< 0 0  (Jurchescu [7]).

W e use the following result obtained by Jurchescu  [7 ].

A  boundary component 7 of a Riemann surface is w eak  if and
only if ,  fo r  any neighborhood S of y and for any A -bounded con-
formal metric p on S, there ex ists a dividing cycle separating y from
the relative boundary o f S  w ith an arbitrarily  sm all p-length.

Then it is readily seen :

Lemma 2. Suppose that R is an arbitrary  open Riemann surface
of finite genus and f is  a conform al m apping o f R  onto a covering
surface of  the extended plane w hich has at m ost a  f inite number
o f  shee ts . Then, f(P ) has a lim it as P tends to any weak boundary
component o f R.

It is known that if f ( P )  is  a bounded analytic function on an
end of a Riemann surface of class 0 , ,  it has a limit as P  approaches
an ideal boundary component (Heins [6]).

P ro o f. A  p ro jection  o f a  boundary component ri o f  f ( R )

m eans the intersection T va,,„  w here G:„ are the projections ofn=i
subregions an  o f f ( R )  which constitute a defining sequence of Py".
Then f ( P )  h as  a  lim it w hen P  tends to if an d  o n ly  if the
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projection of which is the image of 7  under f  is  a single point.
We shall prove that if the projection 7 ' of is  a  continuum, then
7  is not weak.

Let us denote by Ka , the disk lw — to l‹ .]  with w,, E 7'. There
exists a  d isk K (K,„r■S', where S ' i s  the projection of a neigh-
borhood of 1. In K„, we consider a rectangle H= aba'b' such that
its side a is completely in the interior of K  and its neighboring
sides b, b' have common points w ith  7'. L et K  be a set on f (R)
which lies over K , and FI a set on f  (R ) which lie s  over H , and
take a  neighborhood g  of so that g C f (R)— K.

We define a  conformal metric p  on g  by putting p(w —w 0 )= 1
on f i r - s ,  excep t fo r branch points of f ( R )  w ith  respect to the
extended plane, and p = 0 otherwise. For an y  point P , on Fir\S
which lies over w, and is not a  branch point of f (R ), w — w , is  a

,  d(w — w  ,)local parameter at P , and w e have p(w — w,)= P(w — w.) d(w — w1 )
= 1 ,  an d  fo r any o ther local parameter z  a t  P , w e have p(z)

= p(w —w,) cl(w— w1) .  Clearly p  is A-bounded and satisfies l(p ; c)
dz

> 1 0 > 0 ,  where 1, i s  the length o f a in  K  and c  is any dividing
cycle separating rT, fro m  the relative boundary of g. Hence fy- is
not weak by the result quoted above, and 7  is not weak, because
the weakness is a  7-property.

5. A  canonical continuation o f  a  Riemann surface. We say
that a Riemann surface R * is a continuation of a Riemann surface
R  if  R * has an open subset 1? which is conformally equivalent to
R , and if R * is compact it is called a compact continuation (Eochner
[ 4 ]  and R a d ô  [1 5 ] ) .  I f  R  i s  an open Riemann surface of finite
genus, th ere  ex ist a lw ays compact continuations of the same
genus (Bochner [4] and M ori [11 ]). M oreover, if ./? is dense in
R*, it  is  c a lled  a  dense continuation (Hems [ 5 ] ) ,  and if R *  _ P
contains interior points, the continuation is  sa id  to  b e  essential
(Sario [17]).

We form a special continuation R* of R  of genus g  as follows.
W e  g e t a  planar surface by cutting R  along g  closed analytic
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Jordan curves r 5 ( j= 1 2 ... ,g), which do not intersect each other
and the union of which does not divide R .  We map R' conformally
onto a  domain D on the plane, which is bounded by 2g closed
analytic Jordan curves C5 , q  (j= 1 , 2,•••,g) and a bounded closed
set 0 , so that C. and  C  correspond to  r .  a n d  gi
corresponds to the ideal boundary of R respectively. Let us denote
by D ' the domain on the extended plane bounded by 0', then D'
can be mapped conformally onto a horizontal slit region D" bounded
b y 0* (Ahlfors and Sario  [2 ] p . 177). L et C I and  C',* b e the
images of C5 and  C , and D * be the image of D under that map-
ping respectively. Since there exists analytic correspondence
between c p  and C , D *v g *  can be regarded as a closed Riemann
surface R* of genus g  by identifying the corresponding points on
C ,* a n d  C * (j=  1, 2,•••, g ) .  R  i s  conformally equivalent to
R= R* — g*.

On this continuation R* of R, we gain  a realization g *  of the
ideal boundary 0 of R .  A weak boundary component corresponds
to a point on R*, while a  boundary component which is not weak
corresponds to a point or a slit, w hich  is seen  by the fact that
the weakness o f  a  boundary component is a  7-property and a
weak boundary component of a plane region corresponds to a point
under any univalent conformal mapping of the region. W e shall
call this kind of continuation R* of R a  canonical continuation of
R, that is a continuation which satisfies the following conditions :

1) R* is  a compact continuation,
2) it  is  of the same genus as R,
3) R  is  dense in R*, and
4) every component of the realization of the ideal boundary

of R on R* is either a point or an analytic curve.
Thus we have shown

Lemma 3. I f  R is an arbitrary open Riemann surface of finite
genus, then there exist canonical continuations of R.

Next we are going to prove :

Lemma 4. Let R  be an arbitrary open Riemann surface of
finite genus whose boundary is not absolutely disconnected, and let
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7 be a boundary component of R which is not weak, then there exists
a canonical continuation R* o f  R on which the realization 7* o f 7
is  an analytic curve.

P ro o f. Let RP be a  canonical continuation of R, and suppose
that the realization 7P of y on R P is a  p o in t. Then there must be
a  neighborhood up of 7P and a conformal mapping of UP onto a
domain D of the plane, such that the boundary component 7 ' of D
which corresponds to 71' under that mapping is a continuum. Let
PP be a  closed analytic Jordan curve which separates the relative
boundary of UP from 7P, and sp b e  the subregion on R t which
is bounded by rp and does not contain 'yr. W e  m a p  a  comple-
mentary domain o f 7' with respect to  the extended plane onto a
horizontal slit region , and let 17* be the resulting image of F t  on
the plane and V* be the subregion on the plane which is bounded
b y  r* and contains the image of 7'. Then, there is an analytic
correspondence between PP and P * , and by iden tify ing the cor-
responding points on up and F *  w e get a  canonical continuation
R* 1 7 *  of R on which the realization of 7 is an analytic curve.

B y use of a canonical continuation, we can easily get :

Theorem 1. L e t R  be an arbitrary  open Riemann surface of
f inite genus g > 1 , then R is  conformally equivalent to an at m ost
g-sheeted covering surface of the extended plane which is bounded
by a set consisting o f analytic curves and totally disconnected set.

P roof. W e fo rm  a  canonical continuation R * of R .  On the
compact Riemann surface R * of genus g > 1 ,  there are n Weier-
strass points where n = 2 g + 2  if  R* is  hyperelliptic and 2 ( g +1 ) <n
< ( g - 1 ) g ( g + 1 )  i f  R *  is  n o t hyperelliptic (Behnke und Sommer
[ 3 ]  pp. 573-577). Then there exists a  conformal mapping of R*,
w ith  a  s in g le  p o le  a t  a W eierstrass po in t, onto a n  at m ost
g-sheeted covering surface of the extended p lan e . Under that
mapping, th e  realization o f th e  ideal boundary of R on R* cor-
responds to a  s e t  consisning o f analytic curves o n d  totally dis-
connected set.
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§ 2. Parallel slit mappings

In  th is section w e treat the functions of class Ro ,  and show
that they are parallel slit mappings o f R  onto covering surfaces
of the extended plane, that is, every component of the projection
of the boundary of an image f ( R )  under any function f  o f this
c lass  is  e ith er a point or a segm ent w hich is parallel to  the
imaginary axis.

I f  {R, }  is  a  canonical exhaustion o f  R , w ith  the definition
of functions o f  class St ° and b y  the w ay of the construction of
differentials of class R (Kusunoki [9] pp. 243-248), a function f  (P )
of class Ro is the limit function of a sequence of functions {f„(P)} ,
each o f which is not necessarily o f single-valued. But the real
part u ( P )  o f each f n (P )  is single-valued and has the expression

(13) u ( P )  =  { u n (Q )— k }  d co (Q  ,P )+ k „ ;  , P E G n i

on ;

on each component Gn ;  of the complement of R n , where On ; is  the
relative boundary o f Gn 5 , co n i (Q ,P )  is  the harmonic measure of an
arc Qn i )  on 0„;  w ith  fixed  Q„; ,  with respect to Gn 5 , and kn . ; is a
rea l constant (j= 1 ,2 ,••• , u,i ). Therefore the property of the har-
monic measure con i (Q ,P )  plays an important role.

A t  first w e shall see a  property o f a  harmonic measure of
an ideal boundary.

6. A  harm onic m easure o f a n  ideal boundary . Let R  be an
arbitrary open Riemann surface, {R,J a canonical exhaustion of R,
and let R o b e  a regular region w ith the boundary  a . The limit
function

(14) (0(P, a) = lim con (P ,  a)

o f harmonic measures co,i (P , a )  o f  a  w ith  respect to  R — R , , i s
a harmonic function on R—R , w ith  0 < ( P ,  a ) < 1 .  We form the
difference

(15) (°(/), =  ---(')( P,
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and define it a s  a  harmonic measure of the ideal boundary  with
respect to R — R, (N evanlinna [14] p. 317).

Lemma 5. Let R be an open Riemann surface o f f inite genus
whose boundary is not absolutely disconnected, and let y be an ideal
boundary component o f  R  such  that the realiz ation y* o f 7  on a
canonical continuation R * o f  R is an analy tic curve. T hen w e have

co(P, 0*) = 1 fo r  P E y* ,

where 0* denotes the realization of the ideal boundary o f R on R*.

Proof. B y (15), it is sufficient to prove that

co(P, ce) = 0 f o r  P Ey *  .

Let z be a local parameter at P  by which 7 *  is  made to cor-
respond to the real axis and a part of 7* which corresponds to the
positive part of the real axis is not empty. Choose a  real number
X so small that z= X is  on 7 * , and let us denote the d isk 1z1 <X
b y  K . T a k e  a  parameter t= log z  and  consider th e  harmonic
measure 0 * (0  of the im age o f the c irc le  1z1 = X, 0 < a r g  z< 27c,
with respect to the half plane Re t log X . The function co*(log z)
is harmonic for 0<1 zl <X  and single-valued if we take the branch
0 < a r g  z < 2 7 r .  Clearly we have

\
(0*(1og z) ‹  —

2  
Tan - l n- ( lo g  

x )1z1 

where Tan -1 denotes the principal value of arctangent.
W e take n  so  large that (R„—R0) nK ,--+€1), and compare the

harm onic m easure a)„(P(z), a )  w i t h  (0 * ( l o g  z). W e obtain  the
estimate

w n(P (Z ), <  0 ,*(log  z) ,

w hich  is easily  seen  by using the maximum principle on each
component of (R„—Ro )r\ K ,. Then we have

lim co (P(z), (e)  c , * ( l o g  z)

'—
2  

Tan - ' 7r(10 X V
7r 1Z1/
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This inequality shows that co(P(z), (1)-0 as z
Moreover, this fact is independent o f  a  canonical continua-

tion o f R  on which is  r e a liz e d ,  beacuse there is a  conformal
mapping between R, and R, which are the subregions o f any two
continuations of R  an d  conformally equivalent to R .  Thus we
have obtained by Lemma 4  and 5 :

Theorem 2. I f  R  is  an open Rieman surface of finite genus
whose boundary is not absolutely disconnected, the harmonic measure
co(P, le ) o f  the ideal boundary le of R tends to 1 as P approaches
7, where 7 is any component o f le which is not weak.

The Green's function g(P, P 0) o f  R  with a  logarithmic sin-
gularity at P o is expressed as the limit function

g(P, P 0) l im  g „ (P , P o ) ,

where g„(P, P 0) denotes the Green's function of each R„ (Nevanlinna
[1 4 ] p. 3 1 6 ). We can find a  number m  so large that a  region
G which consists o f  such points P  that satisfy g(P, P ,) > m  is  a
regular region. Hence by making use of the function mco*(log z),
we can prove quite analogously as we did to establish Theorem 2:

Corollary . I f  R  is  an open Riemann surface o f finite genus
whose boundary is not absolutely disconnected, then th e  Green's
function g(P, P o )  tends to  0  a s  P  approaches any boundary com-
ponent which is not weak.

7. Area of the projection of the boundary o f  f (R ) .  We shall
now prove

Lemma 6. L e t R  be an arbitrary open Riemann surface of
finite genus g>0, f a function o f  class n o with q poles (counted
with their multiplicities), and let E be a  subset of the plane con-
sisted o f all points w such that there exist at most q-1 points on
R  at w hich f (P )— w  (counted w ith their m ultiplicities). T hen E  is
a closed set of the are a zero.

Proo f. For any point w E CE, where CE denotes the comple-
ment o f E  with respect to the extended plane, there exist exactly
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q points P i , P 2 ,•••,P ,  on R  at which f (P i )= w  (counted with their
multiplicities). We take neighborhoods U i ( P f )  of P. ( j= 1 , 2,...,q),
then the intersection of the projections of the images f ( U ; (P ; ))
o f  q  neighborhoods is a  neighborhood o f  w  contained in  CE.
Therefore the set E  is closed.

In order to see that the area o f E  is zero, we take a canonical
exhaustion {Rn }  o f R .  Let us denote the image of the boundary
Ou o f  R„ under f  on the q-sheeted covering surface o f the ex-
tended plane by ft,, and its projection on the plane by g .  Let E ;»
(0 < k < q -1 )  be a set consisting o f a ll points w such that there
exist at most k points on R„ at which f (P )= w  (counted with their
multiplicies). Then we have E.;," C E.'„"" (0 ‹k  q  —2), and

(16) E 1 1 )  ,  E r"  D E for all n.

Now we consider about ( 0 < k q - 1 )  for any n. Clearly
aE,,, "  is  piecewise analytic and all aE,?) ( 0 < k ‹q  —1) amount to

. If a point P  moves along O n  in the positive direction with
respect to  R „ , the image f ( P )  moves along $ n in the positive
direction with respect to f(R „ ), and the projection w moves along
On' in the positive direction with respect to C E;! ). For, suppose
that there exists a  p ie c e  a  C E„( k) along which w  moves in the
opposite direction, that is in the positive direction with respect to

We choose a point wo e (70 )  a n d  a  neighborhood U  o f wo

so that it is divided by a "' into two disjoint sets and it does not
contain any branch point of f - 1 . Let a( k )  be a piece o f "S„ which lies
o v e r  a( k )  and let CI be a connected set over U on the same sheet
on  which ack) passes through, then a( k ) divides f (R, i ) n  CI and
f (CR„)n U,  where CR„ denotes the complement of R„ with respect
to R .  f(R„)r\ U must be over E,Tr\U because of the assumption
that w  moves along a k )  in the positive direction with respect to

. On the other hand, each point of E;i k' r \U has at most k
inverse images on R „ by f  and each point of CE,(ik) n  U  has at
least k +1 inverse images on R„ by f, which is absurd, unless the
projection of f ( P )  passes along a k i  in the positive direction with
respect to CE» at least two times, and it has the same effect as
to pass along a k ) in  this direction.
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Therefore

—  udu* udu* ' M(E,k)) M(EV - ' ) ) , =  1, 2,. ••)
ftk k 0 E (k )

k=0

where f = u +iu *  and M ( E )  denotes the area o f E;,k )  . Then we
have by (3) and (16)

lim M(EV - ')) = O,

and we attain to our conclusion M (E)=0.

6. A  parallel slit m apping w ith a s in g le  p o le . Let P ,  be a
point on R  such that B [P f,]= 0 , then there exist tw o linearly
independent functions o f class n o with single poles of order g+1
a t  P o . L t  f  be one of these functions, then f  i s  a  conformal
mapping o f  R  onto a (g+1)-sheeted covering surface of the
extended plane.

Let be a boundary component of f ( R )  whose projection is
not a point, then the boundary component y  o f  R  which cor-
responds to 5" under f  is not weak by Lemma 2, and there is a
canonical continuation R * of R  on which y  is realized as an analytic
curve by Lemma 4. We identify R  and R which is the subregion
on R * conformally equivalent to R , and we retain the notation y
for the realization of 7 on R*.

Let 1/2„1 be a  canonical exhaustion o f R  with P, E R „ then
the sequence {G } of the components of R — R „ (n-1, 2,...), whose
relative boundaries 7„ separate ry from P ,  i s  a  defining sequence
of 7 . The function f (P )=u (P )+iu * (P )  is  the limit function of a
sequence o f  functions { f„(P)} , where each f „(P )  h as  the same
singularity as f ( P )  and the rea l part u „(P) of f „(P)  is single—
valued and has the expression (13) on each component o f CR..
We consider the behavior of u„(P) on Gn . We have

u „(P)  = { u n (Q)— kV ) } doC ) (Q , P)+ k , e

and we can show that c (Q , P)=- 0  for P E y  and u„(P) is a constant
kV ) along 7 in a quite analogous way as we did in Lemma 5.

We obtain a sequence o f  real numbers {k,,(7 ) } ,  and we know
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that lirn k,(7 )  exists and is finite, and it is equal to the value of

u (P )  along y as follows. We can select a subsequence { k }  for
which lim kW) exists. The corresponding subsequence if  „ ,(P )}  of

{ f (P )}  also converges to the function f  (P ) ,  and we see that u (P )
is a constant k( 1 ) — lim k„( '') along y. The sequence {14, } must also

1/÷ c .

converge to  k(1 ) . Since k('') i s  the value of u (P )  on y  and the
point at infinity belongs to CE, it must be finite.

Thus, the real part u (P )  o f f ( P )  is a constant along 7, and
we have obtained together with Lemma 6, the following

Theorem 3. Let R  be an arbitrary  open Riemann surface of
f inite genus g > 0 ,  then there ex ists a parallel slit m apping of  R
onto a ( g+ 1 ) - sh e e t e d  covering surface of the extended plane. More-
over, the total area of the projection of the boundary of the image
o f R  under this m apping is zero.

We can choose a point P  as a pole of this mapping arbitrarily
near the prescribed point, because the set of points P  such that
1 3 [P g]= 0  is  dense in R , and when we take a point P  at which
B[Pg] =0 as a pole, there are two linearly independent such map-
pings, as we can see it by (5).

9 .  Parallel slit m appings w ith poles of  order 1 .  For any g+ 1
points P ,, P „ • • • ,P , on an open Riemann surface of finite genus
g> 0 , there are functions of class se, with poles of order 1 at some
of P ,, P 1 ,•••, P g ,  which is easily seen by Riemann-Roch's theorem
(5) (see Kusunoki [9] Theorem 12). Then, quite analogously as we
did in the previous theorem, we can prove

Theorem 4. Given an open Riemann surface R  of f inite genus
g > 0  and g+ 1  points P o , P „ • • • ,p , on R , then there ex ist parallel
slit m appings of  R , w ith poles of  order 1 at som e of  P ,,
onto at m ost (g+ 1 )-sh ee ted  covering surfaces of the extended plane.
Moreover, the total area of the projection o f  the boundary  of the
image under anyone o f this m apping is zero.

10. A nother characterization o f f unctions o f  c lass g o . For
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any function f  of class Sto w ith  q  poles (counted with their multi-
plicities), we can show b y  the same reasoning as we did in the
previous theorems, that f  i s  a parallel slit mapping of R  onto a
q-sheeted covering surface of the extended plane.

Conversely, i f  a  number of the boundary components of R  is
at most countable, and if F  is  a parallel slit mapping of R  such
that the projection of the boundary of the image F(R ) does not
contain the point at infinity, we can show that F  can be expressed
as eo f , where f e n , .  Let us note that, w ith  the definition we
have chosen, a  number o f  sheets o f  a  covering surface of the
extended plane, onto which R  is m apped under a  parallel slit
mapping is at most finite.

Theorem 5 .  Suppose th at R  i s  an open Riemann surface of
f inite genus and a num ber o f  boundary  com ponents o f  R  is  at
m ost countable. Then a conformal mapping F  o f R  onto a covering
surface of the ex tended plane, su c h  th at the projection of the
boundary of the image F(R ) does not contain the point at inf inity , is
a parallel slit m apping if and only i f  it can be ex pressed as e 10 f,
where f  E  .

Proof. It suffices to  prove only the necessary part of the
theorem. Let F  be a parallel slit mapping of R  onto a q-sheeted
covering surface of the extended plane, then we can find 0 such
th a t the projection of the boundary of the image under e - oF
becomes segments parallel to the imaginary axis and totally dis-
connected set.

Let
-"̀i •

(17) e - i°F = v  +iv * = 
a

E irr + E bi k zk a t  13  ( j  = 1 ,2 ,— ,n ) ,
r =1 Z k=0

where É m i = q. The real part y is a constant along each boundary,=1
component of R .  Moreover, the Dirichlet integral of y taken over
R— K , where K  is a compact set which contains all 13  ( i  =1 ,  2,..., n),
is  f in ite . In fact, let {R, } be a canonical exhaustion of R , and ien

the boundary of each R .  The projection E  of the boundary of
« F(R )  can be covered by an open set U  w ith the arbitrarily
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small area, because the area of E  is zero by assumption on F  and
on R , and the projection of the image of On  under e-  °IF  is con-
tained in U for sufficiently large n. Then by an analogous consider-
ation as we did in the proof of Lemma 6, it can be readily seen that

lim  v  d v *  0,n-,00

and it follows that

(18) DR _„(v ) = lim  v  dv * —  v  dv * = —  v  dv * .

On the other hand, the projection of the boundary of e -  oF(R ) and
the projecton of the image of aK under e 10F  are contained in a
bounded region D on the plane, and we know that

(19) DR_K(v) q M (D )  < o o •

Take the differentials q iri  , ;P,7,7 ( j= 1, 2,• • n ; r = 1, 2,..., m5 ) o f
class g of the second kind on R , and form a function

n  m i

(20) f =  u + iu* = E E {(Re ai r ) 11, ;̀:)
i  +(Im  a JO ITP(;,?} •;=,

Then, u  is single-valued and du* is semiexact, and we get

(21) DR(U —V)(u  — v )(du* —  dv *)

< —  u  dv *  —  u  du* ,
011

because

u du* = — DR- R„(u) < O
B„

by (2), and

v dv* = —  D„_, n (v ) < 0 .
pot

Since u  and y  are single-valued and constant along any boundary
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component o f R  and du* i s  semiexact, y  d u *= 0  along each 7,

and because a  number o f  boundary components of R  is at most
countable,

(22) vdu* =  I f vdu* —  vdu *

— DR - Rn (V 1  
14) <  V D R  R n (V ) DR- Rn (U ) •

Consequently, we find by (3) and (19) that

DR .(u—v) ---> 0 , ( n  0 0 )  .

Thus, F= e 1 f  except for an additive constant on R, and f  is a
function o f class St ,  fo r it has the form  (20) and it should be
single-valued.

If the restriction on the boundary o f R  is removed, in order
to derive the result F=e 0 f ,  where f E n o , w e  must require that
the projection of the boundary of F(R) lies on an at most countable
number o f parallel lines. But i t  must be noticed that this is not
a  necessary condition, because the real part u  o f a  function of
class St, well takes more than a  countable number of values on
the boundary o f R.

Theorem 6. L e t R  be an arbitrary  open Riemann surface of
f inite  genus. I f  F  is  a parallel slit m apping o f  R  such  that the
Projection of the boundary  of F (R ) lies  on  an  at m ost countable
number o f parallel lines and does not contains the point at inf inity ,
then F=eief where f  is  a function o f class S .

P roo f. Suppose that e- F = v + iv* , where y is a constant along
each boundary component of R, has the expansion (17) at the poles
P . ;  (j=1 , 2 ,...,n )  a n d  construct a  function f  a s  (20). B y  the
assumption on F , the area of the projection of the boundary of
F(R ) is zero, and we have (18), (19) and (21) under the same con-
sideration as above.

In order to obtain the estimate (22), we form  a partition of
the ideal boundary of R (Ahlfors and Sario [2] p. 87) so that each
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part of the partition consists of the boundary components on which
y is a same constant. Then we have

v du* = O,

where the integral is taken along each part of the partition,
because du*  is semiexact. According to the restriction of F ,  a
number of parts of the partition is at most countable, and we get

1v du* = O.

Then, the proof of the theorem can be carried out as before.

§ 3. Circular and radial slit mappings

11. Circular and  radial slit m appings. After Kusunoki [9],
let us denote by h the class of single-valued meromorphic functions

on R  which can be written as exp  p ,  where cp E S. We denote

by Op() the differential o f class St of the third kind whose integral
has single-valued real part except an arc PQ , and the singularities
— log z  at P  and log z  at Q.

Then, fo r  any g iven  points P ,  and P ,  o n  R ,  2 g  points
Q0, (21,—,Qg  can be chosen so that the function

1- (P)  = exp f (P)E
where

r P g  e t ,

f (P )  = 9 5 Q 0 P 0 + (15PJQj E

becomes single-valued, whose poles are a t Q ,, P„•••,P g  and zero
points are at P,, Q„•••,Q g  (Kusunoki [10]).

The function f ( P )  has a limit as P  approaches any boundary
component which is weak, which is seen by Lemma 2. Moreover,
if the projection o f  a  boundary component of f (P )  i s  a  con-
tinuum, the real part of the function f(P) is a constant along 7,
which corresponds to u n d e r  f ( P )  (see the proof o f Theorem 3).
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W e sh a ll ca ll a  conformal mapping f  o f R  onto a covering
surface of the extended plane a circular (radial) slit m apping, if
every component of the projection of the boundary o f f (R )  is
either a point or a circu lar arc (rad ial segment) w ith  the center
a t  the origin.

Theorem 7. L et R  be an arbitrary  open Riemann surface of
f inite genus g, then there ex ists a circular (radial) slit m apping o f
R  onto an at m ost (g+1)-sheeted covering surface of the extended
plane. W e can presccribe the location of one pole and one zero of
the m apping function. M oreov er, the logarithm ic area of the pro-
jection of the boundary  of  the image under that m apping is zero.

Let {R, } be a canonical exhaustion of R, and be a set on
the plane which consists of points w  such that there exist at most
k points on Rn  at which f (P)=w  f o r  0  k < q , where q is a number
of poles of f  counted with multiplicities. For any measurable set
D  on the w-plane, w e denote by Mlog (D ) the logarithmic area of
D, then we have

M  loglwjd arg w
a E;,k)

because EW') is bounded by piecewise analytic curves. Therefore
we can prove, quite analogously as Lemma 6, that the logarithmic
a re a  of the projection of the boundary of an im age under a
circular slit m apping is zero.

W e get a radial slit mapping by exp (if), and the fact that the
logarithm ic area of the projection of the boundary of an image
under a radial s lit m ap p in g  is  a lso  zero is  read ily  seen  b y  the
w ay of the proof o f Lemma 6, because we have

u du* —  u *  du .
a4k)

Further, by a  suitable choice of Q 1 ,  R  can be mapped con-
f ormally onto an ex actly  (g+1)-sheeted covering surface of the
extended plane.

Kyoto University



192 Minako Mori

REFERENCES

Ahlfors, L . V. : Normalintegrale anf offenen Riemannschen Flachen. Ann. Acad.
Sci. Fenn. Ser. A . I. no. 35 (1947). 1-24.
Abhors, L. V . and Sari°, L. : Riemann surfaces. Princeton Univ. Press, Princeton
(1960).
Behnke, H. und Sommer, F. : Theorie der analytischen Functionen einer komplexen
Veranderlichen. 2. Aufl. Springer, B erlin  (1962).
Bochner, S . : Fortsetzung Riemannscher Flachen. M ath. Ann. 98 (1927), 406-421.
Heins, M. : On the continuation of a R iem ann surface. Ann. of Math. 43 (1942),
280-297.
Heins, M. : Riemann surfaces of infinite genus. Ibid. 55 (1952), 296-317.
Jurchescu, M. : Modulus o f  a  boundary component. Pacific J. M ath. 8 (1958),
791-809.
Kusunoki, Y. : Contribution to Riemann-Roch's theorem. M em . Coll. Sci. Univ.
Kyoto, Ser. A . M ath . 31 (1958), 161-180.
Kusunoki, Y. : Theory o f  Abelian integrals a n d  its  applications to conformal
mappings. Ibid. 32 (1959), 235-258.
Kusunoki, Y. : Supplements and corrections to my former papers. Ibid. 33 (1961),
429-433.
Mori, A. : A  remark on the prolongation of Riemann surfaces of finite genus. J.
Math. Soc. Japan 4 (1952), 27-30.
Mori, M. : O n  th e  sem i-ex ac t canonical differentials of th e  first kind. Proc.
Japan Acad. 36 (1960), 252-257.
Nehari, Z. : Conformal mapping of open R iem ann surfaces. Trans. Amer. Math.
Soc. 68 (1950), 258-277.
Nevanlinna, R. : Uniformisirung. Springer, Berlin  (1953).
Radé, T. : Über eine nicht fortsetzbare Riemannsche Mannigfaltigkeit. Math , Z.
20 (1924), 1-6.
Royden, H. L. : O n  a  class o f  null-bounded Riem ann surfaces. Com m . M ath.
Helv. 34 (1960), 37-51.
Sario, L. : Ü ber Riemannschen Flachen m it  hebbaren R a n d . Ann. A cad . Sci.
Fenn. Ser. A . I. no. 50 (1948), 1-70.
Sario, L. : Capacity o f  th e  boundary a n d  o f  a  boundary component. Ann. of
Math. 59 (1954), 135-144.
Savage, N. : Weak boundary components. Duke Math. J. 24 (1957), 79-95.
Springer, G. Introduction to R iem ann surfaces. Addison-Wesley Publ., Reading,
Mass. (1957).
Stoilow, S . : L eço n  su r les principes topologiques d e  la théorie des fonctions
analytiques. D euxièm e edition. Gauthier-Villares, P aris , (1956).


