A remark on square integrable analytic semiexact differentials on open Riemann surfaces

Dedicated to Professor A. Kobori on his 60th birthday

By
Yoshikazu Sainouchi
(Received Sept. 9, 1964)

1. For canonical homology basis $\left\{A_{n}, B_{n}\right\}_{n=1,2}, \cdots$ on an open Riemann surface the necessary and sufficient conditions for the existence of a square integrable analytic semiexact differential with given A-periods were investigated by Virtanen [1], Kusunoki [2] and Sainouchi [3]. In this paper we shall give a condition for the uniqueness of the existence of such differentials, which contains my previous result in [3]. In part, we make use of the same method as that in the Ahlfors' proof (Ahlfors [4], Theorem 9) giving the condition which the surface should belong to the class $O_{A D}$.
2. Let \bar{W} be a compact bordered Riemann surface of genus g and $\left\{A_{i}, B_{i}\right\}_{i=1,2, \cdots, g}$ be a cononical homology basis $\bmod \partial W$. We denote by $\Gamma_{a s e}(\bar{W})$ the class of analytic semiexact differentials defined on W and also denote by $\Gamma_{\text {ase }}^{A}(\bar{W})$ the subclass of $\Gamma_{\text {ase }}(\bar{W})$ such that all A-periods of its element vanish. For the compact bordered surface $\Gamma_{\text {ase }}^{A}(\bar{W}) \neq\{0\}$ and the period $\int_{c} \alpha\left(\alpha \in \Gamma_{\text {ase }}^{A}(\bar{W})\right)$ to any chain c in W is the bounded linear functional on $\Gamma_{\text {ase }}^{A}(\bar{W})$, hence there exists a unique differential $\mathcal{P}_{0}(c) \in \Gamma_{\text {ase }}^{A}(\bar{W})$ such that

$$
\left(\alpha, \boldsymbol{\varphi}_{0}(c)\right)=2 \pi \int_{c} \alpha
$$

for all differentials $\alpha \in \Gamma_{a s e}^{A}(\bar{W})$.

By the Schwarz' inequality we have

$$
\left|\left(\alpha, \varphi_{0}\right)\right|^{2} \leqq\|\alpha\|^{2}\left\|\varphi_{0}\right\|^{2},
$$

hence \mathscr{P}_{0} has the following minimum property;

$$
\min _{\alpha} \frac{\|\alpha\|^{2}}{\left|2 \pi \int_{c} \alpha\right|^{2}}=\min _{\alpha} \frac{\|\alpha\|^{2}}{\left|\left(\alpha, \varphi_{0}\right)\right|^{2}}=\frac{1}{\left\|\mathcal{P}_{0}\right\|^{2}},
$$

where α varies over the class $\Gamma_{a s e}^{A}(\bar{W})$. We denote by $d_{W}(c)$ this minimum value. Now let R be an open Riemann surface of infinite genus and $\left\{R_{n}\right\}$ be a canonical exhaustion of R. For a chain c contained in R_{n} we have by the minimum property of $d_{R_{n}}(c)$

$$
d_{R_{n}}(c) \leqq d_{R_{n+1}}(c)
$$

Hence $\lim _{R_{n} \rightarrow R} d_{R_{n}}(c)$ is finite or infinite. We denote by $\Gamma_{a s e}$ the class of square integrable analytic differentials on R and by $\Gamma_{a s e}^{A}$ the subclass $\left\{\omega \in \Gamma_{\text {ase }} \mid \int_{A_{i}} \omega=0(i=1,2, \cdots)\right\}$.

Proposition. If $\lim _{R_{n} \rightarrow R} d_{R_{n}}(c)=\infty$ for any finite chain c, then $\Gamma_{a s e}^{A}=\{0\}$, that is, $\omega \in \mathrm{I}_{\text {ase }}$ is determined uniquely by its A-periods. Conversely, if $\Gamma_{\text {ase }}^{A}=\{0\}$, then $\lim _{R_{n} \rightarrow R} d_{R_{n}}(c)=\infty$ for any finite chain.

Proof. If $\alpha \in \mathrm{I}_{\text {ase }}^{\wedge}$ and $\alpha \neq 0$, then for some chain c contained in $R_{n_{0}}$

$$
\left(\alpha, \mathcal{P}_{n_{0}}\right)_{R n_{0}}=2 \pi \int_{c} \alpha \neq 0
$$

where $\varphi_{n_{0}}\left(\in \Gamma_{a s e}^{A}\left(R_{n_{0}}\right)\right)$ is the period reproducing differential to the chain c. By the definition of $d_{R_{n}}(c)$ we have

$$
d_{R_{n}}(c) \leqq \frac{\|\alpha\|^{2}{ }_{R n}}{\left|\left(\alpha, \mathscr{P}_{n_{0}}\right)_{R n_{0}}\right|^{2}} \leqq \frac{\|\alpha\|^{2}}{\left|\left(\alpha, \mathscr{P}_{n_{0}}\right)_{R n_{0}}\right|^{2}} \quad\left(n \geqq n_{0}\right) .
$$

Hence $\lim _{R_{n} \rightarrow R} d_{R_{n}}(c)<\infty$.
Conversely, if $\lim _{R_{n} \rightarrow R} d_{R_{n}}(c)<\infty$ for some $c\left(\subset R_{n_{0}}\right)$, we put

$$
\Phi_{n}=\frac{\varphi_{n}}{\left\|\mathcal{P}_{n}\right\|_{R_{n}}^{2}} .
$$

Then

$$
\begin{gathered}
\left(\Phi_{n}, \mathscr{P}_{n}\right)_{R_{n}}=1 \text { and }\left(\Phi_{n+p}, \mathscr{P}_{n}\right)_{R_{n}}=\frac{1}{\left\|\mathcal{P}_{n+p}\right\|_{R_{n+p}}^{2}}\left(\mathcal{P}_{n+p}, \mathcal{P}_{n}\right)_{R_{n}} \\
=\frac{2 \pi \int_{c} \mathcal{P}_{n+p}}{2 \pi \int_{c} \mathcal{P}_{n+p}}=1
\end{gathered}
$$

and so

$$
\left(\Phi_{n}, \Phi_{n}-\Phi_{n+p}\right)_{R_{n}}=\frac{1}{\left\|\mathscr{\varphi}_{n}\right\|_{R_{n}}^{2}}\left(\mathcal{P}_{n}, \Phi_{n}-\Phi_{n+p}\right)_{R_{n}}=0 .
$$

Hence

$$
\begin{gathered}
\left\|\Phi_{n}-\Phi_{n+p}\right\|_{R_{n}}^{2}=\left\|\Phi_{n+p}\right\|_{R_{n}}^{2}-\left\|\Phi_{n}\right\|_{R_{n}}^{2} \leqq\left\|\Phi_{n+p}\right\|_{R_{n+p}}^{2}-\left\|\Phi_{n}\right\|_{R_{n}}^{2} \\
=d_{R_{n+p}}(c)-d_{R_{n}}(c)
\end{gathered}
$$

Therefore

$$
\left\|\Phi_{n}-\Phi_{n+p}\right\|_{R_{n}}^{2} \rightarrow 0 \quad\left(R_{n} \rightarrow R\right) .
$$

Thus we may conclude in usual way that Φ_{n} tend to an analytic semiexact differential Φ. Since $\Phi_{n} \in \Gamma_{\text {ase }}^{A}\left(\bar{R}_{n}\right)$, Φ belongs to $\Gamma_{\text {ase }}^{A}$ and $2 \pi \int_{c} \Phi=1$. q.e.d.

Remark. (1) If $\lim _{R_{n} \rightarrow R} d_{R_{n}}(c)=d(c)<\infty$, then for any $\alpha \in \Gamma_{\text {ase }}^{A}$

$$
\begin{aligned}
\left(\alpha, \Phi_{n}-\Phi\right)_{R_{n}} & =\left(\alpha, \Phi_{n}\right)_{R_{n}}-(\alpha, \Phi)_{R_{n}} \\
& =\frac{2 \pi \int_{c} \alpha}{\left\|\varphi_{n}\right\|_{R_{n}}^{2}}-(\alpha, \Phi)_{R_{n}} .
\end{aligned}
$$

On the other hand, since

$$
\left|\left(\alpha, \Phi_{n}-\Phi\right)_{R_{n}}\right| \leqq\|\alpha\|\left\|\Phi_{n}-\Phi\right\|_{R_{n}} \rightarrow 0 \quad\left(R_{n} \rightarrow R\right)
$$

we have

$$
(\alpha, \Phi)=\lim _{R_{n} \rightarrow R} \frac{2 \pi \int_{c} \alpha}{\left\|\mathcal{P}_{n}\right\|_{R_{n}}^{2}}=d(c) \cdot 2 \pi \int_{c} \alpha .
$$

Hence $\Phi / d(c)$ is the period reproducing differential in $\Gamma_{\text {ase }}^{A}$ to the chain c.
(2) Let $d_{R_{n}}^{\prime}(c)$ and $d_{R_{n}}^{\prime \prime}(c)$ be the extremal values corresponding to $\Gamma_{a s e}\left(\bar{R}_{n}\right)$ and $\Gamma_{a e}\left(\bar{R}_{n}\right)$, respectively, then

$$
d_{R_{n}}^{\prime}(c) \leqq d_{R_{n}}(c) \leqq d_{R_{n}}^{\prime \prime}(c)
$$

We can show easily that $d_{R_{n}}^{\prime}(c)$ is always convergent. On the other hand $d_{R_{n}}^{\prime \prime}(c)$ is not always convergent (cf. Ahlfors [4], Weill [5]).
3. When we make use of B-cycle in canonical homology basis $\left\{A_{i}, B_{i}\right\}_{n=1,2}, \ldots$ of R, we obtain

Proposition. Let R bklongs to the class $O_{A D}$. A necessary and sufficient condition in order that $\omega \in \Gamma_{\text {ase }}$ is determined by its A periods is $\lim _{R_{n} \rightarrow R} d_{R_{n}}\left(B_{i}\right)=\infty$ for every B-cycles.

Proof. If $\alpha \in \Gamma_{\text {ase }}^{A A}$ and $\alpha \not \equiv 0$, since R belongs to $O_{A D}$, there exists a B-cycle B_{i} such that $\int_{B_{i}} \alpha \neq 0$. Hence we have $\lim _{R_{n} \rightarrow R} d_{R_{n}}\left(B_{i}\right)<\infty$ as before.
4. The generalized analytic modulus $K\left(\bar{R}_{n}-R_{1}\right)$ associated with $\bar{R}_{n}-R_{1}$ is defined as follows (cf. [3]):

$$
K\left(\bar{R}_{n}-R_{1}\right)=\inf _{\omega} \frac{\int_{\partial R_{n}} u \bar{\omega}}{\int_{\partial R_{1}} u \bar{\omega}},
$$

where ω varies over $I_{\text {ase }}^{\perp A}\left(\bar{R}_{n}-R_{1}\right)$ such that $i \int_{\partial R_{1}} u \bar{\omega}>0$ and $u(p)=\int_{p_{i}}^{p} \omega\left(p, p_{i} \in \alpha_{n}^{(i)}\right)$ is the function defined separately on each contour $\alpha_{n}^{(i)}$ of $\partial\left(\bar{R}_{n}-R_{1}\right)$. If ω belongs to $\Gamma_{\text {ase }}^{A}\left(\bar{R}_{n}\right)$, then $\|\omega\|_{R_{n}}^{2}$ $=i \int_{\partial R_{n}} u \bar{\omega}$ and so we have for a chain $c\left(\subset \bar{R}_{n}\right)$

$$
K\left(\bar{R}_{n}-R_{1}\right) \leqq \frac{\left\|\varphi_{n}(c)\right\|_{R_{n}}^{2}}{\left\|\varphi_{n}(c)\right\|_{R_{1}}^{2}}=\frac{d_{R_{n}}(c)}{\left\|\Phi_{n}\right\|_{R_{1}}^{2}},
$$

where $\Phi_{n}=\frac{\rho_{n}(c)}{\left\|\mathcal{P}_{n}(c)\right\|_{R_{n}}^{2}}-$
Now let $\lim _{R_{n} \rightarrow R} d_{R_{n}}(c)$ be finite, then $\Phi_{n} \rightarrow \Phi(\equiv 0)$ and so

$$
\lim _{R_{n} \rightarrow R}\left\|\Phi_{n}\right\|_{R_{1}}^{2}=\|\Phi\|_{R_{1}}^{2}>0
$$

Hence $\lim _{R_{n} \rightarrow R} K\left(\bar{R}_{n}-R_{1}\right)$ is finite. Thus we have

Proposition ([3]). If $\lim _{R_{n} \rightarrow R} K\left(\bar{R}_{n}-R_{1}\right)=\infty$, then $\omega \in \Gamma_{\text {ase }}$ is uniquely determined by its A-periods.

Kyoto Technical University.

REFERENCES

[1] Virtanen, K. I. ; Über Abelsche Integrale auf nullberandeten Riemannschen Fläche von unendlichem Geschlecht. Ann. Acad. Scient. Fenn. A.I. 56 (1949).
[2] Kusunoki, Y.; Square integrable normal differentials on Riemann surfaces. J. Math. Kyoto Univ. 3 (1963) 59-69.
[3] Sainouchi, Y.; On the analytic semiexact differentials on an open Riemann surface. J. Math. Kyoto Univ. 2 (1963) 277-293.
[4] Ahlfors, L. ; Open Riemann surfaces and extremal problems on compact subregions. Comment. Math. Helv. 24 (1950) 100-134.
[5] Weill, G. G. ; Reproducing kernels and orthogonal kernels for analytic differentials on Riemann surfaces. Pacific J. Math. 12 (1962) 729-767.

