Remarks on the harmonic boundary of a plane domain

Dedicated to Professor A. Kobori on his 60th birthday

By

Shin'ichi Mori

(Received Sept. 18, 1964)

Introduction. We denote by R_{F}^{*} the compactification of an open disc R and by Δ_{F} the harmonic boundary of R, here the compactification is the one studied in the former paper [5]. In the first chapter, we shall study the relation between Δ_{F} and the Martin minimal boundary of R in connection with the harmonic measure on R. In the second chapter, we shall treat the multiply connected domain, and a certain theorem with respect to the cluster sets will be studied from the view point of the compactification.

1. Martin minimal boundary Δ_{1} and Δ_{F}. Let R be an open Riemann surface which admits the non-constant bounded harmonic functions, and let Δ_{1} be the Martin minimal boundary of R. At first, we shall treat some lemmas with respect to Δ_{1} to make use of them later on. These lemmas were given by C. Costantinescu and A. Cornea [1] in general case.

Lemma 1. Let D be a non-compact subregion of R and A be a subset of Δ_{1} such as $A=\left\{s \in \Delta_{1} ; I_{D} K_{S} \gg 0\right\}$, then it holds that

$$
1=\int_{A} I_{D} K_{s}(p) d \chi(s)+\int_{\partial D} d \omega_{p}(\tilde{p})
$$

for any point p in D.
Proof. According to [1], $u=I_{D} u+H_{D}^{u}$ for any $u \in H P$. From this, we know that $K_{s}(p)=H_{D}^{K_{s}}(p)(p \in D)$ for each $s \in \Delta_{1}-A$. In
the following, we show that A is the χ-measurable set and $I_{D} K_{s}(p)$ ($p \in D$) is the χ-measurable function on Δ_{1}. At first, we prove that $I_{D} K_{s}(p)$ is measurable. Let $s_{n}\left(\in \Delta_{1}\right)$ converge to $s \in \Delta_{1}$, then

$$
\begin{aligned}
& K_{s_{n}}(p)=I_{D} K_{s_{n}}(p)+H_{D}^{K_{s_{n}}}(p) \\
& K_{s}(p)=\lim _{n \rightarrow \infty} K_{s_{n}}(p) \geqq \overline{\lim } I_{D} K_{s_{n}}(p)+\underline{\lim } H_{D}^{K s_{n}}(p) \\
& \underline{\lim } H_{D^{\prime} \rightarrow \infty}^{K s_{n}}(p)=\underline{\lim } \int_{\partial D} K_{s_{n}}(\tilde{p}) d \omega_{p}(\tilde{p}) \geqq \int_{\partial D} K_{s}(\tilde{p}) d \omega_{p}(\tilde{p})=H_{D}^{K_{s}}(p),
\end{aligned}
$$

consequently, $I_{D} K_{s}(p)+H_{D}^{K_{s}}(p)=K_{s}(p) \geqq \varlimsup I_{D} K_{s_{n}}(p)+H_{D}^{K_{s}}(p)$, that is, $I_{D} K_{s}(p) \geqq \varlimsup_{n \rightarrow \infty} I_{D} K_{s_{n}}(p)$. This shows that $I_{D} K_{s}(p)$ is the upper semi-continuous function on Δ_{1}. From this, we can see that A is the F_{σ}-set. Now, for any point $p \in D$

$$
\begin{aligned}
1=\int_{\Delta_{1}} K_{s}(p) d \chi(s) & =\int_{A} K_{s}(p) d \chi(s)+\int_{\Delta_{1}-A} K_{s}(p) d \chi(s) \\
& =\int_{A} I_{D} K_{s}(p) d \chi(s)+\int_{\Delta_{1}} H_{D}^{K_{s}} d \chi(s)
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\Delta_{1}} H_{D}^{K_{s}}(p) d \chi(s) & =\int_{\Delta_{1}} d \chi(s) \int_{\partial D} K_{s}(\tilde{p}) d \omega_{p}(\tilde{p}) \\
& =\int_{\partial D} d \omega_{p}(\tilde{p}) \int_{\Delta} K_{s}(\tilde{p}) d \chi(s)=\int_{\partial D} d \omega_{p}(\tilde{p}) .
\end{aligned}
$$

Thus, this lemma is proved.
Corollary 1. $D \in S O_{H B}$ if and only if $A=\left\{s \in \Delta_{1} ; I_{D} K_{s}>0\right\}$ is of χ-measure zero.

Definition 1. Let s be any point of Δ_{1} and G be any domain of R such as $I_{G} K_{s}>0$. Then we define the set \dot{s} in R_{F}^{*} as follows: $\dot{s}=\cap \bar{G}$ for all $G\left(I_{G} K_{s}>0\right)$, here \bar{G} is the closure of G in R^{*}. \dot{s} is the connected and compact set [5].

Lemma 2. Let ω_{A} be the harmonic measure on R such as

$$
\omega_{A}(p)=\int_{A} K_{s}(p) d \chi(s)
$$

here A is a Borel-set on Δ_{1}, and let D^{a} be the open subset of R such as $D^{\alpha}=\left\{p \in R ; \omega_{A}(p)>\alpha, 0<\alpha<1\right\}$. Then $\Gamma(\alpha)=\left\{s \in \Delta_{1} ;\right.$ $\left.I_{D^{\alpha}} K_{s}>0\right\}$ is identical with A except for a set of $\chi_{-m e a s u r e ~ z e r o . ~}^{\text {zer }}$

From this, it holds that ω_{A} attains 1 or zero on each \dot{s} except for a set of χ-measure zero.

Proof. From lemma 1, we know that $\Gamma^{\prime}(\alpha)$ is non-empty and is the F_{σ}-set. That $\Gamma^{\perp}(\alpha)$ is the F_{σ}-set is proved by the way in [1]. D_{k}^{α} be a component of D^{α} and p_{0} be a fixed point in D_{k}^{α}. Let $\mathrm{I}_{k}(n)=\left\{s \in \Delta ; I_{D_{k}^{\alpha}} K_{s}\left(p_{0}\right) \geqq \frac{1}{n}\right\}$. It is clear that $\mathrm{I}_{k}(\alpha)(=\{s \in \Delta$; $\left.I_{D_{k}^{\alpha}} K_{s}>0\right\}$) is identical with $\bigcup_{n} \mathrm{I}_{k}^{\prime}(n)$. The $\mathrm{I}_{k}(n)$ is closed, because $s \rightarrow I_{D_{k}^{\alpha}} K_{s}\left(p_{0}\right)$ is upper semi-continuous on Δ (c.f. lemma 1). Thus, we know that $A_{k}=A \cap \Gamma_{k}(n)$ is the Rorel-set for each component D_{k}^{α}. Now, we restrict ω_{A} to D_{k}^{α}, then it holds that

$$
\omega_{A}(p)=\int_{A} K_{s}(p) d \chi(s)=\int_{A_{k}} K_{s}(p) d \chi(s)+\int_{A-A_{k}} K_{s}(p) d \chi(s),
$$

and if A_{k} is the χ-null set, then for any point $p \in D_{k}^{\alpha}$

$$
\begin{aligned}
\omega_{A}(p) & =\int_{A} K_{s}(p) d \chi(s)=\int_{A} H_{D_{k}^{s}}^{K_{s}}(p) d \chi(s)=\int_{A} d \chi(s) \int_{\partial D_{k}^{\alpha}} K_{s}(\tilde{p}) d \omega_{p}(\tilde{p}) \\
& =\int_{\partial D_{k}^{\alpha}} d \omega_{p}(\tilde{p}) \int_{A} K_{s}(\tilde{p}) d \chi(s)=\alpha \int_{\partial D_{k}^{\alpha}} d \omega_{p}(\tilde{p})=\frac{\alpha}{1-\alpha}\left(1-\omega_{A}(p)\right) .
\end{aligned}
$$

From this, it holds that $\omega_{A}=\alpha$ in D_{k}^{α}, that is, $\omega_{A}=\alpha$ on R. This is absurd, that is, A_{k} is of positive χ-measure. Now, we can see easily that $\bigcup A_{k}$ is identical with A except for a set of χ-measure zero. Indeed, if $A-\bigvee A_{k}$ is of positive χ-measure, then the harmonic measure $\omega_{A-\cup A_{k}}$ is of positive but less than ω_{A}, consequently is holds that

$$
\tilde{D}=\left\{p \in R ; \omega_{A-\cup A_{k}}(p)>\alpha\right\} \subset D
$$

here $D=\left\{p \in R ; \omega_{A}(p)>\alpha\right\}$. Thus, there exists the subset B of $A-\bigcup A_{k}$ with positive χ-measure such that $I_{\tilde{D}} K_{s}>0$ for any $s \in B$, that is, $I_{D} K_{s}>0$ for any $s \in B$. This is absurd, that is, $A=\bigvee A_{k}$ except for a set of χ--measure zero.

Lemma 3. Let u be a bounded harmonic function on R. Then u is constant on each \dot{s} respectively except for a set of χ-measure zero.

Proof. Without loss of generality, we suppose that u is the positive harmonic function. By the theorem with respect to a nonnegative measurable function, $u\left(p^{*}\right)\left(p^{*} \in \Delta_{F}\right)$ is the limit function of the non-decreasing sequence of simple functions $\left\{u_{n}\right\}$. This convergence is uniform on Δ_{F} since u is bounded. Let $\tilde{u}_{n}(p)(p \in R)$ be such as

$$
\tilde{u}_{n}(p)=\int_{\Delta_{F}} u_{n}\left(p^{*}\right) d \mu\left(p^{*}, p\right)
$$

for each n [4]. It is clear that \hat{u}_{n} is the linear combination of a finite number of harmonic measures and \tilde{u}_{n} converges to u uniformly on B_{F}^{*}. From lemma 2, we conclude that this lemma holds.

Corollary 2. Lemma 3 holds for the positive quasi-bounded harmonic functions. Indeed, a positive quasi-bounded harmonic function is the limit function of the non-decreasing sequence consisting of positive bounded harmonic functions.

Lemma 4. A positive singular harmonic function vanishes on each \dot{s} except for a set of χ-measure zero.

Proof. Let u be a positive singular harmonic function on R and D be such as $D=\{p \in R ; u(p)<\alpha\}$. It is clear that $D \notin S O_{H B}$, consequently the set $A=\left\{s \in \Delta_{1} ; I_{D} K_{s}>0\right\}$ is of positive χ-measure by lemma 1. Then it holds that for any $p \in D$

$$
1=\int_{A} I_{D} K_{s}(p) d \chi(s)+\int_{\Delta_{1}} H_{D^{s}}^{K}(p) d \chi \cdot(s)=\int_{A} I_{D} K_{s}(p) d \chi(s)+\int_{\partial D} d \omega_{p}(\tilde{p}) .
$$

We notice that $(\alpha-u) / \alpha$ is the harmonic measure of the ideal boundary with respect to D. From this, it holds that for any $p \in D$

$$
(\alpha-u) / \alpha=1-\int_{د_{1}} H_{D^{s}}^{K} d \chi(s)=\int_{A} I_{D} K_{s}(p) d \chi(s) .
$$

If $\Delta_{1}-A$ is of positive χ-measure, then

$$
\int_{A} I_{D} K_{s}(p) d \chi(s)<\int_{A} K_{s}(p) d \chi(s)<1
$$

that is, L.H.M. $\{(\alpha-u) / \alpha\}^{*} \leqq \int_{A} K_{s} d \chi(s)$, here $\{(\alpha-u) / \alpha\}^{*}$ $=(\alpha-u) / \alpha$ on D and $=0$ on $R-D$. On the other hand, L.H.M.
$\{(\alpha-u) / \alpha\}^{*}=$ const. 1. This is absurd, that is, $\Delta_{1}-A$ is of $\chi-$ measure zero.

Theorem 1. Let u be a positive superhamonic function on R such as G.H.M. $u=0$, then u vanishes on each \dot{s} except for a set of $\chi_{\text {-measure zero. }}$

Proof. Let G_{n} be an open subset of R such as $G_{n}=\{p \in R$; $\left.u(p)>\frac{1}{n}\right\}$, then $u=1 / n$ on ∂G_{n} except for a set of capacity zero (in a sense of local) [2]. Let D be such a component of $R-G_{n} \cup \partial G_{n}$ that u is non-constant on D. It is sure from G.H.M. $u=0$ that there is such a component D. Then $H_{D}^{n u}$ is the nonconstant harmonic measure on D, here $n u$ is the boundary function of the Dirichlet problem with respect to D. From this, we know that there exists at least one component of $R-G_{n} \cup \partial G_{n}$ that does not belong to $S O_{H B}$. Consequently $A_{n}=\left\{s \in \Delta_{1} ; I_{R-G_{n} \cup \partial G_{n}} K_{s}>0\right\}$ is of χ-measure positive by lemma 1. Moreover it holds that $A_{n}=\Delta_{1}$ except for a set of χ-measure zero. Otherwise, by lemma 1

$$
\begin{gathered}
I_{R-G_{n} \cup \partial G_{n}} 1=1-\int_{\Delta_{1}} H_{R-G_{n} \cup \partial G_{n}}^{K}(p) d \chi(s)=\int_{A_{n}} I_{R-G_{n} \cup \partial G_{n}} K_{s}(p) d \chi(s) \\
<\int_{A_{n}} K_{s}(p) d \chi(s)<1
\end{gathered}
$$

for any point $p \in R-G_{n} \bigvee \partial G_{n}$.
From this, it holds that

$$
n u>1-I_{R-G_{n} \cup \partial G_{n}} 1>1-\int_{A_{n}} K_{s} d \chi(s)>0
$$

against C.H.M. $u=0$. Thus we know that $\Delta_{1}=A_{n}$ except for a set of χ-measure zero. From this, we know that $\overline{\lim } u=0$ at each point of \dot{s}, here $s \in \bigcap^{\infty} A_{n}$. (q.e.d.)

In the following, we shall treat the harmonic boundary of the unit open disc R. It is known that Martin minimal boundary of R coincides with the circumference of R. Now, we shall study the relation between Δ_{1} and Δ_{F}. Let R^{\prime} be the open disc such as $R^{\prime}=\{|w|<2\}$ and f be the conformal map of $R=\{|z|<1\}$ into R^{\prime} such as $w=f(z)=z$, that is, the identity map. From the former
paper [5], it is concluded that the image $M_{f}\left(p^{*}\right)$ is located at some point of the circumference of R, here we identify $\tilde{R}=\{|w|<1\}$ with $R=\{|z|<1\}$. Conversely, the following holds that

Proposition 1. Let $w=e^{i \theta}$ be any point of $\partial R=\{|z|=1\}$, then there exists some point of Δ_{F} whose image is w.

Proof. Let $G_{R^{\prime}}\left(w ; e^{i \theta}\right)$ be the Green function on R^{\prime} such as $e^{i^{i \theta}}$ is the singular point. Then $G_{R^{\prime}}\left(f(z) ; e^{i \theta}\right)$ is the positive harmonic function on R, consequently it is continuous on R_{F} and it attains $+\infty$ at some point p^{*} of Δ_{F}. Clearly $e^{i y}$ is the image of the p^{*}. (q.e.d.)

From now on, we denote by $\Delta(\theta)$ the subset of Δ_{F} such as $\Delta(\theta)=\left\{p^{*} \in \Delta_{F} ; M_{f}\left(p^{*}\right)=e^{i \theta}\right\}$. It is evident that $\Delta(\theta)$ is compact.

Proposition 2. Let s any point of ∂R and $\bar{o} s$ be the closure of the radius os in R_{F}^{*}. Then it holds that $\overline{o s} \cap\left(R_{F}^{*}-R\right) \subset \dot{s}$.

Proof. The minimal function K_{s} is symmetric with respect to the radius os. From this, we get the above conclusion.

Proposition 3. Let L be a subset of χ-measure positive on ∂R and γ be the subset of Δ_{F} such as $\gamma=\left\{\Delta(\theta) ; e^{i \theta} \in L\right\}$, then

$$
\omega(z ; \gamma)=\int_{L} K_{s}(z) d \chi(s),
$$

here $\omega(z ; \gamma)$ is the harmonic measure of γ. If L is χ-measure. zero, the γ is of harmonic measure zero.

Proof. We consider the case that L is compact. Let $\Omega(z ; L)$ be the harmonic measure of L with respect to $R^{\prime}-L$, that is, $\Omega(z ; L)$ vanishes on $|z|=2$ and $=1$ on L except for a set of capacity zero. Let $\widetilde{\Omega}(z)$ be the restriction of $\Omega(z ; L)$ to R. Then $\tilde{\Omega}(z)$ attains the boundary value 1 at each point of L except for a subset of capacity zero. From this, we know that $\tilde{\Omega}(z)$ attains 1 at each point of γ except for a set of harmonic measure zero. For, the set of the irregular points of L is of F_{σ} and with respect to the compact subset of F_{σ} with zero capacity, its Evans function restricted to R is continuous on R_{F}^{*}. Consequently we conclude
that $\tilde{\Omega}=1$ on γ except for a subset of harmonic measure zero. Now, we notice that γ is compact. For, let p^{*} be an accumulation point of γ and $G_{R^{\prime}}\left(z ; M_{f}\left(p^{*}\right)\right)$ be the Green function on $R=\{|z|<2\}$, then we can see that \widetilde{G}, the restriction of $G_{R^{\prime}}$ to R, is unbounded on L since \widetilde{G} is continuous on R_{F}^{*}. Thus, it holds that $M_{f}\left(p^{*}\right) \in L$ since L is compact. Consequently the harmonic measure $\omega(z ; \gamma)$ vanishes at every point of $\Delta_{F}-\gamma$ and attains 1 at each point of γ except for a set of harmonic measure zero (c.f. [4]). It is clear that $\Delta(\theta)<\Delta_{F}-\gamma$ provided that $e^{i \theta} \in \partial R-L$ by the definition of γ. From this, we can see that $\omega(z ; \gamma)$ attains zero at $e^{i \theta}$ as the boundary value. This shows that $\omega(z ; \gamma) \geqq \int_{L} K_{s} d \chi(s)$, therefore $\omega(z ; \gamma)=\int_{L} K_{s} d \chi(s)$ because of lemma 2 and proposition 2. Next, we treat the case that L is open in ∂R. Noticing that $\partial R-L$ is closed, we can verify that $\omega(z ; \gamma)$ coincides with $\int_{L} K_{s} d \chi(s)$. This leads us to the result that the γ is of harmonic measure zero provided that L is of linear measure zero. Now, we treat the case that L is any measurable (Lebesgue) subset in ∂R. Then L is decomposed to a null-set and F_{σ}-set. From this, we can see that the proposition is true.

Corollary 3. Let L be a subset of χ-measure positive on ∂R, $\omega(z)$ be the harmonic measure such as $\omega(z)=\int_{L} K_{s} d \chi(s)$ and let $\Delta(L)$ be such as $\Delta(L)=\left\{\Delta(\theta) ; s=e^{i \theta} \in L\right\}$. Then $\Delta(L)$ is of measurable with respect to the harmonic measure $d \mu\left(p^{*} ; p\right)$ and the set $\sigma_{0}=\left\{p^{*} \in \Delta(L) ; \omega\left(p^{*}\right)=0\right\}$ is of harmonic measure zero.

Corollary 4. Let γ be a simultaneously open and closed subset of Δ_{F} and $\omega(z: \gamma)$ be the harmonic measure of γ. Let $\omega(z ; \gamma)$ $=\int_{L} K_{s} d \chi(s)$ and $\Delta(L)$ be such as $\Delta(L)=\left\{p^{*} \in \gamma ; M_{f}\left(p^{*}\right) \in L\right\}$. then the closure of $\Delta(L)$ in R_{F}^{*} coincides with γ.

Remark. Let \tilde{L} be the image of γ in corollary 4, that is, $\tilde{L}=\left\{M_{f}\left(p^{*}\right) ; p^{*} \in \gamma\right\}$. then $\tilde{L} \supset L$. It is possible that $\tilde{L}-L$ is of positive measure. I thank to M. Nakai for his kind advice on this fact.

Lemma 5. Let u be a bounded harmonic function on $R, u(\theta)$ be the radial limit function defined on ∂R and L be an open arc on ∂R. Then it holds that

$$
\sup _{L-L_{0}} u(\theta)=\sup _{\Delta(L)} u\left(p^{*}\right) .
$$

here L_{0} is the subset of ∂R on which u has not the radial limits and $\Delta(L)$ is such as $\Delta(L)=\left\{\Delta(\theta) ; e^{i \theta} \in L\right\}$.

Proof. We define the function \tilde{u} on Δ_{F} such that $\tilde{u}\left(p^{*}\right)=u(\theta)$ provided that $M_{f}\left(p^{*}\right)=e^{i \theta} \in \partial R-L_{0}$. According to corollary 3, $\tilde{u}\left(p^{*}\right)$ is the bounded measurable function on Δ_{F}. Indeed, for any $k, \widetilde{\Delta}=\left\{p^{*} \in \Delta_{F} ; \tilde{u}\left(p^{*}\right)>k\right\}$ is of measurable since the image of $\tilde{\Delta}$ is identical with $\{u(\theta)>k\}$ and the set $\{u(\theta)>k\}$ is of measurable. Now, let $v(z)$ be the harmonic function on R defined by

$$
v(z)=\int_{\Lambda_{F}} \tilde{u}\left(p^{*}\right) d \mu\left(p^{*} ; z\right),
$$

then $v\left(p^{*}\right)=\check{u}\left(p^{*}\right)$ except for a set of harmonic measure zero. Hence it holds that $v(z)=u(p)$ on R, because the χ-harmonic measure of $\tilde{L}=\left\{e^{i \theta} \in \partial R ; \alpha>u(\theta)>\beta\right\}$ is identical with the harmonic measure of the inverse image $\left\{\Delta(\theta) ; e^{i^{\theta}} \in \tilde{L}\right\}$ of \tilde{L} by proposition 3 , consequently

$$
v(z)=\int_{\Delta_{F}} \tilde{u}\left(p^{*}\right) d \mu\left(p^{*}: p\right)=\int_{\partial R} K_{s}(z) u(s) d \chi(s)=u(z) .
$$

Now, L_{0} is of linear measure zero, consequently $\Delta(L)$ is contained in the closure (in R_{F}^{*}) of $\Delta\left(L-L_{0}\right)$. Thus, Lemma 5 holds.

Definition 2. Let $e^{i \theta}$ be any point of $\partial R, \widetilde{K}_{z}=\left\{z ;\left|z-e^{i q}\right|<\varepsilon\right\}$ be the neighborhood of $e^{i \theta}$ and K_{ε} be $\widetilde{K}_{\varepsilon} \cap R$. Then we define $\Gamma^{\prime}(\theta)$ as follows : $\Gamma^{\prime}(\theta)=\bigcap_{\varepsilon \downarrow 0}\left\{\bar{K}_{\varepsilon} \cap\left(R_{F}^{*}-R\right)\right\}$, here \bar{K}_{ε} is the closure in R_{F}^{*} of $K_{\mathrm{\varepsilon}}$. It is clear that $\Gamma(\theta) \neq=\phi$ and $\Gamma\left(\theta_{1}\right) \cap \Gamma\left(\theta_{2}\right)=\phi$ for any θ_{1}, θ_{2} $\left(\theta_{1} \neq \theta_{2}\right)$. Let $\widetilde{\Delta}(\theta)=\mathbf{I}^{\prime}(\theta) \cap \Delta_{\boldsymbol{F}}$, then $\widetilde{\Delta}(\theta)$ is identical with $\Delta(\theta)$. Indeed, let $G_{R^{\prime}}\left(z ; e^{i \theta}\right)$ be the Green function on $R^{\prime}=\{|z|<2\}$. Then $\tilde{G}_{R^{\prime}}(z)$, the restriction of $G_{R^{\prime}}\left(z ; e^{i^{i}}\right)$ to R, is continuous on $R_{\boldsymbol{F}}^{*}$ and attains $+\infty$ on $\widetilde{\Delta}(\theta)$. Let us consider the level curve of $\tilde{G}_{R^{\prime}}(z)$, then the image of each points of $\tilde{\Delta}(\theta)$ are all identical
with $e^{i \theta}$, while the image of any $p^{*} \in \Delta_{F}-\widetilde{\Delta}(\theta)$ 'is different from $e^{i \theta}$ since $\widetilde{G}_{R^{\prime}}$ is finite at p^{*}.

Lemma 6. Let u be a bounded continuous subharmonic function on R and $e^{i \theta}$ be any point on ∂R. Then it holds that

$$
\varlimsup_{z \rightarrow e^{i \theta}} u(z)=\max _{\Gamma(\theta)} u=\max _{\Delta(\theta)} u \quad(z \in R) .
$$

Proof. Without loss of generality, we suppose that u is nonnegative on R. Let k be $\max _{\Delta(\theta)} u$ and Δ_{λ} be such as $\Delta_{\lambda}=\left\{p^{*} \in \Delta_{F}\right.$; $\left.u\left(p^{*}\right)<\lambda, \lambda>k\right\}$. Then it holds that

$$
u(z)<\lambda_{\omega}\left(z ; \Delta_{\lambda}\right)+M\left(1-\omega\left(z ; \Delta_{\lambda}\right)\right),
$$

here $\omega\left(z ; \Delta_{\lambda}\right)$ is the harmonic measure of Δ_{λ} and $M=\sup _{R} u$. Because, u is continuous on R_{F}^{*} and $\omega\left(z ; \Delta_{\lambda}\right)$ attains 1 at each point of Δ_{λ}, while $1-\omega\left(z ; \Delta_{\lambda}\right)$ attains 1 at each point of $\Delta_{F}-\Delta_{\lambda}$ except for a set of harmonic measure zero. Now, $\Delta(\theta)$ is contained in Δ_{λ} since $\max _{\Delta(\theta)} u=k(<\lambda)$, consequently $\omega\left(z ; \Delta_{\lambda}\right)$ attains 1 at each point of $\Delta(\theta)$. From this, we can see easily that $\lim _{z \rightarrow e^{i \theta}} \omega\left(z ; \Delta_{\lambda}\right)=1$ (c.f. lemma 8). This shows that $\varlimsup_{z \rightarrow e^{i \theta}} u(z) \leqq \lambda$. Thus we know that $\varlimsup_{z \rightarrow e^{i \theta}} u(z) \leqq k=\max _{\Delta(\theta)} u$. While $\varlimsup_{z \rightarrow e^{i \theta}} u(z)=\max _{\Gamma(\theta)} u$, consequently $\max _{\Gamma(\theta)} u=\max _{\Delta(\theta)} u$.

Lemma 7. Let u be a bounded continuous subharmonic function on $R, u(\theta)$ be the radial limit function defined on ∂R and L be an open arc on ∂R. Then it holds that

$$
\sup _{L-L_{0}} u(\theta)=\sup _{p * \in \Delta(t)} u\left(p^{*}\right),
$$

 $\left.\lim _{\gamma \rightarrow 1} u\left(r e^{i^{\dagger}}\right)\right\}$ and $\Delta(L)=\left\{\Delta(\theta) ; e^{i^{y}} \in L\right\}$.

Proof. We note that $u=$ L.H.M. u on Δ_{F}. Let $\hat{u}(\theta)$ be the radial limit function of L.H.M. u, then the following holds by lemma 5 and the above notice that $\sup _{\tilde{U}-L_{0}} \tilde{u}(\theta)=\sup _{\Delta(L)}$ L.H.M. $u=\sup _{\Delta(L)} u\left(p^{*}\right)$, here $\tilde{L}_{0}=\left\{e^{i \theta} \in \partial R ; \varlimsup_{\gamma \rightarrow 1}\right.$ L.H.M. $\frac{\tilde{L}-L_{0}}{u}\left(r e^{i^{\theta}}\right) \neq \lim _{\gamma \rightarrow 1}^{\Delta(L)}$ L.H.M.
$\left.u\left(r e^{i}\right)\right\}$. From this, $\sup _{\lrcorner(L)} u\left(p^{*}\right) \geqq \sup _{L-t_{0}} u(\theta)$, while according to Theorem $1 u(\theta)=\tilde{u}(\theta)$ except for a set of linear measure zero. Thus, the following holds that

$$
\begin{aligned}
& \sup _{L-\widetilde{L} O} \tilde{u}(\theta)=\sup _{t,-I_{0} \cup \widetilde{L_{0}}} \tilde{u}(\theta)=\sup _{\Delta(L)} \text { L.H.M. } u=\sup _{\Delta\left(L_{)}\right)} u\left(p^{*}\right)
\end{aligned}
$$

that is, $\sup _{L-L_{0}} u(\theta)=\sup _{\Delta(t, t)} u\left(p^{*}\right)$, here $L^{\prime}=\{\theta \in \partial R ; \hat{u}(\theta)=1-u(\theta)\}$.
Remark. From lemma 7 we can get the Lindelof's theorem : Let u be a bounded continuous subharmonic function on $R=\{|z|<1\}$ and $u(\theta)$ be the radial limit function on ∂R. Then it holds that

$$
\varlimsup_{\theta \rightarrow \theta_{0}} u(\theta)=\varlimsup_{z \rightarrow i^{i \theta_{0}}} u(z),
$$

here $e^{i \theta_{0}}$ is any given point on ∂R.
2. On multiply-connected domains. Now we shall treat the case that the domain is of multiply-connected. Let Ω be the bounded domain in z-plane. We denote by $\partial \Omega$ its boundary and denote by Ω_{F}^{*} the compactification of Ω constructed in [5].

Lemma 8. Let ω be the harmonic measure on the bounded domain Ω, that is, $\omega \wedge(1-\omega)=0$, and ζ_{0} be a boundary point of Ω, which is regular with respect to the Dirichlet problem and $\omega=1$ on $\Delta\left(\zeta_{0}\right)$. Then ω has the boundary value 1 at ζ_{0}. (c.f. definition 2 on $\Delta\left(\zeta_{0}\right)$)

Proof. First, we notice that $\Delta\left(\zeta_{0}\right)$ is non-empty provided that ζ_{0} is regular with respect to the Dirichlet problem. Now the function $v(u)=\left|z-\zeta_{0}\right|$ is a bounded continuous subharmonic function, consequently $v(z)$ is continuous on Ω_{F}^{*} and $H(z)(=$ L.H.M. $v)$ coincides with $v(z)$ on Δ_{F} (the harmonic boundary of Ω). From this, we know that $H(z)$ vanishes on $\Delta\left(\zeta_{0}\right)$ and attains a positive constant value on each $\Delta(\zeta)\left(\zeta \in \partial \Omega, \zeta \neq \zeta_{0}\right)$. Next, there exists an ε-neighborhood $V\left(\zeta_{0}, \varepsilon\right)$ such that $\omega=1$ on $\Delta(\zeta)$ provided that $\zeta \in V\left(\zeta_{0}, \varepsilon\right)$. If otherwise, $\Delta\left(\zeta_{0}\right)$ contains a zero-point of ω against that $\omega=1$ on $\Delta\left(\zeta_{0}\right)$. We know that $k=\min _{\Delta_{F^{-\gamma}}} H$ is positive, here
$\gamma=\left\{p^{*} \in \Delta_{F}: \omega\left(p^{*}\right)=1\right\}$. Thus, it holds that $0<k(1-\omega(z))<H(z)$. From this, we know that $\lim \omega(z)=1$ as $z \rightarrow \zeta_{0}$.

Lemma 9. Let u be a bounded harmonic function on Ω and ζ_{0} be a boundary point of Ω, which is regular with respect to the Dirichlet problem. Then the following holds that

$$
\varlimsup_{z \rightarrow 5_{0}} u(z)=\max _{\Gamma\left(\xi_{0}\right)} u=\max _{\Delta\left(\zeta_{0}\right)} u .
$$

Proof. Let $k=\max _{\Delta\left(\xi_{0}\right)} u$ and $\Delta_{\varepsilon}=\left\{p^{*} \in \Delta_{F} ; u\left(p^{*}\right)<k+\varepsilon\right\}$ for any given $\varepsilon(>0)$. Then the harmonic measure $\omega\left(z ; \Delta_{\varepsilon}\right)$ attains 1 at every point of $\Delta\left(\zeta_{0}\right)$, because Δ_{ε} is open in Δ_{F} [4]. Thus the following holds that

$$
u(z)<(k+\varepsilon)_{\omega}\left(z ; \Delta_{\varepsilon}\right)+M\left(1-\omega\left(z ; \Delta_{\varepsilon}\right)\right)
$$

here $M=\sup u$ on Ω. From lemma 8, we conclude that $\overline{\lim } u(z) \leqq$ $k+\varepsilon$, that is, $\overline{\lim } u(z) \leqq k$ as $z \rightarrow \zeta_{0}$. (q.e.d.)

Now, we study the behavior of the subharmonic functions in Ω.
Lemma 10. Let u be a bounded subharmonic function on Ω and ζ_{0} be a boundary point of Ω, which is regular with respect to the Dirichlet problem. Then it holds that

$$
\varlimsup_{z \rightarrow \zeta_{0}} u(z)=\max _{\Delta\left(\zeta_{0}\right)}\{\text { L.H.M. } u\} .
$$

Furthermore, this is true provided that u is bounded from above.
Proof. Let \tilde{u} be a function defined on Δ_{F} such as $\hat{u}\left(p^{*}\right)$ $=\varlimsup_{p \rightarrow p^{*}} u(p)(p \in \Omega), \quad$ According to [5], $\tilde{u}\left(p^{*}\right)$ is continuous on Δ_{F} and

$$
\text { L.H.M. } u=\int_{\Lambda_{F}} \tilde{u}\left(p^{*}\right) d \mu\left(p^{*} ; p\right) \quad(p \in \Omega) .
$$

From lemma 9, the following holds that

$$
\varlimsup_{z \rightarrow \zeta_{0}} u(z) \leqq \varlimsup_{z \rightarrow \zeta_{0}}\{\text { L.H.M. } u\}=\max _{\Delta\left(\zeta_{0}\right)}\{\text { L.H.M. } u\}
$$

On the other hand, $\varlimsup_{z \rightarrow \zeta_{0}} u(z)=\inf \left\{\sup u\right.$ in $\left.V\left(\zeta_{0}, \varepsilon\right) \cap \Omega\right\}$ and $\sup _{V\left(\zeta_{0}, \varepsilon\right) \cap \Omega} u \geqq \max _{\Delta\left(\zeta_{0}\right)}\{$ L.H.M. $u\}$ since each point of $\Delta\left(\zeta_{0}\right)$ is the inner point of the closure (in R_{F}^{*}) of $V\left(\zeta_{0}, \varepsilon\right) \cap \Omega$. Thus it holds that

$$
\begin{equation*}
\overline{\lim }_{z \rightarrow \zeta_{0}} u(z) \geqq \max _{\Delta\left(\zeta_{0}\right)}\{\text { L.H.M. } u\} \tag{*}
\end{equation*}
$$

that is, $\varlimsup_{z \rightarrow \zeta_{0}} u(z)=\max _{\Delta \leqslant \zeta_{0}{ }^{\prime}}\{$ L.H.M. $u\}$.
Remark. This lemma is equivalent to the following theorem (c.f. [6] p. 15): let D be a bounded open set, l' its boundary, E a compact set of capacity zero and z_{0} a point of E. Suppose that z_{0} is a regular point for the Dirichlet problem. If u is bounded from above and subharmonic in that part of D contained in a neighborhood $U\left(z_{0}\right)$ of z_{0}, then it holds that

$$
\varlimsup_{z \rightarrow z_{0}} u(z) \leqq \varlimsup_{\substack{\zeta \rightarrow z_{0} \\ \zeta \in \Gamma-E}}\left(\varlimsup_{z \rightarrow \zeta} u(z)\right) .
$$

Indeed, we can see easily that $\bigcup_{\zeta \in \Leftrightarrow} \Delta(\zeta)$ is of harmonic measure zero (c.f. Prop. 3), consequently $\Delta\left(z_{0}\right)$ is contained in the closure of $\underset{\zeta \in \Gamma-\xi}{\bigcup} \Delta(\zeta)$. From this fact and (*) in lemma 10 it holds ihat

Now we shall study the Iversen-Tsuji's theorem in connection with the harmonic boundary.

Theorem 2. (Iversen-Tsuji) Let Ω be a bounded domain, $\partial \Omega$ its boundary and z_{0} any point of $\partial \Omega$. If $f(z)$ is of bounded and regular on Ω, then it holds that

$$
\begin{equation*}
\max _{\Gamma\left(z_{0}\right)}|f|=\max _{\Delta\left(z_{0}\right)}|f|, \tag{1}
\end{equation*}
$$

provided that $\Delta\left(z_{0}\right) \neq \phi$. If $\Delta\left(z_{0}\right)$ is empty, then z_{0} is the removable singular point of $f(z)$.

Proof. We note that f and $|f|$ are continuous on Ω_{F}^{*} respectively. Let z_{0} be a regular point of the Dirichlet problem, then $\Delta\left(z_{0}\right)$ is non-empty and that the equality (1) is evident from lemma 10. Consequently we treat the case that z_{0} is an irregular point of the Dirichlet problem. Then either $\Delta\left(z_{0}\right)$ is empty or non-empty. In the following, we shall treat the case that $\Delta\left(z_{0}\right)$ is
non-empty and z_{0} is the irregular point of the Dirichlet problem. We suppose that $\max _{\Gamma\left(z_{0}\right)}|f|>\max _{\Delta\left(z_{0}\right)}|f|$, and we put $\left|f\left(p^{*}\right)\right|=\max _{\Gamma\left(z_{0}\right)}|f|$ ($p^{*} \in \Gamma\left(z_{0}\right)-\Delta\left(z_{0}\right)$). Now, we notice that $\Gamma^{\prime}\left(z_{0}\right)$ is connected provided that z_{0} is an irregular point of the Dirichlet problem. Let k be a positive number such as $\max _{\Delta\left(z_{0}\right)}|f|<k<\left|\tilde{w}_{0}\right|\left(f\left(p^{*}\right)=\tilde{w}_{0}\right)$, then there is an open disc $K_{r}=\left\{\left|z-z_{0}\right|<r\right\}$ such as $|f(\Delta(\zeta))|>k^{\prime}$ for every $\zeta\left(\in \partial \Omega \cap K_{r}\right)$ different from z_{0}, here $\max _{\Delta\left(z_{0}\right)}|f|<k^{\prime}<k$. This is verified from the continuity of f on Ω_{F}^{*}. Without loss of generality, we assume that there is a point $q^{*}\left(\in \Gamma\left(z_{0}\right)-\Delta\left(z_{0}\right)\right)$ whose image is a boundary point of $f\left(\Gamma\left(z_{0}\right)\right)$ and $\left|f\left(q^{*}\right)\right|=k$. Now, we notice that there is a closed Jordan curve $C(\subset \Omega)$ surrounding z_{0} provided that z_{0} is irregular with respect to the Dirichlet problem, [7]. Let us consider the inverse image $f^{-1}\left(\Pi_{\delta}\right)$ of Π_{δ}, here Π_{δ} is a δ-neighborhood of $w_{0}\left(=f\left(q^{*}\right)\right)$. Then there is at least one component of $f^{-1}\left(\Pi_{\delta}\right)$ which is contained in K_{r} for a suitable small number δ. For, let C be the closed Jordan curve in $K_{r} \cap \Omega$ surrounding z_{0}. Then the number of components of $f^{-1}\left(\mathrm{H}_{\delta}\right)$ meeting the C is of finite, consequently if any one of components of $f^{-1}\left(\Pi_{\delta}\right)$ is not be contained in K_{r} for every δ, then $\bigcap_{\delta \rightarrow 0} \overline{f^{-1}\left(\Pi_{\delta}\right)} \cap[C]$ would contain a non-degenerated continuum consisting of the w_{0}-points of f. This is absurd. Thus we know that K_{r} contains at least one component of $f^{-1}\left(\Pi_{\delta}\right)$ and that $f^{-1}\left(\Pi_{\delta}\right) \cap C$ is empty for a suitable small number δ. The latter is verified from the following : $f^{-1}\left(\Pi_{\delta}\right) \cap C$ consists of at most a finite number of components for any δ. In the following, a certain C is fixed in K_{r} and we assume that $f^{-1}\left(\mathrm{HI}_{\delta_{0}}\right) \cap C=\phi$, that is, for any $\delta\left(<\delta_{0}\right)$ $f^{-1}\left(\Pi_{\delta}\right) \cap C=\phi$. We denote by [C] the interior of C. Now, in a case that $f^{-1}\left(\mathrm{II}_{\delta_{0}}\right) \cap[C]$ consists of an infinite number of compact components, then $\Pi_{\delta_{0}}$ is contained in the cluster set $C_{\Omega}\left(f, z_{0}\right)$, while w_{0} is the boundary point of $C_{\Omega}\left(f, z_{0}\right)$. This is absurd, consequently $f^{-1}\left(\Pi_{\delta_{0}}\right) \cap[C]$ contains at least one non-compact of $f^{-1}\left(\Pi_{\delta_{0}}\right)$. Let D_{δ} be a non-compact component of $f^{-1}\left(\Pi_{\delta_{0}}\right)$ such that $D_{\delta}<f^{-1}\left(\Pi_{\delta_{0}}\right) \cap[C]$, and let \hat{f} be the restriction of f to D_{δ}, then \hat{f} is the map of type- $\mathrm{B} l$ [3], because the closure of D_{δ} in Ω_{F}^{*}
does not contain the harmonic boundary points of Ω by the definition of K_{r}. Without loss of generality, we suppose that $f^{-1}\left(\Pi_{\delta_{0}}\right) \cap$ [C] consists of the non-compact components. Now, let $\left\{D_{\delta_{0}}^{i}\right\}_{i=1,2, \ldots}$ be the sequence of the components of $f^{-1}\left(\Pi_{\delta_{0}}\right)$ each of which is included in [C]. According to M. Heins [3], the set $f\left(D_{\delta_{0}}^{i}\right)$ is dense in $\Pi_{\delta_{0}}$ since f is a map of type- $B l$ from $D_{\delta_{0}}^{i}$ to $\Pi_{\delta_{0}}$. Let $\left\{r_{n}\right\}$ be the decreasing sequence such as $r_{n} \downharpoonright 0$, and let $\left\{C_{n}\right\}$ be the family of the closed Jordan curves each of which belongs to $K_{r_{n}} \cap \Omega$ and surrounds z_{0} respectively. Then it is clear that [C_{n}] contains some $D_{\delta_{0}}^{i}$ for each n provided that the closure (in z-plane) of $D_{\delta_{0}}^{i}$ does not contain z_{0} for every i. We shall deal with this case. Let $D_{\delta_{0}}^{i_{n}}$ be such the element of $\left\{D_{\delta_{0}}^{i}\right\}$ that $D_{\delta_{0}}^{i n} \subset\left[C_{n}\right]$ $(n=1,2,3, \cdots)$. By means of the notice on the map of type- $B l$, it holds that $\Pi_{\delta_{0}}$ is included in the cluster set $C_{\mathrm{o}}\left(f, z_{0}\right)$. This is absurd, because w_{0} is the boundary point of $C_{\Omega}\left(f, z_{0}\right)$. Thus we conclude that $\max _{\Gamma\left(z_{0}\right)}|f|=\max _{\Delta\left(z_{0}\right)}|f|$ provided that $\Delta\left(z_{0}\right) \neq \phi$. Next we shall treat the case that the closure of some $D_{\delta_{0}}^{k}$ contains z_{0}. Let $\left\{\delta_{n}\right\}\left(\delta_{n}<\delta_{0}\right)$ be such as $\delta_{n} \downarrow 0(n \rightarrow \infty)$ and D_{1} be the component of $f^{-1}\left(\Pi_{\delta_{0}}\right) \cap D_{\delta_{0}}^{k}$ such that the closure of D_{1} contains z_{0}. We repeat this process and we obtain the decreasing sequence $\left\{D_{n}\right\}$ each of which contains z_{0} in its closure. It is sure that there exist such a D_{1}. If not, then the former case would occur. Now, we conclude that w_{0} is the asymptotic point because of existence of $\left\{D_{n}\right\}$. Let L be the asymptotic path tending to z_{0}. Then z_{0} is the regular point of the Dirichlet problem with respect to $\Omega-L$. Let $(\Omega-L)^{*}$ be the compactification of $\Omega-L$ and $\widetilde{\Delta}$ be the harmonic boundary of $\Omega-L$. Then it holds that $\max _{\tilde{\bar{\Delta}}\left(z_{0}\right)}|f|=\max _{\tilde{\Gamma}\left({ }^{(} 0_{0}\right)}|f|$, here $\tilde{\Gamma}$ means the ideal boundary of $\Omega-L$, that is, $\tilde{\Gamma}=(\Omega-\stackrel{L}{L})^{*}-(\Omega-L)$. We notice that the regular points of $\partial(\Omega-L)$ are identical with the regular points of $\partial \Omega$ except for z_{0}, and $\max _{\tilde{\Delta}(\xi)}|f|=\max _{\tilde{\Gamma}(\xi)}|f|=\max _{\Delta(\xi)}|f|$ $=\max _{\Gamma(\zeta)}|f|$ for any regular point ζ. From this, it holds that $\max _{\tilde{\Delta}\left(z_{0}\right)}|f|=\max _{\Delta\left(z_{0}\right)}|f|<\max _{\Gamma\left(z_{0}\right)}|f|$, while $\max _{\tilde{\Delta}\left(\varepsilon_{0}\right)}|f|=\max _{\tilde{\Gamma}\left(z_{0}\right)}|f|=\max _{\Gamma\left(z_{0}\right)}|f|$. This is absurd. Thus we conclude that $\max _{\Gamma\left(z_{0}\right)}|f|=\max _{\Delta\left(z_{0}\right)}|f|$ provided that $\Delta\left(z_{0}\right) \neq \phi$. Finally we treat the case that $\Delta\left(z_{0}\right)=\phi$. Then
there exists an open disc $K=\left\{\left|z-z_{0}\right|<r\right\}$ such that $\Delta(\zeta)=\phi$ for every $\zeta \in \partial \Omega \cap K$. For, let $G_{R^{\prime}}\left(z ; z_{0}\right)$ be the Green function of R^{\prime}, where z_{0} is the singular point of $G_{R^{\prime}}$ anp R^{\prime} is an open disc such as $R^{\prime}>\Omega$. Then $G_{R^{\prime}}$ is continuous on Ω_{F}^{*}, consequently the K exists provided that $\Delta(z)=\phi$. Now we study the property of $\widetilde{G}_{R^{\prime}}$ which is the restriction of $G_{R^{\prime}}$ to Ω. It is clear that L.H.M. $G_{R^{\prime}}$ has the non-vanishing singular component, and similarly we can see that at each point ζ of $K \leftharpoonup \partial \Omega \widetilde{G}_{R^{\prime}}(z ; \zeta)$ has the non-vanishing singular component. This shows that $K \cap \partial \Omega$ is of capacity zero [3].

Theorem 3. Let Ω be a bounded domain, z_{0} any point of $\partial \Omega$ and $f(z)$ be a bounded and regular function on Ω. Then the boundary of the cluster set $C_{\mathrm{a}}\left(f_{,}, z_{0}\right)$ is contained in the image $f\left(\Delta\left(z_{0}\right)\right)$ of $\Delta\left(z_{0}\right)$.

Proof. This is trivial provided that $C_{\Omega}\left(f, z_{0}\right)$ consists of a single point, therefore we shall deal with another case. Let w_{0} be any point of the boundary of $C_{\Omega}\left(f, z_{0}\right)$ and $\Pi_{\delta}=\left\{\left|w-w_{0}\right|<\delta\right\}$ be any given open disc. Now we take an open disc $\Pi=\left\{\left|w-w_{0}\right|<\frac{\delta}{4}\right\}$ and a point η in Π such as $\eta \notin C_{\mathbf{\Omega}}\left(f, z_{0}\right)$. Let $\gamma=\left\{|w-\eta|<\varepsilon_{0}\right\}$ be such as $\gamma \subset \Pi$ and $C_{\Omega}\left(f, z_{0}\right) \cap \gamma=\phi$. Now we consider the open subset $\widetilde{\Omega}$ of Ω such as $\widetilde{\Omega}=\Omega-C l\left\{f^{-1}(\gamma)\right\}$, here $C l\left\{f^{-1}(\gamma)\right\}$ is the closure of $f^{-1}(\gamma)$ in z-plane. Then $\varphi(z)=1 /(f(z)-\eta)$ is a bounded and regular function on $\widetilde{\Omega}$ and the cluster set $C_{\tilde{\Omega}}\left(\mathcal{P}, z_{0}\right)$ is obtained from the linear transformation of $C_{\mathbf{\Omega}}\left(f, z_{0}\right)$. We denote by $\tilde{\Omega}^{*}$ the compactification of $\widetilde{\Omega}$ and by $\widetilde{\Delta}$ the harmonic boundary of $\widetilde{\Omega}$, then from Theorem 2, $\max _{\widetilde{\Gamma}\left(z_{0}\right)}|\mathcal{P}|=\max _{\widetilde{\tilde{c}}\left(z_{0}\right)}|\mathcal{P}|$, that is, there is a boundary point of $C_{\tilde{\Omega}}\left(\mathcal{P}, z_{0}\right)$ which is the image of some point of $\widetilde{\Delta}\left(z_{0}\right)$ by φ. It is clear that it is the point transferred from some point w^{*} of $\Pi_{\delta} \cap C_{\mathbf{\Omega}}\left(f, z_{0}\right)$. We shall prove that w^{*} is the image of some point of $\Delta\left(z_{0}\right)$. Noticing that f is continuous on $\widetilde{\Omega}^{*}$, we can see that w^{*} is the image of some point of $\widetilde{\Delta}\left(z_{0}\right)$ by f, here f is restricted to $\tilde{\Omega}$. Consequently \tilde{f} (restriction of f to $\tilde{\Omega}$) is not locally of type- $B l$ at w^{*}. We prove this fact as follows: let $G\left(w ; w^{*}\right)$ be the Green function of $R^{\prime}=\left\{\left|w-w^{*}\right|<c\right\}$, here c is a suitable number such as $R^{\prime} \supset f(\Omega)$. Then $G\left(\tilde{f}(z) ; w^{*}\right)$ is the positive superharmonic
function on $\widetilde{\Omega}^{*}$ and G.H.M. $G\left(\tilde{f}(z) ; w^{*}\right)$ has the quasi-bounded component $u(z)$ which attains $+\infty$ at some point of $\widetilde{\Delta}\left(z_{0}\right)$ [3] [5]. Now let k be a suitable large number and $\widetilde{D}_{k}=\{z \in \widetilde{\Omega} ; u(z)>k\}$, where u is the above quasi-bounded component of $G\left(\tilde{f}(z) ; w^{*}\right)$. Then the image $\tilde{f}\left(\tilde{D}_{k}\right)$ is contained in the domain $G_{k}=\left\{w ; G\left(w ; w^{*}\right)\right.$ $>k\}$. Let D_{k} be the component of \widetilde{D}_{k} such that the closure \bar{D}_{k} of D_{k} in $\widetilde{\Omega}^{*}$ meets $\widetilde{\Delta}\left(z_{0}\right)$. It is clear that $D_{k} \notin S O_{H B}$, because u is the quasi-bounded harmonic function taking the constant value k along ∂D_{k}. Therefore the closure of \widetilde{D}_{k} in Ω_{F}^{*} contains some harmonic boundory points of Ω. It is clear that for any given ε_{-} neighborhood $U\left(z_{0} ; \varepsilon\right)$ of z_{0}, there is some D_{k} such as $D_{k} \subset U\left(z_{0} ; \varepsilon\right)$. From this, we know that the closure of $U\left(z_{0} ; \varepsilon\right) \cap \Omega$ in Ω_{F}^{*} contains the harmonic boundary points of Ω. This shows that $G\left(f(z): w^{*}\right)$ attains $+\infty$ at some point of $\Delta\left(z_{0}\right)$. From the continuity of f on Ω_{F}^{*}, we know that the image of the points of $\Delta\left(z_{0}\right)$ is dense on the boundary of the cluster set $C_{\Omega}\left(f, z_{0}\right)$. Thus we conclude that the theorem holds, because $\Delta\left(z_{0}\right)$ is compact.

Remark. Theorem 3 contains the following: let Ω be a bounded domain, z_{0} any point of $\partial \Omega$ and $f(z)$ be a bounded and regular function on Ω. Then it holds that the boundary of $C_{\mathrm{\Omega}}\left(f, z_{0}\right)$ coincides with the boundary of the boundary cluster set $C_{\partial \Omega-E}\left(f, z_{0}\right)$, here $E(\subset \partial \Omega)$ is the F_{σ}-set of capacity zero such as $z_{0} \in E$ and $C l\{\partial \Omega-E\} \ni z_{0}$, Next, if f is of type- $B l$ from Ω to $f(\Omega)$ and z_{0} is the singular point of f, then $C_{\Omega}\left(f, z_{0}\right)$ coincides with $C l\{f(\Omega)\}$ provided that $C_{\Omega}\left(f, z_{0}\right)$ contains at least one point of Ω.

We shall treat the Seidel's theorem.
Theorem (Seidel) Let Ω be an open unit disc, z_{0} be any point of $\partial \Omega$ and $f(z)$ be a bounded and regular function on Ω belonging to the class (U). If z_{0} is the singular point of f, then the cluster set $C_{0}\left(f, z_{0}\right)$ is the closed unit disc $|w| \leqq 1$.

Proof. L.H.M. $\log |f|=\log |f|$ on Δ_{F} and L.H.M. $\log |f|=0$ on $R=\{|z|<1\}$, consequently $\log |f|$ takes zero at every point of Δ_{F}, that is, the boundary of $C_{\mathbf{a}}\left(f, z_{0}\right)$ coincides with $\{|w|=1\}$ provided that $C_{\Omega}\left(f, z_{0}\right)$ contains at least one point of $\Pi=\{|w|<1\}$. We suppose that $C_{\mathbf{\Omega}}\left(f, z_{0}\right) \cap \Pi=\phi$, then there exists an ε-neigh-
borhood $U\left(z_{0} ; \varepsilon\right)$ of z_{0} such that at each point ζ of $U\left(z_{0} ; \varepsilon\right) \cap \partial \Omega|f|$ has the boundary value 1 and inf $|f(z)|>0$ on $U\left(z_{0}, \varepsilon\right) \cap \Omega$. Then $\log f(z)$ (restricted to $U\left(z_{0}, \varepsilon\right) \cap \Omega$) is regular at z_{0}. This is absurd, that is, $C_{\Omega}\left(f, z_{0}\right)=\{|w| \leqq 1\}$.

Ritsumeikan University. Kyoto.

REFERENCES

[1] Constantinescu, C.-Cornea, A.: Über das Verhalten der analytischen Abbildungen Riemannscher Flächen auf dem Idealen Rand von Martin. Nagoya Math. Jour. 17 (1960).
[2] Constantinescu, C.-Cornea, A.: Ideale Ränder Riemannscher Flächen. Springer Verlag (1963).
[3] Heins, M. : On the Lindelöf principle. Ann. Math. 61 (1955).
[4] Mori, S. : On a compactification of an open Riemann surface and its application. Jour. Math. Kyoto Univ. 1 (1961).
[5] Mori, S.: On a ring of bounded continuous functions on an open Riemann surface (supplements and corrections to my former paper) Jour. Math. Kyoto Univ. 2 (1962).
[6] Noshiro, K. : Cluster sets. Springer Verlag (1960).
[7] Tsuji, M. : Potential theory in modern function theory. Marzen, Tokyo, (1959).

