J. Math. Kyoto Univ.

On iterated suspensions I.

By
Hirosi TODA
(Received October 21, 1965)

Introduction

The $(n+t)$-th homotopy groups $\pi_{n+t}\left(S^{n}\right)$ of n-spheres S^{n} are stable if $n>t+1$ with respect to Freudenthal's suspension homomorphism $S: \pi_{n+t}\left(S^{n}\right) \rightarrow \pi_{n+t+1}\left(S^{n+1}\right)$, and the t-stem group π_{t}^{s} is the limit of $\left\{\pi_{n+t}\left(S^{n}\right)\right\}$.

Throughout this paper p will denote an odd prime which is fixed. $\pi_{i}(X, A: p)$ indicates the p-primary component of $\pi_{i}(X, A)$. Serre [10] obtained the following direct sum decomposition:

$$
\pi_{i+1}\left(S^{2 m}: p\right) \approx \pi_{i}\left(S^{2 m-1}: p\right) \oplus \pi_{i+1}\left(S^{4 m-1}: p\right)
$$

So, we shall devote to consider the groups $\pi_{2 m-1+t}\left(S^{2 m-1}: p\right)$ and $2 k$ fold iterated suspensions

$$
S^{2 k}: \pi_{2 m-1+t}\left(S^{2 m-1}: p\right) \rightarrow \pi_{2(m+k)-1+t}\left(S^{2(m+k)-1}: p\right)
$$

Moore [8] and Serre [10] proved that the above homomorphism $S^{2 k}$ is an isomorphism if $t<2 m(p-1)-2$, that is, the group $\pi_{2 m-1+t}$ ($S^{2 m-1}: p$) is stable if $m>(t+2) / 2(p-1)$ and denoted by ($\pi_{t}^{s}: p$).

The homomorphism S^{2} is related with groups $\pi_{i}\left(\Omega^{2} S^{2 m+1}, S^{2 m-1}\right)$ by the following exact sequence:

$$
\begin{aligned}
& \cdots \rightarrow \pi_{i+1}\left(\Omega^{2} S^{2 m+1}, S^{2 m-1}\right) \stackrel{\partial}{\longrightarrow} \pi_{i}\left(S^{2 m-1}\right) \xrightarrow{S^{2}} \pi_{i+2}\left(S^{2 m+1}\right) \\
& \xrightarrow{\left.H^{2}\right)} \pi_{i}\left(\Omega^{2} S^{2 m+1}, S^{2 m-1}\right) \xrightarrow{\partial} \cdots .
\end{aligned}
$$

In $[13$, Th. (8.3)] the author gave an exact sequence

$$
\begin{aligned}
\cdots \rightarrow \pi_{i+3}\left(S^{2 m p+1}: p\right) \xrightarrow{\Delta} \pi_{i+1}\left(S^{2 m p-1}: p\right) \rightarrow \pi_{i}\left(\Omega^{2} S^{2 m+1},\right. & \left.S^{2 m-1}: p\right) \\
& \rightarrow \pi_{i+2}\left(S^{2 m p+1}: p\right) \rightarrow \cdots, \quad(i>2 m p-2),
\end{aligned}
$$

from which we shall have a direct sum decomposition

$$
\pi_{i}\left(\Omega^{2} S^{2 m+1}, S^{2 m-1}: p\right) \approx \pi_{i-2 m p+2}^{s} \otimes Z_{p}+\operatorname{Tor}\left(\pi_{i-2 m p+1}^{s}, Z_{p}\right)
$$

for $i<2 m p^{2}-4$. This means that if we know the stable groups up to π_{t}^{s}, then we can estimate the unstable groups $\pi_{2 m-1+t}\left(S^{2 m-1}: p\right)$ for $2 m-1+t<2 m p^{2}-5$, such a case will be referred as a meta-stable case.

In the present paper, the iterated suspensions, in particular, four fold iterated suspensions S^{4} are discussed. There are many numbers of unstable elements.

The first type of unstable elements is an elements γ of $\pi_{2 m-1+t}$ ($S^{2 m-1}: p$) such that $r \notin \operatorname{Im} S^{2}$ and $S^{2} r=0$. For example, if $t=$ $2 r(p-1)-2, r \not \equiv 0(\bmod p)$ then such an element r exists for $\operatorname{Max}(1, r /(p+1))<m \leq r$ and r generates a direct factor isomorphic to Z_{p} (see Theorem 5.2.).

The second type of unstable elements is a pair of elements $r \in \pi_{2 m+1+t}\left(S^{2 m+1} ; p\right)$ and $r^{\prime} \in \pi_{2 m-1+t}\left(S^{2 m-1}: p\right)$ such that $r \notin \operatorname{Im} S^{2}, p \cdot r=$ $S^{2} r^{\prime} \neq 0$ and $\gamma^{\prime} \notin \operatorname{Im} S^{2}$. The possibility of the existence of such a pair will be proved for $t=2 r p(p-1)-2,=2 r p(p-1)-1$. For example, such a pair exists for $1<m<p, t=2 p(p-1)-2$ and for $m=2, t=2 r p(p-1)-1$. These examples reprove recent results of Gershenson [4] and Hardie [5]: $\pi_{2 m-1+t}\left(S^{2 m-1}: p\right) \approx Z_{p^{2}}$ for $2<m \leq p$ and $t=2 p(p-1)-2,2 p(p-1)-1$.

The third type of unstable elements exists: $\gamma \notin \operatorname{Im} S^{2}, S^{2 p-4} \gamma \neq 0$ and $S^{2 p-2} r=0$. We may announce the existence of the fourth type of unstable elements: $\gamma \notin \operatorname{Im} S^{2}, S^{2 p} \gamma \neq 0$ and $S^{2 p+2} \gamma=0$.

In section 1 we shall prepare some notions of homotopy theory. Section 2 will be an introduction of the results of [13]. In section 3 we shall compute the cohomology of a space $Q_{2 k}^{2 m-1}$ such that $\pi_{i}\left(Q_{2 k}^{2 m-1}\right) \approx \pi_{i+1}\left(\Omega^{2} S^{2 m+1}, S^{2 m-1}\right)$. For dimensions less than $p(2 m p-2)-2$
the cohomology ring $H^{*}\left(Q_{2 k}^{2 m-1} ; Z_{p}\right)$ has a form $\Lambda\left(a_{0}, a_{1}, \cdots, a_{k-1}\right) \otimes$ $Z_{p}\left[\Delta a_{0}, \Delta a_{1}, \cdots, \Delta a_{k-1}\right]$ with relations $\mathcal{P}^{1} a_{i}=(m+i+1) a_{i+1}, \mathcal{P}^{1} \Delta a_{i}=$ ($m+i$) $\Delta a_{i+1}, i=0,1, \cdots, k-2$. Section 4 will be a discussion on homotopy groups of Moore spaces $Y_{p}^{n}=S^{n-1} \cup_{p} e^{n}$, and the results will be applied for the existence of unstable elements of the first and the second types in section 5 . Some results on meta-stable groups will be obtained in section 6 . In section 7 we shall determine the groups $\pi_{2 m-1+t}\left(S^{2 m-1}: p\right)$ for $t<2(2 p+3)(p-1)-3$.

In the forthcoming paper II, we shall discuss more delicate problems. One problem is how to compute unstable but not meta-stable groups which may be solved by clarifying the properties of $\Delta: \pi_{i+3}$ $\left(S^{2 m p+1}: p\right) \rightarrow \pi_{i+1}\left(S^{2 m p-1}: p\right)$. The second problem is the structure of $Q_{2 k}^{2 m-1}$ which can not be determined by cohomological operations \mathcal{P}^{t}. A relative J-homomorphism of $\bmod p$ type will be introduced in order to solve the second problem. The other problems are the existence of unstable elements of the third and the fourth types and further computations of $\pi_{2 m-1+t}\left(S^{2 m-1}: p\right)$.

1. Preliminaries.

In this paper, all topological spaces will have the base points *, all maps and homotopies will preserve the base points. The set of the homotopy classes of maps $f:(X, A) \rightarrow(Y, B)$ will be denoted by

$$
\pi(X, A ; Y, B)
$$

We shall use the following notations:
$\alpha=\{f\} \in \pi(X, A ; Y, B):$ the homotopy class of a map $f:(X, A)$ $\rightarrow(Y, B)$,
$\beta_{*}=g_{*}: \pi(X, A ; Y, B) \rightarrow \pi\left(X, A ; Y^{\prime}, B^{\prime}\right)$: the covariant map induced by a map $g:(Y, B) \rightarrow\left(Y^{\prime}, B^{\prime}\right), \beta=\{g\}, \quad \beta_{*}\{f\}=g_{*}\{f\}=$ $\{g \circ f\}$,
$\gamma^{*}=h^{*}: \pi(X, A ; Y, B) \rightarrow \pi\left(X^{\prime}, A^{\prime} ; Y, B\right):$ the contravariant map induced by a map $h:\left(X^{\prime}, A^{\prime}\right) \rightarrow(X, A), r=\{h\}, \gamma^{*}\{f\}=h^{*}\{f\}=$ $\{f \circ h\}$,
$\beta \circ \alpha$ or simply $\beta \alpha$: the composition of homotopy classes α and $\beta, \beta \circ \alpha=\beta_{*} \alpha=\alpha^{*} \beta$,
$\pi(X ; Y)=\pi(X, * ; Y, *)$,
1_{X} : the identity of X,
$\iota_{x} \in \pi(X ; X)$: the class of 1_{x},
$X \wedge Y$: the reduced join of spaces X and $Y, X \wedge Y=(X \times Y)$ $/(X \times * \cup * \times Y)$,
$f \wedge g: X \wedge Y \rightarrow X^{\prime} \wedge Y^{\prime}:$ the reduced join of maps $f: X \rightarrow X^{\prime}$ and $g: Y \rightarrow Y^{\prime}$,
$\alpha \wedge \beta$: the reduced join of homotopy classes α and $\beta, \alpha \wedge \beta=$ $\{f \wedge \beta\}$ for $\alpha=\{f\}$ and $\beta=\{g\}$,
$I=[0,1]:$ the unit interval with $*=(0)$,
$C X=X \wedge I$: cone over X,
S^{n} : the unit n-sphere $\left\{\left(t_{1}, \cdots, t_{n+1}\right) \mid \sum t_{i}^{2}=1\right\}$,
E^{n+1} : the unit n-cube $\left\{\left(t_{1}, \cdots, t_{n+1}\right) \mid \sum t_{i}^{2} \leq 1\right\}$ considered as $C S^{n}$,
$S^{n} X=X \backslash S^{n}: n$-fold suspension of a space $X, S X=S^{1} X$ and $S^{m+n} X=S^{n} S^{m} X$ by suitable identification $S^{m+n}=S^{m} \wedge S^{n}$,
$S^{n} f=f \backslash 1_{s^{n}}: n$-fold suspension of a map $f, S f=S^{1} f$,
$\pi_{n}(X, A)=\pi\left(E^{n}, S^{n-1} ; X, A\right)$: the n-th homotopy group of (X, A),
$\pi_{n}(X)=\pi\left(S^{n} ; X\right)$: the n-th homotopy group of X,
$\iota_{n} \in \pi_{n}\left(S^{n}\right)$: the class of the identity $1_{n}=1_{s^{n}}$ of S^{n},
$S^{n} \alpha=\alpha \bigwedge e_{n}: n$-fold suspension of a homotopy class $\alpha, S \alpha=S^{1} \alpha$,
$C_{f}=Y \cup_{f} C X:$ mapping-cone of a map $f: X \rightarrow Y$, where we identify $S C_{f}$ with $C_{s f}$ by the natural way,
$Y_{q}^{n}=S^{n-1} \cup e^{n}$: mapping-cone of a map $f: S^{n-1} \rightarrow S^{n-1}$ of degree q, $C Y_{p}^{n}=Y_{q}^{n+1}, n \geqq 2$,
$\Omega(X ; A, B):$ space of the paths $l:(I, 0,1) \rightarrow(X, A, B)$ with the compact open topology,
$\Omega(X, A)=\Omega(X ; *, A)$,
$\Omega X=\Omega(X ; *, *):$ space of the loops in X,
$\Omega f: \Omega X \rightarrow \Omega Y(: \Omega(X, A) \rightarrow \Omega(Y, B)):$ the map defined by a map $f: X \rightarrow Y(:(X, A) \rightarrow(Y, B)), \quad \Omega f(l)(t)=f(l(t)) \quad$ for $\quad l \in \Omega X$
$(\in \Omega(X, A)), t \in I$.
Throughout the paper all pairs (X, A) will have the same homotopy types of pairs of $C W$-complexes. We have Puppe's exact sequence [9] for a map $f: X \rightarrow Y$:

$$
\ldots \xrightarrow{S f^{*}} \pi(S X ; W) \xrightarrow{\pi^{*}} \pi\left(C_{f} ; W\right) \xrightarrow{i^{*}} \pi(Y ; W) \xrightarrow{f^{*}} \pi(X ; W),
$$

where

$$
i: Y \rightarrow C_{f}=Y \cup_{f} C X \quad \text { and } \quad \pi: C_{f}=Y \cup_{f} C X \rightarrow S X
$$

are the inclusion and the pinching map of Y respectively. The pinching map π is defined as follows. Let

$$
\varphi:(I, \dot{I}) \rightarrow\left(S^{1}, *\right)
$$

be an orientation preserving map pinching the boundary \dot{I} of I and

$$
\chi:(C X, Y) \rightarrow\left(Y \cup_{f} C X, Y\right), \chi \mid X=f
$$

be the characteristic map, then

$$
\pi \circ \chi=1_{X} \wedge \varphi: C X=X \wedge I \rightarrow S X=X \bigwedge S^{1}
$$

Let $p: E \rightarrow B$ be a fibering (in the sense of Serre) and $F=p^{-1}$ (*) be the fibre over *, then we have an exact sequence

$$
\cdots \xrightarrow{p_{*}} \pi(S X ; B) \xrightarrow{\partial} \pi(X ; F) \xrightarrow{i_{*}} \pi(X ; E) \xrightarrow{p_{*}} \pi(X ; B),
$$

where $i: F \rightarrow E$ is the inclusion and ∂ is defined by

$$
\begin{aligned}
\partial=\partial^{\prime} \circ p_{*}^{-1} \circ \pi^{*}: \pi(S X ; B) & \rightarrow \pi(C X, X ; B, *) \leftarrow \pi(C X, X ; E, F) \\
& \rightarrow \pi(X ; F),
\end{aligned}
$$

$\partial^{\prime}\{f\}=\{f \mid X\}$. Here p_{*} and π^{*} are one-to-one onto, and we may identify

$$
\pi(S X ; Y)=\pi(C X ; Y, *)
$$

by π^{*}. For example, $p: E=\Omega(Y, B) \rightarrow B, p(l)=l(1)$, is a fibering with the fibre $F=\Omega Y$, then the above sequence is equivalent to the following usual exact sequence:

$$
\cdots \xrightarrow{\partial} \pi(S X ; B) \xrightarrow{i_{*}} \pi(S X ; Y) \xrightarrow{j_{*}} \pi(C X, X ; Y, B) \xrightarrow{\partial} \pi(X ; B) .
$$

Let $d_{x}^{\prime}: X \times I \rightarrow C X=X \bigwedge I$ be a map defining $C X$. Put $i^{\prime}(x)(t)$ $=d_{x}^{\prime}(x, t), x \in X, t \in I$, then

$$
i^{\prime}: X \rightarrow \Omega(C X, X)
$$

is an imbedding and a homotopy equivalence. For each element $\{f\} \in \pi(C X, X ; Y, B)$ we put $\Omega\{f\}=\left\{\Omega f \circ i^{\prime}\right\} \in \pi(X ; \Omega(Y, B))$, then we have
(1.1). $\Omega: \pi(C X, X ; Y, B) \rightarrow \pi(X ; \Omega(Y, B))$ is one-to-one onto.

For the pinching map $\pi:(C X, X) \rightarrow(S X, *)$, we have an imbedding

$$
i=\Omega \pi \circ i^{\prime}: X \rightarrow \Omega(S X)
$$

which we call a canonical imbedding. From (1.1) it follows
(1.1)'. $\Omega\{f\}=\{\Omega f \circ i\}, \quad\{f\} \in \pi(S X ; Y)$, defines a one-to-one onto map

$$
\Omega: \pi(S X ; Y) \rightarrow \pi(X ; \Omega Y) .
$$

Note that the sets $\pi(S X ; Y)$ and $\pi(X ; \Omega Y)$ form groups by canonical methods, and the map Ω of (1.1)' is an isomorphism. The group $\pi\left(S^{2} X ; Y\right)$ is abelian. These (1.1) and (1.1)' are generalizations of well-known isomorphisms:

$$
\Omega: \pi_{n+1}(Y, B) \approx \pi_{n}(\Omega(Y, B)), \pi_{n+1}(Y) \approx \pi_{n}(\Omega Y) .
$$

It is verified directly that the diagram

is commutative. Thus the commutativity of the following diagram (1.2) holds.

The following relations hold.

$$
\begin{aligned}
& \text { (1.3). (i) } S(\alpha \circ \beta)=S \alpha \circ S \beta, \quad \alpha \in \pi(X ; Y), \quad \beta \in \pi(W ; X) . \\
& \text { (ii) } \Omega(\alpha \circ S \beta)=\Omega \alpha \circ \beta, \quad \alpha \in \pi(S X ; Y), \beta \in \pi(W ; X) . \\
& \text { (iii) } \alpha \circ\left(\beta_{1}+\beta_{2}\right)=\alpha \circ \beta_{1}+\alpha \circ \beta_{2}, \\
& \quad \alpha \in \pi(X ; Y), \quad \beta_{1}, \beta_{2} \in \pi(S W ; X) . \\
& \text { (iv) }\left(\alpha_{1}+\alpha_{2}\right) \circ S \beta=\alpha_{1} \circ S \beta+\alpha_{2} \circ S \beta, \\
& \quad \alpha_{1}, \alpha_{2} \in \pi(S X ; Y), \beta \in \pi(W ; X) .
\end{aligned}
$$

For the suspension S we have
(1.4). Assume that Y is r-connected space and K is a $C W$. complex. Then $S: \pi(K ; Y) \rightarrow \pi(S K ; S Y)$ is one-to-one onto if $\operatorname{dim} K<2 r+1$ and onto if $\operatorname{dim} K=2 r+1$.

This follows from the fact that $(\Omega(S Y), Y)$ is $(2 r+1)$-connected.
We denote the suspension limit of $\pi(X ; Y)$ by

$$
\pi^{s}(X ; Y)=\lim \pi\left(S^{n} X ; S^{n} Y\right)
$$

which is an abelian group. The notation

$$
S^{\infty}: \pi\left(S^{n} X ; S^{n} Y\right) \rightarrow \pi^{s}(X ; Y)
$$

indicates the projection to the limit. (1.4) shows that if X is a finite dimensional $C W$-complex then the above S^{∞} is an isomorphism for sufficiently large n. We shall also use the notation:

$$
\pi_{k}^{s}=\pi^{s}\left(S^{k} ; S^{0}\right)=\lim \pi_{n+k}\left(S^{n}\right) .
$$

It follows from (1.4) that

$$
S^{\infty}: \pi_{n+k}\left(S^{n}\right) \rightarrow \pi_{k}^{s}
$$

is an isomorphism for $n>k+1$. We have
(1.5). Let p be an odd prime and $n \geq 4$. Then $\pi\left(Y_{p}^{n} ; Y_{p}^{n}\right)$ is a cyclic group of order p generated by $\iota_{Y}, Y=Y_{p}^{n}$. Thus the groups $\pi\left(Y_{p}^{n} ; W\right)$ and $S_{\pi}\left(S X ; Y_{p}^{n}\right)$ are Z_{p}-modules.

The following (1.6) will be used in later.
(1.6). Let $X \supset A \supset B$ be a triple of spaces. Then the sequence

$$
\Omega(A, B) \xrightarrow{i^{\prime}} \Omega(X, B) \xrightarrow{i} \Omega(X, A)
$$

of the inclusions is a fibering up to homotopy equivalence, i.e., $\Omega(A, B)$ and $\Omega(X, B)$ are deformation retracts of $F=\Omega(\Omega(X, A)$, $\Omega(X, B))$ and $E=\Omega(\Omega(X, A) ; \Omega(X, B), \Omega(X, A))$ respectively, and the sequence is equivalent to the fibering $F \rightarrow E \xrightarrow{p} \Omega(X, A)$. Furthermore, the inclusion i^{\prime} is equivalent to a fibering with a fibre $\Omega(\Omega(X, A))$.

For the sake of simplicity, we shall use the following notations:

$$
\Omega X=\Omega^{1} X, \Omega^{k} X=\Omega\left(\Omega^{k-1} X\right), \Omega^{k}(X, A)=\Omega^{k-1}(\Omega(X, A)), \quad k=2,3, \cdots,
$$

$$
\Omega^{k}=\Omega^{k-1} \circ \Omega: \pi\left(S^{k} X ; Y\right) \stackrel{\approx}{\rightrightarrows} \pi\left(X ; \Omega^{k} Y\right), \Omega^{1}=\Omega, \quad k=2,3, \cdots,
$$

$$
\Omega^{k+1}=\Omega^{k} \circ \Omega: \pi\left(C S^{k} X, S^{k} X ; Y, B\right) \xrightarrow{\approx} \pi\left(X ; \Omega^{k+1}(Y, B)\right), k=1,2, \cdots .
$$

The canonical imbeddings $S^{n+k} \subset \Omega S^{n+k+1}, k=0,1, \cdots$, define a sequence of inclusions

$$
S^{n} \subset \Omega S^{n+1} \subset \cdots \subset \Omega^{k} S^{n+k} \subset \Omega^{k+1} S^{n+k+1} \subset \cdots
$$

such that the diagram

is commutative. We put

$$
\begin{equation*}
Q_{k}^{n}=\Omega\left(\Omega^{k} S^{n+k}, S^{n}\right) \tag{1.7}
\end{equation*}
$$

From the homotopy exact sequence associated with the fibering $p: Q_{k}^{n} \rightarrow S^{n}$ we have the following exact one:

$$
\begin{equation*}
\cdots \rightarrow \pi_{i}\left(Q_{k}^{n}\right) \xrightarrow{p_{*}} \pi_{i}\left(S^{n}\right) \xrightarrow{S^{k}} \pi_{i+k}\left(S^{n+k}\right) \xrightarrow{H^{(k)}} \pi_{i-1}\left(Q_{k}^{n}\right) \rightarrow \cdots \tag{1.7}
\end{equation*}
$$

where

$$
H^{(k)}=j_{*} \circ \Omega^{k+1}: \pi_{i+k}\left(S^{n+k}\right) \rightarrow \pi_{i-1}\left(\Omega^{k+1} S^{n+k}\right) \rightarrow \pi_{i-1}\left(Q_{k}^{n}\right)
$$

for the inclusion $j: \Omega^{k+1} S^{n+k} \subset \Omega\left(\Omega^{k} S^{n+k}, S^{n}\right)=Q_{k}^{n}$.
For an abelian group G, we denote by
the p-primary component of G. Also we shall use the following notations:

$$
\pi_{i}(X: p)=\left(\pi_{i}(X): p\right), \quad \pi_{i}(X, A: p)=\left(\pi_{i}(X, A): p\right) .
$$

We denote by \mathcal{C}_{p} a class (in the sense of Serre [10]) of finite abelian gronps with vanishing p-primary components. If G and H are finitely generated abelian groups then a \mathcal{C}_{p}-isomorphism $f: G \rightarrow H$ induces an isomorphism $f:(G: p) \rightarrow(H: p)$. For the convenience we introduce the following theorems of \mathcal{C}-theory from [10].
(1.8) (i) Assume that a pair (X, A) is 2-connected, A is simply connected and the homology groups $H_{i}(X), H_{i}(A)$ are finitely generated for all i. If $H_{i}(X, A) \in \mathcal{C}_{p}$ for $i<n$, then $\pi_{i}(X, A) \in C_{p}$ for $i<n$ and Hurewicz homomorphism $\tau: \pi_{n}(X, A)$ $\rightarrow H_{n}(X, A)$ is a \mathcal{C}_{p}-isomorphism.
(ii) Assume that spaces X and Y are 2-connected and $H_{i}(X)$, $H_{i}(Y)$ are finitely generated for all i. Let $f: X \rightarrow Y$ be a map. Then the following two conditions are equivalent:
) $f^{}: H^{i}\left(Y ; Z_{p}\right) \rightarrow H^{i}\left(X ; Z_{p}\right)$ is an epimorphism for $i<n$ and a monomorphism for $i \leq n$;
${ }^{* *)} f_{*}: \pi_{i}(X) \rightarrow \pi_{i}(Y)$ is a $\mathcal{C}_{p^{-}}$isomorphism for $i<n$ and a $\mathcal{C}_{p^{-}}$ epimorphism for $i=n$.

Serre also obtained the following (1.9) in [10].
(1.9) The correspondence $(\alpha, \beta) \rightarrow S \alpha+\left[\iota_{2 m}, \iota_{2 m}\right] \circ \beta$ gives a $C_{p^{-}}$ isomorphism $\pi_{i}\left(S^{2 m-1}\right)+\pi_{i+1}\left(S^{4 m-1}\right) \rightarrow \pi_{i+1}\left(S^{2 m}\right)$, where [,] indicates Whitehead product. Thus we have a direct sum decomposition:

$$
\pi_{i+1}\left(S^{2 m}: p\right) \approx \pi_{i}\left(S^{2 m-1}: p\right)+\pi_{i+1}\left(S^{4 m-1}: p\right)
$$

As a corollary we have
(1.10). (i) $S: \pi_{i}\left(S^{2 m-1}: p\right) \rightarrow \pi_{i+1}\left(S^{2 m}: p\right)$ is a monomorphism and

$$
\left(k_{c_{2 m-1}}\right) \circ \alpha=k \alpha
$$

for arbitary integer k and $\alpha \in \pi_{i}\left(S^{2 m-1}: p\right)$.
(ii) For any element r of $\pi_{i+1}\left(S^{2 m}: p\right)$ there exists an element
α of $\pi_{i}\left(S^{2 m-1}: p\right)$ such that $S_{\gamma}=S^{2} \alpha$.
(i) follows from (1.9) and (1.3), (iv). (ii) follows from (1.9) and $S[]=$,0 .

Theorem 1.1. Let X be a 2-connected space having finitely generated homology groups $H_{i}(X)$ for all i. Let $u_{i} \in H^{n_{i}-1}\left(X ; Z_{p}\right)$, $i=1,2, \cdots, r, 4 \leq n_{1} \leq n_{2} \leq \cdots \leq n_{r}$, be elements on which Bockstein operators $\delta / q_{i}, q_{i}=p^{t_{i}}$, are defined. Let $Z_{p}\left\{u_{i},\left(\delta / q_{i}\right) u_{i}\right\}$ be a free Z_{p}-module with a base $\left\{u_{i},\left(\delta / q_{i}\right) u_{i}, i=1, \cdots, r\right\}$. Assume that the natural homomorphism $Z_{p}\left\{u_{i},\left(\delta / q_{i}\right) u_{i}\right\} \rightarrow H^{*}\left(X ; Z_{p}\right)$ is an isomorphism for dimension less than n_{r} and a monomorphism for dimension n_{r}. Then there exist a $C W$-complex K and a map $f: K \rightarrow X$ satisfying the following conditions. There is a sequence $*=K_{0} \subset$ $K_{1} \subset \cdots \subset K_{r}=K$ of subcomplexes of K such that K_{i+1} is a mapping cone of a map $g_{i}: Y_{q_{i}}^{n_{i}-1} \rightarrow K_{i}, i=0,1, \cdots, r-1 . \quad f_{*}: \pi_{j}(K) \rightarrow \pi_{j}(X)$ is a \mathcal{C}_{p}-isomorphism for $j<n_{r}$ and \mathcal{C}_{p}-epimorphism for $j=n_{r}$.

Proof. The case $r=0$ is trivial. Assume that $n_{s}<n_{s+1}=\cdots=n_{r}$ and a complex $K^{\prime}=K_{s}$ and a map $f_{s}=f^{\prime}: K_{s} \rightarrow X$ are constructed such that the conditions of the theorem are satisfied. By use of a mapping cylinder of f^{\prime}, we may assume that $K_{s} \subset X$. Then we have $H^{j}(X$, $\left.K_{s} ; Z_{p}\right) \approx H^{j-1}\left(\Omega\left(X, K_{s}\right) ; Z_{p}\right)$ for $j \leq n_{r}$. Applying (1.8), (i) we see that $\pi_{n_{r}-2}\left(\Omega\left(X, K_{s}\right)\right)$ is finite and the p-primary component of it is isomorphic to $Z_{q_{s+1}}+\cdots+Z_{q_{r}}$. Then there exist maps $g_{i}^{\prime}: Y_{q_{i}}^{n_{i}-1} \rightarrow$ $\Omega\left(X, K_{s}\right)$ the restrictions of which on $S^{n i-1}$ represent generators of $Z_{q_{i}}$. Put $g_{i}=p \circ g_{i}^{\prime}$ for the fibering $p: \Omega\left(X, K_{s}\right) \rightarrow K_{s}$ and construct K_{r}. Then f_{s} is naturally extended over $f: K_{r} \rightarrow X$ and the required conditions are verified without difficulties. By induction on r the theorem is proved. q. e. d.

Theorem 1.2. Let K be a complex having a structure as in Theorem 1.1. Assume that a map $f: X \rightarrow Y$ induces \mathcal{C}_{p}-isomorphisms $f_{*}: \pi_{j}(X) \rightarrow \pi_{j}(Y)$ for $j<N$ and a \mathcal{C}_{p}-epimorphism f_{*} for $j=N$. Then $f_{*}: \pi(K ; X) \rightarrow \pi(K ; Y)$ is one-to-one onto if $\operatorname{dim} K<N$ and onto if $\operatorname{dim} K=N$.

Proof. Without loss of generality, we may assume that f is a fibering. Let F be a fibre. Then the assumption is equivalent to $\pi_{j}(F) \in \mathcal{C}_{p}$ for $j<N$. First consider the case $r=1, K=Y_{q}^{n}$, $q=p^{t}$. In Puppe's sequence

$$
\pi_{n}(F) \xrightarrow{\left(q_{c}\right)^{*}} \pi_{n}(F) \longrightarrow \pi\left(Y_{q}^{n} ; F\right) \xrightarrow{i^{*}} \pi_{n-1}(F) \xrightarrow{\left(q_{c}\right)^{*}} \pi_{n-1}(F)
$$

$\left(q_{c}\right)^{*} \alpha=q \alpha=p^{c} \alpha$. If $\pi_{n}(F), \pi_{n-1}(F) \in \mathcal{C}_{p}$, then $\left(q_{\ell}\right)^{*}$ are isomorphisms. Thus $\pi\left(Y_{g}^{n} ; F\right)=0$ for $n<N$. Then the theorem is proved for $r=1$ by the exactness of the sequence

$$
\pi\left(Y_{q}^{n} ; F\right) \rightarrow \pi\left(Y_{q}^{n} ; X\right) \xrightarrow{f^{*}} \pi\left(Y_{q}^{n} ; Y\right) \rightarrow \pi\left(Y_{q}^{n-1} ; F\right) .
$$

Assume that the theorem is true for K_{r-1}. Let $K=K_{r}=$ $K_{r-1} \cup_{g} C Y_{q}^{n}$, and consider the following diagram

$\pi\left(S K_{r-1} ; Y\right) \xrightarrow{S g^{*}} \pi\left(Y_{q}^{n+1} ; Y\right) \xrightarrow{\pi^{*}} \pi(K ; Y) \xrightarrow{i^{*}} \pi\left(K_{r-1} ; Y\right) \xrightarrow{g^{*}} \pi\left(Y_{q}^{n} ; Y\right)$.
Remark that we can apply the five lemma to the diagram even if some of these homotopy sets do not form groups. Then we have that the theorem is true for $K=K_{r}$ and proved by induction on r.

Corollary 1.3. In Theorem 1.1. assume further that the natural homomorphism into $H^{*}\left(X ; Z_{p}\right)$ is an isomorphism for dimension n_{r} and a monomorphism for dimension $n_{r}+1$. Then complexes K satisfying the conditions of Theorem 1.1 are homotopy equivalent to each other and the map f is unique up to homotopy equivalences.

Proof. Let $f: K \rightarrow \mathrm{X}$ and $f^{\prime}: K^{\prime} \rightarrow X$ satisfy the conditions of Theorem 1.1. Apply (1.8), (ii) and Theorem 1.2 to these maps, then we see that $f_{*}: \pi\left(K^{\prime \prime} ; K\right) \rightarrow \pi\left(K^{\prime \prime} ; X\right)$ and $f_{*}^{\prime}: \pi\left(K^{\prime \prime} ; K^{\prime}\right) \rightarrow \pi\left(K^{\prime \prime} ; X\right)$ are one-to-one onto for $K^{\prime \prime}=K$ or $=K^{\prime}$. Then $f_{*}^{-1}\left\{f^{\prime}\right\}$ gives a homotopy equivalence $g: K^{\prime} \rightarrow K$. If $K=K^{\prime}$, then this shows that f is unique up to homotopy equivalences of K in itself.

2. Double suspensions.

We shall recall the results of [13] on $S^{2}: \pi_{i}\left(S^{2 m-1}: p\right) \rightarrow \pi_{i+2}\left(S^{2 m+1}: p\right)$ and add some necessary properties.

Let $S_{\infty}^{n}=S^{n} \cup e^{2 n} \cup \cdots \cup e^{k n} \cup \cdots$ be the reduced product complex [6] of S^{n} and $S_{k}^{n}=S^{n} \cup \cdots \cup e^{k n}$ the $k n$-skeleton of S_{∞}^{n}. The canonical inclusion of S^{n} into ΩS^{n+1} is extended over S_{∞}^{n} one-to-one way and continuously, and the resultant is a (singular) homotopy equivalence: $S_{\infty}^{n} \rightarrow \Omega S^{n+1}$. Thus we may consider that

$$
S_{\infty}^{n}=\Omega S^{n+1}, H^{*}\left(\Omega S^{n+1}\right)=H^{*}\left(S_{\infty}^{n}\right), \pi_{i}\left(S_{\infty}^{n}, S_{k}^{n}\right)=\pi_{i}\left(\Omega S^{n+1}, S_{k}^{n}\right)
$$

The following (2.1), (2.2) and (2.3) are main results of [13].
(2.1) There is a map $h_{p}:\left(S_{\infty}^{2 m}, S_{p-1}^{2 m}\right) \rightarrow\left(\Omega S^{2 m p+1}, *\right)$ which induces \mathcal{C}_{p}-isomorphisms $h_{p *}: \pi_{i}\left(S_{\infty}^{2 m}, S_{p-1}^{2 m}\right) \rightarrow \pi_{i}\left(\Omega S^{2 m p+1}\right)$ for all i [13: Theorem (2.11)]. $h_{p *}$ is an isomorphism if $i<2 m p+2 m-1$.
(2.2) There exist a space Y and maps $h:\left(\Omega S_{p-1}^{2 m}, S^{2 m-1}\right) \rightarrow(Y, *)$ and $i: \Omega S^{2 m p-1} \rightarrow Y$ such that the maps induce \mathcal{C}_{p}-isomorphisms

$$
\begin{aligned}
& h_{*}: \pi_{i}\left(\Omega S_{p-1}^{2 m}, S^{2 m-1}\right) \rightarrow \pi_{i}(Y) \\
& \left.i_{*}: \pi_{i}\left(\Omega S^{2 m p-1}\right) \rightarrow \pi_{i}(Y) \quad \text { isomorphic if } i<4 m p-4\right)
\end{aligned}
$$

and
for all i [13: Proposition (7.5), (7.3)'].
(2.3) Let $f: S^{2 m p-1} \rightarrow S^{2 m p-1}$ be a map of degree p. Then there exists a homomorphism ν such that the diagram

$$
\begin{aligned}
& \begin{array}{c}
\pi_{i+3}\left(S^{2 m p+1}\right) \stackrel{S^{2}}{\leftrightarrows} \pi_{i+1}\left(S^{2 m p-1}\right) \xrightarrow{\approx} \stackrel{\Omega}{\approx} \pi_{i}\left(\Omega S^{2 m p-1}\right) \xrightarrow{\Omega f_{*}} \pi_{i}\left(\Omega S^{2 m p-1}\right) \\
\quad \downarrow \Omega^{2}
\end{array} \\
& \pi_{i+1}\left(\Omega^{2} S^{2 m p+1}\right) \stackrel{h_{p *}}{\longleftrightarrow} \pi_{i+1}\left(\Omega S_{\infty}^{2 m}, \Omega S_{p-1}^{2 m}\right) \xrightarrow{\partial} \pi_{i}\left(\Omega S_{p-1}^{2 m}, S^{2 m-1}\right) \xrightarrow{h_{*}} \pi_{i}(Y)
\end{aligned}
$$

is commutative (see the proof of [13: Theorem (8.3)]).
Put

$$
Q_{m}^{\prime}=\Omega\left(\Omega S_{p-1}^{2 m}, S^{2 m-1}\right) \text { and } Q_{m}=\Omega\left(\Omega^{2} S^{2 m+1}, \Omega S_{p-1}^{2 m}\right) .
$$

By use of (1.8), we have the following (2.1)' and (2.2)' from (2.1) and (2.2).
(2.1) $H^{*}\left(Q_{m}: Z_{p}\right)$ and $H^{*}\left(\Omega^{3} S^{2 m p+1} ; Z_{p}\right)$ are naturally isomorphic. There is a \mathcal{C}_{p} isomorphism $I_{0}=\Omega^{-1} \circ h_{p *} \circ \Omega^{-2}: \pi_{i}\left(Q_{m}\right) \rightarrow \pi_{i+3}\left(S^{2 m p+1}\right)$ for all i (an isomorphism for $i<2 m p+2 m-3$), hence an isomorphism $I_{0}: \pi_{i}\left(Q_{m}: p\right) \approx \pi_{i+3}\left(S^{2 m p+1}: p\right)$ for all i.
(2.2) $)^{\prime} H^{*}\left(Q_{m}^{\prime} ; Z_{p}\right)$ and $H^{*}\left(\Omega^{2} S^{2 m p-1} ; Z_{p}\right)$ are naturally isomorphic. $i_{*}^{-1} \circ h_{*}$ gives a \mathcal{C}_{p}-isomorphism $I_{0}^{\prime}: \pi_{i}\left(Q_{m}^{\prime}\right) \rightarrow \pi_{i+2}\left(S^{2 m p-1}\right)$ for $i<4 m p-5$ and an isomorphism $I_{0}^{\prime}: \pi_{i}\left(Q_{m}^{\prime}: p\right) \approx \pi_{i+2}\left(S^{2 m p-1}: p\right)$ for all i.

By use of (1.3), (ii), we have the following (2.1)" and (2.2)".

$$
\begin{array}{ll}
(2.1)^{\prime \prime} & I_{0}(\alpha \circ \beta)=I_{0} \alpha \circ S^{3} \beta, \\
(2.1)^{\prime \prime} & I_{0}^{\prime}(\alpha \circ \beta)=I_{0}^{\prime} \alpha \circ S^{2} \beta,
\end{array} \quad \beta \in \pi_{j}\left(S^{i}: p\right) .
$$

Apply (1.6) to the triple ($\Omega^{2} S^{2 m+1}, \Omega S_{p-1}^{2 m}, S^{2 m-1}$), then we have a sequence

$$
\begin{equation*}
Q_{m}^{\prime} \xrightarrow{i^{\prime}} Q_{2}^{2 m-1} \xrightarrow{i} Q_{m} \tag{2.4}
\end{equation*}
$$

of inclusions equivalent to a fibering, and we have an exact sequence

$$
\begin{equation*}
\cdots \rightarrow \pi_{i+1}\left(Q_{m}\right) \xrightarrow{\partial} \pi_{i}\left(Q_{m}^{\prime}\right) \xrightarrow{i^{\prime} *} \pi_{i}\left(Q_{2}^{2 m-1}\right) \xrightarrow{i_{*}} \pi_{i}\left(Q_{m}\right) \rightarrow \cdots . \tag{2.4}
\end{equation*}
$$

Put

$$
\Delta=I_{0}^{\prime} \partial I_{0}^{-1}, I^{\prime}=i_{*}^{\prime} I_{0}^{\prime-1} \text { and } I=I_{0} i_{*},
$$

then we have the following exact sequence.

$$
\begin{align*}
& \cdots \rightarrow \pi_{i+4}\left(S^{2 m p+1}: p\right) \xrightarrow{\Delta} \pi_{i+2}\left(S^{2 m p-1}: p\right) \xrightarrow{I^{\prime}} \pi_{i}\left(Q_{2}^{2 m-1}: p\right) \tag{2.5}\\
& \xrightarrow{I} \pi_{i+3}\left(S^{2 m p+1}: p\right) \rightarrow \cdots,
\end{align*}
$$

where the first two groups are considered to be Z if $i=2 m p-3$.
It follows form (2.1)" and (2.2)"
(2.6). $I(\alpha \circ \beta)=I \alpha \circ S^{3} \beta$ and $I^{\prime}\left(\alpha^{\prime} \circ S^{2} \beta\right)=I^{\prime} \alpha^{\prime} \circ \beta$ for $\beta \in \pi_{j}\left(S^{i}: p\right)$.

From (2.3) and (1.10), (i) we have
(2.7) The homomorphism Δ of (2.5) satisfies the relation

$$
\Delta S^{2} \alpha=\left(p t_{2 m p-1}\right) \circ \alpha=p \alpha
$$

for $\alpha \in \pi_{i+2}\left(S^{2 m p-1}: p\right)\left(\in \pi_{2 m p-1}\left(S^{2 m p-1}\right)\right.$ if $\left.i=2 m p-3\right)$.
As a consequence of (2.5), (2.7) and (1.7), we have
(2.8). $\quad \pi_{i}\left(Q_{2}^{2 m-1}: p\right)=0$ for $i<2 m p-3, \approx Z_{p}$ for $i=2 m p-3$,

$$
S^{2}: \pi_{i}\left(S^{2 m-1}: p\right) \rightarrow \pi_{i+2}\left(S^{2 m+1}: p\right)
$$

is an isomorphism for $i<2 m p-3$, an epimorphism for $i=2 m p-3$ and

$$
S^{\infty}: \pi_{2 m-1+t}\left(S^{2 m-1}: p\right) \approx\left(\pi_{t}^{s}: p\right) \quad \text { for } t<2 m(p-1)-2 .
$$

Furthermore Corollary (8.7)' of [13] states that for a mapping cylinder $S_{f}^{2 m p-1}$ of a map f of degree p we have an isomorphism
(2.9). $\quad \pi_{i}\left(Q_{2}^{2 m-1}: p\right) \approx \pi_{i+2}\left(S_{f}^{2 m p-1}, S^{2 m p-1}\right) \quad$ for $i<2 m p^{2}-4$.

Since $\pi_{i}\left(Q_{2}^{2 m-1}\right) \approx \pi_{i+1}\left(\Omega^{2} S^{2 m+1}, S^{2 m-1}\right) \approx \pi_{i-k+1}\left(\Omega^{k+2} S^{2 m+1}, \Omega^{k} S^{2 m-1}\right) \in \mathcal{C}_{p}$ for $i<2 m p-3$, we have by (1.8), (i)
(2.8) $i^{*}: H^{i+1}\left(\Omega^{2} S^{2 m+1} ; Z_{p}\right) \approx H^{i+1}\left(S^{2 m-1} ; Z_{p}\right)$
and

$$
\left(\Omega^{k} i\right)^{*}: H^{i-k+1}\left(\Omega^{k+2} S^{2 m+1} ; Z_{p}\right) \approx H^{i-k+1}\left(\Omega^{k} S^{2 m-1} ; Z_{p}\right)
$$

for $i<2 m p-3$.
Lemma 2.1. $S^{2}: \pi_{2 m-3+t}\left(S^{2 m-3}: p\right) \rightarrow \pi_{2 m-1+t}\left(S^{2 m-1}: p\right)$ is an epimorphism if $m>2$ and $t<2 m(p-1)-2$.

Proof. It is sufficient to prove the triviality of the homomorphism

$$
H^{(2)}: \pi_{2 m-1+t}\left(S^{2 m-1}: p\right) \rightarrow \pi_{2 m-4+t}\left(Q_{2}^{2 m-3}: p\right)
$$

in"the exact sequence (1.7). By use of (2.8), (2.9) and the fact (π_{t}^{s} : $p)=0$ for $0<t<2 p-3$, we see that $\pi_{2 m-4+t}\left(Q_{2}^{2 m-3}: p\right)=\pi_{2 m-2+t}\left(S_{f}^{2(m-1) p-1}\right.$, $\left.S^{2(m-1) p-1}\right)=0$ if $2 m-2+t \neq 2(m-1) p-1$ and $2 m-2+t<2(m-1) p$ $-1+2 p-3$. Thus the lemma is proved except the case $t=2(m-1)$ $p-(2 m-1)$, in which case the above homomorphism is equivalent to $\bmod p$ Hopf homomorphism [14] and is trivial if $m-1>1$ by [7], [11].
q. e. d.

Theorem 2.2. Assume that $i<2 p^{2} m-4$, then there exists an exact sequence

$$
0 \rightarrow \pi_{i+2}\left(S^{2 m p-1}\right) \otimes Z_{p} \xrightarrow{I} \pi_{i}\left(Q_{2}^{2 m-1} ; p\right) \xrightarrow{I^{\prime}} \operatorname{Tor}\left(\pi_{i+3}\left(S^{2 m p+1}\right), Z_{p}\right) \rightarrow 0
$$

which splits, i.e.,

$$
\pi_{i}\left(Q_{2}^{2 m-1}: p\right) \approx \pi_{i-2 m p+3}^{s} \otimes Z_{p}+\operatorname{Tor}\left(\pi_{i-2 m p+2}^{s}, Z_{p}\right)
$$

if $i<2 m p^{2}-5$.
Proof. Let $j=i+1, i+2$ and consider the homomorphisms Δ : $\pi_{j+2}\left(S^{2 m p+1}: p\right) \rightarrow \pi_{j}\left(S^{2 m p-1}: p\right)$ in the exact sequence (2.5), then we have an exact sequence

$$
0 \rightarrow \operatorname{Coker} \Delta(j=i+2) \rightarrow \pi_{i}\left(Q_{2}^{2 m-1}: p\right) \rightarrow \operatorname{Ker} \Delta(j=i+1) \rightarrow 0
$$

By the assumption and (2.8), $S^{2}: \pi_{j}\left(S^{2 m p-1}: p\right) \rightarrow \pi_{j+2}\left(S^{2 m p+1}: p\right)$ is an isomorphism for $j=i+1$. Then it follows from the relation (2.7) that $\operatorname{Ker} \Delta(j=i+1)=S^{2} \operatorname{Ker} f_{*}$, where $f_{*}(\alpha)=p \alpha$ for $\alpha \in \pi_{k+1}\left(S^{2 m p-1}\right.$: $p)$. Thus $\operatorname{Ker} \Delta(j=i+1)=S^{2} \operatorname{Ker} f_{*}=\operatorname{Tor}\left(\pi_{i+3}\left(S^{2 m p+1}\right), Z_{p}\right)$. Similarly we have Coker $\Delta(j=i+2)=\pi_{i+2}\left(S^{2 m p-1}\right) \otimes Z_{p}$ by Lemma 2.1. Then the exactness of the sequence of the theorem is proved.

For the splitting of the sequence, by (2.9), it is sufficient to prove that $\pi_{i+2}\left(S_{f}^{2 m p-1}, S^{2 m p-1}\right)$ is a $Z_{p-\text {-module. Consider the following }}$ commutative and exact diagram:

where $n=2 p m-1+h$ and $F=S^{h} f$. Let h be sufficiently large, then S^{h} is an isomorphism of $\pi_{i+2}\left(S^{2 m p-1}: p\right)$ for $i<2 m p^{2}-5$. By the five lemma, $\pi_{i+2}\left(S_{f}^{2 m p-1}, S^{2 m p-1}\right)$ is isomorphic to $\pi_{i+2+h}\left(S_{F}^{n}, S^{n}\right) \approx \pi_{i+2+h}\left(S_{F}^{n} / S^{n}\right)$ $=\pi_{i+2+k}\left(Y_{p}^{n+1}\right)$ which is a Z_{p}-module by (1.5). This completes the proof of the theorem.

Lemma 2.3. Let a_{0} be a non-zero element of $H^{2 m p-3}\left(Q_{2}^{2 m-1} ; Z_{p}\right)$, then

$$
H^{*}\left(Q_{2}^{2 m-1} ; Z_{p}\right)=\Lambda\left(a_{0}\right) \otimes Z_{p}\left[\Delta a_{0}\right]
$$

for dimensions less than $p(2 m p-2)-2$, where Δ stands for the Bockstein operator δ / p.

Proof. By (2.2)' and (2.8)', $H^{*}\left(Q_{m}^{\prime} ; Z_{p}\right) \approx H^{*}\left(S^{2 m p-3} ; Z_{p}\right)$ for dimensions less than $p(2 m p-2)-2$. By (2.1)' and (2.8)', $H^{*}\left(Q_{m}\right.$; $\left.Z_{p}\right) \approx H^{*}\left(S_{\infty}^{2 m p-2} ; Z_{p}\right)$ for dimensions less than $2 m p^{2}-3$. By (2.8) and (1.8), $H^{2 m p-3}\left(Q_{2}^{2 m-1} ; Z_{p}\right) \approx Z_{p}$ and $\Delta a_{0} \neq 0$. Consider the spectral sequence associated with the fibering (2.4), then the transgression is trivial for $1 \otimes a_{0}$ hence the spectral sequence is trivial for dimensions $<p(2 m p-2)-2$. Then the lemma follows easily. q. e. d.

A similar discussion yields us to verify $H^{*}\left(\Omega^{h} Q_{2}^{2 m-1} ; Z_{p}\right)$ by use of (2.8)'.

Corollary 2.4. $H^{*}\left(\Omega^{2 k} Q_{2}^{2 m-1} ; Z_{p}\right)=\Lambda\left(\sigma^{2 k} a_{0}\right) \otimes Z_{p}\left[\Delta \sigma^{2 k} a_{0}\right]$ for $d i$ mension less than $p(2 m p-2 k-2)-2$, where $\sigma^{2 k}$ indicates the $2 k$. fold iterated suspensions in cohomology. $H^{*}\left(\Omega^{2 k-1} Q_{2}^{2 m-1} ; Z_{p}\right)=$ $Z_{p}\left[\sigma^{2 k-1} a_{0}\right] \otimes \Lambda\left(\Delta \sigma^{2 k-1} a_{0}\right)$ for dimensions less than $p(2 m p-2 k-2)$.

Lemma 2.5. Assume that $2 m p-h \geq 6$. Then there exists a map $g: Y_{p}^{2 m p-h-2} \rightarrow \Omega^{h} Q_{2}^{2 m-1}$, uniquely up to homotopy equivalences, such that g^{*} is an isomorphism of $H^{2 m p-h-3}\left(; Z_{p}\right)$. For such a map g the following diagram is commutative for some integers $x, y \not \equiv 0(\bmod p):$

Proof. The existence and the uniqueness of g follow from Corollary 2.4, Theorem 1.1 and Corollary 1.3. Consider the case $h=0$ and put $g_{0}=g \mid S^{2 m p-3}$. The class $\left\{g_{0}\right\}$ is a generator of $\pi_{2 m p-3}$ $\left(Q_{2}^{2 m-1}: p\right) \approx Z_{p} . \quad$ By $(2.1)^{\prime}$ and (2.4)', $i_{*}^{\prime}: \pi_{2 m p-3}\left(Q_{n}^{\prime}\right) \rightarrow \pi_{2 m p-3}\left(Q_{2}^{2 m-1}\right)$ is a \mathcal{C}_{p}-epimorphism. Thus we may assume that $g\left(S^{2 m p-3}\right) \subset Q_{m}^{\prime}$.

Then there is a map $\bar{g}: S^{2 m p-2} \rightarrow Q_{m}$ such that $i \circ g: Y_{p}^{2 m p-2} \rightarrow Q_{2}^{2 m-1} \rightarrow Q_{m}$ is homotopic to $\bar{g} \circ \pi: Y_{p}^{2 m p-2} \rightarrow S^{2 m p-2} \rightarrow Q_{m}$. We have obtained the following commutative diagram:

By (2.2),$I_{0}^{\prime}\left\{g_{0}\right\}=x_{\iota_{2 m p-1}}$ for some $x \not \equiv 0(\bmod p)$. It is easily seen that \bar{g}^{*} is an isomorphism of $H^{2 m p-2}\left(; Z_{p}\right)$. Thus $I_{0}\{\bar{g}\}=y \ell_{2 m p+1}$ for some $y \not \equiv 0(\bmod p)$. Then the commutativity of the diagram of the lemma is verified by use of (2.6). In the case $h>0, g$ defines a map $g^{\prime}: Y_{p}^{2 m p-2} \rightarrow Q_{2}^{2 m-1}$ by the isomorphism $\Omega^{h}: \pi\left(Y_{p}^{2 m p-1} ; Q_{2}^{2 m-1}\right)$ $\approx \pi\left(Y_{p}^{2 m p-h-2} ; \Omega^{h} Q_{2}^{2 m-1}\right)$. This g^{\prime} satisfies the assumption for $h=0$. Then the conclusion for g is proved by use of (1.3), (ii) q.e.d.

Finally we shall make some remarks for the case $m=1$. Let X_{3} be a 3 -connective fibre space over S^{3}. The fibering induces a map: $\Omega^{3} X_{3} \rightarrow Q_{2}^{1}=\Omega\left(\Omega^{2} S^{3}, S^{1}\right) \quad$ which induces isomorphisms of homotopy groups.
(2.10) $\Omega^{3} X_{3}$ is singular homotopy equivalent to Q_{2}^{1}, and $\pi_{i}\left(Q_{2}^{1}\right) \approx \pi_{i+3}\left(X_{3}\right) \quad$ for all i.

Then the sequence (2.5) becomes

$$
\begin{align*}
& \cdots \rightarrow \pi_{i+4}\left(S^{2 p+1}: p\right) \xrightarrow{\Delta} \pi_{+2}\left(S^{2 p-1}: p\right) \xrightarrow{\bar{I}^{\prime}} \pi_{i+3}\left(X_{3}: p\right) \xrightarrow{\bar{I}} \tag{2.11}\\
& \pi_{i+3}\left(S^{2 p+1}: p\right) \rightarrow \cdots .
\end{align*}
$$

Since $\pi_{i+3}\left(X_{3}\right) \approx \pi_{i+3}\left(S^{3}\right)$ for $i>0$, we have the following exact sequence.

$$
\begin{align*}
& \cdots \rightarrow \pi_{i+4}\left(S^{2 p+1}: p\right) \xrightarrow{\Delta} \pi_{i+2}\left(S^{2 p-1}: p\right) \xrightarrow{G} \pi_{i+3}\left(S^{3}: p\right) \xrightarrow{H_{p}} \tag{2.11}\\
& \pi_{i+3}\left(S^{2 p+1}: p\right) \rightarrow \cdots, \quad i>0 .
\end{align*}
$$

In general H_{p} is defined by

$$
H_{p}: \pi_{i+1}\left(S^{2 m+1}\right) \approx \pi_{i}\left(S_{\infty}^{2 m}\right) \xrightarrow{h_{p *}} \pi_{i}\left(S_{\infty}^{2 m p}\right) \approx \pi_{i+1}\left(S^{2 m p+1}\right),
$$

and has the following properties:

$$
\begin{align*}
& \text { (i) } H_{p}(\alpha \circ S \beta)=H_{p} \alpha \circ S \beta, \tag{2.12}\\
& \text { (ii) } H_{p}=I \circ H^{(2)}: \pi_{i+1}\left(S^{2 m+1} ; p\right) \rightarrow \pi_{i-2}\left(Q_{2}^{2 m-1}: p\right) \\
& \quad \rightarrow \pi_{i+1}\left(S^{2 m p+1}: p\right) .
\end{align*}
$$

The sequence (2.11)' is also obtained as follows. ΩX_{3} is a 2 connective fibre space over ΩS^{3}. The inclusion of S_{p-1}^{2} into ΩS^{3} induces a 2 -connective fibering $X^{\prime} \rightarrow S_{p-1}^{2}$. It is computed that $H^{*}\left(X^{\prime}\right.$; $\left.Z_{p}\right) \approx H^{*}\left(S^{2 p-1} ; Z_{p}\right)$. By use of (1.8), we have a map

$$
g: S^{2 p-1} \rightarrow X^{\prime}
$$

which induces \mathcal{C}_{p}-isomorphisms $g_{*}: \pi_{i}\left(S^{2 \mu-1}\right) \rightarrow \pi_{i}\left(X^{\prime}\right)$. From the homotopy exact sequence of the pair $\left(\Omega S^{3}, S_{p-1}^{2}\right)$, we have the following exact sequence:

$$
\cdots \rightarrow \pi_{i+3}\left(\Omega S^{3}, S_{p-1}^{2}\right) \xrightarrow{\partial} \pi_{i+2}\left(X^{\prime}\right) \xrightarrow{\bar{i}_{*}} \pi_{i+2}\left(\Omega X_{3}\right) \rightarrow \cdots
$$

By use of (2.1), (2.10) and the above homomorphism g_{*} we have the exact sequences (2.11)' and (2.11), where G is equivalent to $\bar{i}_{*} \circ g_{*}$. Thus G satisfies

$$
G(\alpha \circ \beta)=G \alpha \circ S \beta .
$$

In particular
(2.13) G is given by the formula $G(\beta)=\alpha_{1}(3) \circ S \beta, \beta \in \pi_{i+2}\left(S^{2 p-1}\right.$: p), for some generator $\alpha_{1}(3)$ of $\pi_{2 p}\left(S^{3}: p\right) \approx Z_{p}$.

If $S^{2} \beta=0$, then $S G(\beta)=S \alpha_{1}(3) \circ S^{2} \beta=0$. By (1.10), (i), $G(\beta)$ $=0$. By the exactness of the sequence (2.11) we have

Lemma 2.6. If $S^{2} \beta=0$ for $\beta \in \pi_{i+2}\left(S^{2 p-1}: p\right)$, then β is in the image of $\Delta: \pi_{i+4}\left(S^{2 p+1}: p\right) \rightarrow \pi_{i+2}\left(S^{2 p-1}: p\right)$, [18: Lemma 13.7].

As an analogy of Lemma 2.5 we have
Lemma 2.7. There exists a map $g: Y_{p}^{2 p+1} \rightarrow X_{3}$, uniquely up to homotopy equivalences, which induces an isomorphism g^{*} of $H^{2 p}\left(; Z_{p}\right)$. For such a map g, the following diagram is commutative for some integers $x, y \neq 0(\bmod p)$.

3. Cohomology of $Q_{2 k}^{2 m-1}$.

The main purpose of this section is to prove the fol owing
Theorem 3.1. There are elements $a_{i} \in H^{2 m p+2 i(p-1)-3}\left(Q_{2 k}^{2 m-1} ; Z_{p}\right)$, $i=0,1, \cdots, k-1$, such that

$$
H^{*}\left(Q_{2 k}^{2 m-1} ; Z_{p}\right)=\Lambda\left(a_{0}, a_{1}, \cdots, a_{k-1}\right) \otimes Z_{p}\left[\Delta a_{0}, \Delta a_{1}, \cdots, \Delta a_{k-1}\right]
$$

for dimensions less than $p(2 m p-2)-2$ and the relations

$$
\mathscr{P}^{1} a_{i}=(m+i+1) a_{i+1} \quad \text { and } \quad \mathcal{P}^{1} \Delta a_{i}=(m+i) \Delta a_{i+1}
$$

hold for $i=0,1, \cdots, k-2$. $(k<m p)$.
We prepare the following lemmas.
Lemma 3.2. Let $p: E \rightarrow B$ be a fibre space with a fibre F. Assume that E, F are arcwise connected and B is simply connected having finitely generated homology groups. Let u_{α}, $v_{\beta} \in H^{*}\left(B ; Z_{p}\right)$ and $w_{\gamma} \in H^{*}\left(E ; Z_{p}\right)$ be of odd dimensionlities and $x_{\gamma}, y_{\delta} \in H^{*}\left(B ; Z_{p}\right)$ and $z \in H^{*}\left(E ; Z_{p}\right)$ be of even ones. If $H^{*}\left(B ; Z_{p}\right)=\left[u_{\alpha}, v_{\beta}\right] \otimes Z_{p}\left[x_{\gamma}, y_{\delta}\right]$ for dimensions less than N, $H^{*}\left(E ; Z_{p}\right)=\Lambda\left(p^{*} v_{\beta}, w_{\lambda}\right) \otimes Z_{p}\left[p^{*} y_{\delta}, z_{\mu}\right]$ for dimensions less than $N-1$ and if $p^{*}\left(u_{\alpha}\right)=p^{*}\left(x_{\gamma}\right)=0$, then we have $H^{*}\left(F ; Z_{p}\right)=\Lambda\left(\sigma x_{\gamma}\right.$, $\left.i^{*} w_{\lambda}\right) \otimes Z_{p}\left[\sigma u_{\alpha}, i^{*} z_{\mu}\right]$ for dimensions less than $\operatorname{Min}(N-2, p \cdot \operatorname{deg}$ ($\left.\sigma u_{\alpha}\right)-1$).

Proof. Let $\left\{E_{r}\right\}$ be the cohomology spectral sequence associated with the fibering. Then $E_{2}=H^{*}\left(B ; Z_{p}\right) \otimes H^{*}\left(F ; Z_{p}\right)$ and E_{∞} is associated to $H^{*}\left(E ; Z_{p}\right)$. Consider the following formal spectral sequence $\left\{{ }^{\prime} E_{r}\right\}$. Put $B^{\prime}=\Lambda\left(u_{\alpha}, v_{\beta}\right) \otimes Z_{p}\left[x_{\gamma}, y_{\delta}\right]$ and $F^{\prime}=\Lambda\left(\sigma x_{\gamma}, i^{*} w_{\lambda}\right)$
$\otimes Z_{p}\left[\sigma u_{\alpha}, i^{*} z_{\mu}\right]$ for all dimensions. $\left\{{ }^{\prime} E_{r}\right\}$ is a spectral sequence determined by the conditions: ' $E_{2}=B^{\prime} \otimes F^{\prime}$, ' $d_{r}=0$ for the generators except $\quad d_{r}\left(1 \otimes \sigma u_{\alpha}\right)=u_{\alpha} \otimes 1,{ }^{\prime} d_{r}\left(1 \otimes \sigma x_{\gamma}\right)=x_{\gamma} \otimes 1$ and ' d_{r} is antiderivative. Then ' E_{r} are computed easily, in particular we have ${ }^{\prime} E_{\infty}=\Lambda\left(v_{\beta} \otimes 1,1 \otimes i^{*} w_{\lambda}, u_{\alpha} \otimes\left(\sigma u_{\alpha}\right)^{p-1}\right) \otimes Z_{p}\left[y_{\delta} \otimes 1,1 \otimes i^{*} z_{\mu}, 1 \otimes\left(\sigma u_{\alpha}\right)^{p}\right]$. We consider also a spectral sequence $\left\{\bar{E}_{r}\right\}$ determined by the conditions: $\bar{E}_{r}^{p, q}=E_{r}^{p, q}$ and $\bar{d}_{r}=d_{r}$ for $p+q<N_{0}, \bar{E}_{2}^{p, q}=E_{2}^{p, q}$ for $p+q=N_{0}$ and $\bar{E}_{r}^{p, q}=0$ for $p+q>N_{0}$, where $N_{0}=\operatorname{Min}\left(N-1, p \cdot \operatorname{deg} \sigma u_{\alpha}\right)$. Remark that $E_{r}^{p, q} \subset \overline{E_{r}^{p, q}}$ for $p+q=N_{0}$. Let $f_{2}:^{\prime} E_{2} \rightarrow \overline{E_{2}}$ be a homomorphism which is given by the correspondence of the generators of the same symbols. Then we see that f_{2} defines a homomorphism $f:\left\{E_{r}\right\} \rightarrow\left\{\bar{E}_{r}\right\}$ of the spectral sequences such that $f_{2}:^{\prime} E_{2}^{p, 0} \rightarrow \overline{E_{2}^{p, 0}}$ are isomorphisms for $p<N_{0}+1$ and $f_{\infty}:^{\prime} E_{\infty}^{p, q} \rightarrow \bar{E}_{\infty}^{p, q}$ are isomorphism for $p+q<N_{0}$. Apply the (cohomological) comparision theorem [20] to the homomorphism f, then we obtain that $f_{2}:^{\prime} E_{2}^{0, q} \rightarrow \bar{E}_{2}^{0, q}$ are isomorphisms for $q<N_{0}-1$. Thus $H^{*}\left(F ; Z_{p}\right)=F^{\prime}$ for dimensions less than $N_{0}-1=\operatorname{Min}(N-2$, $\left.p \cdot \operatorname{deg} \sigma u_{\alpha}-1\right)$.
q. e. d.

Corollary 3. 3. Let X be an arcwise connected and simply connected topological space. Assume that $H^{*}\left(X ; Z_{p}\right)=\Lambda\left(u_{\alpha}\right) \otimes$ $Z_{p}\left[x_{\beta}\right]$ for dimensions less than N. Then $H^{*}\left(\Omega X ; Z_{p}\right)=\Lambda\left(\sigma v_{\beta}\right)$ $\otimes Z_{p}\left[\sigma u_{\alpha}\right]$ for dimensions less than $\operatorname{Min}\left(N-2, p \cdot \operatorname{deg} \sigma u_{\alpha}-1\right)$.

Let $K_{2 m-1}$ be an Eilenberg-MacLane space of type ($Z, 2 m-1$) which is so chosen that $K_{2 m-1}$ contains $S^{2 m-1}$ and the inclusion of $S^{2 m-1}$ represents a generator of $\pi_{2 m-1}\left(K_{2 m-1}\right) \approx Z$. Put $X_{2 m-1}=\Omega\left(K_{2 m-1}\right.$, $S^{2 m-1}$). Then $X_{2 m-1}$ is a $(2 m-1)$-connective fibre space over $S^{2 m-1}$ and there are two fiberings:

> (3.1), (i) $X_{2 m-1} \rightarrow S^{2 m-1}$ with a fibre $\Omega K_{2 m-1}=K_{2 m-2}$, (ii) $S^{2 m-1} \rightarrow K_{2 m-1}$ with a fibre $X_{2 m-1}$,
where $\quad S^{2 m-1}=\Omega\left(K_{2 m-1} ; K_{2 m-1}, S^{2 m-1}\right) \supset S^{2 m-1}$ (deformation retract).
Lemma 3.4. Let $\sigma: H^{j}\left(K_{2 m-1} ; Z_{p}\right) \rightarrow H^{j-1}\left(X_{2 m-1} ; Z_{p}\right), j \neq 2 m-1$.
be the suspension homomorphism with respect to the fibering (3.1), (ii) and let $u \in H^{2 m-1}\left(K_{2 m-1} ; Z_{p}\right)$ be the fundamental class. Then we have

$$
H^{*}\left(X_{2 m-1} ; Z_{p}\right)=Z_{p}\left[\sigma \mathscr{P}^{m-1} u, \sigma \mathscr{P}^{I} u\right] \otimes \Lambda\left(\sigma \Delta \mathscr{P}^{m-1} u, \sigma \mathscr{P}^{J} u\right),
$$

where $\mathscr{P}^{I}, \mathscr{P}^{J}$ are admissible cohomological operations $\Delta^{\varepsilon_{0}} \mathscr{P}^{a_{1}} \Delta^{\varepsilon_{1}} \ldots$ $\mathcal{P}^{a r-1} \Delta^{\varepsilon r-1} \mathcal{P}^{a_{r}}$ of excess $e=\sum_{i=1}^{r-1}\left(2\left(a_{i+1}-p \cdot a_{i}\right)-\varepsilon_{i}\right)+2 a_{r}<2 m-2$, $\operatorname{deg}\left(\mathscr{P}^{I} u\right)$ is odd and $\operatorname{deg}\left(\mathscr{P}^{J} u\right)$ is even.

Proof. Consider the spectral sequence $\left\{E_{r}\right\}$ associated with the fibering (3.1), (i). $E_{2}=H^{*}\left(S^{2 m-1} ; Z_{p}\right) \otimes H^{*}\left(K_{2 m-2} ; Z_{p}\right)$. By Cartan [3], $H^{*}\left(K_{2 m-2} ; Z_{p}\right)=Z_{p}\left[v, \mathscr{P}^{I} v\right] \otimes \Lambda\left(\mathscr{P}^{I} v\right)$ for the fundamental class $v \in H^{2 m-2}$. Obviously, $d_{2 m-1}(1 \otimes v)=s \otimes 1$ for a generator s of $H^{2 m-1}$ $\left(S^{2 m-1} ; Z_{p}\right)$ and $d_{r}\left(1 \otimes \mathscr{P}^{I} v\right)=d_{r}\left(1 \otimes \mathscr{P}^{I} v\right)=0$. It follows that $E_{\infty}^{*}=$ $Z_{p}\left[1 \otimes v^{p}, 1 \otimes \mathscr{P}^{I} v\right] \otimes \Lambda\left(s \otimes v^{p-1}, 1 \otimes \mathscr{P}^{J} v\right)$. It is verfied without difficulty that $1 \otimes v^{p}=1 \otimes \mathscr{P}^{m-1} v, 1 \otimes \mathscr{P}^{I} v$ and $1 \otimes \mathscr{P}^{J} v$ correspond to $\sigma \mathscr{P}^{m-1} u$, $\sigma^{\mathscr{P}^{I}} u$ and $\sigma \mathscr{P}^{I} u$ respectively. Then it is sufficient to prove that the element $\sigma \Delta \mathscr{P}^{m-1} u$ is an independent generator. To prove this, we apply Lemma 3.1 to the fibering (3.1), (ii). Then we see that the lemma is true for dimensions less than $p \cdot \operatorname{deg}\left(\sigma \mathcal{P}^{1} u\right)-2=$ $p(2 m+2 p-4)-2$. This completes the proof since $\operatorname{deg}\left(\sigma \Delta \mathscr{P}^{m-1} u\right)=$ $p(2 m-2)+1$.

Lemma 3.5. Let $k=2$, then Theorem 3.1 holds for dimensions less than $p(2 m+2 p-4)-3$. In particular the relations $\mathcal{P}^{1} a_{0}=(m+1) a_{1}$ and $\mathscr{P}^{1} \Delta a_{0}=m \Delta a_{1}$ hold in $H^{*}\left(Q_{4}^{2 m-1} ; Z_{p}\right)$.

Proof. Consider a $(2 m+3)$-connective fibre space $X_{2 m+3}$ over $S^{2 m+3}$ constructed as above. Then $\Omega^{4} X_{2 m+3}$ is a ($2 m-1$)-connective fibre space over $\Omega^{4} S^{2 m+3}$, from which a ($2 m-1$)-connective fibre space $X_{2 m-1}$ over $S^{2 m-1}$ is induced by the inclusion of $S^{2 m-1}$ into $\Omega^{4} S^{2 m+3}$. It is easy to see that the fiberings induce a homotopy equivalence:

$$
\Omega\left(\Omega^{4} X_{2 m+3}, X_{2 m-1}\right) \rightarrow Q_{4}^{2 m-1}=\Omega\left(\Omega^{4} S^{2 m+3}, S^{2 m-1}\right) .
$$

By Lemma 3.4, we have

$$
H^{*}\left(X_{2 m-1} ; Z_{p}\right)=Z_{p}\left[\sigma \mathscr{P}^{m-1} u, \sigma \mathscr{P}^{I} u\right] \otimes \Lambda\left(\sigma \Delta \mathscr{P}^{m-1} u, \sigma \mathscr{P}^{J} u\right)
$$

and $\quad H^{*}\left(X_{2 m+3} ; Z_{p}\right)=Z_{p}\left[\sigma \mathcal{P}^{m+1} w, \sigma \mathcal{P}^{l^{\prime}} w\right] \otimes \Lambda\left(\sigma \Delta \mathcal{P}^{m+1} w, \sigma \mathcal{P}^{\prime} w\right)$, where $u \in H^{2 m-1}$ and $w \in H^{2 m+3}$ are the fundamental classes, $e(I)$, $e(J)<2 m-2$ and $e\left(I^{\prime}\right), e\left(J^{\prime}\right)<2 m+2$. Apply Corollary 3.3 to $X_{2 m+1}$ four times, then we have $H^{*}\left(\Omega^{4} X_{2 m+3} ; Z_{p}\right)=Z_{p}\left[\sigma^{5} \mathcal{P}^{m+1} w, \sigma^{5} \mathcal{P}^{\prime \prime} w\right]$ $\otimes \Lambda\left(\sigma^{5} \Delta \mathcal{P}^{m+1} w, \sigma^{5} \mathcal{P}^{\prime} w\right)$ for dimensions less than $p \cdot \operatorname{deg}\left(\sigma^{5} \mathcal{P}^{1} w\right)-1$ $=p(2 m+2 p-4)-1$. By checking the excesses of I^{\prime} and J^{\prime}, we see that

$$
\begin{aligned}
H^{*}\left(\Omega^{4} X_{2 m+3} ; Z_{p}\right) & =Z_{p}\left[\sigma^{5} \mathcal{P}^{m+j} w(j=1,0,-1), \sigma^{5} \mathscr{P}^{I} w\right] \\
& \otimes \Lambda\left(\sigma^{5} \Delta \mathcal{P}^{m+j} w(j=1,0,-1), \sigma^{5} \mathscr{P}^{J} w\right)
\end{aligned}
$$

for dimensions less than $p(2 p+2 m-4)-2$. It follows from the naturality of \mathscr{P}^{I} with respect to the suspensions that $i^{*}\left(\sigma^{5} \mathcal{P}^{I} w\right)$ $=\sigma \mathscr{P}^{\prime} u$ for the injection homomorphism $i^{*}: H^{*}\left(\Omega^{4} X_{2 m+3} ; Z_{p}\right) \rightarrow$ $H^{*}\left(X_{2 m-1} ; Z_{p}\right)$. The same is true for $\mathscr{P}^{m_{+j}}, \Delta \mathscr{P}^{m+j}$ and \mathscr{P}^{J}. If $j=0$, 1, then $i^{*}\left(\sigma^{5} \mathscr{P}^{m+j} w\right)=i^{*}\left(\sigma^{5} \Delta \mathscr{P}^{m+j} w\right)=0$ since $\mathscr{P}^{t} u=0$ for $t>m-1$.

The inclusion $i: X_{2 m-1} \rightarrow \Omega^{4} X_{2 m+3}$ is equivalent to a fibering which has a fibre $\Omega\left(\Omega^{4} X_{2 m+3}, X_{2 m-1}\right)$. Apply Lemma 3.2 to the fibering, then we have

$$
\begin{aligned}
H^{*}\left(Q_{4}^{2 m-1} ; Z_{p}\right) & =H^{*}\left(\Omega\left(\Omega^{4} X_{2 m+3}, X_{2 m-1}\right) ; Z_{p}\right) \\
& =1\left(\sigma^{6} \mathcal{P}^{m} w, \sigma^{6} \mathcal{P}^{m+1} w\right) \otimes Z_{p}\left[\sigma^{6} \Delta \mathscr{P}^{m} w, \sigma^{6} \Delta \mathcal{P}^{m+1} w\right]
\end{aligned}
$$

for dimensions less than $p(2 m+2 p-4)-3$. Put $a_{0}=\sigma^{6} \mathscr{P}^{m} w$ and $a_{1}=\sigma^{6} \mathscr{P}^{m+1} w$, then $\Delta a_{0}=\sigma^{6} \Delta \mathscr{P}^{m} w$ and $\Delta a_{1}=\sigma^{6} \Delta \mathscr{P}^{m+1} w$. The relations of the lemma follow from Adem's relations $\mathscr{P}^{1} \mathscr{P}^{m}=(m+1) \mathscr{P}^{m+1}$ and $\mathcal{P}^{1} \Delta \mathscr{P}^{m}=m \Delta \mathscr{P}^{m+1}+\mathcal{P}^{m+1} \Delta . \quad$ q. e. d.

Applying (1.6) to the triple ($\Omega^{2 k} S^{2 m+2 k-1}, \Omega^{2 h} S^{2 m+2 h-1}, S^{2 m-1}$) we have
(3.2). There is a sequence of inclusions $Q_{2 h}^{2 m-1} \xrightarrow{i} Q_{2 k}^{2 m-1} \xrightarrow{j}$ $\Omega^{2 h} Q_{2(k-h)}^{2 m+2 h-1}$ equivalent to a fibering.

Here remark that $\Omega\left(\Omega^{t} X, \Omega^{t} A\right)$ is homeomorphic to $\Omega^{t+1}(X, A)$.
Proof of Theorem 3.1. Lemma 2.3 shows that the theorem
is true for $k=1$. Let $k>1$ and assume that the theorem is true for $Q_{2 h}^{2 m-1}$ of $h<k$. Consider the spectral sequence $\left\{E_{r}\right\}$ associated with the fibering (3.2) of the case $h=k-1$. Then $E_{2}=H^{*}\left(\Omega^{2 k-2}\right.$ $\left.Q_{2}^{2 m+2 k-3} ; Z_{p}\right) \otimes H^{*}\left(Q_{2 k-2}^{2 m-1} ; Z_{p}\right)=\left(\Lambda\left(\sigma^{2 k-2} a_{0}^{\prime}\right) \otimes Z_{p}\left[\Lambda \sigma^{2 k-2} a_{0}^{\prime}\right]\right) \otimes\left(\Lambda\left(a_{0}, \cdots\right.\right.$, $\left.a_{k-2}\right) \otimes Z_{p}\left[\Delta a_{0}, \cdots, \Delta a_{k-2}\right]$) for dimensions less than $p(2 m p-2)-2$, by the assumption and Corollary 2.4. It follows that

$$
E_{2}=E_{\infty} \approx H^{*}\left(Q_{2 k}^{2 m-1} ; Z_{p}\right)=1\left(a_{0}, \cdots, a_{k-1}\right) \otimes Z_{p}\left[\Delta a_{0}, \cdots, \Delta a_{k-1}\right]
$$

for dimensions lass than $p(2 m p-2)-2$, where $i^{*} a_{j}=a_{j}, j=0, \cdots, k-2$ and $a_{k-1}=j^{*} \sigma^{2 k-2} a_{0}^{\prime}$. This proves the first assertion of the theorem. We remark that the generators a_{i} are chosen as above inductively. Then we have, with respect to the inclusions i and j of (3.2),

$$
i^{*} a_{j}=a_{j}, j=0, \cdots, h-1 \text { and } a_{l}=j^{*} \sigma^{2 h} a_{l-h}^{\prime}, l=h, \cdots, k-1 .
$$

In particular, $a_{j}=j^{*} \sigma^{2} a_{j-1}^{\prime}, j=1, \cdots, k-1$, for the inclusion $j: Q_{2 k}^{2 m-1}$ $\rightarrow \Omega^{2} Q_{2 k-2}^{2 m+1}$. By the assumption the relations $\mathscr{P}^{1} a_{j-1}^{\prime}=((m+1)-(j-1)$ $+1) a_{j}^{\prime}$ and $\mathscr{P}^{1} \Delta a_{j-1}^{\prime}=((m+1)-(j-1)) \Delta a_{j}^{\prime}$ hold in $H^{*}\left(Q_{2 k-2}^{2 m-1} ; Z_{p}\right)$. Then, by the naturality of \mathscr{P}^{1}, we have the relations of the theorem for $i=1, \cdots, k-1$. The relations for $i=0$ follow from Lemma 3.5 and from that $i^{*}: H^{*}\left(Q_{2 k}^{2 m-1} ; Z_{p}\right) \rightarrow H^{*}\left(Q_{4}^{2 m-1} ; Z_{p}\right)$ is an isomorphism for dimensions less than $\operatorname{deg} a_{2}$. q. e. d.

Consider the homotopy exact sequence

$$
\begin{equation*}
\cdots \rightarrow \pi_{i+1}\left(\Omega^{2 h} Q_{2(k-h)}^{2 m+2 h-1}\right) \xrightarrow{\partial} \pi_{i}\left(Q_{2 h}^{2 n-1}\right) \xrightarrow{i_{*}} \pi_{i}\left(Q_{2 k}^{2 m-1}\right) \xrightarrow{i_{*}} \cdots \tag{3.3}
\end{equation*}
$$

associated with the fibering (3.2). It is known from the last half of (1.6)
(3.4) There is a map $d: \Omega^{2 h+1} Q_{2(k-h)}^{2 m+2 h-1} \rightarrow Q_{2 h}^{2 m-1}$ such that $d_{*}: \pi_{i}$ $\left(\Omega^{2 h+1} Q_{2(k-h)}^{2 m+2 h-1}\right) \rightarrow \pi_{i}\left(Q_{2 h}^{2 m-1}\right)$ is equivalent to ∂ of (3.3).

In fact, i of (3.2) is equivalent to a fibreing with a fibre $\Omega\left(Q_{2 k}^{2 m-1}, Q_{2 h}^{2 m-1}\right)$ and the fibre is homotopy equivalent to $\Omega^{2 h+1} Q_{2(k-h)}^{2 m+2 h-1}$.

Proposition 3.6. Assume that $k(p-1)<m p-1$. There exists a sequence of finite $C W$-complexes $K(m, j), j=1,2, \cdots, k$, satisfying the following conditions:
(i). $K(m, 1)=Y_{p}^{2 m p-2}$. For $1 \leq j<k, K(m, j+1)$ is a mappingcone of a map $h_{j}: Y_{p}^{2 m p-3+2 i(p-1)} \rightarrow K(m, j)$. Thus $K(m, j+1) / K(m, j)$ $=Y_{p}^{2 m p-2+2 j(p-1)}$.
(ii). There exists a map $G: K(m, k) \rightarrow Q_{2 k}^{2 m-1}$ such that $G(K(m$, $j)) \subset Q_{2 j}^{2 m-1}$ and $G^{*}: H^{*}\left(Q_{2 k}^{2 m-1} ; Z_{p}\right) \rightarrow H^{*}\left(K(m, k) ; Z_{p}\right)$ is an isomorphism for dimensions less than $4 m p-3$.
(iii). Put $G_{j}=G \mid K(m, j): K(m, j) \rightarrow Q_{2 j}^{2 m-1}$. Then there exist maps g and g^{\prime} such that the following diagram is homotopy commutative:

The maps g and g^{\prime} satisfy Lemma 2.5.
This follows from Theorem 1.1 and Theorem 3.1.
For the case $m=1$, the following Propositions 3.7 and 3.8 will be used in place of Theorem 3.1 and Proposition 3.6.
(2.10) is easily generalized to
(3.5). $\Omega^{2 k+1} X_{2 k+1}$ is singular homotopy equivalent to $Q_{2 k}^{1}$ and $\pi_{i}\left(Q_{2 k}^{1}\right) \approx \pi_{i+2 k+1}\left(X_{2 k+1}\right)$ for all i.

We have the following commutative and exact diagram.

$$
\begin{align*}
& \ldots \rightarrow \pi_{i+3}\left(Q_{2}^{3}\right) \xrightarrow{p_{*}} \pi_{i+3}\left(S^{3}\right) \xrightarrow[S^{2}]{\stackrel{i_{*}}{ } \pi_{i+3}\left(\Omega^{2} S^{5}\right) \xrightarrow[H^{(2)}]{\stackrel{\partial}{\longrightarrow}} \pi_{i+2}\left(Q_{2}^{3}\right) \cdots, ~} \tag{3.6}\\
& \pi_{i+5}\left(S^{5}\right)
\end{align*}
$$

where $p_{3 *}$ and $\Omega^{2} p_{5 *}$ are isomorphisms for $i>0$.
From Lemma 3.4 and Corollary 3.3 it follows
Proposition 3. 7. $H^{*}\left(\Omega^{2 k-2} X_{2 k+1} ; Z_{p}\right)=Z_{p}\left[a_{0}, a_{1}, \cdots, a_{k-1}\right] \otimes \Lambda\left(\Delta a_{0}\right.$, $\cdots, \Delta a_{k-1}$) for dimensions less than $4 p^{2}-2$ where the elements
$a_{i} \in H^{2(i+1)(p-1)+2}\left(\Omega^{2 k-2} X_{2 k+1} ; Z_{p}\right)$ satisfy the relations

$$
\mathscr{P}^{1} a_{i}=(i+2) a_{i+1} \quad \text { and } \quad \mathcal{P}^{1} \Delta a_{i}=(i+1) \Delta a_{i+1} .
$$

Proposition 3.8. There exists a complex $\bar{K}=Y_{p}^{2 p} \cup_{h} C Y_{p}^{4 p-3}$, $h: Y_{p}^{4 p-3} \rightarrow Y_{p}^{2 p}$, and there exists a map $G:\left(S \bar{K}, Y_{p}^{2 p+1}\right) \rightarrow\left(\Omega^{2} X_{5}, X_{3}\right)$ inducing an isomorphism of $H^{*}\left(; Z_{p}\right)$ for dimensions less than $4 p-1$. Put $g=G \mid Y_{p}^{2 p+1}$ then there exist maps $g^{\prime \prime}$ and g^{\prime} such that the following diagrams are homotopy commutative.

$Q_{2}^{3} \xrightarrow{d^{\prime}} X_{3} \longrightarrow \Omega^{2} X_{5}$,

$\Omega^{3} X_{5} \xrightarrow{j} Q_{2}^{3}$.

The maps $g^{\prime \prime}$ and g^{\prime} satisfy Lemma 2.5 and g does Lemma 2.7.

4. Homotopy of Moore spaces.

We denote

$$
\begin{aligned}
& \pi_{k}^{s}\left(Y_{p} ; Y_{p}\right)=\pi^{s}\left(Y_{p}^{n+k} ; Y_{p}^{n}\right), \quad \pi_{k}^{s}\left(Y_{p} ; S\right)=\pi^{s}\left(Y_{p}^{n+k} ; S^{n}\right) \\
& \pi_{k}^{s}\left(Y_{p}\right)=\pi^{s}\left(S^{n+k} ; Y_{p}^{n}\right) .
\end{aligned}
$$

These groups are Z_{p}-modules by (1.5). Thus we have the following split exact sequences:
(4.1),
(i) $\quad 0 \rightarrow \pi_{k+1}^{s}\left(Y_{p} ; S\right) \xrightarrow{i_{*}} \pi_{k}^{s}\left(Y_{p} ; Y_{p}\right) \xrightarrow{\pi_{*}} \pi_{k}^{s}\left(Y_{p} ; S\right) \rightarrow 0$,
(ii) $0 \rightarrow \pi_{k}^{s}\left(Y_{p}\right) \xrightarrow{\pi^{*}} \pi_{k}^{s}\left(Y_{p} ; Y_{p}\right) \xrightarrow{i^{*}} \pi_{k-1}^{s}\left(Y_{p}\right) \rightarrow 0$,
(iii) $\quad 0 \rightarrow \pi_{k+1}^{s} \otimes Z_{p} \xrightarrow{i_{*}} \pi_{k}^{s}\left(Y_{p}\right) \xrightarrow{\pi_{*}} \operatorname{Tor}\left(\pi_{k}^{s}, Z_{p}\right) \rightarrow 0$,
(iv) $\quad 0 \rightarrow \pi_{k}^{s} \otimes Z_{p} \xrightarrow{\pi^{*}} \pi_{k}^{s}\left(Y_{p} ; S\right) \xrightarrow{i^{*}} \operatorname{Tor}\left(\pi_{k-1}^{s}, Z_{p}\right) \rightarrow 0$.

The sum $\pi_{*}^{s}\left(Y_{p} ; Y_{p}\right)=\sum_{k} \pi_{k}^{s}\left(Y_{p} ; Y_{p}\right)$ forms a Z_{p}-algebra with the multiplication given by the composition. Yamamoto has obtained the following relations.
(4.2) Let $\delta=\pi^{*} i_{*}(\ell) \in \pi_{-1}^{s}\left(Y_{p} ; Y_{p}\right)$ be the class of the composition $i \circ \pi: Y_{p}^{n-1} \rightarrow Y_{p}^{n}$ and let $\alpha \in \pi_{2 p-2}^{s}\left(Y_{p} ; Y_{p}\right) \approx Z_{p}$ be a generator
which is characterized by the coefficient $1 \bmod p$ of its functional \mathcal{P}^{1}-operation. Then the relations

$$
\delta \delta=0 \quad \text { and } \quad 2 \alpha \delta \alpha=\alpha^{2} \delta+\delta \alpha^{2}
$$

hold [19: proposition 5.1].
The elements

$$
\alpha_{k}=\pi_{*} i^{*}\left(\alpha^{k}\right)=i^{*} \pi_{*}\left(\alpha^{k}\right) \in \pi_{2 k(p-1)-1}^{s}, \quad k=1,2, \cdots,
$$

coincide with those in [17] and [16]. Recently Adams has proved
(4.3). If $k=a \cdot p^{t}, a \neq 0(\bmod p)$, then α_{k} cannot be divisible by p^{t+1}. In particular α_{k} cannot be divisible by p if $k \neq 0(\bmod p)$.

In fact, he has defined a homomorphism $e: \pi_{2 k(p-1)-1}^{s} \rightarrow Q / Z$ which has the value $-(1 / p) \bmod 1$ on α_{k} [1: Proposition 12.7]. On the other hand each image of e is of a form $z / m(k(p-1)), z \in Z$, where $m(k(p-1))=b \cdot p^{t+1}$ for some integer $b \neq 0(\bmod p)$ [1: Proposition 7.9]. Then (4.2) follows immediately.

It follows from (4.3) and (4.1)

$$
\begin{equation*}
\delta \alpha^{k} \delta=\pi^{*} i_{*}\left(\alpha_{k}\right) \neq 0 \quad \text { if } k \neq 0(\bmod p) . \tag{4.4}
\end{equation*}
$$

From this Yamamoto has proved the following
(4.5). Let $Z_{p}(\delta, \alpha)$ be a subalgebra of $\pi_{*}^{s}\left(Y_{p} ; Y_{p}\right)$ generated by δ and α, then the relations in $Z_{p}(\delta, \alpha)$ are generated by those in (4.2), and $Z_{p}(\delta, \alpha)$ has a Z_{p}-base $\left\{1, \delta, \alpha^{k}, \alpha^{k} \delta, \alpha^{k-1} \delta \alpha, \alpha^{k-1} \delta \alpha \delta\right.$; $k=1,2, \cdots\}$ [19: Theorem III].

Every element of $Z_{p}(\delta, \alpha)$ becomes a linear combination of the above base by use of the following relations (4.6) which is obtained from (4.2).

$$
\begin{align*}
& \alpha^{s} \delta \alpha^{t}=t \cdot \alpha^{s+t-1} \delta \alpha+(1-t) \alpha^{s+t} \delta, \tag{4.6}\\
& \alpha^{s} \delta \alpha^{t} \delta=\delta \alpha^{t} \delta \alpha^{s}=t \cdot \alpha^{s+t-1} \delta \alpha \delta
\end{align*}
$$

Now, we consider unstable cases. By (2.8) there exists uniquely an element $\alpha_{1}(3) \in \pi_{2 p}\left(S^{3}: p\right) \approx Z_{p}$ such that

$$
\mathrm{S}^{\infty} \alpha_{1}(3)=\alpha_{1} \in \pi_{2 p-3}^{s} .
$$

We denote that $\alpha_{1}(n)=S^{n-3} \alpha_{1}(3) \in \pi_{n+2 \rho-3}\left(S^{n}: p\right)$ for $n \geq 3$. Since $p \cdot \alpha_{1}(3)=0$, there exists an extension $\bar{\alpha}_{1}(3) \in \pi\left(Y_{p}^{2 p+1} ; S^{3}\right)$ of $\alpha_{1}(3)$, i.e., $i^{*}\left(\bar{\alpha}_{1}(3)\right)=\alpha_{1}(3)$. Consider $p_{t_{3}}{ }^{\circ} \bar{\alpha}_{1}(3)$. Since S^{3} is an H-space we have $p \iota_{3} \circ \bar{\alpha}_{1}(3)=p \cdot \bar{\alpha}_{1}(3)=\bar{\alpha}_{1}(3) \circ p_{l_{Y}}=0$. Thus there exists a coextension $\alpha(4) \in \pi\left(Y_{p}^{2 p+2} ; Y_{p}^{4}\right)$ of $\bar{\alpha}_{1}(3)$, in the sense of [18]. Since $\pi_{*} i^{*}(\alpha(4))=i^{*} \pi_{*}(\alpha(4))=i^{*} S \bar{\alpha}_{1}(3)=S \alpha_{1}(3)=\alpha_{1}(4)$, and since $\alpha_{1}=$ $\pi_{*} i^{*}(\alpha)$ characterizes α, we have $S^{\infty} \alpha(4)=\alpha$. We have obtained
(4.7). There exists an element α (4) of $\pi\left(Y_{p}^{2 p+2} ; Y_{p}^{4}\right)$ which is a coextension of $\bar{\alpha}(3)$ and $S^{\infty} \alpha(4)=\alpha . \pi_{*} \alpha(4)=S \bar{\alpha}_{1}(3)$ and $i^{*} \bar{\alpha}_{1}(3)$ $=\alpha_{1}(3)$.

We put for $n \geq 4$ and for $k=1,2, \cdots$ by induction on k :

$$
\begin{aligned}
& \alpha(n)=S^{n-4} \alpha(4)=\alpha^{1}(n), \alpha^{k}(n)=\alpha(n) \circ \alpha^{k-1}(n+2 p-2) \\
& \alpha_{k}(n)=\pi_{*} i^{*}\left(\alpha^{k}(n)\right), \alpha_{k}(3)=\bar{\alpha}_{1}(3) \circ\left(i^{*} \alpha^{k-1}(2 p+1)\right) .
\end{aligned}
$$

and
Obviously, $S^{\infty} \alpha^{k}(n)=\alpha^{k}, S^{\infty} \alpha_{k}(n)=\alpha_{k}$ and $S \alpha_{k}(3)=\alpha_{k}(4)$.
Lemma 4.1. Let $t>0$. If an element $r \in \pi_{t}^{s}$ is in the image of $S^{\infty}: \pi_{t+2 p-3}\left(S^{2 p-3}\right) \rightarrow \pi_{t}^{s}$, then $\alpha_{1} \gamma=0$. In particular, $\alpha_{1} \alpha_{k}=0$.

Proof. α_{1} is an image of the stable J-homomorphism $J: \pi_{2 p-3}$ $(S O(\infty)) \rightarrow \pi_{2 p-3}^{s}$. Let γ^{\prime} be an element of $\pi_{t+2 p-3}\left(S^{2 p-3}\right)$ such that $S^{\infty} \gamma^{\prime}=\gamma$ and $\beta \in \pi_{2 p-3}(S O(\infty))$ satisty $J(\beta)=\alpha_{1}$. Then $\alpha_{1} \gamma=J\left(\beta \circ \gamma^{\prime}\right)$. Since $\pi_{t+2 p-3}\left(S^{2 p-3}\right)$ is finite, $\beta \circ \gamma^{\prime}$ is of finite order. Since $\pi_{2 p-3+t}$ $(S O(\infty)) \approx Z, Z_{2}$ or 0 , we have $2\left(\beta \circ \gamma^{\prime}\right)=0$ and $2\left(\alpha_{1} \gamma\right)=p\left(\alpha_{1} \gamma\right)=0$. Thus $\alpha_{1} \gamma=0$. Since $\alpha_{k}=S^{\infty} \alpha_{k}(3), \alpha_{1} \alpha_{k}=0$.
q. e. d.

The class of the composition $i \circ \pi: Y_{p}^{n-1} \rightarrow Y_{p}^{n}$ is denote by $\delta(n)$ $\in \pi\left(Y_{p}^{n-1} ; Y_{p}^{n}\right), n \geq 3$. Obviously

$$
\delta(n) \circ \delta(n-1)=0 \quad \text { for } n \geq 4 .
$$

We shall use the following notations:

$$
\begin{aligned}
& \bar{\alpha}_{1}(n)=(-1)^{n-1} S^{n-3} \bar{\alpha}_{1}(3), \alpha^{k} \delta(n)=\alpha^{k}(n) \circ \delta(n+2 k(p-1)-1), \\
& \delta \alpha^{k}(n)=\delta(n) \circ \alpha^{k}(n-1), \alpha^{s} \delta \alpha^{t}(n)=\alpha^{s} \delta(n) \circ \alpha^{t}(n+2 s(p-1)-2),
\end{aligned}
$$

In general, if $\hat{\gamma}$ is a coextension of γ then $\hat{\gamma} \circ S \beta$ is a coextension
of $\gamma \circ \beta$ and $S \tilde{\gamma}$ is a coextension of $-\gamma$, and if $\tilde{\gamma}_{1}$ and $\tilde{\gamma}_{2}$ are coextensions of the same element γ then $\tilde{\gamma}_{1}-\tilde{\gamma}_{2}$ is in the i_{*}-image. For example, $\boldsymbol{\alpha}(n)$ is a coextension of $\bar{\alpha}_{1}(n-1) . \pi_{*} \alpha(n)=\bar{\alpha}_{1}(n)$.

Proposition 4.2. The second relation of (4.1) holds for unstable case $n \geq 6$, i.e.,

$$
2 \cdot \alpha \delta \alpha(n)=\alpha^{2} \delta(n)+\delta \alpha^{2}(n) \quad \text { for } n \geq 6
$$

Proof. $\alpha \boldsymbol{\delta} \alpha(n)$ and $\alpha^{2} \delta(n)$ are coextensions of $\bar{\alpha}_{1}(n-1) \circ \delta \alpha$ $(n+2 p-3)$ and $\bar{\alpha}_{1}(n-1) \circ \alpha \delta(n+2 p-3)$ respectively. We have

$$
\begin{aligned}
\bar{\alpha}_{1}(n-1) \circ \delta \alpha(n+2 p-3) & =-i^{*} \pi_{*} \alpha(n-1) \circ \pi_{*} \alpha(n+2 p-4) \\
& =\alpha_{1}(n-1) \circ \bar{\alpha}(n+2 p-4)
\end{aligned}
$$

and this is an element of $\pi^{*}\left\{\alpha_{1}(n-1), \alpha_{1}(n+4 p-4), p_{\left.\ell_{n+4 p-7}\right\}}\right.$ by Proposition 1.9 of [18]. Here we remark that $\alpha_{1}(n-1) \circ \alpha(n+2 p-4)$ $=0$ for $n \geq 6$ since this is a stable case. Thus

$$
\bar{\alpha}_{1}(n-1) \circ \delta \alpha(n+2 p-3)=\pi^{*}\left(x \cdot \alpha_{2}(n-1)\right)
$$

for some $x \in Z_{p}$. We have also

$$
\begin{gathered}
\bar{\alpha}_{1}(n-1) \circ \alpha \delta(n+2 p-3)=-\pi_{*} \alpha(n-1) \circ \pi^{*} i^{*} \alpha(n+2 p-3) \\
=-\pi^{*} i^{*} \pi_{*} \alpha^{2}(n-1)=-\pi^{*} \alpha_{2}(n-1) .
\end{gathered}
$$

The proposition is true for sufficiently large n by (4.2). Then we see that $x=-1 / 2$ and that $2 \cdot \alpha \delta \alpha(n)$ and $\alpha^{2} \delta(n)$ are coextensions of the same element $-\pi^{*} \alpha_{2}(n-1)$. It follows that $2 \cdot \alpha \delta \alpha(n)-\alpha^{2} \delta(n)$ is in $i_{*} \pi\left(Y_{p}^{n+4 p-5} ; S^{n-1}\right)$. It is computed easily that $\pi\left(Y_{p}^{n+4 p-5} ; S^{n-1}\right)$ is generated by $\pi_{*} \alpha^{2}(n-1)$. Thus $2 \cdot \alpha \delta \alpha(n)-\alpha^{2} \delta(n)=y \cdot i_{*} \pi_{*} \alpha^{2}$ $(n-1)=y \cdot \delta \alpha^{2}(n)$ for some $y \in Z_{p}$. Taking n sufficiently large, we see that $y=1$.
q. e. d.

Corollary 4.3. The relations (4.6) hold for unstable case $n \geq 6$.

Proposition 4.4. (i) $i^{*} \alpha^{k} \in \pi_{2 k(p-1)-1}^{s}\left(Y_{p}\right) \quad$ and $\quad i^{*}\left(\alpha^{k-1} \delta \alpha\right) \in$ $\pi_{2 k(p-1)-2}^{s}\left(Y_{p}\right)$ do not vanish.
(ii) For $n \geq 4, i^{*} \alpha^{k}(n) \in \pi_{n+2 k(p-1)-1}\left(Y_{p}^{n}\right)$ is a coextension of $(-1)^{n} \alpha_{k}(n-1)$.
(iii) Assume that $\alpha_{k-1}(n) \circ \alpha_{1}(n+2(k-1)(p-1)-1)=0$ for some odd n, then there exists an element

$$
\alpha_{k}^{\prime}(n) \in \pi_{n+2 k(p-1)-1}\left(S^{n}: p\right)
$$

such that $i_{*} \alpha_{k}^{\prime}(n)=i^{*}\left(\alpha^{k-1} \delta \alpha(n+1)\right)$. Thus $\alpha_{k}^{\prime}(m)=S^{m-n} \alpha_{k}^{\prime}(n)$, $m \geq n$, and $\alpha_{k}^{\prime}=S^{\infty} \alpha_{k}^{\prime}(n) \in \pi_{2 k(p-1)-1}^{s}$ are not divisible by p. The assumption holds for $n \geq 2 k+1$.
(iv) If $k \neq 0(\bmod p)$, then by putting $\alpha_{k}^{\prime}(n)=(1 / k) \alpha_{k}(n)$ the assertion of (iii) holds for $n \geq 6$.

Proof. (i) $\pi^{*} i^{*} \alpha^{k}=\alpha^{k} \delta \neq 0$ and $\pi^{*} i^{*}\left(\alpha^{k-1} \delta \alpha\right)=\alpha^{k-1} \delta \alpha \delta \neq 0$ by (4.5). By the exactness of (4.1), ii) we have $i^{*} \alpha^{k} \neq 0$ and $i^{*}\left(\alpha^{k-1} \delta \alpha\right) \neq 0$.
(ii) Since $\alpha(4)$ is a coextension of $\bar{\alpha}_{1}(3), \alpha^{k}(4)=\alpha \circ S \alpha^{k-1}(2 p+1)$ is a coextension of $\bar{\alpha}_{1}(3) \circ \alpha^{k-1}(2 p+1)$. Then $i^{*} \alpha^{k}(4)$ is a coextension of $i^{*}\left(\bar{\alpha}_{1}(3) \circ \alpha^{k-1}(2 p+1)\right)=\bar{\alpha}_{1}(3) \circ\left(i^{*} \alpha^{k-1}(2 p+1)\right)=\alpha_{k}(3)$. Thus $i^{*} \alpha^{k}(n)=S^{n-4} i^{*} \alpha^{k}(4)$ is a coextension of $(-1)^{n-4} S^{n-4} \alpha_{k}(3)=(-1)^{n}$ $\alpha_{k}(n-1)$.
(iii) It follows from (ii) that $i^{*}\left(\alpha^{k-1} \delta \alpha(n+1)\right)=\left(i^{*} \alpha^{k-1}(n+1)\right)$ $\circ S\left(i^{*} \pi_{*} \alpha(n+2(k-1)(p-1)-1)\right)$ is a coextension of $\alpha_{k-1}(n) 。$ $\alpha_{1}(n+2(k-1)(p-1)-1)=0$. This means that $i^{*}\left(\alpha^{k-1} \delta \alpha\right)$ is in $i_{*} \pi_{n+2 k(p-1)-1}\left(S^{n}\right)$. Choose an element $\alpha_{k}^{\prime}(n)$ of $\pi_{n+2 k(p-1)-1}\left(S^{n}: p\right)$ such that $i_{*} \alpha_{k}^{\prime}(n)=i^{*}\left(\alpha^{k-1} \delta \alpha(n+1)\right)$, then the assertions of (iii), except the last one, are verified easily. By Lemma 4.1

$$
S^{\infty}\left(\alpha_{k-1}(n) \circ \alpha_{1}(n+2(k-1)(p-1))=\alpha_{k-1} \alpha_{1}=\alpha_{1} \alpha_{k-1}=0 .\right.
$$

Let $n=2 m-1$, then $S^{\infty}: \pi_{2 m-1+2 k(p-1)-2}\left(S^{2 m-1}: p\right) \rightarrow\left(\pi_{2 k(p-1)-1}^{S}: p\right)$ is an isomorphism for $2 k(p-1)-2<2 m(p-1)-2$, i.e., for $k \leq m-1$, by (2. 8). Thus the assumption of (iii) holds for $n \geq 2 k+1$.
(iv) By Corollary 4.3, $\pi^{*} i_{*} \alpha_{k}^{\prime}(5)=\pi^{*}(1 / k) i_{*} \pi_{*} i^{*} \alpha^{k}(5)=(1 / k)$ $\delta \alpha^{k} \delta(6)=\alpha^{k-1} \delta \alpha \delta(6)=\pi^{*} i^{*} \alpha^{k-1} \delta \alpha(6)$. By the exactness of Puppe's sequence we have $i^{*} \alpha_{k}^{\prime}(5) \equiv i^{*} \alpha^{k-1} \delta \alpha(6) \bmod p \cdot \pi_{2 k(p-1)+4}\left(Y_{p}^{6}\right)$. It follows from (1.5) that $i^{*} \alpha_{k}^{\prime}(n)=i^{*} \alpha^{k-1} \delta \alpha(n+1)$ for $n \geq 6$. q.e.d.

Proposition 4.5. The complex $K(m, 2)=Y_{p}^{2 m p-2} \cup_{h} C Y_{p}^{2 m p+2 p-5}$, $m \geq 2$, of Proposition 3.6 can be chosen such that the attaching map $h: Y_{p}^{2 m p+2 p-5} \rightarrow Y_{p}^{2 m p-2}$ represents $(m+1) \delta \alpha(2 m p-2)-m \cdot \alpha \delta(2 m p$ $-2)$.

The complex $\bar{K}=Y_{p}^{2 p} \cup_{h} C Y_{p}^{4 p-3}$ of Proposition 3.8 can be chosen such that the attaching map $h: Y_{p}^{4 p-3} \rightarrow Y_{p}^{2 p}$ represents $2 \cdot \delta \alpha(2 p)-\alpha \hat{o}(2 p)$.

Proof. First remark that these elements belong to $\pi\left(Y_{p}^{n+2 p-3}\right.$; $\left.Y_{p}^{n}\right), n=2 m p-2$ or $=2 p$, and the group is in stable range by (1.4). Since the group is generated by $\delta \alpha(n)$ and $\alpha \delta(n),\{h\}=x \cdot \delta \alpha(n)$ $+y \cdot \alpha \delta(n)$ for some $x, y \in Z_{\rho}$. We may assume that h maps $S^{n+2 p-4}$ into S^{n-1}. Let $K=K(m, 2)$ or $=\bar{K}, h_{0}=h \mid S^{n+2 p-4}: S^{n+2 p-4} \rightarrow S^{n-1}$ and $\bar{h}: S^{n+2 p-3} \rightarrow S^{n}$ satisfy $\pi \circ h=\bar{h} \circ \pi$. Then h_{0} and \bar{h} represent $x \cdot \alpha_{1}(n-1)$ and $y \cdot \alpha_{1}(n+2 p-4)$ respectively by suitable orientations of the speheres. Let K_{0} be a mapping cone of h_{0} naturally imbedded in K as a subcomplex, then K / K_{0} is a mapping cone of \bar{h}. Given orientations $u_{0} \in H^{n-1}\left(K_{0} ; Z_{p}\right), u_{0}^{\prime} \in H^{n+2 p-3}\left(K_{0} ; Z_{p}\right)$ and $\bar{u} \in H^{n}\left(K / K_{0}\right.$; $\left.Z_{p}\right), \bar{u}^{\prime} \in H^{n+2 p-2}\left(K / K_{0} ; Z_{p}\right)$ by the construction of the mapping cones, we have $\mathscr{P}^{1} u_{0}=x \cdot u_{0}^{\prime}$ and $\mathscr{P}^{1} \bar{u}=y \cdot \bar{u}^{\prime}$. We denote by the same symbol $u_{0}, u_{0}^{\prime}, \bar{u}, \bar{u}^{\prime} \in H^{*}\left(K ; Z_{p}\right)$ the elements corresponding uniquely to the above orientations by the natural homomorphisms i^{*} and π^{*}. Obviously $\Delta u_{0}=\bar{u}$. But $\Delta u_{0}^{\prime}=-\bar{u}^{\prime}$ since the cell $C C S^{n+2 p-4}=S^{n+2 p-4}$ $\bigwedge I \wedge I$ in K is oriented with respect to one of the coordinates I, the Bockstein operator Δ is defined with respect to the other coordinate hence the sign appears by interchanging the coordinates. We have the relation

$$
x \cdot \mathscr{P}^{1} \Delta u_{0}=x \cdot \mathscr{P}^{1} \bar{u}=x y \cdot \bar{u}=-x y \cdot \Delta u_{0}^{\prime}=-y \cdot \Delta \mathscr{P}^{1} u_{v} .
$$

On the other hand the relations

$$
(m+1) \mathscr{P}^{1} \Delta a_{0}=m(m+1) \Delta a_{1}=m \cdot \Delta \mathscr{P}^{1} a_{0}, \quad \mathscr{P}^{1} \neq 0
$$

hold in $Q_{4}^{2 m-1}(m \geq 2)$ by Theorem 3.1 and in $\Omega^{3} X_{5}(m=1)$ by Proposition 3.7. By use of natural isomorphism G^{*} in Proposition
3. 6 or Proposition 3.8, we see that the same relation holds replacing a_{0} by u_{0}. Since $\mathscr{P}^{1} \neq 0$ in K, x or $y \not \equiv 0(\bmod p)$ and there is an integer $z \neq 0(\bmod p)$ such that

$$
z x \equiv m+1 \quad \text { and } \quad z y \equiv-m \quad(\bmod p)
$$

If $z \equiv 1(\bmod p), K$ is the required complex. If $z \neq 1(\bmod p)$, replacing h by a representative h^{\prime} of $z\{h\}$ and K by $K^{\prime}=Y_{p}^{n} \cup_{h^{\prime}}$ $C Y_{p}^{n+2 p-4}$ we have a map $f: K^{\prime} \rightarrow K$ which extends the identity of Y_{p}^{n} and induces isomorphisms of cohomology groups. Then f is a homotopy equivalence and K^{\prime} is the required cpmplex. q. e.d.

Proposition 4.6. Let $n \geq 7, k>0$ and let $h: Y_{p}^{n+2 p-3} \rightarrow Y_{p}^{n}$ be a representative of $(m+1) \delta \alpha(n)-m \alpha \delta(n)$. For the element $i^{*} \alpha^{k-1}$ $(n+2 p-3)$ of $\pi_{n+2 k(p-1)-2}\left(Y_{p}^{n+2 \rho-3}\right)$ we have

$$
h_{*}\left(i^{*} \alpha^{k-1}(n+2 p-3)\right)=(m+k) \cdot i^{*}\left(\alpha^{k-1} \delta \boldsymbol{\alpha}(n)\right) \in \pi_{n+2 k(p-1)-2}\left(Y_{p}^{n}\right) .
$$

If $n=6$, the relation holds $\bmod p \cdot \pi_{2 k(p-1)+4}\left(Y_{p}^{6}\right)$.
Proof. For $n \geq 6$, we have by Corollary 4.3

$$
\begin{aligned}
\pi^{*} & h_{*}\left(i^{*} \alpha^{k-1}(n+2 p-3)\right)=\{(m+1) \delta \alpha(n)-m \alpha(n)\} \circ \alpha^{k-1} \delta(n+2 p-3) \\
& =(m+1) \delta \alpha^{k} \delta(n)-m \cdot \alpha \delta \alpha^{k-1} \delta(n) \\
& =\{(m+1) k-m(k-1)\} \alpha^{k-1} \delta \alpha \delta(n)=\pi^{*}(m+k) i^{*}\left(\alpha^{k-1} \delta \alpha(n)\right) .
\end{aligned}
$$

From the exactness of Puppe's sequence

$$
\pi_{j}\left(Y_{p}^{n}\right) \xrightarrow{p} \pi_{j}\left(Y_{p}^{n}\right) \xrightarrow{\pi^{*}} \pi\left(Y_{p}^{j+1} ; Y_{p}^{n}\right)
$$

it follows

$$
\begin{aligned}
& h_{*}\left(i^{*} \alpha^{k-1}(n+2 p-3)\right) \equiv(m+k) \cdot i^{*}\left(\alpha^{k-1} \delta \alpha(n)\right) \\
& \quad \bmod p \cdot \pi_{n+2 k(p-1)-2}\left(Y_{p}^{n}\right) .
\end{aligned}
$$

If $n \geq 7$, the relation holds $\bmod p \cdot S\left(\pi_{n+2 k(p-1)-3}\left(Y_{p}^{n-1}\right)\right)$ which vanishes by (1.5).
q. e. d.

Lemma 4.7. Let $h: X \rightarrow Y$ be a map and let $\alpha \in \pi_{i}(X)$ be an element of order p such that $h_{*} \alpha=0$. Let $r \in \pi_{i+1}\left(Y \cup_{k} C X\right)$ be a coextension of α and $\bar{\alpha} \in \pi\left(Y_{p}^{i+1} ; X\right)$ an extension of α. Then
there exists an element $\gamma_{0} \in \pi_{i+1}(Y)$ such that

$$
p_{\gamma}=j_{*} \gamma_{0} \quad \text { and } \quad \pi^{*} \gamma_{0}=-h^{*} \bar{\alpha}
$$

where $j: Y \rightarrow Y \cup_{h} C X$ is the inclusion.
Proof. By Propositions 1.8 and 1.9 of [18] there exist elements $\gamma_{0}^{\prime}, \gamma_{0}^{\prime \prime} \in\left\{\{h\}, \alpha, p_{i}\right\}$ such that $p_{\gamma}=-j_{*} \gamma_{0}^{\prime}$ and $\pi^{*} \gamma_{0}^{\prime \prime}=h_{*} \bar{\alpha}$. Since $\gamma_{0}^{\prime} \equiv \gamma_{0}^{\prime \prime} \bmod h_{*} \pi_{i+1}(X)+p \cdot \pi_{i+1}(Y), \quad r_{0}^{\prime}-\gamma_{0}^{\prime \prime}=h_{*} \delta+p \delta^{\prime}$ for some $\delta \in$ $\pi_{i+1}(X)$ and $\delta^{\prime} \in \pi_{i+1}(Y)$. Put $\gamma_{0}=-\gamma_{0}^{\prime}+h_{*} \delta=-\gamma_{0}^{\prime \prime}-p \delta^{\prime}$ then we have

$$
j_{* \gamma_{0}}=-j_{* \gamma_{0}^{\prime}}+j_{*} h_{*} \delta=p_{\gamma}
$$

and

$$
\pi^{*} \gamma_{0}=-\pi^{*} \gamma_{0}^{\prime \prime}-\pi^{*}\left(p \delta^{\prime}\right)=-h_{*} \bar{\alpha} .
$$

Proposition 4.8. Let $n \geq 7, h: Y_{p}^{n+2 p-3} \rightarrow Y_{p}^{n}$ be a representative of $(m+1) \delta \alpha(n)-m \alpha \delta(n)$ and let $K=Y_{p}^{n} \bigcup_{h} C Y_{p}^{n+2 p-3}$ be a mapping cone of h. Assume that $m+k \equiv 0(\bmod p)$.
(i) For $k \geq 2$, there exists a coextension $\gamma \in \pi_{n+2 k(p-1)-2}(K)$ of $i^{*}\left(\alpha^{k-2} \delta \alpha(n+2 p-3)\right) \in \pi_{n+2 k(p-1)-3}\left(Y_{p}^{n+2 p-3}\right)$ such that

$$
p \cdot \gamma=j_{*}\left(i^{*} \alpha^{k-1} \delta \alpha(n)\right) \quad \text { if } n>7
$$

and $\quad p \cdot \gamma \equiv i_{*}\left(i^{*} \alpha^{k-1} \delta \alpha(7)\right) \bmod p \cdot j_{*} \pi_{2 k(p-1)+5}\left(Y_{p}^{7}\right) \quad$ if $n=7$.
(ii) For $k \geq 1$, there exists a coextension $\gamma \in \pi_{n+2 k(p-1)-1}(K)$ of $i^{*} \alpha^{k-1}(n+2 p-3) \in \pi_{n+2 k(p-1)-2}\left(Y_{p}^{n+2 p-3}\right)$ such that

$$
p \cdot r=-j_{*}\left(i^{*} \alpha^{k}(n)\right) \quad \text { if } n>7
$$

and

$$
p \cdot \gamma \equiv-j_{*}\left(i_{*} \alpha^{k}(7)\right) \bmod p \cdot j_{*} \pi_{2 k(p-1)+\theta}\left(Y_{p}^{7}\right) \quad \text { if } n=7
$$

Proof. (i) Put $q=2 k(p-1)$. By Corollary 4.3 the relation

$$
\pi^{*} h_{*}\left(i^{*} \alpha^{k-2} \delta \alpha(n+2 p-3)\right)=(m+1) \delta \alpha^{k-1} \delta \alpha \delta(n)-m \cdot \alpha \delta \alpha^{k-2} \delta \alpha \delta(n)=0
$$

holds for $n \geq 6$. By the exactness of (4.8) we have

$$
h_{*}\left(i^{*} \alpha^{k-2} \delta \alpha(n+2 p-3)\right) \in p \cdot S \pi_{n+q-4}\left(Y_{p}^{n-1}\right)=0 \quad \text { for } n \geq 7
$$

Thus a coextension γ of $i^{*}\left(\alpha^{k-2} \delta \alpha(n+2 p-3)\right)$ exists. Obviously $\alpha^{k-2} \delta \boldsymbol{\alpha}(n+2 p-3)$ is an extension of $i^{*}\left(\alpha^{k-2} \delta \alpha(n+2 p-3)\right)$. By Lemma 4.7 there exists $\gamma_{0} \in \pi_{n+q-2}\left(Y_{p}^{n}\right)$ such that $p_{r}=j_{* r_{0}}$ and $\pi^{*} \gamma_{0}=-h_{*} \alpha^{k-2}$ $\delta \alpha(n+2 p-3)$. By use of Corollary 4.3 we have

$$
\begin{aligned}
\pi^{*} \gamma_{0} & =-\{(m+1) \delta \alpha(n)-m \cdot \alpha \delta(n)\} \circ \alpha^{k-2} \delta \alpha(n+2 p-3) \\
& =-(m+1) \delta \alpha^{k-1} \delta \alpha(n)+m \cdot \alpha \delta \alpha^{k-2} \delta \alpha(n) \\
& =\{-(m+1)(k-1)+m(k-2)\} \alpha^{k-1} \delta \alpha \delta(n) \\
& =-\pi^{*} i^{*}(m+k-1) \alpha^{k-1} \delta \alpha(n)=\pi^{*} i^{*} \alpha^{k-1} \delta \alpha(n) .
\end{aligned}
$$

Then (i) is proved by the exactness of (4.8) and $p \cdot S \pi_{n+q-3}\left(Y_{p}^{n-1}\right)$ $=0$.
(ii) By Proposition 4.6, $h_{*}\left(i^{*} \alpha^{k-1}(n+2 p-3)\right)=(m+k) i^{*}\left(\alpha^{k-1}\right.$ $\delta \alpha(n))=0$. Thus there exists a coextension r of $i^{*} \alpha^{k-1}(n+2 p-3)$. By Lemma $4.7 p_{r}=j_{*} \gamma_{0}$ and $\pi^{*} \gamma_{0}=-h_{*} \alpha^{k-1}(n+2 p-3)$ for some γ_{0}. By use of Corollary 4.3 we have

$$
\begin{aligned}
\pi^{*} r_{0}= & -\{(m+1) \delta \alpha(n)-m \alpha \delta(n)\} \circ \alpha^{k-1}(n+2 p-3) \\
= & -(m+1) \delta \alpha^{k}(n)+m \cdot \alpha \delta \alpha^{k-1}(n) \\
= & -(m+1)\left\{k \cdot \alpha^{k-1} \delta \alpha(n)+(1-k) \alpha^{k} \delta(n)\right\} \\
& \quad+m\left\{(k-1) \alpha^{k-1} \delta \alpha(n)+(2-k) \alpha^{k} \delta(n)\right\} \\
= & -(m+k) \alpha^{k-1} \delta \alpha(n)+(m+k-1) \alpha^{k} \delta(n)=-\alpha^{k} \delta(n) \\
= & -\pi^{*} i^{*} \alpha^{k}(n) .
\end{aligned}
$$

Then (ii) is proved by the exactness of (4.8).

5. Unstable elements of the first and the second types.

An element γ of $\pi_{i}\left(S^{2 m+1}: p\right)$ will be called as an unstable element of the first type if $S^{2} \gamma=0$ and $r \notin \operatorname{Im} S^{2}$. Consider the exact sequence (1.7) of the case $n=2 m-1$ and $k=2$:

$$
\begin{equation*}
\cdots \rightarrow \pi_{i}\left(Q_{2}^{2 m-1}\right) \xrightarrow{p_{*}} \pi_{i}\left(S^{2 m-1}\right) \xrightarrow{S^{2}} \pi_{i+2}\left(S^{2 m+1}\right) \xrightarrow{H^{(2)}} \pi_{i-1}\left(Q_{2}^{2 m-1}\right) \xrightarrow{p_{*}} \cdots . \tag{5.1}
\end{equation*}
$$

For the map $d: \Omega^{3} Q_{2}^{2 m+1} \rightarrow Q_{2}^{2 m-1}$ of (3.4) we have the following commutative diagram.

$$
\begin{align*}
& \pi_{i+3}\left(Q_{2}^{2 m+1}\right) \xrightarrow{p_{*}} \pi_{i+3}\left(S^{2 m+1}\right) \tag{5.2}\\
& \quad \approx \mid \Omega^{3} \\
& \pi_{i}\left(\Omega^{3} Q_{2}^{2 m+1}\right) \xrightarrow{d_{*}} \pi_{i}\left(Q_{2}^{2 m-1}\right) .
\end{align*}
$$

Thus we have
(5.3). If $d_{*} \Omega^{3} \gamma^{\prime}=H^{(2)} p_{*} \gamma^{\prime} \neq 0$ for some $\gamma^{\prime} \in \pi_{i+3}\left(Q_{2}^{2 m+1}: p\right)$, then $r=p_{*} r^{\prime}$ is an unstable element of the first type.

Choose a complex $K(m, 2)=Y_{p}^{2 m p-2} \cup_{k} C Y_{p}^{2(m+1) p-5}$ and a map G : $K(m, 2) \rightarrow Q_{4}^{2 m-1}$ which satisfy Proposition 3.6 and Proposition 4.5. Thus the map $h: Y_{p}^{2(m+1) p-5} \rightarrow Y_{p}^{2 m p-2}$ represents

$$
(m+1) \delta \alpha(2 m p-2)-m \cdot \alpha \delta(2 m p-2) .
$$

By Proposition 3.6 we have a commutative diagram

For the case $m=1$ a complex $\bar{K}=Y_{p}^{2 p} \cup_{h} C Y_{p}^{4 p-3}$ of Proposition 3.8 and the following commutative diagram will be also considered.

Theorem 5.1. (i) Let $\beta \in \pi_{i}\left(S^{2(m+1) p-7}\right)$ be an element of order p. Then there exists an element γ^{\prime} of $\pi_{i+5}\left(Q_{2}^{2 m+1}: p\right)$ such that $p \cdot \gamma^{\prime}=0, I\left(r^{\prime}\right)=S^{8} \beta$ and $I H^{(2)}\left(p_{* r^{\prime}}\right)=H_{p}\left(p_{*} r^{\prime}\right)=x m \cdot \alpha_{1}(2 m p+1) \circ S^{5} \beta$ for some $x \not \equiv 0(\bmod p)$. Thus if $m \neq 0(\bmod p)$ and $\alpha_{1}(2 m p+1)$ 。 $S^{5} \beta \neq 0$ then $p_{*} \gamma^{\prime}$ is an unstable element of the first type.
(ii) Let β be an element of $\pi_{i}\left(S^{2(m+1) p-7}: p\right)$. Then the element $r^{\prime}=I^{\prime}\left(S^{6} \beta\right) \in \pi_{i+4}\left(Q_{2}^{2 m+1} ; p\right)$ satisfies

$$
p \cdot r^{\prime}=0 \text { and } H^{(2)} p_{*} r^{\prime}=y \cdot(m+1) \cdot I^{\prime}\left(\alpha_{1}(2 m p-1) \circ S^{3} \beta\right)
$$

for some $y \not \equiv 0(\bmod p)$. Thus if $m \neq-1(\bmod p)$ and $\alpha_{1}(2 m p-1)$ $\circ S^{3} \beta \notin \Delta \pi_{i+5}\left(S^{2 m p+1}: p\right)$ then $p_{*} \gamma^{\prime}$ is an unstable element of the first type.
(iii) In the case $m=1$, replacing $\beta \in \pi_{i}\left(S^{2(m+1) p-7}\right)$ and $S^{t} \beta$, $t \geq 3$, by $\beta \in \pi_{i+2}\left(S^{4 p-5}\right)$ and $S^{t-2} \beta$ respectively, (i) and (ii) still hold.

Proof. (i) Let $\beta_{0} \in \pi_{i+1}\left(Y_{p}^{2(m+1) p-6}\right)$ be a coextension of β. $\pi_{*} \beta_{0}$ $=S \beta . \quad$ By (1.5), $p \cdot S \beta_{0}=0 . \quad$ By Lemma 2.5

$$
I \Omega^{-3} g_{*}^{\prime} S \beta_{0}=y \cdot S^{6} S\left(\pi_{*} \beta_{0}\right)=y \cdot S^{8} \beta
$$

for some $y \neq 0(\bmod p)$. For an integer z such that $z y \equiv 1(\bmod p)$, we put $\gamma^{\prime}=z \cdot \Omega^{-3} g^{\prime}{ }_{*} S \beta_{0}$. Then $p \cdot \gamma^{\prime}=0$ and $\gamma^{\prime}=S^{8} \beta$. We have

$$
\begin{array}{rlr}
\quad I & H^{(2)} p_{*} r^{\prime}=z \cdot I H^{(2)} p_{*} \Omega^{-3} g_{*}^{\prime} S \beta_{0} \\
& =z \cdot I\left(d_{*} g_{*}^{\prime} S \beta_{0}\right) & \text { by (5.2) } \\
& =z \cdot I\left(G_{1 *} h_{*} S \beta_{0}\right) & \text { by (5.4) } \\
& =y^{\prime} z \cdot S^{3}\left(\pi_{*} h_{*} S \beta_{0}\right) \text { for some } y^{\prime} \neq 0(\bmod p) & \text { by Lemma 2.5, } \\
\text { and } \quad \pi_{*} & h_{*} S \beta_{0}=\pi_{*}\{(m+1) \delta \alpha(2 m p-2)-m \cdot \alpha \delta(2 m p-2)\} \circ S \beta_{0} \\
& =\left\{(m+1) \pi_{*} i_{*} \pi_{*} \alpha(2 m p-2)-m \cdot \pi^{*} i^{*} \pi_{*} \alpha(2 m p-2)\right\} \circ S \beta_{0} \\
& =-m \cdot \alpha_{1}(2 m p-2) \circ \pi_{*} S \beta_{0}=-m \cdot \alpha_{1}(2 m p-2) \circ S^{2} \beta .
\end{array}
$$

Thus $I H^{(2)} p_{*} \gamma^{\prime}=-m y^{\prime} z \circ \alpha_{1}(2 m p+1) \circ S^{5} \beta$ and (i) is proved by putting $x=-y^{\prime} z$ and by (5.3).
(ii) By Lemma 2.5,

$$
r^{\prime}=I^{\prime}\left(S^{6} \beta\right)=x \cdot \Omega^{-3} g_{*}^{\prime} i_{*} S \beta \quad \text { for some } x \not \equiv 0(\bmod p) .
$$

By (2.7) and (2.5), we have $p \gamma^{\prime}=I^{\prime}\left(p \cdot S^{6} \beta\right)=I^{\prime} \Delta S^{2}\left(S^{6} \beta\right)=0$. For some $x^{\prime} \not \equiv 0(\bmod p)$ we have

$$
\begin{aligned}
& H^{(2)} p_{*} r^{\prime}=x \cdot H^{(2)} p_{*} \Omega^{-3} g_{*}^{\prime} i_{*} S \beta=x \cdot d_{*} g_{*}^{\prime} i_{*} S \beta \\
& \quad=x \cdot G_{1 *} h_{*} i_{*} S \beta \\
& \quad=x \cdot G_{1 *}\left\{(m+1) i^{*} i_{*} \pi_{*} \alpha(2 m p-3)-m \cdot i^{*} \pi^{*} i^{*} \alpha(2 m p-2)\right\} \circ S \beta \\
& \quad=x(m+1) G_{1 *} i_{*} \alpha_{1}(2 m p-3) \circ S \beta \\
& \quad=x x^{\prime}(m+1) I^{\prime} S^{2}\left(\alpha_{1}(2 m p-3) \circ S \beta\right) \\
& =x x^{\prime}(m+1) I^{\prime}\left(\alpha_{1}(2 m p-1) \circ S^{3} \beta\right) .
\end{aligned}
$$

Thus (ii) is proved by putting $y=x^{\prime} x$ and by (5.3), (2.5).
(iii) is proved similarly by use of (5.4)' and Lemma 2. 7.

Theorem 5.2. For $k \geq 1$ there exists an element r^{\prime} of $\pi_{2 m p+2 k(p-1)-1}\left(Q_{2}^{2 m+1}: p\right)$ satisfying the following conditions:
(i) $p \cdot \gamma^{\prime}=0$,
(ii) $I\left(\gamma^{\prime}\right)=\alpha_{k-1}(2(m+1) p+1) \in \pi_{2(m+1) p+2(k-1)(p-1)}\left(S^{2(m+1) p+1}\right.$; $\left.p\right)$ for $k>1$ and $\gamma^{\prime}=I_{t_{2(m+1) p-1}}^{\prime}$ for $k=1$,
(iii) if there exists an element $\alpha_{k}^{\prime}(2 m p-3)$ of $\pi_{2 m p+2 k(p-1)-4}$ $\left(S^{2 m p-3}: p\right)$ such that $i_{*} \alpha_{k}^{\prime}(2 m p-3)=i^{*}\left(\alpha^{k-1} \delta \alpha(2 m p-2)\right)$ then

$$
H^{(2)} p_{*} r^{\prime}=x \cdot(m+k) \cdot I^{\prime}\left(S^{2} \alpha_{k}^{\prime}(2 m p-3)\right)
$$

for some $x \not \equiv 0(\bmod p)$,
(iv) in the case $m=1$ we may replace $\alpha_{k}^{\prime}(2 m p-3)$ by $\alpha_{k}^{\prime}(2 p-1)$ such that $i_{*} \alpha_{k}^{\prime}(2 p-1)=i^{*} \alpha^{k-1} \delta \alpha(2 p)$ in (iii).

Proof. By Lemma 2.5

$$
\begin{gathered}
I\left(\Omega^{-3} g_{*}^{\prime} i^{*} \alpha^{k-1}(2(m+1) p-5)\right)=y \cdot S^{6} \pi_{*} i^{*} \alpha^{k-1}(2(m+1) p-5) \\
=y \cdot S^{6} \alpha_{k-1}(2(m+1) p-5)=y \cdot \alpha_{k-1}(2(m+1) p+1)
\end{gathered}
$$

for some $y \neq 0(\bmod p)$. Put $\gamma^{\prime}=(1 / y) \Omega^{-3} g_{*}^{\prime} i^{*} \alpha^{k-1}(2(m+1) p-5)$, then (i) and (ii) hold. We have under the assumption of (iii)

$$
\begin{array}{rlr}
H^{(2)} p_{*} r^{\prime} & =d_{*} \Omega^{3} \gamma^{\prime}=(1 / y) d_{*} g_{*}^{\prime} i^{*} \alpha^{k-1}(2(m+1) p-5) & \text { by (5.2) } \\
& =(1 / y) G_{1 *} h_{*} i^{*} \alpha^{k-1}(2(m+1) p-5) & \text { by (5.4) } \\
& =(m+k) / y \cdot G_{1 *} i^{*} \alpha^{k-1} \delta \alpha(2 m p-2) & \text { by Proposition } 4.6 \\
& =(m+k) / y \cdot G_{1 *} i_{*} \alpha_{k}^{\prime}(2 m p-3) & \\
& =(m+k) x^{\prime} / y \cdot I^{\prime}\left(S^{2} \alpha_{k}^{\prime}(2 m p-3)\right) & \text { by Lemma } 2.5
\end{array}
$$

for some $x^{\prime} \equiv 0(\bmod p)$. Then (iii) holds for $x \equiv x^{\prime} / y(\bmod p)$. Here the condition $2 m p-2 \geq 7$ is necessary in order to apply Proposition 4.6. So for $m=1$ we use Lemma 2.7 in place of Lemma 2.5. Then (iv) is obtained and (iii) of $m=1$ follows. q. e. d.

Theorem 5.3. Assume that $m+k \equiv 0(\bmod p)$ and $m \geq 2$.
(i) For $k \geq 1$ there exist elements

$$
\varepsilon \in \pi_{2 m+2(m+k)(p-1)-1}\left(Q_{2}^{2 m+1}: p\right), \varepsilon^{\prime} \in \pi_{2 m+2(m+k)(p-1)-3}\left(Q_{2}^{2 m-1}: p\right)
$$

and

$$
\gamma \in \pi_{2 m+2(m+k)(p-1)-3}\left(S^{2 m-1}: p\right)
$$

such that
$p_{*} \varepsilon=S^{2} r, p_{*} \varepsilon^{\prime}=p \cdot r, I\left(\varepsilon^{\prime}\right)=x \cdot \alpha_{k}(2 m p+1)$ for some $x \neq 0(\bmod p)$
and $\quad I(\varepsilon)=\alpha_{k-1}(2(m+1) p+1)$ for $k>1, \quad \varepsilon=I^{\prime} \varepsilon_{2(m+1) p-1}$ for $k=1$.
(ii) For $k \geq 2$ there exist elements

$$
\varepsilon \in \pi_{2 m+2(m+k)(p-1)-2}\left(Q_{2}^{2 m+1}: p\right), \varepsilon^{\prime} \in \pi_{2 m+2(m+k)(p-1)-4}\left(Q_{2}^{2 m-1}: p\right)
$$

and

$$
r \in \pi_{2 m+2(m+k)(p-1)-4}\left(S^{2 m-1}\right)
$$

satisfying the following properties.

$$
p_{*} \varepsilon=S^{2} r \quad \text { and } \quad p_{*} \varepsilon^{\prime}=p \cdot r .
$$

If there exists an element $\alpha_{k-1}^{\prime}(2(m+1) p-3)$ of Proposition 4.4, (iii), then $\varepsilon=I^{\prime}\left(S^{2} \alpha_{k-1}^{\prime}(2(m+1) p-3)\right)$. If there exists an element $\alpha_{k}^{\prime}(2 m p-3)$ of Proposition 4.4, (iii), then $I^{\prime}\left(S^{2} \alpha_{k}^{\prime}(2 m p-3)\right)=x \cdot \varepsilon^{\prime}$ for some $x \neq 0(\bmod p)$.

Proof. By Proposition 3.6 and Proposition 4.5 we have the following commutative diagram:

where $K(m, 2)$ is a mapping cone of a representatives h of $(m+1)$ $\cdot \delta \alpha(2 m p-2)-m \cdot \alpha \delta(2 m p-2)$ and $\{g\}=\Omega^{2}\left\{g^{\prime \prime}\right\}$. Translate the elements of Proposition 4.8, (ii), which are in the top sequence, to the middle one, then we see the existence of an element $\gamma^{\prime} \in$ $\pi_{2 m+2(m+k)(p-1)-3}\left(Q_{4}^{2 m-1}\right)$ such that $\left(r^{\prime}=G_{*} \gamma\right.$ for γ of Proposition 4.8, (ii))

$$
-p \cdot r^{\prime}=i_{*} G_{1 *}\left(i^{*} \alpha^{k}(2 m p-2)\right) \text { and } j_{*} \gamma^{\prime}=g_{*}\left(i^{*} \alpha^{k-1}(2(m+1) p-4)\right)
$$

As is seen in the proof of Theorem 5.2, (ii) these relations imply the properties of (i) for $\gamma=z \cdot p_{*} \gamma^{\prime}, \varepsilon=z \cdot \Omega^{-2} j_{*} \gamma^{\prime}$ and $\varepsilon^{\prime}=-z$. $G_{1 *} i^{*} \alpha^{k}(2 m p-2)$ with a suitable coefficient $z \neq 0(\bmod p)$.

The proof of (ii) is similar applying Proposition 4.8. (ii), and omitted.

Theorem 5.4. (i) Assume that $m+k \equiv 0(\bmod p)$ and there exist $\alpha_{k}^{\prime}(2 m p-3)$ and $\alpha_{k-1}^{\prime}(2(m+1) p-5)$ of Proposition 4.4, (iii). If there exists an element r of $\pi_{2 m+2(m+k)(p-1)+1}\left(S^{2 m+3}: p\right)$ such that $H^{(2)} r=I^{\prime} \alpha_{k-1}^{\prime}(2(m+1) p-1), k \geq 2$, then there exists an element $r^{\prime} \in \pi_{2 m+2(m+k)(p-1)-1}\left(S^{2 m+1}: p\right)$ such that

$$
p \cdot \gamma=S^{2} \gamma^{\prime}
$$

and

$$
H^{(2)} \gamma^{\prime} \equiv x \cdot I^{\prime} \alpha_{k}^{\prime}(2 m p-1) \bmod p \cdot \pi_{2 m+2(m+k)(p-1)-4}\left(Q_{2}^{2 m-1}: p\right)
$$

for some $x \not \equiv 0(\bmod p)$.
(ii) Assume that $m+k \equiv 0(\bmod p)$ and $I^{\prime}\left(\pi_{2 m+2(m+k)(p-1)+p}\right.$ $\left.\left(S^{2(m+1) p-1}: p\right)\right) \cap H^{(2)}\left(\pi_{2 m+2(m+k)(p-1)+2}\left(S^{2 m+3}: p\right)\right)=0$. If there exists an element γ of $\pi_{2 m+(m+k)(p-1)+2}\left(S^{2 m+3}: p\right)$ such that $H_{p r}=I\left(H^{(2)} \gamma\right)=\alpha_{k-\mathbf{k}}$ $(2(m+1) p+1)$ for $k>1$ and $H^{(2)} \gamma=I^{\prime}\left(\ell_{2(m+1) p-1}\right)$ for $k=1$, then there exists an element r^{\prime} of $\pi_{2 m+2(m+k)(p-1)}\left(S^{2 m+1}: p\right)$ such that

$$
p \cdot \gamma=S^{2} \gamma^{\prime}
$$

and for some $x \neq 0(\bmod p)$

$$
H_{p} r^{\prime}=I\left(H^{(2)} r^{\prime}\right) \equiv x \cdot \alpha_{k}(2 m p+1) \quad \bmod p \cdot \pi_{2 m+2(m+k)(p-1)}\left(S^{2 m p+1}: p\right) .
$$

Proof. (i) $H^{(2)}(p \cdot \gamma)=I^{\prime}\left(p \cdot \alpha_{k-1}^{\prime}(2(m+1) p-1)=I^{\prime} \Delta S^{2} \alpha_{k-1}^{\prime}(2\right.$ $(m+1) p-1)=0$ by (2.7) and by the exactness of (2.5). It follows from the exactness of (5.1) the existence of an element $r^{\prime \prime}$ such that $p \cdot \gamma=S^{2} \gamma^{\prime \prime}$.

Let $\bar{r} \in \pi_{2 m+2(m+k)(p-1)-4}(K(m, 2))$ be a coextension of $i^{*}\left(\alpha^{k-2} \delta \alpha\right.$ $(2(m+1) p-5))$ then by Proposition 4.8, (i), Proposition 4.5 and by Proposition 4.4, (iii) we have

$$
\begin{aligned}
& p \cdot \bar{\gamma}=-j_{*}\left(i^{*} \alpha^{k-1} \delta \alpha(2 m p-2)\right)=-j_{*} i_{*} \alpha_{k}^{\prime}(2 m p-3) \\
& \pi_{*} \bar{\gamma}=i^{*}\left(\alpha^{k-2} \delta \alpha(2(m+1) p-4)\right)=i_{*} \alpha_{k-1}^{\prime}(2(m+1) p-5) .
\end{aligned}
$$

and
By Proposition 3.6 we have the following commutative diagram:

For some $x^{\prime} \neq 0(\bmod p)$ we have, by Lemma 2.5 ,

$$
\begin{aligned}
x^{\prime} \cdot j_{*} G_{*} \bar{\gamma} & =x^{\prime} \cdot g_{*} \pi_{*} \bar{\gamma}=x^{\prime} \cdot g_{*} i_{*} \alpha_{k-1}^{\prime}(2(m+1) p-5) \\
& =\Omega^{2} I^{\prime} S^{4} \alpha_{k-1}^{\prime}(2(m+1) p-5) \\
& =\Omega^{2} I^{\prime} \alpha_{k-1}^{\prime}(2(m+1) p-1) .
\end{aligned}
$$

Thus $j_{*}\left(H^{(4)} r-x^{\prime} \cdot G_{*} \bar{\gamma}\right)=0$. By the exactness of the above middle sequence there exists $\beta \in \pi_{2 m+2(m+k)(\beta-1)-4}\left(Q_{2}^{2 m-1} ; p\right)$ such that

$$
i_{*} \beta=H^{(4)} \gamma-x^{\prime} \cdot G_{*} \bar{\gamma}
$$

and

$$
\begin{aligned}
i_{*}(p \cdot \beta) & =H^{(4)}\left(S^{2} \gamma^{\prime \prime}\right)+x^{\prime} \cdot G_{*} j_{*} i_{*} \alpha_{k}^{\prime}(2 m p-3) \\
& =i_{*}\left(H^{(2)} \gamma^{\prime \prime}+x^{\prime} \cdot G_{1 *} i_{*} \alpha_{k}^{\prime}(2 m p-3)\right) .
\end{aligned}
$$

Again by the exactness of the sequence we have

$$
H^{(2)} \gamma^{\prime \prime}=-x^{\prime} \cdot G_{1 *} i_{*} \alpha_{k}^{\prime}(2 m p-3)+p \cdot \beta+d_{*} \beta^{\prime} \quad \text { for some } \beta^{\prime} .
$$

By Lemma 2.5

$$
-x^{\prime} \cdot G_{1 *} i_{*} \alpha_{k}^{\prime}(2 m p-3)=x \cdot I^{\prime} S^{2} \alpha_{k}^{\prime}(2 m p-3)=x \cdot I^{\prime} \alpha_{k}^{\prime}(2 m p-1)
$$

for some $x \not \equiv 0(\bmod p)$. Put $\gamma^{\prime}=\gamma^{\prime \prime}-p_{*} \Omega^{-3} \beta^{\prime}$, then we have

$$
S^{2} \gamma^{\prime}=S^{2} \gamma^{\prime \prime}-S^{2} p_{*} \Omega^{-3} \beta^{\prime}=p \cdot \gamma
$$

and

$$
H^{(2)} \gamma^{\prime \prime}=x \cdot I^{\prime} \alpha_{k}^{\prime}(2 m p-1)+p \cdot \beta
$$

Remark that the above proof breaks if $m=1$ and $p=3$ since $2 m p-3<7$ and Proposition 4.8 cannot be applied for this case $n=$ $2 m p-3$. So, in the case $m=1$ we use Lemma 2.7 in place of Lemma 2.5. By Proposition 3.8 we have the following commutative diagram:

where $p_{3 *}$ and $p_{5 *} \circ \Omega^{2}$ are isomorphisms for $i>0$ and the inverses are equivalent to $H^{(2)}$ and $H^{(4)}$. By Proposition 4.8, there exists a coextension $\quad \bar{\gamma} \in \pi_{2 p+2 k(p-1)-1}(S \bar{K}) \quad$ of $\quad i^{*}\left(\alpha^{k-2} \delta \boldsymbol{\alpha}(4 p-2)\right)=i_{*} \alpha_{k-1}^{\prime}(4 p-3)$, such that

$$
j_{*}^{\prime} \bar{\gamma}=\chi_{*} \partial^{-1}\left(i_{*} \alpha_{k-1}^{\prime}(4 p-3)\right)
$$

and

$$
p \cdot \bar{\gamma}=-j^{*} i_{*} \alpha_{k}^{\prime}(2 p)+p \cdot j_{*} \varepsilon \quad \text { for some } \varepsilon \in \pi_{2 p+2 k(p-1)-1}\left(Y_{p}^{2 p+1}\right),
$$

where $\varepsilon=0$ if $p \neq 3$. Then (i) for $m=1$ is proved similarly as above and the details are left to the reader.
(ii) is proved by use of Proposition 4.8, (ii) in place of Proposition 4.8, (i) in the proof of (i). $I H^{(2)}(p \cdot \gamma)=p \cdot \alpha_{k-1}(2(m+1) p+1)$ $=0$. By the assumption and (2.5) we have $H^{(2)}(p \cdot \gamma)=0$ and $S^{2} \gamma^{\prime \prime}$ $=p \cdot \gamma$ for some $\gamma^{\prime \prime}$. Let $\bar{\gamma}$ be a coextension of $i^{*} \alpha^{k-1}(2(m+1) p-5)$, then by Proposition 4.8, (ii) and Proposition 4.5 we have

$$
p \cdot \bar{\gamma}=-j_{*}\left(i^{*} \alpha^{k}(2 m p-2)\right) \text { and } \pi_{*} \bar{\gamma}=i^{*} \alpha^{k-1}(2(m+1) p-4) .
$$

By use of Lemma 2.5 we have $I \Omega^{-2} j_{*} G_{*} \bar{\gamma}=y \cdot \alpha_{k-1}(2(m+1) p+1)$ if $k>1$ and $\Omega^{-2} j_{*} G_{*} \bar{\gamma}=y \cdot I^{\prime} c_{2(m+1) p-1}$ if $k=1$, for some $y \neq 0(\bmod p)$. By the exactness of (2.5) and by the assumption we have $H^{(2)} \gamma=$ $(1 / y) \Omega^{-2} j_{*} G_{*} \bar{\gamma}$. By a proof parallel to (i) we obtain

$$
H^{(2)} \gamma^{\prime \prime}=(1 / y) G_{1 *} i^{*} \alpha^{k}(2 m p-2)+p \beta+d_{*} \beta^{\prime}
$$

for some β and β^{\prime}. By Lemma 2.5, $\left.I(-1 / y) G_{1 *} i^{*} \alpha^{k}(2 m p-2)\right)=$ $-y^{\prime} / y \cdot \alpha_{k}(2 m p+1), y^{\prime} \not \equiv 0(\bmod p)$. Then the assertion of (ii) is obtained by putting $x=-y^{\prime} / y$ and $\gamma^{\prime}=\gamma^{\prime \prime}-p_{*} \Omega^{3} \beta^{\prime}$.
q. e. d.

6. Meta-stable groups I.

We introduce the following results of stable groups from [16].
(6.1) $\left(\pi_{k}^{s}: p\right) \approx Z_{p}$ for $k=2 r(p-1)-1,1 \leq r<p^{2}$, $r \neq 0(\bmod p):$ generator α_{r}, $\approx Z_{p^{2}}$ for $k=2 t p(p-1)-1,1 \leq t<p-1:$
generator $\alpha_{t p}^{\prime}$,
$\approx Z_{p^{2}}+Z_{p}$ for $k=2\left(p^{2}-p\right)(p-1)-1$:
generators $\alpha_{(p-1) p}^{\prime}, \alpha_{1} \beta_{1}^{p-1}$,
$\approx Z_{p}$ for $k=2(s p+r)(p-1)-2(s-r), 0 \leq r<s$, $s p+r<p^{2}$: generator $\beta_{1}^{s-r-1} \beta_{r+1}$, $\approx Z_{p}$ for $k=2(s p+r+1)(p-1)-2(s-r)-1$, $0 \leq r<s, s p+r+1<p^{2},(r, s) \neq(0, p-1):$
generator $\alpha_{1} \beta_{1}^{s-r-1} \beta_{r+1}$,
$=0 \quad$ otherwise for $k<2 p^{2}(p-1)-3$.
By Proposition 4.17 of [16], the above element $\alpha_{t p}^{\prime}$ satisfies

$$
(1 / t) \alpha_{t p}^{\prime} \in\left\{p \ell, \alpha_{k-1}, \alpha_{1}\right\}, k=t p .
$$

We see also the element α_{k}^{\prime} of Proposition 4.4, (iii) satisfies
(6.2) $\alpha_{k}^{\prime} \in \pm\left\{p \ell, \alpha_{k-1}, \alpha_{1}\right\}$.

For $i_{*} \alpha_{k}^{\prime}=i^{*}\left(\alpha^{k-1} \delta \alpha\right)=i^{*} \alpha^{k-1} i^{*} \pi_{*} \alpha=i^{*} \alpha^{k-1} \circ \alpha_{1}$. Here $i^{*} \alpha^{k-1}$ is a coextension of $\pm \alpha_{k-1}$. By Proposition 1.8 of [18], $i^{*} \alpha^{k-1} \circ \alpha_{1} \in \pm i_{*}$ $\left\{p l, \alpha_{k-1}, \alpha_{1}\right\}$. Since the kernel of i_{*} is $p \cdot \pi_{2 k(p-1)-1}^{S}$ and it is contained in the indeterminacy, we have (6.2)'. We have also
(6.2). In (6.1), the generators $\alpha_{t p}^{\prime}$ may be replaced by the corresponding elements in Proposition 4.4, (iii). If $r \not \equiv 0(\bmod p)$. α_{r} may be replaced by α_{r}^{\prime} (Proposition 4.4, (iv)).

We shall use the following natations.

$$
\begin{align*}
& \text { (i) For } r \in S^{\infty} \pi_{i+2}\left(S^{2 m p-1}: p\right) \subset \pi_{i-2 m p+3}^{s}, \tag{6.3}\\
& Q^{m}(r) \in \pi_{i}\left(Q_{2}^{2 m-1}: p\right)
\end{align*}
$$

denotes an element such that

$$
Q^{m}(r)=I^{\prime}\left(r^{\prime}\right) \quad \text { and } \quad S^{\infty} r^{\prime}=r
$$

for some $\gamma^{\prime} \in \pi_{i+2}\left(S^{2 m p-1}: p\right)$.
(ii) For $r \in \pi_{i-2 m p+2}^{s}$,

$$
\bar{Q}^{m}(\gamma) \in \pi_{i}\left(Q_{2}^{2 m-1}: p\right)
$$

denotes an element (if exists) such that $S^{\infty} I\left(\bar{Q}^{m}(\gamma)\right)=\gamma$.
In meta-stable case, $i<2 m p^{2}-5, Q^{m}(r)$ exists uniquely for any $r \in\left(\pi_{i-2 m p+3}^{s}: p\right)$ and if $p \cdot \gamma=0$ then $\bar{Q}^{m}(\gamma)$ exists and is unique mod $\operatorname{Im} I^{\prime}$.

It follows from Theorem 2.2 and (6.1)
(6.4). Assume $i<2 m p^{2}-5$ and $i-2 m p<2 p^{2}(p-1)-6$, then $\pi_{i}\left(Q_{2}^{2 m-1}: p\right)$ is a Z_{p}-module having the following base:

$\left\{Q^{m}\left(\boldsymbol{\alpha}_{p}^{\prime}\right), \bar{Q}^{m}\left(\beta_{1}\right)\right\}$	if $i-2 m p=2 p(p-1)-4$,
$\left\{Q^{m}\left(\alpha_{s p+s-1}\right), \bar{Q}^{m}\left(\beta_{s}\right)\right\}$	if $i-2 m p=2(s p+s-1)(p-1)-4,2 \leq s<p$,
$\left\{\bar{Q}^{m}\left(\boldsymbol{\alpha}_{(p-1) p-1}\right), Q^{m}\left(\beta_{1}^{p-1}\right)\right\}$	if $i-2 m p=2\left(p^{2}-p-1\right)(p-1)-3$,
$\left\{Q^{m}\left(\boldsymbol{\alpha}_{(p-1) p}^{\prime}\right), Q^{m}\left(\alpha_{1} \beta_{1}^{p-1}\right)\right\}$	if $i-2 m p=2\left(p^{2}-p\right)(p-1)-4$,
$\left\{\bar{Q}^{m}\left(\boldsymbol{\alpha}_{(p-1) p}\right), \bar{Q}^{m}\left(\alpha_{1} \beta_{1}^{p-1}\right)\right\}$	if $i-2 m p=2\left(p^{2}-p\right)(p-1)-3$,
$\left\{I_{C_{2 m p-1}}\right\}$	if $i-2 m p=-3$,
$\left\{\bar{Q}^{m}\left(\boldsymbol{\alpha}_{r}\right)\right\}$	if $i-2 m p=2 r(p-1)-3,1 \leq r<p^{2}$,
	$r \neq p^{2}-p, r \neq p^{2}-p-1$,
$\left\{Q^{m}\left(\boldsymbol{\alpha}_{r}\right)\right\}$	if $i-2 m p=2 r(p-1)-4,1 \leq r<p^{2}$,
	$r \neq 0(\bmod p), r \neq-1(\bmod p+1)$,
$\left\{Q^{m}\left(\boldsymbol{\alpha}_{t}^{\prime}\right)\right\}$	if $i-2 m p=2 t p(p-1)-4,2 \leq t<p-1$,
$\left\{Q^{m}\left(\beta_{1}^{s-r-1} \beta_{r+1}\right)\right\}$	if $i-2 m p=2(s p+r)(p-1)-2(s-r)-3$,
	$0 \leq r<s, s p+r \leq p^{2},(r, s) \neq(0, p-1)$,
$\left\{\bar{Q}^{m}\left(\beta_{1}^{s-r-1} \beta_{r-1}\right)\right\}$	if $i-2 m p=2(s p+r)(p-1)-2(s-r)-2$,
	$0 \leq r, r+1<s, s p+r<p^{2},(r, s) \neq(1,0)$,
$\left\{Q^{m}\left(\alpha_{1} \beta_{1}^{s-r-1} \beta_{r+1}\right)\right\}$	if $i-2 m p=2(s p+r+1)(p-1)-2(s-r)-4$,
	$0 \leq r<s, s p+r+1<p^{2},(r, s) \neq(0, p-1)$,
$\left\{\bar{Q}^{m}\left(\alpha_{1} \beta_{1}^{s-r-1} \beta_{r+1}\right)\right\}$	if $i-2 m p=2(s p+r+1)(p-1)-2(s-r)-3$,
	$0 \leq r<s, s p+r+1<p^{2},(r, s) \neq(0, p-1)$,

\{ $\}$ if otherwise.
Consider the composition
$H^{(2)} \circ p_{*}=\partial: \pi_{i}\left(Q_{2}^{2 m+1}: p\right) \rightarrow \pi_{i}\left(S^{2 m+1}: p\right) \rightarrow \pi_{i-3}\left(Q_{2}^{2 m-1}: p\right), m \geq 1$.
Lemma 6.1. (i) Let $r \geq 0, p>s \geq 1$ and assume $m \neq 0(\bmod$ p). For $r \geq 1$ and for $(r, s)=(0,1)$ we have a relation

$$
H^{(2)}\left(p_{*}\left(\bar{Q}^{m+1}\left(\beta_{1}^{\prime} \beta_{s}\right)\right)\right)=x \cdot \bar{Q}^{m}\left(\alpha_{1} \beta_{1}^{\prime} \beta_{s}\right), \quad x \not \equiv 0(\bmod p) .
$$

For $r=0$ and $s>1$, the relation holds provided that $\beta_{s}=S^{\infty} \beta_{s}(n)$ for some $\beta_{s}(n) \in \pi_{n+2(s p+s-1)(p-1)-2}\left(S^{n}: p\right)$ of order p and for some $n \leq 2(m+1) p-3$.
(ii) Let $r \geq 0, p>s \geq 1$ and assume $m \neq-1(\bmod p)$. For $r \geq 1$ we have a relation

$$
H^{(2)}\left(p_{*}\left(Q^{m+1}\left(\beta_{1}^{\prime} \beta_{s}\right)\right)\right)=x \cdot Q^{m}\left(\alpha_{1} \beta_{1}^{r} \beta_{s}\right), \quad x \neq 0(\bmod p) .
$$

For $r=0$, the relation holds provided the same one as in (i).
(iii) Assume $k+m \neq 0(\bmod p)$. For $k \geq 2$ we have, if $\boldsymbol{\alpha}_{k}^{\prime}(2 m p-3)$ exists,

$$
H^{(2)}\left(p_{*}\left(\bar{Q}^{m+1}\left(\alpha_{k-1}\right)\right)\right)=x \cdot Q^{m}\left(\alpha_{k}^{\prime}\right), \quad x \not \equiv 0(\bmod p) .
$$

Also we have $H^{(2)}\left(p_{*}\left(I^{\prime}{ }_{2(2(+1))_{-1}}\right)\right)=x \cdot Q^{m}\left(\boldsymbol{\alpha}_{1}\right), x \neq 0(\bmod p)$ if $m \neq-1(\bmod p)$.

Proof. (i) By Theorem 5.1, it is sufficient to prove that there exists an element $\beta_{1}^{r} \beta_{s}(n) \in \pi_{n+k}\left(S^{n}: p\right), k=2((r+s) p+s-1)(p-1)$ $-2(r+1)$ such that $n \leq 2(m+1) p-3, p \cdot \beta_{1}^{\prime} \beta_{s}(n)=0$ and $S^{\infty} \beta_{1}^{\prime} \beta_{s}(n)$ $=\beta_{1}^{\prime} \beta_{s}$. For $r=0$ and $s>1$ this is assumed. Let $r \geq 1$ or $(r, s)=$ $(0,1)$. We shall prove the existence of such $\beta_{1}^{\prime} \beta_{s}(n)$ for $n=2 p+1$. By (2.8), if $n \geq 2(s p+s-1)-1, \beta_{s}=S^{\infty} \beta_{s}(n)$ for some $\beta_{s}(n) \in$ $\pi_{n+k}\left(S^{n}: p\right)$ and further if $n \geq 2(s p+s-1)+1 \beta_{s}(n)$ is of order p. Define $\beta_{1}^{r} \beta_{s}(2 p-1)$ by $\beta_{1}^{r}(2 p-1)=\beta_{1}(2 p-1) \circ S^{2 p(p-1)-2} \beta_{1}^{r-1}(2 p-1)$, $r=2,3, \cdots$, and $\beta_{1}^{r} \beta_{s}(2 p-1)=\beta_{1}^{r}(2 p-1) \circ \beta_{s}(2 p-1+2 r p(p-1)-2 r)$. Then $\beta_{1}^{\prime} \beta_{s}(2 p+1)=S^{2}\left(\beta_{1}^{\prime} \beta_{s}(2 p-1)\right)$ is the required element.
(ii) The proof of (ii) is similar to that of (i) with a remark that for the case $m=1$ the existence of the element $\beta_{1}^{\prime} \beta_{s}(2 p-1)$
satisfying the required properties has to be established. The only difference with (i) is that $p \cdot \beta_{1}(2 p-1)$ is not necessarily zero.
(iii) follows immediately from Theorem 5.2.
q. e. d.

We have also from Theorem 5.2
(6.5). If $k+m \equiv 0(\bmod p)$ then $H^{(2)} p_{*} \bar{Q}^{m+1}\left(\alpha_{k-1}\right)=0$ for $k>1$. and $H^{(2)} p_{*}\left(I^{\prime} e_{2(m+1) p-1}\right)=0$ for $k=1$.

Proposition 6.2. Assume $k<2\left(m+p^{2}\right)(p-1)-1$ and $k<2 m$ $(p+1)(p-1)-3$ then $\pi_{2 m+1+k}\left(S^{2 m+1}: p\right)$ has a direct summand $U(k, m)$ such that $S^{2} U(k, m)=0, U(k, m) \cap \operatorname{Im} S^{2}=0$ and

$$
U(k, m) \approx Z_{p}+Z_{p} \text { if } m \not \equiv-1(\bmod p) \text { and }
$$

$$
k=2\left(m+p^{2}-p\right)(p-1)-2
$$

$U(k, m) \approx Z_{p}$ if $k=2 r(p-1)-2, r \geq 1, r \neq 0(\bmod p)$ and not the above case,
$U(k, m) \approx Z_{p}$ if $m \neq 0(\bmod p), k=2(m+(s+r) p+s)(p-1)$ $-2(r+1)-1,0 \leq r, 1 \leq s$,
$U(k, m) \approx Z_{p} \quad$ if $m \neq-1(\bmod p), k=2(m+(s+r)(p+s)(p-1)$. $-2(r+1)-2,0 \leq r, 1 \leq s,(r, s) \neq(p-2,1)$,
$U(k, m)=0 \quad$ if otherwise.
This follows from (5.3), (6.4) and Lemma 6.1. $U(k, m)$ are generated by corresponding elements in $H^{(2)}()$ of Lemma 6.1.

Proposition 6.3. Assume $k<2\left(m+p^{2}-1\right)(p-1)-4$ and $2 m(p-1)-2<k<2(m-1)\left(p^{2}-1\right)-3$ then we have an exact sequence

$$
\begin{gathered}
\cdots \xrightarrow{H^{(2)}} V(k+1, m) \xrightarrow{p_{*}} \pi_{2 m-1+k}\left(S^{2 m-1}: p\right) / U(k, m-1) \\
\xrightarrow{S^{2}} \pi_{2 m+1+k}\left(S^{2 m+1}: p\right) / U(k, m) \xrightarrow{H^{(2)}} V(k, m) \rightarrow \cdots,
\end{gathered}
$$

where $V(k, m)$ are given as follows:

$$
\begin{array}{ll}
V(k, m) \approx Z_{p}+Z_{p} & \text { if } k=2 t p(p-1)-1 \text { and } m=(t-p+1) p+1, \\
V(k, m) \approx Z_{p} & \text { if } k=2 t p(p-1)-1 \text { and } m \neq(t-p+1) p+1, \\
V(k, m) \approx Z_{p} & \text { if } k=2 t p(p-1)-2,
\end{array}
$$

$$
\begin{aligned}
& V(k, m) \approx Z_{p} \quad \text { if } k=2 t p(p-1)-2 s-1, p>s \geq 1, m=(t-s) p, \\
& V(k, m) \approx Z_{p} \quad \text { if } k=2 t p(p-1)-2 s-2, p>s \geq 1, \\
& \\
& \quad m=(t-s) p-1, \\
& V(k, m) \approx Z_{p} \quad \text { if } k=2(a p+b)(p-1)-2, p>b>0, \\
& \\
& \\
& m=(a-b) p+1, \\
& V(k, m) \approx Z_{p} \quad \text { if } k=2(a p+b)(p-1)-2 s-1, p>b>0, p>s \geq 1, \\
& (b, s) \neq(1, p-1), m=(a-b-s+1) p \text { or }=(a-b-s) p, \\
& V(k, m) \approx Z_{p} \quad \text { if } k=2(a p+b)(p-1)-2 s-2, p>b>0, p>s \geq 1, \\
& \\
& \quad m=(a-b-s) p+1 \text { or }=(a-b-s) p-1, \\
& V(k, m)=0 \quad \text { if otherwise. }
\end{aligned}
$$

Proof. $V(k, m)$ are generated by the elements in (6.3) which does not appear in Lemma 6.1. $\pi_{2 m+k-2}\left(Q_{2}^{2 m-1}: p\right)$ is a direct sum of $V(k, m), H^{(2)} U(k, m)$ and a submodule $U^{\prime}(k, m)$ which is mapped isomorphically onto $U(k-1, m-1)$ under p_{*}. Then the proposition follows from the exactness of (5.1).
q. e. d.

Corollary 6.4. Assume $k<2\left(m+p^{2}-1\right)(p-1)-4$ and $k<$ $2(m-1)(p+1)(p-1)-3$ then we have isomorphisms

$$
\pi_{2 m-1+k}\left(S^{2 m-1}: p\right) \approx\left(\pi_{k}^{S}: p\right)+U(k, m-1)
$$

in the following cases:
(i) $\quad k=2 r(p-1)-1, r \neq 0(\bmod p)$,
(ii) $k=2(a p+b)(p-1)-2, p>b>0, m>(a-b) p+1$,
(iii) $k=2(a p+b)(p-1)-3, p>b>0, m>(a-b) p$,
(iv) $k=2(a p+b)(p-1)-2 s-2, p>b \geq 0, p>s \geq 1$,

$$
m>(a-b-s+1) p-1,(b, s) \neq(p-1, p-1)
$$

(v)

$$
\begin{aligned}
k= & 2(a p+b)(p-1)-2 s-1, p>b \geq 0, p>s \geq 2, \\
& m>(a-b-s+1) p,(b, s) \neq(p-1, p-1) .
\end{aligned}
$$

Here the subgroup of $\pi_{2 m-1+k}\left(S^{2 m-1}: p\right.$) corresponding to ($\pi_{k}^{s}: p$) is mapped isomorphically onto ($\pi_{k}^{s}: p$) by S^{∞}.

Proof. In these cases, we have $V\left(k^{\prime}, m\right)=0$ for $k^{\prime} \geq k$. Then the corollary follows from Proposition 6.3 and (2.8).

7. Unstable groups I.

We shall compute the groups $\pi_{2 m-1+t}\left(S^{2 m-1}: p\right)$ for $t<6 p(p-1)-7$ if $p \geq 5$ and for $t<33$ if $p=3$. The basic tool of the computation is the exact sequence (5.1).

Theorem 7.1.

$$
\begin{aligned}
& \pi_{2 m-1+k}\left(S^{2 m-1}: p\right) \approx\left\{\begin{array}{l}
Z_{p} \text { for } k=2 r(p-1)-1, r=1,2, \cdots, p-1 \\
\text { and } m \geq 2, \\
Z_{p} \begin{array}{c}
\text { for } k=2 r(p-1)-2, r=2, \cdots, p-1 \\
\text { and } r \geq m \geq 2,
\end{array} \\
0 \quad \text { otherwise for } k<2 p(p-1)-2,
\end{array}\right. \\
& \pi_{2 m-1+2 p(p-1)-2}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p^{2}} & \text { for } p \geq m \geq 3, \\
Z_{p} & \text { for } m=2 \text { and for } m>p,\end{cases} \\
& \pi_{2 m-1+2 \rho(p-1)-1}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p^{2}} & \text { for } m \geq 3, \\
Z_{p} & \text { for } m=2 .\end{cases}
\end{aligned}
$$

Proof. For the case $k<2 p(p-1)-3$, the results follow immediately from Corollary 6.4, (6.1) and Proposition 6.2. We remark
(7.1). (i) $\pi_{2 m-1+2 r(p-1)-1}\left(S^{2 m-1}: p\right), 1 \leq r<p, m \geq 2$, is generated by $\alpha_{r}(2 m-1)$.
(ii) $\pi_{2 m-1+2 r(p-1)-2}\left(S^{2 m-1}: p\right), p>r \geq m \geq 2$, is generated by an unstable element of the first type.

Put $q=2 p(p-1)$. Consider the exact sequences (5.1):

$$
\pi_{2 m+q-4}\left(S^{2 m-1}: p\right) \rightarrow \pi_{2 m+q-2}\left(S^{2 m+1}: p\right) \rightarrow \pi_{2 m+q-5}\left(Q_{2}^{2 m-1}: p\right)
$$

for $m=1,2, \cdots$, where $\pi_{q-2}\left(S^{1}: p\right)=0$ obviously and $\pi_{2 m+q-5}\left(Q_{2}^{2 m-1}: p\right)$ $=0$ by (6.4). It follows that $\pi_{2 m-1+q-3}\left(S^{2 m-1}: p\right)=0$ for all m. This completes the first statement of the theorem.

By (5.1) and by the result just obtained, we have exact sequences

$$
\begin{aligned}
& \pi_{2 m+q-3}\left(Q_{2}^{2 m-1}: p\right) \xrightarrow{p_{*}} \pi_{2 m+q-3}\left(S^{2 m-1}: p\right) \xrightarrow{S^{2}} \pi_{2 m+q-1}\left(S^{2 m+1}: p\right) \\
& \xrightarrow{H^{22}} \pi_{2 m+q-4}\left(Q_{2}^{2 m-1}: p\right) \rightarrow 0,
\end{aligned}
$$

where

$$
\begin{aligned}
& \pi_{2 m+q-4}\left(Q_{2}^{2 m-1}: p\right) \approx\left\{\begin{array}{lll}
Z_{p} & \text { generated by } Q^{m}\left(\alpha_{p-m}\right) & \text { for } 1 \leq m<p, \\
0 & \text { for } m \geq p,
\end{array}\right. \\
& \pi_{2 m+q-3}\left(Q_{2}^{2 m-1}: p\right) \approx\left\{\begin{array}{lll}
Z_{p} & \text { generated by } \bar{Q}^{m}\left(\alpha_{p-m}\right) & \text { for } 1 \leq m<p, \\
Z_{p} & \text { generated by } I^{\prime} c_{2 p^{2}-1} & \text { for } m=p, \\
0 & \text { for } m>p,
\end{array}\right.
\end{aligned}
$$

by (6.4). Let β be an element of $\pi_{2 p+q-3}\left(S^{2 p-1}: p\right)$ such that $H^{(2)} \beta^{\prime}$ $=Q^{p-1}\left(\alpha_{1}\right)$. By Theorem 5.4, (i), there exists an element β^{\prime} of $\pi_{2 p+q-5}\left(S^{2 p-3}: p\right)$ such that $S^{2} \beta^{\prime}=p \cdot \beta$ and $H^{(2)} \beta^{\prime}=x \cdot Q^{p-2}\left(\alpha_{2}\right), x \neq 0$ $(\bmod p) . \beta^{\prime}$ does not vanish under S^{2} since the kernel of the S^{2} is generated by $p_{*} \bar{Q}^{p-1}\left(\alpha_{1}\right)$ and $H^{(2)} p_{*}\left(\bar{Q}^{p-1}\left(\alpha_{1}\right)\right)=0$ by (6.5). It follows that the order of β is a multiple of p^{2}. But, $S^{2}(p \cdot \beta)=0$ since $\pi_{2 p+q-1}\left(S^{2 p+1}: p\right) \approx\left(\pi_{q-2}^{s}: p\right) \approx Z_{p}$ by (2.8) and (6.1). This shows that $p \cdot \beta=y \cdot p_{*}\left(I^{\prime} \epsilon_{2 p^{2}-1}\right)$ and $p^{2} \cdot \beta=0, y \neq 0(\bmod p)$. We have obtained that β generates $\pi_{2 p+q-3}\left(S^{2 p-1}: p\right) \approx Z_{p^{2}}$ and $S^{2} \pi_{2 p+q-5}\left(S^{2 p-3}: p\right) \approx Z_{p}$. If $p>3$, we repeat this discussion for β^{\prime} in place of β and so on. Then the second assertion of the theorem is obtained. We have obtained also
(7.2). (i) For $S^{2}: \pi_{2 m-1+2 \rho(p-1)-2}\left(S^{2 m-1}: p\right) \rightarrow_{\pi_{2 m+1+2(p-1)-2}\left(S^{2 m+1}: p\right) w e}$ have

$$
\operatorname{Ker} S^{2} \approx \begin{cases}Z_{p} & \text { for } p \geq m \geq 3 \\ 0 & \text { for } m<3 \text { and for } m>p\end{cases}
$$

and
Coker $S^{2} \approx \begin{cases}Z_{p} & \text { for } p-1>m \geq 1 \\ 0 & \text { for } m \geq p-1 .\end{cases}$
(ii) For $m \geq 3, S^{2}: \pi_{2 m-1+2 p(p-1)-1}\left(S^{2 m-1}: p\right) \rightarrow \pi_{2 m+1+2 p(p-1)-1}\left(S^{2 m+1}: p\right)$ is an epimorphism.

Then the last assertion of the theorem follows easily from (5.1), (6.1), (6.4) and (7.2), (ii).
q. e. d.

Theorem 7.2. Let $p>r \geq 2$.

$$
\pi_{2 m-1+2(p+1)(p-1)-3}\left(S^{2 m-1}: p\right) \approx Z_{p} \quad \text { for } m \geq 2,
$$

$$
\begin{aligned}
& \pi_{2 m-1+2(p+1)(p-1)-2}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p} & \text { for } p+1 \geq m \geq 2, \\
0 & \text { for } m>p+1,\end{cases} \\
& \pi_{2 m-1+2(p+1)(p-1)-1}\left(S^{2 m-1}: p\right) \approx Z_{p} \quad \text { for } m \geq 2,
\end{aligned} \pi_{2 m-1+2(p+r)(p-1)-4}\left(S^{2 m-1}: p\right), \begin{array}{ll}
Z_{p} & \text { for } m=r, \\
0 & \text { for } m \neq r,
\end{array}, \begin{aligned}
& \pi_{2 m-1+2(p+r)(p-1)-3}\left(S^{2 m-1}: p\right) \approx \\
& \pi_{2 m-1+2(p+r)(p-1)-2}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p} & \text { for } p+r \geq m \geq 2, \\
0 & \text { for } m>p+r,\end{cases} \\
& \pi_{2 m-1+2(p+r)(p-1)-1}\left(S^{2 m-1}: p\right) \approx Z_{p} \quad \text { for } m \geq 2, \\
& \pi_{2 m-1+k}\left(S^{2 m-1}: p\right)=0 \text { for } k=2(p+1)(p-1)-4 \text { and } \\
& \text { for } k \neq-1,-2,-3,-4(\bmod p), 2 p(p-1) \leq k<4 p(p-1)-5 .
\end{aligned}
$$

Proof. For the case $m \geq 3$ the results follow immediately from Corollary 6.4, (6.1) and Proposition 6.2.

For the case $m=2$ the results will be computed by use of the exact sequence (2.11). Consider the homomorphisms

$$
\Delta: \pi_{i+2}\left(S^{2 p+1}: p\right) \rightarrow \pi_{i}\left(S^{2 p-1}: p\right)
$$

for $2 p(p-1)+1 \leq i \leq 4 p(p-1)$. The two groups vanish except the following cases:
a) $i=2 p+2(p+j)(p-1)-2, \quad j=0,1, \cdots, p-1$,
b) $i=2 p+2(p+j)(p-1)-3, \quad j=0,1, \cdots, p-1$,
c) $i=2 p+2(p+1)(p-1)-4$.

In the cases a) and c) the groups are cyclic and $S^{2}: \pi_{i}\left(S^{2 p-1}: p\right)$ $\rightarrow \pi_{i+2}\left(S^{2 p+1}: p\right)$ are isomorphisms since $U(i-2 p+1, p-1)=U$ $(i-2 p+1, p)=0$. By use of the relation (2.7) it follows
$\operatorname{Ker} \Delta \approx \operatorname{Coker} \Delta \approx Z_{p}$ for the cases a) and c).
Next consider the case b) of $j=0$, i.e., $i=2 p+2 p(p-1)-3$. In this case the groups are isomorphic to $Z_{p^{2}}$ and Z_{p} respectively and S^{2} is an epimorphism, by (7.2), (i). By use of (2.7), we see that Δ is a monomorphism. Thus
$\operatorname{Ker} \Delta=0$ and Coker $\Delta \approx Z_{p}$ for the case b) of $j=0$.
Consider the case b) of $j>0$. Then the two groups are isomorphic to Z_{p} and $S^{2} \pi_{i}\left(S^{2 p-1}: p\right)=S^{2} U(i-2 p+1, p-1)=0$. By Lemma 2.6 , we have that Δ are epimorphisms hence isomorphisms. Thus
$\operatorname{Ker} \Delta=\operatorname{Coker} \Delta=0$ for the case b) of $j>0$.
By the exactness of (2.11) the results for $m=2$ are computed easily.
q. e. d.

Lemma 7. 3. If $1 \leq t<p$, then $S^{\infty}: \pi_{2 t p(p-1)+4}\left(S^{5}: p\right) \rightarrow\left(\pi_{2 t p(p-1)-1}^{s}: p\right)$ is an epimorphism.

Proof. By (7.2), (ii) this is true for $t=1$. Thus there exists an element $\alpha_{p}^{\prime}(5)$ such that $p \cdot \alpha_{p}^{\prime}(5)=\alpha_{p}(5)$. Choose elements $\alpha_{t p}^{\prime}(5)$ from the secondary composition $\left\{\alpha_{p}^{\prime}(5), p^{2} \epsilon_{2 p(p-1)+4}, S^{2 p(p-1)-1} \alpha_{(t-1) \rho}^{\prime}(5)\right\}$ inductively as same as the construction of $\alpha_{r}(3)$. Then it is verified that $p \cdot S^{\infty} \alpha_{t p}^{\prime}(5)=\alpha_{t p}^{\prime}, t \leq p[16:(4.15)]$. This shows that $S^{\infty}\left(\alpha_{t p}^{\prime}(5)\right)$ is of order p^{2}, and it generates $\left(\pi_{2 t p(p-1)-1}^{S}: p\right)$ if $t<p-1$. In the case $t=p-1$, the other generator $\alpha_{1} \beta_{1}^{p-1}$ is the image of $\alpha_{1}(3) \circ \beta_{1}^{p-1}(2 p)$ $\in \pi_{2 \rho(\rho-1)^{2}+2}\left(S^{3}: p\right)$.
q. e. d.

Theorem 7.4. Let $p \geq 5$. Then we have

$$
\begin{aligned}
& \pi_{2 m-1+4 p(p-1)-5}\left(S^{2 m-1}: p\right)=0 \\
& \pi_{2 m-1+4 p(p-1)-4}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p} & \text { for } m \geq p, \\
0 & \text { for } m<p,\end{cases} \\
& \pi_{2 m-1+4 p(p-1)-3}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p} & \text { for } 2 p>m \geq p, \\
0 & \text { for } m \geq 2 p \text { and for } m<p .\end{cases} \\
& \pi_{2 m-1+4 p(p-1)-2}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p^{2}} & \text { for } 2 p>m>2, \\
Z_{p} & \text { for } m=2 p \text { and for } m=2, \\
0 & \text { for } m>2 p,\end{cases} \\
& \pi_{2 m-1+4 p(p-1)-1}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p^{2}} & \text { for } m>2, \\
Z_{p} & \text { for } m=2 .\end{cases}
\end{aligned}
$$

Proof. For the case $m=2$ the same proof as Theorem 7.2 is valid.

Put $q=4 p(p-1)$ and consider the exact sequences (5.1): $(*) \cdots \longrightarrow \pi_{2 m-1+q-i}\left(Q_{2}^{2 m-1}: p\right) \xrightarrow{p_{*}} \pi_{2 m-1+q-i}\left(S^{2 m-1}: p\right) \xrightarrow{S^{2}}$

$$
\pi_{2 m+1+q-i}\left(S^{2 m+1}: p\right) \xrightarrow{H^{(2)}} \pi_{2 m-1+q-i-1}\left(Q_{2}^{2 m-1}: p\right) \xrightarrow{p_{*}} \cdots,
$$

for $m=2,3, \cdots, i=5,4,3,2,1$.
By (6.4), $\pi_{2 m-1+q-6}\left(Q_{2}^{2 m-1}: p\right)=0$ for $m \geq 2$, and $\pi_{2 m-1+q-5}\left(Q_{2}^{2 m-1}: p\right)$ $=0$ for $m \geq 2$ and $m \neq p-1, \approx Z_{p}$ for $m=p-1$. Then the first assection follows immediately by the exactness of (*), $i=5$. Also the exactness of $\left(^{*}\right), i=4$, implies that $\pi_{2 m-1+q-4}\left(S^{2 m-1}: p\right)=0$ for $m<p, \approx Z_{p}$ for $m=p$ and $S^{2}: \pi_{2 m-1+q-4}\left(S^{2 m-1}: p\right) \rightarrow \pi_{2 m+1+q-4}\left(S^{2 m+1}: p\right)$ are epimorphisms for $m \geq p$. These S^{2} are isomorphisms since ($\pi_{q-4}^{s}: p$) $\approx Z_{p}$. Thus the second assertion has been proved. Remark that

$$
\begin{equation*}
\pi_{2 m-1+4 p(p-1)-4}\left(S^{2 m-1}: p\right), m \geq p, \text { are generated by } \beta_{1}^{2}(2 m-1) . \tag{7.3}
\end{equation*}
$$

Since S^{2} in (*) of $i=4$ are monomorphisms, $H^{(2)}$ in (*) of $i=3$ are epimorphisms. By (6.4), $\pi_{2 m-1+q-4}\left(Q_{2}^{2 m-1}: p\right) \approx Z_{p}$ for $m=p-1, p$ and $=0$ for $m \neq p-1, p$. We have also $U(q-3, p-1) \approx Z_{p}$ by Proposition 6.2. It follows that $\pi_{2 m-1+q-3}\left(S^{2 m-1}: p\right)=0$ for $m<p, \approx Z_{p}$ for $m=p$, $p+1$ and $S^{2}: \pi_{2 m-1+q-3}\left(S^{2 m-1}: p\right) \rightarrow \pi_{2 m+1+q-3}\left(S^{2 m+1}: p\right)$ are epimorphisms for $m \geq p+1$. Assume that $\pi_{4 p-3+q-3}\left(S^{4 p-3}: p\right)=0$ in which the element $p_{*} Q^{2 p-2}\left(\alpha_{1}\right)$ is. Then there exists an element γ of $\pi_{4 p-1+q-2}\left(S^{4 p-1}: p\right)$ such that $H^{(2)} \gamma=Q^{2 p-2}\left(\alpha_{1}\right) \neq 0 . S^{2} \gamma$ does not vanish since the kernel of this S^{2} is generated by $p_{*}\left(I^{\prime}{ }_{4 p^{2}-1}\right)$ and $H^{(2)} p_{*}\left(I^{\prime}{ }_{4 p^{2}-1}\right)=0$. But $S^{2} \gamma$ is already a stable element and this contradicts to $\left(\pi_{q-2}^{s}: p\right)=0$. Thus we concludes that $\pi_{4 p-3+q-3}\left(S^{4 p-3}: p\right) \approx Z_{p}$ and this is generated by $p_{*} Q^{2 \phi-2}\left(\alpha_{1}\right)$. Then the third assertion is proved.

Next consider the sequences (*) for $i=1$. By (6.4), $\pi_{2 m-1+q-1}$ ($\left.Q_{2}^{2 m-1}: p\right)=0$ for $m \geq 2$. It follows that S^{2} in (*) of $i=1$ are monomorphisms for $m \geq 2$. Then these S^{2} are isomorphisms for $m \geq 3$ by Lemma 7.3. We have proved the last assertion.

It follows also from the exactness of (*) of $i=1,2$ that $p_{*}: \pi_{2 m-1+q-2}\left(Q_{2}^{2 m-1}: p\right) \rightarrow \pi_{2 m+1+q-2}\left(S^{2 m-1}: p\right)$ are monomorphisms for $m \geq 3$. Put $\gamma=p_{*}\left(I^{\prime}{ }_{4 p^{2}-1}\right)$. Then $\gamma \neq 0$ and γ generates the group $\pi_{4 p-1+q-2}$
($S^{4 p-1}: p$) since $\pi_{4 p+1+q-2}\left(S^{4 p+1}: p\right)=\left(\pi_{q-2}^{s}: p\right)=0$. Thus $\pi_{4 p-1+q-2}\left(S^{4 p-1}: p\right)$ $\approx Z_{p}$. By Theorem 5.3, (i), there exists an element γ_{1} of $\pi_{4 p-3+q-2}$ ($S^{4 p-3}: p$) such that $S^{2} \gamma_{1}=r$ and $p \gamma_{1}=x \cdot p_{*} \bar{Q}^{2 p-2}\left(\alpha_{1}\right) \neq 0$ for some $x \neq 0$ $(\bmod p)$. Repeating this we have elements γ_{i} of $\pi_{4 p-2 i-1+q-2}\left(S^{4 p-2 i-1}: p\right)$ for $i=2,3, \cdots, 2 p-3$ such that $S^{2} \gamma_{i}=p \gamma_{i-1}$ and $p r_{i}=$ $x_{i} \cdot p_{*} \bar{Q}^{2 p-i-1}\left(\alpha_{i}\right) \neq 0$ for some $x_{i} \neq 0(\bmod p)$. On the other hand from the computation of the third assertion we see that the cokernel of S^{2} in (*) of $i=2$ are isomorphic to Z_{p} for $2 p-2 \geq m \geq 2$. Then the fourth assertion of the theorem is proved easily.
q. e. d.

In the above proof we have seen
(7.4). (i) The groups $\pi_{2 m-1+4 p(p-1)-3}\left(S^{2 m-1}: p\right)$ of $2 p>m>p$ are generated by unstable elements of the third type, i.e., these groups are isomorphic under iterated suspensions.
(ii) The groups $\pi_{2 m-1+4 p(p-1)-2}\left(S^{2 m-1}: p\right)$ of $2 p \geq m \geq 2$ are generated by unstable elements of the second type, i.e., a similar assertion as in (7.2), (i) holds.

Theorem 7.5. Let $p \geq 5$ and $p>j \geq 3$.

$$
\begin{aligned}
& \pi_{2 m-1+2(2 p+1)(p-1)-5}\left(S^{2 m-1}: p\right) \approx Z_{p} \quad \text { for } m \geq 2 \text {, } \\
& \pi_{2 m-1+2(2 p+1)(p-1)-4}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p} & \text { for } p+1 \geq m \geq 2, \\
0 & \text { for } m>p+1,\end{cases} \\
& \pi_{2 m-1+2(2 p+1)(p-1)-8}\left(S^{2 m-1}: p\right)=0, \\
& \pi_{2 m-1+2(2 p+1)(p-1)-2}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p}+Z_{p} & \text { for } 2 p+1 \geq m>p+1, \\
Z_{p} & \text { for } m>2 p+1 \text { and }\end{cases} \\
& \text { for } p+1 \geq m \geq 2 \text {, } \\
& \pi_{2 m-1+2(2 p+1)(p-1)-1}\left(S^{2 m-1}: p\right) \approx Z_{p} \quad \text { for } m \geq 2 \text {, } \\
& \pi_{2 m-1+2(2 p+2)(p-1)-6}\left(S^{2 m-1}: p\right) \\
& \approx \pi_{2 m-1+2(2 p+2)(p-1)-5}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p} & \text { for } m=2, \\
0 & \text { for } m>2,\end{cases} \\
& \pi_{2 m-1+2(2 p+2)(p-1)-4}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p} & \text { for } m=p+2, \\
0 & \text { for } m \neq p+2,\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \pi_{2 m-1+2(2 p+2)(p-1)-3}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p}+Z_{p} & \text { for } m=p+2, \\
Z_{p} & \text { for } m \neq p+2 \text { and } m>2, \\
0 & \text { for } m=2,\end{cases} \\
& \pi_{2 m-1+2(2 p+2)(p-1)-2}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p} & \text { for } 2 p+2 \geq m \geq 2, \\
0 & \text { for } \\
m>2 p+2,\end{cases} \\
& \pi_{2 m-1+2(2 p+2)(p-1)-1}\left(S^{2 m-1}: p\right) \approx Z_{p} \text { for } m \geq 2,
\end{aligned}, \begin{aligned}
& \pi_{2 m-1+2(2 p+j)(p-1)-6}\left(S^{2 m-1}: p\right) \\
& \quad \approx \pi_{2 m-1+2(2 p+j)(p-1)-5}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p} & \text { for } m=j, \\
0 & \text { for } m \neq j,\end{cases} \\
& \pi_{2 m-1+2(2 p+j)(p-1)-4}\left(S^{2 m-1}: p\right) \\
& \quad \approx \pi_{2 m-1+2(2 p+j)(p-1)-3}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p} & \text { for } m=j-1, p+j, \\
0 & \text { for } m \neq j-1, p+j,\end{cases}
\end{aligned}
$$

$$
\pi_{2 m-1+2(2 p+j)(p-1)-2}\left(S^{2 m-1}: p\right) \approx \begin{cases}Z_{p} & \text { for } 2 p+j \geq m \geq 2, \\ 0 & \text { for } m>2 p+j\end{cases}
$$

$$
\pi_{2 m-1+2(2 p+j)(p-1)-1}\left(S^{2 m-1}: p\right) \approx Z_{p} \quad \text { for } m \geq 2,
$$

$$
\pi_{2 m-1+k}\left(S^{2 m-1} ; p\right)=0 \text { otherwise for } 4 p(p-1) \leq m<6 p(p-1)-7
$$

Proof. Except the cases $k-2(2 p+1)(p-1)=-1,-2,-3$, -4 , the above results for $m>3$ are obtained directly from Corollary 6. 4 , the case $m=3$ they are computed from the case $m=4$ by use of (5.1) and (6.4) and for the case $m=2$ they are computed by use of (2.5), (2.7) and Lemma 2.6. Remark that in the computation it appears only two non-vanishing $V(m, k): V(2(2 p+1)(p-1)$ $-3, p) \approx V(2(2 p+1)(p-1)-2, p+1) \approx Z_{p}$. Then the remaining cases are computed from the stable cases by use of Proposition 6.3. The details are left to the reader.
q. e. d.

Remark. It seems there is no reason to stop the computation at the above range of k. In fact one can compute up to $k<6 p^{2}-10$ in which case $\pi_{2 m-1+k}\left(S^{2 m-1}: p\right)$ of $m>3$ are in meta-stable ranges. For example unstable elements of the fourth type appear in the groups $\pi_{2 m-1+(3 p+1)(p-1)-3}\left(S^{2 m-1}: p\right), 2 p+1 \geq m \geq p+1$.

Theorem 7.6. (i) Theorem 7.4 holds for the case $p=3$ and

$$
2(p+2)(p-1)-1=4 p(p-1)-5<k<4 p(p-1)-1(=23) .
$$

$$
\begin{align*}
& \pi_{2 m-1+23}\left(S^{2 m-1}: 3\right) \approx \begin{cases}Z_{9}+Z_{3} & \text { for } m>2, \\
Z_{3}+Z_{3} & \text { for } m=2,\end{cases} \tag{ii}\\
& \pi_{2 m-1+24}\left(S^{2 m-1}: 3\right) \approx \begin{cases}Z_{3} & \text { for } 4 \geq m \geq 2, \\
0 & \text { for } m>4,\end{cases} \\
& \pi_{2 m-1+25}\left(S^{2 m-1}: 3\right)=0, \\
& \pi_{2 m-1+26}\left(S^{2 m-1}: 3\right) \approx \begin{cases}Z_{3}+Z_{3} & \text { for } m=2 \text { and for } 7 \geq m>4 . \\
Z_{3} & \text { for } 4 \geq m>2 \text { and for } m>7,\end{cases} \\
& \pi_{2 m-1+2 \pi}\left(S^{2 m-1}: 3\right) \approx \begin{cases}Z_{3}+Z_{3} & \text { for } m=2, \\
Z_{3} & \text { for } m>2,\end{cases} \\
& \pi_{2 m-1+28}\left(S^{2 m-1}: 3\right) \approx \begin{cases}Z_{3} & \text { for } m=5, \\
0 & \text { for } m \neq 5 .\end{cases}
\end{align*}
$$

(iii)

$$
\begin{aligned}
& \pi_{2 m-1+29}\left(S^{2 m-1}: 3\right) \approx \begin{cases}Z_{3}+Z_{3} & \text { for } m=5, \\
Z_{3} & \text { for } m \neq 5 \text { and } m>2, \\
0 & \text { for } m=2,\end{cases} \\
& \pi_{2 m-1+30}\left(S^{2 m-1}: 3\right) \approx \begin{cases}Z_{3}+Z_{3} & \text { for } 8 \geq m>2, \\
Z_{3} & \text { for } m=2 \text { and for } m>8,\end{cases} \\
& \pi_{2 m-1+31}\left(S^{2 m-1}: 3\right) \approx \begin{cases}Z_{3}+Z_{3} & \text { for } 5 \geq m>2, \\
Z_{3} & \text { for } m=2 \text { and for } m>5,\end{cases} \\
& \pi_{2 m-1+32}\left(S^{2 m-1}: 3\right) \approx \begin{cases}Z_{3} & \text { for } m=2, \\
0 & \text { for } m>2 .\end{cases}
\end{aligned}
$$

Proof. The proof of (i) is same as that of Theorem 7.4. The proof of (ii) is also similar to that of Theorem 7.5. Look at the last assertion of Theorem 7.4 and the results of Theorem 7.5 and put $p=3$, then some of them are overlapped and by making the direct sums of these overlapping groups the results of (ii) are obtained.

The essential difference occurs in the cases of (iii).
The first diffrence is the appearance of a new generator β_{1}^{3} of
the stable group $\left(\pi_{30}^{s}: 3\right) \approx Z_{3}$. The second difference is the existence of non-vanishing $V(k, m): V(31,4), V(32,6)$ and $V(33,7)$ which are isomorphic to Z_{3} and generated by $Q^{3}\left(\beta_{1}^{2}\right)=I^{\prime} \beta_{1}^{2}(17), Q^{5}\left(\alpha_{1} \beta_{1}\right)=$ $I^{\prime}\left(\alpha_{1}(29) \circ \beta_{1}(31)\right)$ and $Q^{6}\left(\alpha_{1}\right)=I^{\prime} \alpha_{1}(35)$ respectively.

To simplify the notations we put $\pi_{i}\left(S^{n}: 3\right)=\pi_{i}^{n}$. The groups π_{i}^{3} in (iii) are computed easily by use of (2.5), (2.7) and Lemma 2.6. Some meta-stable groups of (iii) are determined by Corollary 6.4. Then it remains the following groups: $\pi_{25}^{5}, \pi_{2 m-1+31}^{2 m-1}$ for $m=3,4,5$, and $\pi_{2 m-1+\cdots}^{2 m-1}$ for $m=3,4,5,6$.

By (6.4), $\pi_{34}\left(Q_{2}^{5}: 3\right)$ is generated by $Q^{4}\left(\alpha_{5}\right)$. By Lemma 6.1, $Q^{4}\left(\alpha_{5}\right)$ is an image of $H^{(2)} p_{*}$, hence $p_{*} Q^{4}\left(\alpha_{5}\right)=0$ by the exactness of (5.1). Then we have an exact sequence $0 \rightarrow \pi_{24}^{5} \rightarrow \pi_{36}^{7} \rightarrow \pi_{33}\left(Q_{2}^{5}: 3\right)=0$ by (5.1) and (6.4). Thus $\pi_{34}^{5} \approx \pi_{36}^{7} \approx Z_{3}$.

Also we have an exact sequence

$$
\text { *) } \quad \pi_{35}\left(Q_{2}^{5}: 3\right) \xrightarrow{p_{*}} \pi_{35}^{5} \stackrel{S^{2}}{\longrightarrow} \pi_{37}^{7} \xrightarrow{H^{(2)}} Z_{3} \longrightarrow 0,
$$

where $\pi_{37}^{7} \approx Z_{3}+Z_{3}$ and $\pi_{35}\left(Q_{2}^{\top}: 3\right)$ is generated by $\overline{Q^{3}}\left(\alpha_{5}\right)$ and $Q^{3}\left(\beta_{1}^{2}\right)$. By Lemma 6.1, $H^{(2)} p_{*} \bar{Q}^{3}\left(\alpha_{5}\right)= \pm Q^{2}\left(\alpha_{6}^{\prime}\right) \in \pi_{32}\left(Q_{2}^{3}: 3\right) . S^{2}: \pi_{34}^{11} \rightarrow \pi_{35}^{13}$ is an isomorphism since these groups are isomorphic to $Z_{9}+Z_{3}$ and S^{∞} maps these groups onto ($\pi_{23}^{s}: 3$) $\approx Z_{9}+Z_{3}$ by Lemma 7.3. Then it follows from the exactness of (2.5) and from (2.7) that $\pi_{32}\left(Q_{2}^{3}: 3\right)$ $\approx Z_{3}+Z_{3}$ and $Q^{2}\left(\alpha_{6}^{\prime}\right)$ is a generator. Thus $p_{*} \overline{Q^{3}}\left(\alpha_{5}\right)$ generates a direct factor isomorphic to Z_{3}. Next consider $p_{*} Q^{3}\left(\beta_{1}^{2}\right)$. Since $\pi_{25}^{5} \approx Z_{3}$ and $S^{\infty} \beta_{1}^{2}(5)=\beta_{1}^{2} \neq 0, S^{2}: \pi_{25}^{5} \rightarrow \pi_{27}^{7}$ is a monomorphism. From the exactness of (5.1) it follows that $H^{(2)}: \pi_{28}^{7} \rightarrow \pi_{25}\left(Q_{2}^{\top}: 3\right)$ is an epimorphism. Let γ be an element of π_{28}^{7} such that $H^{(2)} \gamma=Q^{3}\left(\beta_{1}\right)$. $\in \pi_{25}\left(Q_{2}^{5}: 3\right)$. By use of (2.6) and (1.3), (ii) we have $Q^{3}\left(\beta_{1}^{2}\right)=$ $Q^{3}\left(\beta_{1}\right) \circ \beta_{1}(25)=H^{(2)} \gamma^{\circ} \beta_{1}(25)=H^{(2)}\left(\gamma \circ \beta_{1}(28)\right)$. It follows that $p_{*} Q^{3}\left(\beta_{1}^{2}\right)$. $=p_{*} H^{(2)}\left(r \circ \beta_{1}(28)\right)=0$. Then the result $\pi_{35}^{5} \approx Z_{3}+Z_{3}$ follows from the exactness of ${ }^{*}$).

We have exact sequences

$$
\pi_{36}\left(Q_{2}^{\overline{5}}: 3\right) \xrightarrow{p_{*}} \pi_{36}^{5} \xrightarrow{S^{2}} \pi_{38}^{7} \xrightarrow{H^{(2)}}\left\{Q^{3}\left(\beta_{1}^{2}\right)\right\} \longrightarrow 0,
$$

$$
\pi_{38}\left(Q_{2}^{7}: 3\right) \xrightarrow{p_{*}} \pi_{39}^{7} \xrightarrow{S^{2}} \pi_{40}^{9} \xrightarrow{H^{(2)}} \pi_{37}\left(Q_{2}^{7}: 3\right) \xrightarrow{p_{*}},
$$

where $\pi_{38}\left(Q_{2}^{7}: 3\right)=0, \bar{Q}^{3}\left(\beta_{1}^{2}\right)$ and $\bar{Q}^{4}\left(\alpha_{4}\right)$ generate $\pi_{38}\left(Q_{2}^{5}: 3\right)$ and $\pi_{37}\left(Q_{2}^{7}\right.$: 3) respectively. By Lemma 6.1, $H^{(2)} p_{*}$-images of $\bar{Q}^{3}\left(\beta_{1}^{2}\right)$ and $\bar{Q}^{4}\left(\alpha_{4}\right)$ do not vanish. It follows that $\pi_{38}^{7} \approx \pi_{40}^{9}, \pi_{38}^{5} \approx Z_{3}+S^{2} \pi_{36}^{5}$ and $\pi_{38}^{7} / S^{2} \pi_{36}^{5}$ $\approx Z_{3}$. The elements $\alpha_{8}(2 m-1), m=3,4,5$, generate direct factors of these groups isomorphic to Z_{3}. Thus π_{38}^{7} has at least 9 elements. In the exact sequence

$$
\pi_{40}\left(\left(Q_{2}^{9}: 3\right) \rightarrow \pi_{40}^{9} \rightarrow \pi_{42}^{11}\right.
$$

$\pi_{42}^{11} \approx Z_{3}$ and $\pi_{40}\left(Q_{2}^{9}: 3\right) \approx Z_{3}$. It follows then $\pi_{38}^{7} \approx \pi_{30}^{9} \approx \pi_{36}^{5} \approx Z_{3}+Z_{3}$.
From the above discussion and from (6.4) we see that in the exact sequences

$$
\pi_{2 m-1+32}^{2 m-1} \xrightarrow{S^{2}} \pi_{2 m+1+32}^{2 m+1} \xrightarrow{H^{(2)}} \pi_{2 m+30}\left(Q_{2}^{2 m-1}: p\right) \xrightarrow{p_{*}} \pi_{2 m-1+31}^{2 m-1}
$$

p_{*} are monomorphisms for $m \geq 3$. Thus S^{2} are epimorphisms for $m \geq 3$. Then in order to prove the last assertion of the theorem it is sufficient to prove $\pi_{37}^{5}=0$. By use of the exactness of (2.5) we have directly $\pi_{34}\left(Q_{2}^{3}: 3\right)=0$. Thus $\pi_{37}^{5}=S^{2} \pi_{35}^{3}$. The result $\pi_{35}^{3} \approx Z_{3}$ is verified from an exact sequence

$$
\pi_{36}^{7} \xrightarrow{\Delta} \pi_{34}^{5} \xrightarrow{G} \pi_{35}^{3} \longrightarrow \pi_{35}^{7}=0 .
$$

The group π_{34}^{5} is isomorphic to Z_{3}. By use of Proposition 6.3 we see that $S^{\infty}: \pi_{35}^{9} \rightarrow\left(\pi_{26}^{s}: 3\right)$ is an epimorphism. Let $\beta_{2}(9)$ be an element of π_{35}^{9} such that $S^{\infty} \beta_{2}(9)=\beta_{2}$. By (2.11), (ii) there exists an element ε of π_{34}^{5} such that $S^{2} \varepsilon=S\left(\alpha_{1}(6) \circ \beta_{2}(9)\right)$. Then $S^{\infty} \varepsilon=\alpha_{1} \beta_{2} \neq 0$. Thus ε is a generator of π_{34}^{5}. By (2.13), π_{35}^{3} is generated by $G(\varepsilon)=\alpha_{1}(3) \circ S \varepsilon$. Since $\alpha_{1}(5) \circ \alpha_{1}(8) \in \pi_{11}^{5}=0$, we have $S^{2}\left(\alpha_{1}(3) \circ \varepsilon\right)=\alpha_{1}(5) \circ \alpha_{1}(8) \circ \beta_{2}(11)$ $=0$. Thus $\pi_{37}^{5}=S^{2} \pi_{35}^{3}=0$. This completes the proof of the theorem.

Bibliography

[1] J. F. Adams, On the group $J(X)-I V$, Topology, to appear.
[2] J. Adem, The relations on Steenrod powers of cohomology classes, Algebraicgeometry and topology, Princeton 1957.
[3] H. Cartan, Algèbres d'Eilenberg-MacLane et homotopie, Seminaire de E. N. S. Paris (1955).
[4] H. H. Gershenson, Higher composition products, J. Math. Kyoto Univ., 4 (1962), 1-37.
[5] K. A. Hardie, On the Hopf-Toda invariant, Trans. Amer. Math. Soc., 112. (1964) 43-54.
[6] I. M. James, Reduced product spaces, Ann. of Math., 62 (1955) 170-197.
[7] A. Liulevicius, The factorization of cyclic reduced powers by secondary. cohomology operations, Mer. Amer. Math. Soc., 42 (1962).
[8] J. C. Moore, Some applications of homology theory to homotopy problems, Ann. of Math., 58 (1953), 325-350.
[9] D. Puppe, Homotopiemengen und ihre induzierten Abbildungen, I, Math. Z., 69 (1958), 229-344.
[10] J.-P. Serre, Group d'homotopie et classes des groups abéliens, Ann. of Math., 58 (1953), 258-294.
[11] N. Shimada and T. Yamanoshita, On triviality of the mod p Hopf invariant, Jap. Jour. of Math., 31 (1961), 1-24.
[12] E. Spanier, Secondary operations on mappings and cohomology, Ann. of Math., 75 (1962), 260-282.
[13] H. Toda, On double suspension E^{2}, J. Osaka City Univ., 3 (1956), 103-145.
[14] H. Toda, p-primary components of homotopy groups II, Mem. Kyoto Univ., 31 (1958), 143-160.
[15] H. Toda, p-primary components of homotopy groups III, Mem. Kyoto Univ., 31 (1958), 191-210.
[16] H. Toda, p-primary components of homotopy groups IV, Mem. Kyoto Univ., 32 (1959), 297-332.
[17] H. Toda, On unstable homotopy of spheres and classical group, Proc. Nat. Acad. Sci., U.S.A. 46 (1960), 1102-1105.
[18] H. Toda, Composition methods in Homotopy groups of spheres, Princeton, Ann. of Math. Studies, No. 49, 1962.
[19] N. Yamamoto, Algebra of stable homotopy of Moore space, J. Math. Osaka City Univ., 14 (1963), 45-67.
[20] E. C. Zeeman, A proof of the comparision theorem for spectral sequences, Proc. Camb. Phil. Soc., 53 (1957), 57-62.

